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Crowd Computing as a Cooperation Problem: An 
Evolutionary Approach

Evgenia Christoforou · Antonio Fernández Anta · Chryssis Georgiou · Miguel A. 
Mosteiro · Angel Sánchez

Abstract Cooperation is one of the socio-economic issues that has received more attention
from the physics community. The problem has been mostly considered by studying games
such as the Prisoner’s Dilemma or the Public Goods Game. Here, we take a step forward
by studying cooperation in the context of crowd computing. We introduce a model loosely

This work is supported by the Cyprus Research Promotion Foundation grant TE/HPO/0609(BE)/05,
the National Science Foundation (CCF-0937829, CCF-1114930), Comunidad de Madrid grant
S2009TIC-1692 and MODELICO-CM, Spanish MOSAICO, PRODIEVO and RESINEE grants and
MICINN grant TEC2011-29688-C02-01, and National Natural Science Foundation of China grant
61020106002.

E. Christoforou · C. Georgiou
University of Cyprus, Nicosia, Cyprus

E. Christoforou
e-mail: evgenia.christoforou@gmail.com

C. Georgiou
e-mail: 
chryssis@cs.ucy.ac.cy
A. Fernández Anta
Institute IMDEA Networks, Madrid, Spain 
e-mail: antonio.fernandez@imdea.org

A. Fernández Anta · M.A. Mosteiro 
Universidad Rey Juan Carlos, Madrid, Spain

M.A. Mosteiro
e-mail: miguel.mosteiro@urjc.es

M.A. Mosteiro
Kean University, Union, NJ, 
USA
A. Sánchez (�)
GISC/Matemáticas, Universidad Carlos III de Madrid, Madrid, Spain 
e-mail: anxo@math.uc3m.es

A. Sánchez
BIFI, Universidad de Zaragoza, Saragossa, Spain

1



based on Principal-agent theory in which people (workers) contribute to the solution of a
distributed problem by computing answers and reporting to the problem proposer (master).
To go beyond classical approaches involving the concept of Nash equilibrium, we work on
an evolutionary framework in which both the master and the workers update their behavior
through reinforcement learning. Using a Markov chain approach, we show theoretically that
under certain—-not very restrictive—conditions, the master can ensure the reliability of the
answer resulting of the process. Then, we study the model by numerical simulations, finding
that convergence, meaning that the system reaches a point in which it always produces reli-
able answers, may in general be much faster than the upper bounds given by the theoretical
calculation. We also discuss the effects of the master’s level of tolerance to defectors, about
which the theory does not provide information. The discussion shows that the system works
even with very large tolerances. We conclude with a discussion of our results and possible
directions to carry this research further.

Keywords Evolutionary game theory · Cooperation · Markov chains · Crowd computing ·
Reinforcement learning

1 Introduction

Physicists, and in particular statistical physicists, have long been interested in understand-
ing social phenomena by using their own disciplinary toolbox. While early efforts in this 
direction go back hundreds of years [1], only in the last two decades has the application of 
physics to social systems grown to involve a respectable number of researchers and to reach 
results of true interest for practitioners in the field. Thus, the success in the early nineties of 
econophysics [2], which eventually led to important contributions to the field of quantitative 
finance, was subsequently followed by a rapid widening of the scope of this research, and 
nowadays many different socio-economic problems are investigated with physics-inspired 
approaches [3].

One of the physics paradigms that has proven most fruitful to make connections with 
social science questions is that of emergence [4], i.e., the realization that the properties of 
large aggregates of entities can not be simply deduced from the properties of the said entities: 
At each level of complexity, entirely new, emergent properties appear. Thus, water molecules 
are water molecules and behave as such no matter what form water takes, whether ice, liquid, 
or vapor. Statistical physics taught us that it is possible to understand these phenomena by 
considering not only the constituents of the system of interest, but also their interactions 
with each other [5]. Not many years after Anderson’s seminal paper, the same epiphany was 
experienced by Schelling [6], who attempted, among other things, to explain the segregation 
of populations of different races on the basis of the individual motives of each person. In 
doing so, he came up with a model which was a specific version of another one already 
well-known to physicists, namely the Ising model [7]. However, there is a crucial difference 
between the two viewpoints: while physicists are interested in optimizing a global quantity 
(e.g., the Hamiltonian), the approach of the social scientist involves optimizing quantities at 
the individual level (e.g., utility functions [8]).

Aside from the local vs global perspectives, another important characteristic must be 
taken into account when dealing with social issues: the fact that interactions (which, let us 
keep in mind, are the responsible for emergent phenomena) are strategic [9], i.e., an individ-
ual’s situation is fully dependent on the choices or actions of others, and all parts know this 
and have the wit to use this awareness to their advantage. When such cognitive capabilities 
must be considered, the indispensable tool to describe interactions is game theory [10]. In
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its original formulation, game theory was a mathematical tool to analyze situations of con-
flict or cooperation in economics, but its applicability has grown with the decades and now 
reaches many disciplines, ranging from biology [11] to the whole spectrum of the behavioral 
sciences [12]. Loosely speaking, a game consists of a number of players, a set of strategies 
for each of the players, and a payoff function that associates a payoff to each player with 
a choice of strategies by each player [13, 14]. Within this setup, the key question is to find 
what are the strategies every player has to use to maximize her profits. The classical answer 
to this was given by Nash [15], through his concept of equilibrium: a Nash equilibrium is 
a set of strategies, one per player, such that no player has incentives to choose a different 
strategy unilaterally. In this formalism, given a game, Nash equilibrium is the behavior that 
should be observed, i.e., the game has been solved.

Unfortunately, this concept has a number of problems as soon as games with some degree 
of complication are considered. For instance, games may have more than one equilibrium, 
and in that case one needs to introduce refinements, more restrictive equilibria concepts, in 
order to select one of them as the solution of the game. On the other hand, a natural question 
arises when one thinks that players must be able to compute the Nash equilibria in order 
to play it, a task that is often very difficult. One possible solution to this problem arises 
from evolutionary game theory, introduced by Maynard-Smith [11] in order to apply game 
theoretical ideas to understand animal conflict. As Gintis [12] puts it, in evolutionary game 
theory, successful strategies diffuse across populations of players rather than being learned 
inductively by disembodied rational agents. This in turn leads to a dynamical approach to the 
evolution of strategies [16–18]. The dynamics that has received more attention is described 
by the replicator equation [19], which arises when one postulates that strategies appear in 
the next generation with probability proportional to the difference of their payoff with the 
mean payoff of all strategies in the population. Thus, payoff is assimilated to the biological 
concept of fitness, or reproductive success. In this framework, it can be proven that the stable 
points of the dynamics coincide with the Nash equilibria of the game under consideration. 
This is commonly taken as an explanation of how people learn to play the equilibrium of 
a game: Either they learn (and then evolution means here that people change the way they 
decide their actions as the game proceeds) or, in the case of irrational animals, their behavior 
is genetically determined and those who fare better have larger progenies.
Within the game theoretical formalism, one of the most important long unsolved puzzles

is how cooperative behavior can emerge and be stable. Indeed, ever since Darwin’s time
[20], understanding how individuals that help others at their own expenses can survive has
posed serious questions. This problem is very often formulated in terms of social dilemmas
[21] such as the Prisoner’s Dilemma [13, 14]. For instance, in the Prisoner’s Dilemma a
cooperator provides its partner with a benefit b at a cost, c, for herself, with c < b; a defector
receives the benefit, but does not cooperate. Therefore, two cooperators both obtain a payoff
of b − c, two defectors receive nothing, and a defector facing a cooperator earns b, whereas
the cooperator receives only −c. It would be better for both to cooperate, but on the other
hand it is easy to see that the only Nash or evolutionary equilibrium of the game is to defect,
which leads to both players getting nothing. Several mechanisms have been proposed to
explain why is it that we actually observe cooperation at a large scale in human and other
animal societies [22], but the question is far from being solved yet. In particular, a lot of
research has been devoted to mechanisms leading to deviations from the replicator equation
[23], which could turn cooperation into an equilibrium, with different degrees of success
and agreement with experiments [24, 25]. It is important to stress that this is one of the
many aspects that have been studied within the statistical physics approach to evolutionary
game theory on networks. Indeed, literally hundreds of papers have been published [26],
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including an increasing amount of literature on networks co-evolving with the strategies 
[27]. As it would be very lengthy to summarize all that work here, the reader is referred to 
these references for details and results on the many systems studied.

Here, we contribute to the literature of cooperation by moving away from well-known 
paradigms such as the one described in the preceding paragraph and turning instead to a 
situation closer to different real life applications, namely the Principal-agent problem [28, 
29], that is, the question of how to motivate one party (the agent) to act on behalf of another 
(the principal). Agency problems arise in a variety of different contexts: Thus, CEO’s should 
act on behalf of shareholders, lawyers are supposed to act in the best interest of their clients, 
employees work for their employers, and so on. For the sake of concreteness, and also for 
its interest in many cases, here we focus on the specific case of crowd computing.

Crowd computing has arisen in the last few years as an alternative to expensive supercom-
puters. The idea is to use the Internet as a platform for processing complex computational 
jobs, where complexity may come because the task is in itself very complex, so it needs 
to be split in many different subtasks, or because it is simple but must be repeated many 
times. Already, some Internet-based applications are taking advantage of this global compu-
tation infrastructure, being either volunteer-based “@home” projects [30] such as SETI [31] 
and Ibercivis [32], or profit-seeking computation platforms such as Amazon’s Mechanical 
Turk [33]. This type of distributed computation has already been considered from the tradi-
tional viewpoint in economics, namely the fully-rational agent [34–37]: A master (principal) 
must motivate a collection of workers (agents) to exert costly effort on the master’s behalf, 
but the workers’ actions are hidden from the master. Instead of focusing on each worker’s 
actions, the focus is on complex combinations of the efforts of the workers that influence 
the outcome. This is precisely the process involved in crowd computing: a central computer, 
the master, sends tasks to the volunteers’ computers, the workers, who carry out the task and 
report back the result they obtain.

We are thus faced with a cooperation problem. Indeed, crowd computing relies on peo-
ple providing either computing time on their computers or performing the computations 
themselves and reporting the result. However, participating individuals may in fact be un-
trustworthy [30, 38, 39], i.e., they may be tempted to defect by cheating. Reporting cheaply-
obtained incorrect results is the rational choice [38, 40, 41] whenever the computation is 
costly (be it in terms of time or money). Therefore, the master must take actions that en-
sure the correctness of the result (in other words, that makes workers cooperate, not defect). 
Thus, for instance, SETI attempts to prevent obtaining bogus results through redundancy 
(i.e., by assigning the same task to several workers and comparing their outcomes [30, 42]). 
This is actually the case we are going to consider in detail in this paper. To this end, we 
will make use of a game-theoretical model introduced in [43, 44], which was understood 
in the classical sense, i.e., interaction was one-shot and assumed neither prior knowledge 
of the actions of the agent nor reactions to them or future interactions. This is unrealistic 
in many situations in which individuals participating in the crowd computing process do so 
on a regular basis. In fact, it is often the case that their payoff arises from the reputation 
they receive by being listed as top contributors by the master, such as in SETI or Ibercivis. 
Therefore, an evolutionary approach to the problem is needed to understand in depth this 
type of collaborative enterprises and the incentives involved in them.

To report our results, the paper is organized as follows. The next section presents the 
model in detail. Subsequently, Sect. 3 collects some analytical results we have obtained 
by using a Markov chain formalism on the convergence to well-behaved (i.e., cooperator) 
workers. Section 4 probes further on this issue by means of computer simulations, showing 
that convergence is often achieved in much shorter times than those predicted by theory, and
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discussing how it depends on the model parameters. Finally, Sect. 5 concludes the paper by 
summarizing our findings and discussing possible extensions.

2 Model

2.1 Baseline Model

Let us consider a distributed system consisting of a master processor that assigns computa-
tional tasks to a set W of n workers. For reasons that will become apparent later, and that 
suppose no serious limitation to our model, we will assume n is odd. In every round of the 
process, the master sends one task, the same to all workers, who compute and return the 
obtained results. We will further assume that the correct answer to the task is unique; admit-
tedly, this does restrict somewhat the validity of our results, but it simplifies the analysis and 
at the same time there are very many real-life cases in which this is actually the case. Based 
on the workers’ answers, the master chooses what she believes is the correct answer to the 
task. Workers, who are rational players in a game-theoretical sense, can report the correct 
answer after having computed it (honest or cooperative workers), or can report a wrong an-
swer that requires much less or no computing cost (cheaters or defectors). In this last case, 
we consider the worst case scenario, in which cheaters collude towards providing the same 
wrong answer (as, for example, in [42]), which makes it much more difficult to detect by 
the master. The decision on the best action will of course depend on the parameters of the 
model. In this scheme, we characterize workers’ strategy by their individual cheating proba-
bility, pCi , for  worker  i. This probability is not a fixed quantity but rather it may change with 
the computing rounds, i.e., workers can readjust their strategy depending on the outcome of 
previous rounds (see below).

Clearly, the master’s goal is to obtain reliable answers and, in fact, to build a reliable
computational platform. The master has three tools at her disposal to achieve this goal:
auditing, rewarding and punishing. In a given round, the master may audit the response of
the workers (at a cost), i.e., she computes the task herself, thus finding which workers have
been truthful or not. We call pA the probability of the master auditing the responses of the
workers and, as pCi , it may change in time. We assume that there is a value pmin

A > 0 so that
at all times pA ≥ pmin

A . This reflects the fact that, even if the master does not want to audit
because it is costly, she will not stop auditing completely under any circumstances. This is
a somewhat technical point and, given that pmin

A may be very small, it is not a restrictive
assumption. Having the possibility of auditing in mind, the master proceeds in the following
way: either she audits and therefore knows the correct answer, or she does not audit, and then
takes as the correct answer that provided by the majority of workers. Whatever the case, an
answer to the task is always obtained, allowing the master to achieve her computational
objective and, importantly, to reward or punish the workers.

Rewarding and punishing are the other tools at the master’s disposal to encourage coop-
erative behavior. As we have already stated, rewarding may not necessarily be of monetary 
type, and retribution in terms of reputation are very common in volunteering schemes. Ob-
viously, in the Amazon Mechanical Turk, the only available reward is a payment for the 
person’s work. We will not enter here on the nature of the payment and look at the question 
from an abstract viewpoint. On the other hand, there is abundant evidence that punishment 
promotes cooperation [45, 46]. The effect of punishment will be one of the questions we 
will look into below. The general reward-punishment scheme is then as follows [43, 44]: 
Workers providing the right answer (irrespective of it being declared right because of audit-
ing or because of being in the majority) will receive a reward WBY (which may in principle
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Table 1 Summary of the
parameters of the baseline game
of our model

WPC worker’s punishment for being caught cheating

WCT worker’s cost for computing the task

WBY worker’s benefit from master’s acceptance

MPW master’s punishment for accepting a wrong answer

MCY master’s cost for accepting the worker’s answer

MCA master’s cost for auditing worker’s answers

MBR master’s benefit from accepting the right answer

cost a different amount MCY to the master). In case the master audits, cheaters will receive 
a punishment WPC (assumed costless for the master, i.e., it should be understood as a fine). 
Computing the task is of course costly (otherwise the problem is trivial) and its cost is WCT . 
For the master, auditing has also a cost (arising from carrying out the computation or check-
ing whether the answer is correct when input into the problem), which we denote by MCA . 
Accepting a wrong answer is also costly for the master, and the corresponding parameter is 
MPW . Finally, the right answer provides the master with a benefit MBR. These payoffs are 
summarized in Table 1 and it is important to stress that they are all non-negative, so they 
must enter the calculation with their corresponding sign.

2.2 Evolutionary Dynamics

In the preceding subsection, we have introduced the baseline game underlying our model. 
As was done in [43, 44], this can be treated on its own from the viewpoint of classical game 
theory, finding the Nash equilibria for a one-shot game. However, our aim in this paper is 
to study how the system behaves when the interaction between master and workers takes 
place repeatedly, and they can actually change their actions and the corresponding govern-
ing strategies in view of previous exchanges. The only prior example of this perspective we 
are aware of is that of Rose and Willemain [47] who introduced both evolution and bounded 
rationality in the principal-agent model. Players’ learning is simulated with a genetic algo-
rithm that roughly simulates selection and mutations in biological evolution.
Here, we use a completely different approach, namely the approach of reinforcement

learning [48–51]. Reinforcement learning models how the learner interacts with the envi-
ronment to decide upon a strategy and use its experience to select or avoid actions according
to the consequences observed. Empirical evidence [52] in general strategic contexts suggests
that reinforcement learning is more plausible with players that have information only about
the payoffs they receive. Even then, they may not have knowledge of the strategies involved.
This model of learning fits nicely to our master-worker computation problem: the workers
have no information about the master and the other workers’ strategies and they don’t know
the set of strategies that led to the payoff they receive. The workers have only information
about the strategies they choose at each round of evolution. Camerer [51] argues that “rein-
forcement learning is a reasonable theory for players with very imperfect reasoning ability
(. . .) or human players who know absolutely nothing about the forgone or historical pay-
offs from strategies they did not choose”. Thus, we make use of reinforcement as a learning
method, since workers are rational, and have sufficient cognitive skills and no idea about the
payoffs from strategies they did not choose. Moreover the algorithm assumes workers have
no information about other workers’ strategies, received payoffs, or master’s pA. Within
the specific context of cooperation models and social dilemmas, reinforcement learning has
been used before [53–55], showing that such dynamics can indeed lead to different forms of
cooperation in a manner that relates to what is observed in real situations.
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To implement reinforcement learning, we add time evolution to the two probabilities we
introduced earlier, namely the workers cheating probability, pCi , and the masters auditing
probability, pA. Further, we assume that, in every round, worker i has an aspiration ai ,
which stands for the minimum benefit she expects to obtain. Of course, for the worker to take
part in the project, the master must make sure that WBY ≥ ai , or, equivalently, that workers
can have their aspirations fulfilled. We will assume that the master knows the workers’
aspiration as, typically, master and workers have agreed on a contract prior to the start of the
computation. Having included the possibility of time evolution, we can state the master’s
goal as follows: After some finite number of rounds, the system must guarantee correctness
(the master obtains the correct task results in every round) with probability 1 forever. We
will refer to this goal as eventual correctness.

Let us now specify how the two probabilities evolve in time, beginning with the mas-
ter’s probability of auditing. Clearly, the master can only assess the cooperation level of the
workers when she audits, otherwise she does not have any reliable information on the truth
of their answers. At every round in which the master has audited, she changes her auditing
probability according to the following rule:

pt+1
A = min

{
1,max

{
pmin

A ,pt
A + αm

(
cheaters(t)

n
− τ

)}}
, (1)

where superindices t and t + 1 correspond to consecutive instants of time, cheaters(t) is the 
number of workers that provided an incorrect answer at time t , and  τ stands for the tolerance 
of the master, i.e., the number of cheaters she is ready to accept. Hence, if the proportion of 
cheaters is larger than τ , pA will be increased, and otherwise, pA will be decreased. The 
amount by which pA changes depends on the difference between these values, modulated by 
a learning rate αm. As we will see, tolerance is an important parameter which we will study 
in detail. This rule has to be supplemented with an appropriate initial value p0 . Assuming 
the master has no prior knowledge of her worker pool, a reasonable approach

A
is to initially 

set pA = 0.5. In any event, we have checked that the particular choice of initial condition 
does not change qualitatively our results below. On the other hand, when the answers are 
not audited, the master has no information about the number of cheaters, hence the rationale 
behind not updating the auditing probability in that case. Finally, we note that with this 
choice for the evolution of the master’s auditing probability, we need not consider anymore 
the master’s parameters in the payoffs Table 1, as they play no role in Eq. (1). This is a 
reduction in the number of parameters which for a first study like this is very useful, and 
will allow us to gain insight on the behavior of the model.

As for the workers, they also proceed with a reinforcement learning update based on
their aspiration level. When the master has decided on the correct answer and distributed the
corresponding rewards or punishment, workers revise their probability to cheat, according
to

pt+1
Ci = max

{
0,min

{
1,pt

Ci − αw(Πi − ai)Si

}}
, (2)

where Πi stands for the payoff worker i receives from the master and Si represents the
previous action of the worker, namely Si = 1 if the worker cooperated and provided the cor-
rect answer, and Si = −1 if the worker defected, i.e., cheated. What this scheme models is
that workers update their strategy based on the payoffs of the current round. The standard by
which this experience is judged to be satisfactory is defined by the aspiration level ai , against
which achieved payoffs, and the actions leading to them, are evaluated. The worker’s learn-
ing rate is denoted as αw . For simplicity, we assume that all workers have the same learning
rate, but our results can be generalized to the case that workers have different learning rates.
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3 Analytical Results

The model we have just described can be formulated in terms of a Markov chain approach 
for the probabilities of the master and the workers. Indeed, if we denote the state of the 
Markov chain by the vector of probabilities (pA,pC1,pC2, . . . , pCn), one can write equa-
tions for their evolution and note that it only depends on the values at the previous round. 
This theoretical analysis was carried out in detail in [56], and therefore we will not repeat it 
here. However, for the sake of completeness, we find it appropriate to quote the main results 
that can be rigorously proved about the model.

The first result arising from our analytical work is that eventual correctness, i.e., the goal
of reaching absolute certainty that the results provided by the system are correct in a finite
number of rounds, is achieved. This is shown by the following theorem:

Theorem 1 If pA > 0 then, after some finite number of rounds, the system achieves eventual
correctness if and only if WBY ≥ ai + WCT for all i ∈ Z in some set Z ⊆ W such that
|Z| > n/2.

In words, this theorem is a simple statement: if the master wants to reach a situation
in which her crowd-computing scheme is providing the correct answer with probability 1,
all she needs to do is make sure that a majority of workers have their aspirations (taking
into account the cost of computing) satisfied. Note that the workers may have different
aspirations and as these are revealed to the master she can optimize in choosing the value
of WBY , the worker’s benefit from her answer being considered correct, just large enough
to satisfy the majority of workers with lower aspiration levels. On a more technical note,
results like this are those requiring the number of workers to be odd to be proven rigorously.

The question that immediately arises after this first result is what is the convergence time. 
That is, the theorem shows that eventual correctness is reached, but how long does it take?
In [56] we were also able to answer this question by looking at the set of covered workers, 
i.e., those whose aspiration level and computing cost combined are smaller than the reward 
for providing the correct answer:

As we can see, the time to reach eventual correctness depends basically on three things: 
the learning rate of the master, αw , the benefit to the workers from providing a correct an-
swer, WBY − ai − WCT , and the punishment WPC . Thus, if the master reacts slowly to the 
actions of the workers, then the convergence time may be very long. Therefore, it is impor-
tant that the master reacts swiftly to the workers’ input, albeit too large a value of αw leads to 
problems because of overreactions, as we will discuss in the next section. It is also important 
to mention that the participants in the set of covered workers should be the same throughout 
the computation, which in general will always be the case if they keep their aspiration level 
constant. On the other hand, Theorem 1 states that covering workers’ aspirations is enough, 
but this second theorem tells us that the master should not be too greedy, because if the net

1For technical reasons, αw cannot be very large so the possible changes in pCi are bounded. This is not a
problem because reinforcement learning with large values of α may show pathological behavior, so we will
stay within this constraint.

A

Theorem 2 Let C be the set of all covered workers, with |C| > n/2, as required by Theo-
rem 1. The expected convergence time is at most ρ/(pmin)ρ ,where ρ = 1/(αwmini∈C{WBY −
ai − WCT ,WPC + ai}).1
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reward is very meager, then the convergence time increases enormously. Finally, the theorem
also gives a somewhat unexpected role to the punishment, in such a way that no matter what
the reward is, if there is no punishment it seems that the convergence time may be large. This
is an issue that we will certainly need to look at in the simulations and will be discussed in
the corresponding section. Nevertheless, from the analytical perspective, we found that we
could remove the dependence on the punishment by being a little more restrictive:

Theorem 3 Let C be the set of all covered workers, with |C| > n/2. If WPC + ai ≥ WBY −
WCT − ai and WBY − ai ≤ WCT + ai , ∀i ∈ C, and if

pmin
A = WCT + maxi∈C ai

WBY
+ ε,

where 0 < ε < 1 − (WCT + maxi∈C ai)/WBY , then the expected convergence time is ρ/ε,
where ρ = 1/(αw(WBY − WCT − maxi∈C ai)).

Thus, if a higher minimum auditing probability is affordable for the master (an increased
number of audits yields a more costly computation) then she can reach eventual correctness
in a reasonable time that is independent of any possible punishment.

As can be seen, the main conclusion of this section is, first, that the model does indeed 
allow to reach eventual correctness, and second, that the time to reach it can be bounded as 
above. Interestingly, the bound does not depend explicitly on the number of workers, albeit 
of course the more workers there are, the more the master needs to invest in rewards to 
ensure that half of them have their aspirations covered, but that does not affect the bound 
provided. This is quite a satisfactory result that arises from the lack of interactions between 
the workers, as all we are assuming is that those who cheat give the same wrong answer 
(which is a worst case scenario as we have already said). Therefore, the master is actually 
playing a collection of independent principal-agent games. We will come back to this issue 
in the discussion. To conclude this section on analytical results, we note that it is possible to 
obtain more quantitative results if stochastic bounds are searched for, i.e., ensuring eventual 
correctness with a probability higher that some specified value, smaller than one. The reader 
is referred to [56] for details on this approach.

4 Simulation Results

4.1 Parameters

Having presented what we learned from our theoretical analysis, it is now needed to go
beyond that and to test parameters and scenarios not covered by the theoretical analysis.
Of particular importance is the issue of the convergence of the system to providing correct
answers and the range of parameters under which this takes place in practically useful time.
On the other hand, one of the theoretical constraints is the very large number of workers to
which the master has to send the same computational task. Having such a large number of
workers affects the benefit the master obtains from the computation, especially in the case
workers are profit-seeking (MCY = WBY ). As we will see, even if we relax to a large extent
the constraints of the theorems (e.g. number of workers), convergence can be fast and the
system performs very well.

Going to numerical simulations requires fixing values for the parameters. Our model has
quite a few of them: the number of workers, three values for payoffs, costs and punishments
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(seven in Table 1 of which for the current model we disregard the master’s parameters as 
we have already discussed), two learning rates, one for the master and one for the workers, 
the master’s tolerance of cheating, and the minimum auditing probability. Aspiration levels 
must also be considered; in the analysis we assumed that they could be different for each 
worker for the sake of generality, but for simplicity we will consider here an homogeneous 
population (which can always be taken as a worst case scenario for populations whose max-
imum aspiration level equals our uniform value). In addition, there is the question of the 
initial values of the auditing and cheating probabilities. Therefore, it is clear that we need to 
fix several of these parameters in order to be able to make a meaningful simulation study.

To begin with, the initial cheating probability of each worker i is not known, and therefore
pCi = 0.5 seems to be a reasonable assumption. Similarly, workers are rational and have
no information about the master’s initial probability of auditing. The same applies for the
master’s initial probability of auditing, hence, we have taken pA = 0.5 as the initial value.
The minimum probability of auditing will be set to be pmin

A = 0.01. As for the tolerance, this
will be one of our parameters of interest so we will sweep a range of values in what follows.

Let us now proceed with the payoffs for the workers. We will take the worker’s reward 
for correct answers, WBY = 1, by way of normalization and, within that framework, we 
will choose WPC = 0, 1 and  WCT = 0.1, 0.2 as realistic values (within the same order of 
magnitude as WBY ) to explore the effects of these choices. As we will see, those values of 
punishment are enough to understand the system behavior, and, as for the computing cost, 
we believe that it is reasonable to assume that it is not too large compared with the reward. 
Regarding the aspiration level, as we have already said, this is a parameter defined by the 
workers in an idiosyncratic manner; for simplicity, in these simulations we fix a  uniform 
aspiration level, ai = 0.1. We have checked that when values are assigned randomly around 
some mean, the results are similar to those presented here, provided the variance is not 
very large. Of course, the values we have set for the aspiration and for the workers’ cost for 
computing the task are such that the necessary conditions of Theorem 1 are satisfied and 
hence eventual convergence should be reached. Finally, we consider the same learning rate 
for the master and the workers, i.e., α = αm = αw . The learning rate, as discussed for 
example in [57] (called step-size there), for practical reasons can be set to a small constant 
value; so we consider α = 0.01, 0.1.

4.2 Results

Let us begin the report on our simulation results by looking at a few typical runs. Examples
of the simulation outcome are shown in Fig. 1. As can be seen from the plots, the average
cheating probability of the workers decays rapidly to zero, and eventual correctness is easily
reached. In fact, introducing the parameters of the plots in the bound given by Theorem 2,
we find that for practical purposes the value of the bound is infinite: values of ρ with the pa-
rameters in Fig. 1 go from 12.5 to 1000, and then the factor pmin = 0.01 becomes extremely
large when raised to ρ. Numerical results show very clearly

A
that convergence is much more

faster than the theorem, and therefore such a system would be useful for practical purposes.
However, it is important to stress from the start that while the results in Fig. 1 are typical,
we have found instances in which convergence was not achieved in 105 rounds. To illustrate
this point, we have collected two instances in Fig. 2, obtained for a very large tolerance
value, τ = 0.9. Indeed, tolerance turns out to be the key parameter to understand the model
behavior, so we will discuss its role in detail below. For the time being, focusing on the
differences between realizations, it is clear that while in general convergence takes place in
a swift manner, it is not always granted to occur in a reasonable amount of time (as also the
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Fig. 1 Average cheating probability for the workers as a function of time (number of rounds) for a system
with 100 workers. Top left: WPC = 0, WCT = 0.1, ai = 0.01, α = 0.1, pmin

A = 0.01, and τ = 0.3. Top right:
as top left, but ai = 0.1. Bottom left: as top left, but WPC = 1. Bottom right: as top left, but ai = 0.1, WPC = 1
and WCT = 0.2

analysis shows). We note that the decay on the cheating probability is always accompanied
by a corresponding decrease of the master’s auditing probability, which reaches its minimum
value and remains at it forever. In fact, the master could actually not monitor anymore their
workers, as their cheating probability exactly vanishes, albeit one expects that in practice,
random, non-frequent audits would be in place in any functioning system.

Looking again at both Figs. 1 and 2, we see that there is more important information about 
the behavior of the model that we can extract. Thus, focusing on the results for different 
values of the aspiration level, we observe that the higher the value of ai , the faster the system 
evolves towards eventual correctness. In the example in Fig. 1, comparing the two upper 
panels we find that for an aspiration level one order of magnitude higher, convergence takes 
approximately half the time. On the contrary, in the lower panels the situation is reversed, 
and the system converges slightly faster for smaller aspiration rates (note that the bottom 
right panel corresponds to a different value of the cost, but we have checked that this is 
true keeping the cost constant). This result is in agreement with the bounds on convergence 
time of Theorem 2, which predict that when there is no punishment (WPC = 0) increasing 
aspiration levels improves the performance of the algorithm, while the opposite is true for 
large enough punishments (which is true with our choice WPC = 1). On the other hand, if 
the cost of computing is larger, convergence is slower, as shown by the lower plots in Fig. 1 
where, to avoid having multiple panels, we simultaneously changed two parameters, both
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Fig. 2 Average cheating probability for the workers as a function of time (number of rounds) for a system
with 100 workers. In both plots, WPC = 0, WCT = 0.2, α = 0.1, pmin

A = 0.01, and τ = 0.9. Left, ai = 0.1;
right, ai = 0.01

the aspiration level and the computing cost. The case with WPC = 0 is the most interesting 
one, as the results show that if the master does not want to punish the workers it is better 
to have workers with higher aspiration levels, contrary to what one can might expect. More 
evidence on the effect of the aspiration level arises from the extreme cases depicted in Fig. 2, 
where for the higher ai (left panel) eventual correctness is achieved after a few oscillations of 
the average cheating probability, while for the lower ai the system did not converge during 
the observed time. We thus conclude that aspiration level has effects which interact in a 
non trivial manner with the use of punishment, whereas the cost of computing goes in the 
foreseeable direction of increasing the convergence time.

Another factor we can discuss from the available data is the effect of punishment. Look-
ing at the left panels of Fig. 1 it can be clearly noticed that convergence with punishment 
is much faster than for the case without punishment, by an order of magnitude approxi-
mately. Of course, we are showing results with a strong punishment, of the same order of 
the reward; we have checked that smaller values exhibit the same positive trend and that 
the improvement of the convergence is more or less proportional to the punishment. On the 
other hand, a large punishment would not make much sense, because it could take away from 
the worker the profit from multiple rounds of computation. Facing such scenario, workers 
might not perceive participating in the computation as beneficial. Furthermore, our rein-
forcement learning scheme only looks at the profit of the previous round. Thus, considering 
large punishments would not be consistent.
Having analyzed the effect of the different payoff-related parameters on the model be-

havior, i.e., payoffs (punishment and costs compared to reward, aspiration levels) we must
now turn to the other key parameter of the system, the master’s tolerance to cheating τ . As
we have already seen, τ may have dramatic effects on the system performance. Figure 3
collects our results on the influence of tolerance on convergence, showing the percentage of
runs that converged to eventual correctness out of a batch of 50 realizations with a runtime
of 1000 rounds for every tolerance value and four numbers of workers. The first conclusion
we can draw from these plots is that for the case without punishment and with the lowest
aspiration level (top left panel) all realizations yielded eventual correctness for tolerances as
large as τ = 0.6. That is, the system remained well behaved (in the sense of providing correct
answers) even if the master does not react to a majority of defectors. For higher tolerances,
in agreement with what we advanced above, the system behavior worsens. Lack of conver-
gence within our simulation time becomes more frequent. For those realizations that do not
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Fig. 3 Convergence percentage of 50 realizations in 1000 rounds. Initial condition in all cases was pc = 1 for
all workers, pA = 0.5. Parameters in all panels, WCT = 0.1, α = 0.1, pmin

A = 0.01. Left panels: ai = 0.01,
right panels: ai = 0.1. Top panels, WPC = 0, bottom panels, WPC = 1

convergence, we cannot be sure that they will reach eventual correctness at some later time.
Therefore, the percentage of realizations that converged would be a estimate for a lower
bound to the probability of reaching eventual correctness. As we can see from the rest of
the panels, increasing the aspiration level to ai = 0.1 takes the maximum allowed tolerance
that still has eventual correctness in every realization up to τ = 0.7, whereas introducing
punishment for defectors is also an improvement factor, leading to threshold tolerances of
τ = 0.85 for the low aspiration level and even to τ = 0.9 for the largest one. We also checked
that increasing the computing cost to WCT = 0.2 does not change the picture. A value such
as τ = 0.9 is certainly very large; the fact that the system ends up providing correct an-
swers even when the master only updates her auditing probability in extreme cases shows
the robustness of the design.

Interestingly, Fig. 3 also shows the relevance of the number of workers in the system 
performance. It appears from the plots that when the master takes her tolerance beyond the 
convergence threshold the probability to reach eventual correctness decreases if the number 
of workers is increased. Except for the results at the threshold (τ = 0.7) in the case with no 
punishment and low aspiration (top left plot), increasing the number of workers always lead 
to worse results in terms of convergence for any value of the tolerance. We believe that this 
phenomenon arises because increasing the number of workers and keeping everything else 
the same, it is more probable that one of the workers defects. In this large tolerance region, 
the behavior would not change the master’s auditing probability and, given that there is no

13



punishment, reinforcement learning would not act so strongly on the corresponding worker,
making it more difficult for the system to converge.

Further information on the dependence of the system on the number of workers is pro-
vided by Fig. 4, where we study one of the cases of Fig. 3 in more detail. For the lowest 
aspiration value, ai = 0.01, we see that for tolerances τ = 0.75 and higher, the convergence 
percentage decreases with the number of workers. The system sizes we are able to study 
at this time are not enough to ascertain whether it eventually reaches zero for sufficiently 
large number of workers, which would indicate an abrupt transition in the performance of 
the algorithm upon changing the tolerance. Increasing the aspiration level we observe, in 
agreement with our earlier remarks, that the system performs much better in terms of higher 
convergence rates, and also that the transition to the non-performing system seems some-

Fig. 4 Convergence percentage of 50 realizations in 1000 rounds as a function of the number of workers for
the parameters of the top let panel of Fig. 3, i.e., WP = 0, WC = 0.1, α = 0.1, pmin = 0.01, with either
ai = 0.01 (lines marked with a vertical bar) or ai = 0.C1 (lines markT

ed with a cross).
A
From top to bottom and

from left to right, tolerance values are τ = 0.7,0.75,0.775,0.8,0.9,0.95. Lines are only a guide to the eye
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what more abrupt, going from full convergence (i.e., convergence percentage equal to 1) for
2217 workers at τ = 0.8 to a very low value for τ = 0.9. However, specific claims about the
nature of this transition cannot be made without studying the whole parameter space. What
we can certainly conclude is that the degrading of the performance becomes worse for larger
number of workers, as hinted from previous plots, and that for tolerance values up to τ = 0.7
the system always provides correct answers. We thus confirm the robustness of our design
as far as the need for the master to update her auditing probability is concerned, as she can
obtain good results just keeping the same value (and hence auditing less often and saving
costs) unless an inordinate number of workers defect. In addition, having workers with high
aspirations allows for an even lower rate of increase of the auditing probability.

5 Discussion

In this paper, we have presented a model for crowd computing, a collaborative enterprise
with important applications both already working and under development. The model is
based on the principal-agent models of economics but incorporates also elements of social
dilemmas such as the temptation to defect or the punishment to promote cooperation. The
other aspect of novelty of this work is that we bring dynamics into the literature on the
problem of crowd computing by introducing evolution through reinforcement learning. This
allows us to get insights on the problem beyond the assessment of equilibria which are
relevant for practical purposes, such as typical convergence times. The formalism also allows
us to look into behavioral parameters such as the tolerance about which a classical game-
theoretical perspective provides no information at all.

From the viewpoint of the payoff related parameters, i.e., those more in the spirit of the 
principal-agent theory of studying how binding contracts should be made, we have found 
that quite generally the convergence of the system to eventual correctness, to providing reli-
able answers, is quite fast. One factor that improves this convergence is punishment. In turn, 
this bears an interesting influence on the effects of the aspiration level: Without punishment, 
having workers with higher aspiration levels leads to faster convergence, whereas the oppo-
site is true when there is punishment. This is expected from the bounds found in Theorem 2 
and confirmed by the simulations. On the other hand, strictly speaking punishment is not 
necessary to ensure convergence, as the analytical results we summarized in Sect. 3 already 
hinted to. Therefore, it is left to the master’s choice whether she would rather have slower 
convergence and no punishment or faster convergence with punishing. In the case in which 
punishing is not costly it seems that the rational thing to do is to punish, but if costs are 
incurred then one has to compare with those of auditing in order to make a decision. As for 
the computing costs for the worker, they have more natural consequences and we have seen 
that increasing costs would increase the convergence time in turn.

Simulations have also allowed to look in detail into the issue of tolerance, something
about which our analytical results do not provide much information. As we have seen, the
system is able to perform correctly and provide the right answer for high tolerances, imply-
ing that the master needs only to react to large majorities of defectors or cheaters. In fact,
using punishment may push the tolerance levels for which convergence to eventual correct-
ness is always guaranteed up to values as large as τ = 0.85, meaning that the master would
only need to increase her auditing probability when almost all workers are cheating. This
is a very good result not only in terms of the convergence of the system but also as regards
the cost, because lower auditing probabilities means less actual audits and therefore less in-
curred costs by the master. On the other hand, the tolerance behavior above the convergence
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threshold depends on the number of workers participating in the crowd computing process.
As we have seen, the performance of the system decreases with the number of workers for
both aspiration values studied, the decrease being slower (but starting at lower tolerances)
for the lowest aspiration level. This observation points to the need of balancing the require-
ments of the task to be carried out in terms of computing power (number of workers) with
the reliability of the process (convergence percentage). Keeping everything else constant,
increasing the number of workers may lead to a serious degrading of the results, so if more
computers are required it is probably necessary to lower the tolerance to keep the worker
population in check. Finally, an interesting question arises regarding the nature of the tran-
sition that takes place in the convergence percentage as a function of the tolerance and the
aspiration level. Our simulations correspond only to a small set of parameters and we cannot
resolve the transition region in detail, and on top of that we would need more realizations
and certainly a much larger range of sizes. This remains an interesting open problem which
is most relevant for the applicability of the algorithm: Indeed, if the transition is abrupt one
has to be careful and work with tolerances away from that region, as any deviation in the
parameters may take the system into the region where it never works properly in practice.
If, on the contrary, the transition is smooth, then the value of the tolerance at the transition
is not that critical as small changes of the parameters would only lead to small decreases of
the performance of the algorithm.

To conclude the paper, a few comments are in order regarding its present scope and
its possible extensions. The way we have presented our model here, it is clear that we are
proposing a scheme in terms of independent principal-agent relationships, with no interac-
tions between workers whatsoever. However, when we introduce the dynamics, the depen-
dence on the total number of cheaters introduces a global mean field type interaction among
the workers that couples their behavior as in a majority model. In this context, we have also
a new feature with respect to majority models, namely the fact that the master reacts to this
mean field coupling by readjusting how often she looks into the results she receives from
the workers. These two effects combine in a manner that adds quite some complication to
the problem of independent agents, and features such as the interplay of the worker’s as-
pirations and the master’s possibility to punish are an example of this nontrivial dynamics.
Notwithstanding, being already a rich model, what we have introduced is a baseline scenario
in which there are no direct couplings between the workers.

It is interesting to note that, to some extent, the generalization to a situation where work-
ers interact on a network is, in certain sense, going from pairwise interactions to group 
interactions. Therefore, understanding group interactions may be a central premise to then 
go on to crowds. In this regard, several relevant aspects have already been noted in previous 
works. Thus, possible noise-dependences (such as mistakes) change when going to groups 
depending on the network topology [58]. The size of groups may also have effects on the 
evolution of cooperation [59]. In addition, group heterogeneity may also affect the outcome 
of the process [60] and, as a matter of fact, a correct description of the group interactions 
turns out to be crucial for the formulation of the problem [61–63].

Another possible extension of our model has to do with the workers’ aspiration level. In 
the current formulation, workers have a fixed aspiration level, but this needs not be the case, 
as it has been proposed for the Prisoner’s Dilemma by Macy and Flache [53] to study the ef-
fects of habituation. They modeled habituation as an aspiration level that changes following 
repeated stimulus: If the payoff exceeds aspirations, the aspiration level increases, leading to 
satiation on reward and sensitization to punishment. If the payoff falls below aspirations, the 
aspiration level decreases, leading to sensitization on reward and desensitization to punish-
ment. Macy and Flache found that such dynamic aspiration levels may lead to worse results
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in terms of promotion of cooperation. In our case, we would expect that, in agreement with 
our discussion above, increasing aspiration levels may lead to an improvement in the system 
performance; however, this may lead to trouble in the mid- to long-term because, on one 
hand, it will increase the cost for the master and, on the other hand, workers may eventually 
reach aspiration levels that are hard (if not impossible) to meet. When the master covers 
only a majority of workers this might self-regulate, as workers with large aspiration levels 
are replaced by others with smaller aspirations, but we cannot exclude that there may be 
instabilities that lead to a complete breakdown of the process, at least for certain habitua-
tion dynamics as observed in [53]. It is thus clear that this is an issue that deserves further 
investigation.

In many applied contexts in crowd computing and elsewhere, this needs not be the case 
and in fact workers may know each other or even, if we think of an organization, be con-
nected through a social network. Therefore, the question of explicit collusions immediately 
arises, but beyond that, we should also consider different informational contexts. Indeed, if 
workers have some relationship, they may observe the actions of each other, and perhaps the 
received payments, and that could influence their own behavior. Aspiration levels could also 
be public information or at least inferred from the payments a player receive. On the other 
hand, the master can introduce bookkeeping, for instance, by assigning a reputation to each 
worker (that can in turn be public or private). In fact, preliminary work shows that, again 
as in the general problem of the emergence of cooperation, introducing reputation improves 
very much the performance of the system. In any event, it is apparent that while the results 
we are presenting here are certainly interesting, there is a lot more to do in order to bring 
the model closer to specific real life applications. In this respect, it is worth noting that our 
model assumes the dynamics of the master and the agents’ strategy updates. As has been 
shown for the case of the Prisoner’s Dilemma [24, 25, 64, 65], it can perfectly be the case 
that the way people behave in this kind of situation is not that we are assuming. Therefore, 
following the usual physics approach to a problem, specifically designed experiments where 
the dynamics of actual human subjects could be observed are in order to assess the extent 
of the validity of our work. In the same manner, specific predictions regarding, for instance, 
the aspiration level, could be also tested. We hope that this work stimulates further research 
along these directions, some of which we are currently undertaking.
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