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The Mahalanobis distance for functional data with applications

in statistical problems

Ph.D. Dissertation

Abstract

Esdras Joseph

Department of Statistics

Universidad Carlos III de Madrid

Functional data refer to data which consist of curves evaluated at a finite subset of

some interval in the real line. In this thesis, we deal with this type of data, focusing

on the notion of functional distance. In the literature, there is few references to the

role played by distances between functional data. Recently, Ferraty and Vieu [20] have

proposed some semi-metrics well adapted for sample functions. However, common dis-

tances frequently used for multivariate data analysis such as the Mahalanobis distance

proposed by Mahalanobis [39], have not been extended to the functional framework.

This issue motivated this thesis and its main contribution is to enlarge the number of

available functional distances by introducing a new semi-distance that generalizes the

usual Mahalanobis distance. The use of functional distances is important in many differ-

ent problems, including supervised classification and hypothesis testing. Then the other

contributions in this dissertation is to propose new procedures based on the combination

of those methods with the functional Mahalanobis semi-distance as in the multivariate

context.

The thesis is organized as follows. In Chapter 1 we review the formal definition

of functional data as well as the notion of functional principal components which is an

important tool for some of the concepts that will be seen in this dissertation. We also offer

a brief historical summary of distances in the multivariate context and how the concept of

distance has been extended to FDA. Finally, we recall some functional methods for which

xix



the notion of distance can be very useful, e.g., supervised and unsupervised classification,

hypothesis testing, prediction and the concept of density function for functional data.

In Chapter 2, we present a new semi-distance for functional observations that genera-

lizes the Mahalanobis distance for multivariate datasets to the functional framework. We

also shown the main characteristics of the functional Mahalanobis semi-distance. In order

to illustrate the applicability of this measure of proximity between functional observa-

tions, we develop new versions of several well known functional classification procedures

using the functional Mahalanobis semi-distance. We illustrate the performance of the

new semi-distance with simulated and two real data examples indicating that the classi-

fication methods used in conjunction with the functional Mahalanobis semi-distance give

better results than other well-known functional classification procedures.

In Chapter 3, we derive two-sample Hotelling’s T 2 statistics for testing the equality

of means in two samples independently drawn from two functional distributions. The

statistics that we propose are based on the functional Mahalanobis semi-distance and,

under certain conditions, their asymptotic distributions are chi-squared, regardless the

distribution of the functional random samples. We provide the link between the two-

sample Hotelling’s T 2 statistics based on the functional Mahalanobis semi-distance and

statistics based on the functional principal components semi-distance. The behavior of

all these statistics is analyzed by means of an extensive Monte Carlo study and the

analysis of a real data set collected in climatology. The results appear to indicate that

the two-sample Hotelling’s T 2 statistics outperform in terms of power those based on

the functional principal components semi-distance.

Finally, Chapter 4 is dedicated to some summary and some possible future research

lines of the work presented in this thesis.
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Distancia de Mahalanobis para datos funcionales con

aplicaciones en problemas estad́ısticos

Tesis Doctoral

Resumen

Esdras Joseph

Departamento de Estad́ıstica

Universidad Carlos III de Madrid

El término de datos funcionales hace referencia a datos que en esencia son curvas, pero

que están evaluadas en un subconjunto finito de algún intervalo de la recta real. Esta tesis

trata sobre datos funcionales, centrándose en la noción de distancia funcional. En la lite-

ratura, las distancias entre datos funcionales no han sido muy tratadas. Recientemente,

Ferraty y Vieu [20] han propuesto algunas semi-distancias adaptadas para muestras de

funciones. Sin embargo, distancias comúnmente utilizadas para el análisis de datos mul-

tivariantes, tales como la distancia de Mahalanobis propuesta por Mahalanobis [39], no

han sido extendidas al marco funcional. Esta tesis está motivada por esta cuestión y su

principal contribución es ampliar el número de distancias funcionales disponibles intro-

duciendo una nueva semi-distancia que generaliza la distancia de Mahalanobis. El uso de

distancias funcionales es importante en algunos problemas estad́ısticos, incluyendo clasi-

ficación supervisada y contrastes para diferencias de medias. Las restantes contribuciones

de esta tesis consisten en proponer nuevos procedimientos basados en la combinación de

estos métodos con la semi-distancia de Mahalanobis funcional.

La tesis tiene la siguiente estructura. En el Caṕıtulo 1 se revisa la definición formal de

datos funcionales, aśı como la noción de componentes principales funcionales que es una

herramienta importante para algunos de los conceptos desarrollados en los caṕıtulos de

contribución. Se ofrece también un breve resumen histórico de distancias en el contexto

multivariante, y cómo el concepto de distancias ha sido extendido al análisis de datos

funcionales. Finalmente, se recuerdan algunos métodos funcionales para los cuales la

xxi



noción de distancias puede ser muy útil, por ejemplo, clasificación supervisada y no

supervisada, contrastes para diferencias de medias, predicción y el concepto de función

de densidad para datos funcionales.

En el Caṕıtulo 2, se presenta una nueva semi-distancia para observaciones funcionales

que generaliza la distancia de Mahalanobis para conjuntos de datos multivariantes.

También se muestran las principales caracteŕısticas de la semi-distancia de Mahalanobis

funcional. Con el fin de ilustrar la aplicabilidad de esta medida de proximidad en-

tre observaciones funcionales, se desarrollan nuevas versiones de varios procedimientos

clásicos de clasificación funcional utilizando la semi-distancia de Mahalanobis funcional.

Se ilustra el comportamiento de esta nueva semi-distancia con datos simulados y dos

conjuntos de datos reales, lo que nos indica que los métodos de clasificación utilizados

conjuntamente con la semi-distancia de Mahalanobis funcional proporcionan mejores

resultados que otros procedimientos conocidos.

En el Caṕıtulo 3 se derivan los estad́ısticos T 2 de Hotelling para testear la igualdad

de medias en dos muestras independientes procedentes de dos distribuciones funcionales.

Los estad́ısticos que se proponen están basados en la semi-distancia de Mahalanobis fun-

cional y, bajo determinadas condiciones, sus distribuciones asintóticas son chi-cuadrado,

sin tener en cuenta la distribución de partida de las muestras aleatorias funcionales.

Se proporciona el v́ınculo entre los estad́ısticos T 2 obtenidos y estad́ısticos basados en

la semi-distancia de componentes principales funcionales. El comportamiento de todos

estos estad́ısticos se analiza mediante un extenso estudio de Monte Carlo y el análisis

de un conjunto de datos reales recogidos en climatoloǵıa. Los resultados parecen indicar

que los estad́ısticos T 2 de Hotelling para la comparación de dos muestras superan en

términos de potencia a aquellos basados en la semi-distancia de componentes principales

funcionales.

Finalmente, el Caṕıtulo 4 contiene un resumen y algunas posibles ĺıneas de investi-

gación futuras del trabajo presentado en esta tesis.
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CHAPTER 1

Introduction and background

At the present time, there are a number of situations in diferent fields of applied sciences

such as chemometrics, economics, image analysis, medicine, meteorology and speech

recognition, among others, where it can be assumed that the observed data are points

belonging to functions defined over a given set, T = [a, b] ⊂ R. Functional data analysis

(FDA) deals with such kind of observations. In practice, the values of the functions are

available only at a finite number of points and, as a general rule, functional samples

may contain less functions than evaluation points. For these reasons, classical methods

designed for multivariate data are no longer applicable. Therefore, it is not convenient

to treat functional data as multivariate data, and, consequently, there is a need to

develop special techniques for this type of data. There are several methodologies for

FDA being the most popular the one based on the use of basis functions such as Fourier

and splines, see Ramsay and Silverman [48]. Alternatively, other procedures, such as

the nonparametric approach proposed by Ferraty and Vieu [20], do not require the

knowledge of the explicit form of the functions. Horváth and Kokoszka [29] review some
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Chapter 1

recent developments on inference for functional data, whereas Cuevas [11] presented a

partial overview of the state of art in FDA theory. In a conceptual sense, functional

data are intrinsically infinite dimensional and also the measurements within one curve

display high correlation.

This dissertation is focus in L2 (T ), the infinite dimensional space of functions η

defined on T satisfying
∫
T
η2 (s) ds < ∞. The space L2 (T ) is a separable Hilbert

space with inner product 〈η, κ〉 =
∫
T
η (s)κ (s) ds, for η, κ ∈ L2 (T ). Let χ be a

functional random variable defined on L2 (T ), χ (t) being the function evaluated at

point t ∈ T . We assume that χ has a functional mean, denoted by µχ, such that

µχ (t) = E[χ (t)], for t ∈ T , and a covariance function, denoted by cχ, such that

cχ (t, s) = E [(χ (t)− µχ (t)) (χ(s)− µχ(s))], for t, s ∈ T . The covariance function cχ

makes possible to introduce the covariance operator of χ, denoted by Γχ, that trans-

forms any η ∈ L2 (T ) into a new function defined on L2 (T ) given by:

Γχ (η) (t) =

∫
T

cχ (t, s) η(s)ds, for all t ∈ T. (1.0.1)

Note that Γχ plays the same role in the functional framework as the covariance matrix

in the multivariate context. For convenience in future developments, we express the

covariance operator in terms of the inner product in L2 (T ) as,

Γχ (η) = E[〈χ− µχ, η〉 (χ− µχ)].

In Figure 1.1, we present some examples of functional data considered in this disser-

tation:

1. First, we consider 77 near-infrared absorbance spectra of meat samples, with high

fat content, measured at a common discretized set of 100-channel absorbance spec-

trum in the wavelength range 850-1050 nm. Those curves represent a part of the

Tecator dataset that is available at http://lib.stat.cmu.edu/datasets/tecator.

2. As another example of functional data, we present 100 log-periodograms corre-

sponding to the phoneme “ao” in the first vowel of “water”. Those 100 log-

periodograms belong to the Phoneme dataset described in Ferraty and Vieu [20].

2



Introduction and background

3. The third case is the daily temperature records of 15 Eastern weather stations of

Canada over 365 days. Those curves have been profusely analyzed in the literature

of FDA, see Ramsay and Silverman [48] and Zhang and Chen [63], for instance.

850 900 950 1000 1050

2.
5

3.
5

4.
5

5.
5

Tecator

0 50 100 150

5
10

15
20

25

Phoneme

0 100 200 300

−2
0

−1
0

0
10

20

Daily Canadian Temperature

Figure 1.1: Three real functional datasets: near-infrared absorbance spectra of meat
samples having high fat content (top left), log-periodograms of the phoneme “ao”(top
right) and daily temperature records of Eastern weather stations of Canada (bottom)

Once the type of data that we will use in this dissertation has been illustrated, we

introduce the main theoretical aspects in FDA which are necessary to understand the

contributions of the following chapters. Then, in Section 1.1, we review how to build

functional data from discrete observations. In Section 1.2, the notions of functional

principal components are defined. In Section 1.3, we present a brief historical summary

of distances in the multivariate context and recall some distances and semi-distances

proposed in the literature of FDA. Finally, in Section 1.4 we present some functional

methods based on distance.
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Chapter 1

1.1 FDA and basis representation

In practice, functions are usually observed with noise and are not observed con-

tinuously over all the points of T . Usually, a functional dataset has the form

{χ∗i (ti,j) : i = 1, . . . , n and j = 1, . . . , Ji}, for ti,j ∈ T , where n is the number of observed

curves and Ji is the number of observations of the noisy curve χ∗i at points ti,1, . . . , ti,Ji .

The number of observation points and their locations may vary over observed curves.

Thus, the first step in FDA is to reconstruct the functional data from their discrete

observations. One option to obtain closed form expressions of the set of functional data

is to use basis functions, which is the approach taken in this thesis. This procedure con-

sists of obtaining the coordinates of the projection of the functions in some functional

sub-space of finite dimension. In general, a basis is a system of functions, denoted by

φm, m = 1, 2, . . ., orthogonal or not, such that, χ∗i (t), for i = 1, . . . , n, can be fairly well

approximated with:

χi (t) =
M∑
m=1

βimφm (t) , (1.1.1)

where βim, for m = 1, . . . ,M , are the coefficients of the expansion. One of the advantages

of this approach is that instead of storing all the data points, one stores the coefficients

of the expansion, i.e., the βim. We generally choose M so that the plotted functional

objects resemble original data but with smoothing which eliminates the most obvious

noise. To implement this methodology, the choice of the basis is also important and must

be done according to the characteristics of the data. The function basis {φm}m more

common in applications are the classical Fourier basis and B-spline basis. For periodic or

nearly periodic datasets, Fourier basis is an adequate choice. For nonperiodic datasets,

B-spline basis are typically used. More basis functions for applications are presented in

Ramsay and Silverman [48]. We only present in this chapter the two basis used in the

thesis.

� Fourier series are useful for extremely stable functions which means functions with

no strong local features and a roughly constant curvature. They are inappropriate

4



Introduction and background

for functions with discontinuities or low order derivatives. The orthonormal version

of the Fourier basis is given by

φ0 =
1√
P
, φ2r−1(t) =

√
P

2
sin(rwt), φ2r(t) =

√
P

2
cos(rwt), r = 1, 2, . . . ,

where P = 2π
w

is the period, i.e., the length of the interval T . An important feature

of this type of basis is its easy differentiability. To define a Fourier basis system,

the number of basis functions M and the period P are required.

� B-spline basis is a basis of piecewise polynomial functions defined in a recursive

way. Spline coefficients are fast to compute and B-splines form a very flexible

system that provide a good approximation with a relatively small M . For built

a B-splines basis, the interval is divided into L subintervals separated by values

ξl, l = 1, . . . , L − 1, called breakpoints or knots. Over any subinterval, the spline

function is a polynomial of fixed degree or order. The term degree is used to refer

the highest power in the polynomial. The order of a polynomial is the number

of constants required to define it, and is one more than its degree. The number

of parameters required to define a spline function is the order of the polynomial

segments plus the number of interior knots.

Fourier and B-splines basis are different ways of representing functional data depending

on the kind of observations we are working with. When estimating the coefficients of

the basis representation, we use a smooth approximation method as least squares after

choosing an appropriate basis; that is, the coefficients of the expansion are estimated by

minimizing: Ji∑
j=1

[
χ∗i (ti,j)−

M∑
m=1

βimφm (ti,j)

]21/2

.

Once the observed dataset {χ∗i (ti,j) : i = 1, . . . , n and j = 1, . . . , Ji} is smoothed, we

work with the smoothed functional sample {χi (t) : i = 1, . . . , n} given in (1.1.1). More

information about this topic can be found in Section 3.4 of Ramsay and Silverman [48].
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1.2 Functional principal components

Principal components is a fundamental notion very useful for analyzing functional data.

We present in this section the basic ideas of principal component analysis and its char-

acterization in terms of the eigenvalues and eigenfunctions of the covariance operator of

a functional variable. To motivate the concepts in the functional setting, we begin with

the corresponding to the multivariate case, and then move to the infinite dimensional

space.

The Principal Component Analysis (PCA) was introduced in 1901 by Pearson and

developed independently in 1933 by Hotelling. It is a technique related to exploratory

data analysis which aims to reduce the number of variables of a multivariate dataset.

More specifically, the PCA provides an adequate representation of the information of

the data in a small number of variables obtained as linear combinations of the originals.

Let x = (x1, . . . , xp)
′ be a continuous random variable defined in Rp with mean vector

mx = (mx1 , . . . ,mxp)′ and positive definite covariance matrix Cx. A linear combination

of the centered components of x is given by:

s = v′(x−mx) =

p∑
j=1

vj(xj −mxj),

where v = (v1, . . . , vp)
′ is the vector of weight coefficients applied to the components of

the variable x. In principal components, the weights are chosen in order to show types of

variations that are strongly represented in the variables. More specifically, the principal

components are linear combinations of the components of the variable x that maximize

the variance of the projected variable subject to the Euclidean norm of the weights is 1.

The procedure for obtaining the principal components is the following:

1. Find the weight vector v1 = (v11, . . . , vp1)
′ such that the linear combination,

s1 =

p∑
j=1

vj1(xj −mxj) = v′1(x−mx),

has maximum variance V ar(s1) subject to ‖v1‖2 = 1. The solution provided that

v1 is the eigenvector of the matrix Cx associated with the largest eigenvalue, a1.

Furthermore, V ar(s1) = a1.

6
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2. Then, a new weight vector v2 = (v12, . . . , vp2)
′ is calculated for a new linear com-

bination s2 = v′2(x −mx), where V ar(s2) is maximum subject to ‖v2‖2 = 1 and

such that v′1v2 = 0. Then, v2 is the eigenvector of the matrix Cx related to the

second largest eigenvalue, a2. Furthermore, V ar(s2) = a2.

3. The third and subsequent steps consist of repeating the previous step until obtain-

ing the p principal components, that is the limit of the number of variables. The

other weight vectors are the eigenvectors associated to the eigenvalues of Cx or-

dered according to the magnitude of the corresponding eigenvalues. The variance

of these components corresponds to the eigenvalues of Cx.

The new variables sm are often called scores of the principal components. Let v1, . . . ,vp

be the eigenvectors of the covariance matrix Cx associated with positive eigenvalues a1 ≥
· · · ≥ ap > 0, and let V be the p×p matrix whose columns are the eigenvectors of Cx, i.e.,

V = [v1| · · · |vp]. The vector of principal component scores given by s = V′ (x−mx), is

a multivariate random variable with zero mean vector and diagonal covariance matrix

A = diag (a1, . . . , ap). As a consequence, x can be written in terms of the principal

component scores in the following way:

x = mx + Vs. (1.2.1)

Additionally, the singular value decomposition of Cx, i.e., Cx = VAV′, that allows the

inverse of Cx to be written in terms of V and A as

C−1x = VA−1V′, (1.2.2)

and as we will see in the next section, the inverse of the covariance matrix is useful to

define the Mahalanobis distance.

Once we have reviewed the concept of principal components for multivariate data,

we wil see how the components are obtained in the functional context.

Let χ be a functional random variable defined on L2 (T ) with mean function µχ

and covariance operator Γχ as defined in (1.0.1). If E
[
‖χ‖22

]
is finite, where ‖.‖2 =

7
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〈., .〉1/2 denotes the usual norm in L2 (T ), then Γχ is a compact operator, see Mas [42].

Consequently, there exists a sequence of non-negative eigenvalues of Γχ, denoted by

λ1 > λ2 > · · · , where
∑∞

k=1 λk < ∞, and a set of orthonormal eigenfunctions of Γχ,

denoted by ψ1, ψ2, . . . such that Γχ(ψk) = λkψk, for k = 1, 2, . . .

Functional principal components analysis works similarly to the multivariate case.

In the first step, it seeks a weight function ϕ1 that maximizes the variance of projection

θ1 = 〈ϕ1, χ− µχ〉 subject to ‖ϕ1‖2 =
∫
ϕ1(t)

2dt = 1. The solution is that the weight

function is the eigenfunction of the covariance operator Γχ associated to the eigenvalue

of greater magnitude, i.e, ψ1. Moreover, the variance of the linear combination, called

scores as in the multivariate case, is the value of the eigenvalue, i.e, V ar(θ1) = λ1. Next,

the algorithm follows the same steps as in the multivariate case. Thus, the solutions of

the above algorithm are the eigenfunctions of Γχ. The set of eigenfunctions ψ1, ψ2, . . .

form an orthonormal basis in L2 (T ) that allows Γχ to be written as

Γχ(η) =
∞∑
k=1

λk 〈ψk, η〉ψk. (1.2.3)

The well-known Karhunen-Loève expansion of χ (see Hall and Housseini-Nassab, [24])

can be written in terms of the elements of the basis as

χ = µχ +
∞∑
k=1

θkψk, (1.2.4)

where θk = 〈χ− µχ, ψk〉, for k = 1, 2, . . . are the functional principal component scores

of χ. Note that θk, for k = 1, 2, . . . are uncorrelated random variables with zero mean

and variance λk since ψ1, ψ2, . . . are orthonormal.

In practice, we have to estimate the functional principal component scores from the

sample curves. Therefore, as mentioned in Section 1.1, the observed dataset is smoothed

and then we work with the smoothed functional sample. First, we estimate the functional

mean µχ with the sample functional mean,

µ̂χ =
1

n

n∑
i=1

χi, (1.2.5)

8
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and the covariance operator Γχ with the sample covariance operator such that, for any

η ∈ L2(T ):

Γ̂χ (η) =
1

n− 1

n∑
i=1

〈χi − µ̂χ, η〉 (χi − µ̂χ). (1.2.6)

Eigenfunctions and eigenvalues of the covariance operator Γχ can be approximated with

those of Γ̂χ, leading to estimates ψ̂1, ψ̂2, . . . and λ̂1, λ̂2, . . ., respectively. Additionally, the

functional principal component scores corresponding to χi, i.e., θi,k = 〈χi − µχ, ψk〉, are

estimated with

θ̂i,k =
〈
χi − µ̂χ, ψ̂k

〉
, k = 1, 2, . . . (1.2.7)

Computation of eigenvalues and eigenfunctions of covariance operators and functional

principal component scores are described in Section 8.4 of Ramsay and Silverman [48].

Specifically, most of the inner products (integrals) that are involved in these computa-

tions can be computed exactly.

To illustrate the functional principal components concept, we use data of the mean

daily temperature at 35 different locations in Canada averaged over 1960 to 1994. Figure

1.2 shows the four eigenfunctions associated to the four eigenvalues of greatest magni-

tude. As noted in Ramsay and Silverman [48], the first eigenfunction is positive through-

out the whole year but the weight of the winter temperatures is about four times higher

than that of the summer temperatures. This means that the greatest variability between

weather stations will be found by heavily weighting winter temperatures, with only a

light contribution from the summer days. In summary, we can say that the climate of

Canada is most variable in the wintertime. Moreover, the percentage 88.8% indicates

that this type of variation strongly dominates all other types of variation.

The second eigenfunction is not as important as the first because ψ2 is orthogonal

to ψ1 and only explains a 8.4% of the total variation. This eigenfunction consists of a

positive contribution for the winter period and a negative contribution for the summer

period, therefore corresponding to a measure of uniformity of temperature through the

year. The third and fourth eigenfunctions are orthogonal to the first two and the varia-
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Figure 1.2: First four principal component curves of the Canadian temperature data.
The percentages indicate the amount of total variation accounted for by each principal
component.

tion proportions represent small proportions. These last functions are more difficult to

interpret.

1.3 Distances for Functional Data

It is well known that usual multivariate methods are not usually well suited for functional

datasets; however many multivariate techniques have inspired advances in FDA. The

introduction of the notion of distance for functional data represents an example. In

order to understand the main contribution of the thesis, that is, the definition of a new

distance for functional data, this section begins summarizing the concept of distance in

the multivariate context.

In the mathematical field, a distance is a function (an association rule) such that

each pair of objects is associated with a nonnegative real number that satisfies certain

conditions. The family of distances mostly used in Rp is the family of Minkowski’s

distances (in particular the L1, L2 and L∞ distances). Naturally, these distances have
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been extended to the multivariate context. Let x = (x1, . . . , xp)
′ be a continuous random

variable defined in Rp with mean vector mx = (mx1 , . . . ,mxp)′ and positive definite

covariance matrix Cx. The Minkowski’s distance between x and mx is defined by:

dr(x,mx) =

(
p∑
j=1

∣∣xj −mxj

∣∣r) 1
r

,

where r is a positive number. In particular, the case in which r = 2 leads to the Euclidean

distance, which is one of the most important distances in Statistics. In this particular

case, the above definition reduces to the following expression:

d2 (x,mx) =
[
(x−mx)′ (x−mx)

]1/2
.

The Euclidean distance is invariant under orthogonal transformations. However it is

strongly affected by changes of scale of the variables. To reduce this impact, an al-

ternative distance can be considered, known as the weighted Euclidean distance, given

by:

dW (x,mx) =
[
(x−mx)′W (x−mx)

]1/2
,

where W is a diagonal matrix whose elements are nonnegative real numbers w1, . . . , wp.

These weights can be defined in several ways but the most common is to take wj = 1/σ2
j ,

where σ2
1, . . . , σ

2
p are the elements of the main diagonal of Cx, which lead to the Pearson

distance given by:

dP (x,mx) =
[
(x−mx)′C−10 (x−mx)

]1/2
,

where C0 = diag(σ2
1, . . . , σ

2
p) represents the diagonal matrix containing the variances of

x. Therefore, the Pearson distance is a particular case of weighted Euclidean distance

that is invariant to changes of scale.

As it can be seen, none of the previous multivariate distances take into account

the correlations between the components of the variable x. In order to include the

correlations, Prasanta Chandra Mahalanobis introduced the Mahalanobis distance (MD)

in order to compare the morphological measures of races in India, see Mahalanobis [39].
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The MD is the most important distance in statistics and takes into account the covariance

among the variables in such way that the problems of scale and correlation inherent in

the Euclidean distance disappear.

Specifically, the MD between x and mx is given by:

dM (x,mx) =
〈
C
−1/2
x (x−mx) ,C

−1/2
x (x−mx)

〉1/2
E

=

=
[
(x−mx)′C−1x (x−mx)

]1/2
.

(1.3.1)

We can also define the MD between more statistical objects. For example, the MD

between two random variables x1 and x2 with the same nonsingular covariance matrix

Cx is defined as:

dM (x1,x2) =
[
(x1 − x2)

′C−1x (x1 − x2)
]1/2

.

In addition, the MD between an observation xi of a sample generated by a random

variable x and the sample mean vector based on the sample, m̂x, is defined as:

dM (xi, m̂x) =
[
(xi − m̂x)′ Ĉ−1x (xi − m̂x)

]1/2
, i = 1, . . . , n,

where n is the number of observations of the sample generated by x and

Ĉx =
1

n− 1
(xi − m̂x) (xi − m̂x)′ ,

is the sample covariance matrix.

The MD in (1.3.1) is effectively a weighted Euclidean distance with the weight equal

to the inverse of the covariance matrix Cx. Therefore, as the Euclidean and Pearson

distances, it shares the benefits of taking into account the measurement scale of the

variables but also consider the correlation among them. Therefore, the MD is invariant

under nonsingular linear transformations of the variables; in particular, changes of scale.

In this sense, in several scenarios, dM is more appropriate than d2 and dP . Finally, it

is well known that if the multivariate random variable x has a multivariate Gaussian

distribution, then it is easy to see that d2M(x,mx) has a χ2
p distribution and, consequently,

E [d2M(x,mx)] = p and V [d2M(x,mx)] = 2p.
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Figure 1.3: Dataset generated.

To compare the Mahalanobis distance with the Euclidean and Pearson distances

using correlated data, we generate 200 random observations from a bivariate normal

distribution with mean mx =
(
0
0

)
and covariance matrix:

Cx =

 1 0.9

0.9 1

 ,
and we obtain the level curves as shown in Figure 1.3. The points in each level curve

form an ellipsoid. On the other hand, Figure 1.4 shows the values of the Euclidean,

Pearson and Mahalanobis distances for the 200 observations. In this figure, we can see

the observation that reaches greater Mahalanobis distance (drawn in green) is different

from the observation with the greatest Euclidean and Pearson distances, which coincide

in this case (shown in violet and blue). In other words, we can say that the green point is

further from the center of the distribution than the blue using the Mahalanobis distance.

The contradiction related to the farthest point measured with the different distances can

be justified from the statistical standpoint. With the Mahalanobis distance the shape

of the data distribution (an ellipsoid) plays a role, so the green point is actually located

farther because it is located on the level curve 0.001 whereas the blue point is located

on the level curve 0.01.
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Figure 1.4: Euclidean, Pearson and Mahalanobis distances for the simulated data.

For later developments, it is important to note that the Mahalanobis distance can

be rewritten in terms of the principal component scores of x. Using (1.2.1) and (1.2.2),

the Mahalanobis distance in (1.3.1) is written as

dM (x,mx) =
(
s′A−1s

)1/2
= (z′z)

1/2
, (1.3.2)

where z = A−1/2s is the random vector of the standardized principal component scores.

In other words, the Mahalanobis distance between x and mx can be written as the

Euclidean norm of the standardized principal component scores.

As mentioned previously, the notion of multivariate distance has been extended to

functional data. It is usually assumed that functional datasets have been generated by

a functional random variable defined on a Hilbert space endowed with the distance well

known as the L2 distance. Later, Chen et al. [9] have proposed a weighted L2 distance

for functional data. Ferraty and Vieu [20] have proposed semi-metrics well adapted for

sample functions, including those based on functional principal components (FPC), or

partial least-squares (PLS) or those based on derivatives. Next, we summarize some

distances and semi-distances for functional random variables proposed previously in the

literature. As mentioned before, the Euclidean distance is often used in Statistics. This

distance can be extended easily to calculate the distance between a functional random
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variable χ defined in L2 (T ) and its functional mean µχ, known as L2, as follows:

d2(χ, µχ) = 〈χ− µχ, χ− µχ〉1/2 =

(∫
T

(χ (t)− µχ (t))2 dt

)1/2

. (1.3.3)

Chen et al. [9] propose to use a weighted L2 distance defined in terms of w:

dw(χ, µχ) =

(∫
T

(χ (t)− µχ (t))2w(t)dt

)1/2

,

where w(t) is the weight function that satisfies w(t) ≥ 0 and
∫
T
w(t)dt = 1. In practice,

the weight function w(t) have to be fixed. In order to obtain a functional distance that

could be beneficial in functional clustering analysis, functional classification analysis and

group-difference tests, Chen et al. [9] propose a new weight function based on minimizing

the coefficient of variation of the squared distance between functional observations and

that can be obtained by means of an efficient iterative procedure.

Using the Karhunen-Loève expansion of the functional random variable χ defined in

(1.2.4), the L2 functional distance in L2 (T ) can be written in terms of the functional

principal componen scores. Thus, (1.3.3) becomes in:

d2(χ, µχ) =

〈
∞∑
k=1

θkψk,
∞∑
k=1

θkψk

〉1/2

=

(
∞∑
k=1

θ2k

)1/2

. (1.3.4)

As can be seen, the L2 distance is the square root of an infinite sum of squared functional

scores. Ferraty and Vieu [20] propose a semi-distance based on the expression (1.3.4) as

follows:

dK2 (χ, µχ) =

(
K∑
k=1

θ2k

)1/2

. (1.3.5)

The expression (1.3.5) represents the semi-distance constructed from functional principal

componen scores. It provides a complete family of semi-distances in the functional space

L2 (T ) that can be applied to functional data sets. It is also possible to construct semi-

distances from the derivatives of functions. Unlike the family of semi-distances based

on functional principal components, the semi-distances based on derivatives can only be

used with smooth functions. They are defined as follows:

dqderiv(χ, µχ) =

(∫
T

(
χ(q) (t)− µ(q)

χ (t)
)2
dt

)1/2

,
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where q is the order of the derivation. If q = 0, the usual distance of L2 (T ) is obtained.

This family of semi-distances are appropriate when the information to study is in the

curvature of the data.

Another family of semi-distances can be considered in situations when an additional

response is observed. This family is based on partial least-squares (PLS). Before going

on, we recall the main idea behind the PLS method.

In the classical regression analysis, there is a response and p regressors. If some of the

p regressors are highly correlated, it is well known that the estimation of the parameters

of the regression model is not reliable. Several approaches have been developed to deal

with this problem including ridge regression, principal components regression and PLS

regression, among others. In partial least squares regression, a basis of vectors that are

constructed using an iterative algorithm is obtained. In the first step, it seeks the vector

that maximizes the correlation between the response variable and the p regressors. In

successive iterations, vectors which fulfil the above condition are obtained in orthogonal

spaces to those of previous iterations. Then, the regressors are written in terms of the new

basis, and standard regression is performed with these new regressors. This procedure is

somewhat similar to principal components regression (PCR). The fundamental difference

between PCR and PLS is that the basis built by PLS takes into account the relationship

between the regressors and the response.

As the principal component analysis, PLS regression has been extended to the func-

tional framework, see Preda and Saporta [46]. This method can be useful for different

purposes involving functional data. In particular, functional PLS allows to build a class

of semi-distances essentially similar to the semi-distance based on functional principal

components; that is, the semi-distance based on PLS between the functional random

variable χ and its functional mean µχ is defined as follows:

dKPLS(χ, µχ) =

 K∑
k=1

∫
T

(χ (t)− µχ (t)) γk (t) dt

21/2

,

where γk, for k = 1, . . . , K are the functions obtained by the functional algorithm PLS

for the random function χ and the scalar predictor y.

16



Introduction and background

Once we have finished reviewing the notion of distances and semi-distances for func-

tional data, you can see that common distances frequently used in multivariate data

analysis, such as the Mahalanobis distance proposed by Mahalanobis [39], have not been

extended to the functional framework. To fill this gap, the main contribution of this

thesis is to define the functional Mahalanobis semi-distance. Then, we use this new

semi-distance to solve functional statistical problems that may require the use of dis-

tances. We focus on supervised classification and hypothesis testing and we show that

the functional Mahalanobis semi-distance represents a useful tool to solve such problems.

1.4 Functional Distance-based Methods

There are many statistical problems in the multivariate analysis that require the use of

distances. Those problems in the functional context would be also solved with distances.

Typically, supervised and unsupervised classification, hypothesis testing, functional pre-

diction and the definition of probability density functions for functional data can be

some examples. We briefly describe these methods and we focus on the importance of

the distance notion.

� Supervised functional classification is one of the problems that has been tackled

using the notion of distance. In a supervised functional classification problem,

there is a sample of functional observations coming from G predefined groups.

The whole sample can be split into G subsamples and the aim is to classify a new

functional observation in one of the G groups based on the sample information.

Some methods have been developed in the literature to solve this problem. For

example, Biau et al. [7] proposed to filter the training samples using a Fourier ba-

sis and then apply the k-nearest neighbor (kNN) classification to the first Fourier

coefficients of the expansion. Báıllo et al. [3] derived several consistency results of

the kNN procedure for a particular type of Gaussian process. Delaigle and Hall

[15] considered the centroid method, which assigns the new function to the group

with the closest mean. The authors propose to project the functions in a given
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direction and then compute the squared Euclidean distance between the observa-

tions. Ferraty and Vieu [19] have proposed a method based on nonparametrically

estimating the posterior probability that the new function is of a given class. This

is typically a problem of discrimination, where it is used a semi-distance in the

estimates of posterior probabilities. Alonso et al. [1] have proposed a weighted

distance approach. In this thesis, we show that several simple classification proce-

dures including kNN, the centroid method and functional Bayes classification rules

can be used in conjunction with the functional Mahalanobis semi-distance as the

criterion of proximity between functions to obtain reasonable classification rates.

Several Monte Carlo experiments suggest that methods based on the functional

Mahalanobis semi-distance lead to better classification rates than alternatives.

� The notion of functional distance is also important in hypothesis testing; in par-

ticular, in the problem of testing the equality of mean functions in two random

samples independently drawn from two functional distributions. In the multi-

variate context, the two-sample Hotelling’s T 2 statistic is frequently used to test

the equality of means of two independent Gaussian random samples with the same

covariance matrix which it is the multivariate analogue of the two sample t-test in

the univariate case. Under the null hypothesis of equality of means, the Hotelling’s

T 2 statistic has a scaled F distribution. If equality of covariance matrices is not

assumed, the testing issue is known as the multivariate Behrens-Fisher problem

although the two-sample Hotelling’s T 2 statistic is still used. In this case, several

approximated scaled F distributions for the T 2 statistic under the null hypothe-

sis have been proposed, see Rencher ([49], [50]), for instance. The common point

of the two statistics, that is, assuming that the covariance matrices are equal or

that they are different, is that the two-sample Hotelling’s T 2 statistics are just the

squared Mahalanobis distance between the sample means of both random samples.

Few approaches have been proposed so far to test whether the mean functions

of two functional samples are equal. For instance, Cuevas et al. [12] proposed

an ANOVA test for comparing the means of multiple samples of functional data

based on the L2-norm. Estévez-Pérez and Vilar [17] proposed an ANOVA proce-
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dure to compare the mean functions of several sets of curves that tries to avoid the

power reduction due to the usual pre-processing of the data, as noted in Hall and

Van Keilegom [26]. Benko et al. [6] developed bootstrap procedures for testing

the equality of mean functions of two functional random samples, their functional

principal components (FPCs), and their associated eigenvalues and eigenfunctions.

Zhang, Peng and Zhang [62] and Zhang, Liang and Xiao [64] proposed a L2-norm

based statistic to test for the equality of mean functions of two Gaussian processes

with possibly unequal covariance operators and derived the distributions of the pro-

posed test statistic under the null hypothesis and a sequence of local alternatives.

Finally, Horváth and Kokoszka [29] presented procedures for testing the equality

of the means in two independent functional random samples based on the func-

tional principal components semi-distance between the sample means of the two

functional samples. The asymptotic distribution of the statistic derived in this way

converges, under the null hypothesis, to weighted sums of squares of independent

standard Gaussians. As alternative and trying to avoid the use of the weighted

asymptotic distribution, Horváth and Kokoszka [29] also proposed a normalized

version of the statistic based on the functional principal components semi-distance

that has a chi-square limit. These inferential procedures were extended to the case

of functional time series in Horváth et al. [30]. A common point of all these refer-

ences is that they use the L2 distance defined in Hilbert spaces in the development

of their testing problems.

As mentioned previously, in the multivariate case, the two-sample Hotelling’s T 2

statistic is just the squared Mahalanobis distance between the sample means of

both samples. In this thesis, we derive two-sample Hotelling’s T 2 statistics based

on the functional Mahalanobis semi-distance assuming either a common or a dif-

ferent covariance operator for the random samples following the ideas developed

in the multivariate context. These statistics have asymptotically chi-squared dis-

tributions under the null hypothesis of equality of means and, contrary to the

multivariate case, it is not necessary to consider the hypothesis of Gaussianity for

the two populations. In particular, we show that the test statistics derived in
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terms of the Mahalanobis semi-distance coincide with the normalized test statistic

proposed by Horváth and Kokoszka [29], although, these authors did not consider

the functional Mahalanobis semi-distance in the development of their normalized

statistic. Therefore, we establish the link between the Hotelling’s T 2 statistic in

the multivariate and functional settings.

As for the classification problem, several Monte Carlo simulations are carried out

to examine the performance of the test statistics based on the functional Maha-

lanobis semi-distance and the functional principal components semi-distance. The

results suggest that the test statistics based on the functional Mahalanobis semi-

distance clearly outperform the statistics based on the functional principal com-

ponents semi-distance in terms of power, at least in the considered scenarios. The

results appear to diverge from those of the simulation study found in Horváth and

Kokoszka [29], who indicated that neither of the two tests statistics clearly dom-

inates the other for their simulated Gaussian data. Additionally, the analysis of

a real data example from climatology suggests that the test statistic based on the

functional Mahalanobis semi-distance might be more powerful than the one based

on the functional principal components semi-distance.

� The unsupervised classification or clustering problem is another area of application

of functional distances and semi-distances. The main objective in unsupervised

classification is to divide a set of functions (typically large) χ1, . . . , χn in a number

of classes k in such way that the elements of each class have some sort of similarity.

This similarity will be defined by the algorithm and the metric used. One of

the main challenges in unsupervised classification is the choice of the number of

classes. Some algorithms provide suggestions for this choice. The unsupervised

classification is used when there are groups in the data set being the main goal

the identification of split structure among those groups in order to facilitate the

understanding of the data set.

The hierarchical and non-hierarchical approaches of the multivariate analysis have

been extended to the functional case. Ferraty and View [20] have proposed a dis-
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sociative hierarchical method using a non-parametric approach. The methodology

involves iterative partition in increasingly heterogeneous groups, where this het-

erogeneity is measured in terms of the proximity to several functional centrality

measures (mean, median or mode). The functional distances and semi-distances

play a fundamental role not only in the calculation of the functional median and

mode, but also in the measure of closeness between the observed functions and

these centrality measures. On the other hand, Chiou and Li [10] have proposed a

functional version of the k-means algorithm, called k-centers FC. This algorithm is

based on an initial partition of the functions in a certain number of groups using

the cluster analysis of the functional principal components scores of each observed

function. Then, the curves are reclassified depending on the L2 distance between

the observed functions and a function that is considered as the center of each group.

Therefore, the notion of distance is again important in this statistical problem.

� Another statistical topic where the distances and semi-distances are crucial is func-

tional prediction. There are many situations in which one may wish to study the

relation between two variables, with the main purpose to be able to predict new

values of one of them given the other one. This prediction problem can occur

when some of the variables are functional. Let (χi, Yi)i=1,...,n be n independent

pairs, identically distributed as (χ, Y ), where χ is a functional random variable

defined in the functional space E, and Y is a scalar random variable defined in R.

It is assumed that E is endowed with a distance o semi-distance, d. Then, given

a function χ generated by χ, we would like to predict the value of the scalar res-

ponse Y using the regression nonlinear operator r defined by r(χ) = E (Y |χ = χ).

Therefore, if r̂ is an estimator of r, a prediction of the value Y is obtained from:

ŷ = r̂(χ).

The estimate of r can be obtained using the functional kernel regression estimator:

r̂(χ) =

∑n
i=1 YiK (h−1d(χ, χi))∑n
i=1K (h−1d(χ, χi))

,

where K is an asymmetrical kernel and h (depending on n) is a strictly positive

real. As can be seen in Härdle [27], the estimator of r is the functional extension of
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the Nadaraya-Watson estimate for finite dimensional nonparametric regression, see

Nadaraya [44] and Watson [59]. The main novelty comes from the use of a semi-

distance d which measures the proximity between the function χ and the observed

curves.

� Finally, the concept of density function of a random function is another notion that

has been developed using the notion of distance. In general, the probability density

function does not exist for functional data. Delaigle and Hall [14] show that it is

possible to develop the notion of density when functional data are considered in

the space determined by the eigenfunctions of principal component analysis. This

leads to a surrogate for density function of functional variables defined as follows:

P (d2 (χ, χ) ≤ h) , (1.4.1)

where d2 (χ, χ) denotes the L2 distance between the functional variable χ and

any function χ. Delaigle and Hall [14] show that the probability in (1.4.1) can

be written in terms of the average value of the logarithms of the densities of the

distributions of principal components for a finite dimension. This alternative den-

sity is estimable easily derived from a data set. The possible implications of this

result are of great interest in a large number of problems including the outlier de-

tection, the definition of robust estimators of location and scale, the classification

and cluster analysis of functional data, etc...

1.5 Structure of the Thesis

Once we have reviewed the main notions in FDA necessary to follow the main contribu-

tions of the thesis, we describe the structure of this document which is divided into four

chapters.

In the current chapter we have reviewed some FDA issues, presented three real func-

tional datasets and outlined the notion of functional principal components. Additionally,

we have presented a brief historical summary of distances in the multivariate context and
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how the concept of distance has been extended to FDA. Finally, we have recalled some

functional methods for which the notion of distance can be very useful, e.g., supervised

and unsupervised classification, hypothesis testing, prediction and the concept of density

function for functional data.

The contributions of this dissertation are developed in Chapters 2 and 3. In

Chapter 2, we present a new semi-distance for functional observations that genera-

lizes the Mahalanobis distance for multivariate datasets to the functional framework.

The main characteristics of the functional Mahalanobis semi-distance are shown. In

order to illustrate the applicability of this measure of proximity between functional

observations, new versions of several well known functional classification procedures

are developed using the functional Mahalanobis semi-distance. A Monte Carlo study

and the analysis of two real data examples indicate that the classification methods

used in conjunction with the functional Mahalanobis semi-distance give better results

than other well-known functional classification procedures. The results presented in

Chapter 2 are published in the paper by Galeano et al. [23] available online at

http://amstat.tandfonline.com/doi/abs/10.1080/00401706.2014.902774.

In Chapter 3, we derive two-sample Hotelling’s T 2 statistics for testing the equality

of means in two samples independently drawn from two functional distributions. The

statistics that we propose are based on the functional Mahalanobis semi-distance and,

under certain conditions, their asymptotic distributions are chi-squared, regardless the

distribution of the functional random samples. We provide the link between the two-

sample Hotelling’s T 2 statistics based on the functional Mahalanobis semi-distance and

statistics based on the functional principal components semi-distance. The behavior of

all these statistics is analyzed by means of an extensive Monte Carlo study and the

analysis of a real data set collected in climatology. The results appear to indicate that

the two-sample Hotelling’s T 2 statistics outperform in terms of power those based on

the functional principal components semi-distance.

Finally, some conclusions and possible future research lines are given in Chapter 4.
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CHAPTER 2

The Mahalanobis distance for functional data with applications to

classification

2.1 Introduction

The family of Minkowski’s distances (in particular the L1, L2 and L∞ distances) has

been naturally extended to the functional context. However, as we commented in the

Introduction, the most important statistical distance, i.e., the Mahalanobis distance

(MD), has not been considered in the functional field. The first contribution of this

chapter is to generalize the usual Mahalanobis distance for multivariate datasets to the

functional framework. The development uses a regularized square root inverse operator

in Hilbert spaces defined from the operator proposed by Mas [42] which implies that we

provide a semi-distance instead of a distance but with interesting analytic properties.

As mentioned in Section 1.4, the use of distances is usual in several procedures

in functional statistical problems. Specifically, most of the well-known methods for

classification are distance-based. Nowadays, there is a wide variety of methods which

have been developed to solve the functional classification problem. For instance, Hall

et al. [25] proposed to nonparametrically estimate the probability densities of the sets

25



Chapter 2

of functional principal component scores and then to estimate the posterior probability

that a new function belongs to a given class using the Bayes classification rule. Leng

and Müller [35] used functional logistic regression on the functional principal component

scores of the training samples to classify collections of temporal gene expression curves.

Biau et al. [7] proposed to filter the training samples using a Fourier basis and then

apply the k-nearest neighbor (kNN) classification to the first Fourier coefficients of the

expansion. Báıllo et al. [3] derived several consistency results of the kNN procedure for

a particular type of Gaussian process. Delaigle and Hall [15] considered the centroid

method, which assigns the new function to the group with the closest mean. James and

Hastie [31] used a natural cubic spline basis plus random error to model the observations

from each individual. The spline is parameterized using a basis function multiplied by a

coefficient vector, which is modelled using a Gaussian distribution and the method uses

the usual multivariate linear and quadratic discriminant rules on the coefficients of the

cubic splines after a convenient rank-reduced analysis. Preda et al. [46] used functional

PLS regression to obtain discriminant functions. Shin [56] considered an approach based

on reproducing kernel Hilbert spaces. Ferraty and Vieu [19] have proposed a method

based on nonparametrically estimating the posterior probability that the new function

is of a given class. López-Pintado and Romo [38], Cuevas et al. [13] and Sguera et al.

[55] have proposed classifiers based on the notion of data depth that are well suited for

datasets containing outliers. Rossi and Villa [52] and Mart́ın-Barragán et al. [41] have

investigated the use of support vector machines (SVMs) for functional data. Wang et

al. [58] have considered classification for functional data using wavelet basis functions.

Epifanio [16] has developed classifiers based on shape descriptors. Finally, Alonso et al.

[1] have proposed a weighted distance approach.

The second contribution of this chapter is to develop new versions of several well

known functional classification procedures including kNN, the centroid method and func-

tional Bayes classification rules using the functional Mahalanobis semi-distance. Finally,

we will illustrate the performance of this new semi-distance using simulated and real

data. The numerical results suggest that methods based on the functional Mahalanobis

semi-distance lead to better classification rates than alternatives.
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This chapter is organized as follows. Section 2.2 introduces the functional Maha-

lanobis semi-distance and shows some of its main characteristics. Section 2.3 reviews

several classification methods for functional data and provides new approaches to these

methods based on the functional Mahalanobis semi-distance. Section 2.4 analyzes the

empirical properties of the procedures via several Monte Carlo experiments and illus-

trates the good behavior of the classification methods in conjunction with the functional

Mahalanobis semi-distance through of the analysis of two real data examples. Finally,

several conclusions are drawn in Section 2.5.

2.2 The functional Mahalanobis semi-distance

The goal of this section is to define the functional Mahalanobis semi-distance. In Section

2.2.1, we introduce the definitions assuming that the data are functions and then in

Section 2.2.2, we give the useful tools necessary for a practical implementation of the

functional Mahalanobis semi-distance when the functions are only recorded on some

finite points.

2.2.1 Definitions and some characteristics

We define the functional Mahalanobis semi-distance that generalizes the usual Maha-

lanobis distance for multivariate datasets. Let x be a continuous random variable defined

in Rp with mean vector mx and positive definite covariance matrix Cx. The MD between

x and mx is defined as the Euclidean norm of the random vector C
−1/2
x (x−mx) given

by the relation (1.3.1). The aim is to provide a similar definition and that in order to

do this the equivalent to the covariance matrix is the covariance operator. Therefore, it

is necessary to define the inverse of the covariance operator, Γ−1χ . However, Γ−1χ exists

only in certain circumstances. If Γ−1χ exists, it is given by:

Γ−1χ (ζ) =
∞∑
k=1

1

λk
〈ψk, ζ〉ψk,
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where ζ is a function in the range of Γχ. However, Γ−1χ is an unbounded symmetric

operator on L2 (T ) giving rise to an ill-posed problem. Since Γ−1χ is extremely irregular,

Mas [42] proposed a regularized inverse operator which is a linear operator “close” to

Γ−1χ and having good properties. The regularized inverse operator, denoted by Γ−1K , is

defined as:

Γ−1K (ζ) =
K∑
k=1

1

λk
〈ψk, ζ〉ψk,

where K is a regularization parameter. Similarly, a regularized square root inverse

operator of Γχ(ζ) is given by:

Γ
−1/2
K (ζ) =

K∑
k=1

1

λ
1/2
k

〈ψk, ζ〉ψk, (2.2.1)

that allows the definition of the functional Mahalanobis semi-distance between χ and µχ

inspired by (1.3.1) as follows:

Definition 2.2.1. Let χ be a functional random variable defined in L2(T ) with mean
function µχ and compact covariance operator Γχ. The functional Mahalanobis semi-
distance between χ and µχ is defined as:

dKFM(χ, µχ) =
〈

Γ
−1/2
K (χ− µχ),Γ

−1/2
K (χ− µχ)

〉1/2
.

Note that we have used Γ−1K as a regularized inverse operator to define the functional

Mahalanobis semi-distance. Other regularized inverse operators found in Smola and

Kondor [57] may lead to alternative semi-distances for functional datasets. As previously

noted in 1.3.2, the multivariate Mahalanobis distance may be expressed in terms of the

principal component scores of x. Similarly, the functional Mahalanobis semi-distance

can be expressed in terms of the functional principal component scores of χ as stated in

the following proposition:

Proposition 2.2.1. The functional Mahalanobis semi-distance between χ and µχ can
be written as

dKFM(χ, µχ) =

(
K∑
k=1

ω2
k

)1/2

, (2.2.2)

where ωk = θk/λ
1/2
k , for k = 1, . . . , K, are the standardized functional principal compo-

nent scores of χ.
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Proof. From equation 2.2.1, it is possible to write:

dKFM(χ, µχ) =

〈
K∑
k=1

1

λ
1/2
k

〈ψk, χ− µχ〉ψk,
K∑
k=1

1

λ
1/2
k

〈ψk, χ− µχ〉ψk

〉1/2

.

Now, from equation 1.2.4 and ψk being orthonormal eigenfunctions, the previous expres-
sion leads to:

dKFM(χ, µχ) =

〈
K∑
k=1

1

λ
1/2
k

[〈
ψk,

∞∑
j=1

θjψj

〉
ψk

]
,
K∑
k=1

1

λ
1/2
k

[〈
ψk,

∞∑
j=1

θjψj

〉
ψk

]〉1/2

=

〈
K∑
k=1

θk

λ
1/2
k

ψk,
K∑
k=1

θk

λ
1/2
k

ψk

〉1/2

=

(
K∑
k=1

θ2k
λk

)1/2

=

(
K∑
k=1

ω2
k

)1/2

�

Thus, the functional Mahalanobis semi-distance between χ and µχ is the Euclidean

norm of the standardized functional principal component scores. This property provides

a simple way to compute the functional Mahalanobis semi-distance in practice. Next,

we extend the definition of functional Mahalanobis semi-distance to the general situa-

tion of distance between two independent and identically distributed functional random

variables.

Definition 2.2.2. Let χ1 and χ2 be two independent and identically distributed func-
tional random variables defined in L2(T ) with mean function µχ and compact covariance
operator Γχ. The functional Mahalanobis semi-distance between the functions χ1 and χ2

is given by:

dKFM(χ1, χ2) =
〈

Γ
−1/2
K (χ1 − χ2),Γ

−1/2
K (χ1 − χ2)

〉1/2
.

Definition 2.2.2 leads to the following proposition that will be used in Section 2.3.1:
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Proposition 2.2.2. The functional Mahalanobis semi-distance between χ1 and χ2 can
be written as follows:

dKFM(χ1, χ2) =

(
K∑
k=1

(ω1k − ω2k)
2

)1/2

, (2.2.3)

where ω1k = θ1k/λ
1/2
k and ω2k = θ2k/λ

1/2
k , for k = 1, 2, . . . are the standardized functional

principal component scores of χ1 and χ2, respectively.

Proof. By hypothesis, the two functions χ1 and χ2 have the same mean function, µχ,
and the same covariance operator, Γχ. Therefore, the Karhunen-Loève expansions of
χ1 and χ2 are χ1 = µχ +

∑∞
k=1 θ1kψk and χ2 = µχ +

∑∞
k=1 θ2kψk, respectively, where

θ1k = 〈χ1 − µχ, ψk〉 and θ2k = 〈χ2 − µχ, ψk〉, for k = 1, . . . are the functional principal
component scores of χ1 and χ2, respectively. Consequently, the difference between the
two functions χ1 and χ2 can be written as:

χ1 − χ2 =
∞∑
k=1

(θ1k − θ2k)ψk. (2.2.4)

Using the equation 2.2.1, the Mahalanobis semi-distance between χ1 and χ2 is given by:

dKFM(χ1, χ2) =

〈
K∑
k=1

1

λ
1/2
k

〈ψk, χ1 − χ2〉ψk,
K∑
k=1

1

λ
1/2
k

〈ψk, χ1 − χ2〉ψk

〉1/2

Now, ψk being orthonormal eigenfunctions and by (2.2.4), the above expression can be
written as:

dKFM(χ1, χ2) =

〈
K∑
k=1

1

λ
1/2
k

〈ψk, χ1 − χ2〉ψk,
K∑
k=1

1

λ
1/2
k

〈ψk, χ1 − χ2〉ψk

〉1/2

=
K∑
k=1

1

λk

〈〈
ψk,

∞∑
j=1

(θ1j − θ2j)ψj

〉
ψk,

〈
ψk,

∞∑
j=1

(θ1j − θ2j)ψj

〉
ψk

〉1/2

=

(
K∑
k=1

1

λk
〈(θ1k − θ2k)ψk, (θ1k − θ2k)ψk〉

)1/2

=

(
K∑
k=1

(ω1k − ω2k)
2

)1/2

,

where ω1k = θ1k/λ
1/2
k and ω2k = θ2k/λ

1/2
k , for k = 1, 2, . . . are the standardized functional

principal component scores of χ1 and χ2, respectively. �
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The next result shows that dKFM is indeed a functional semi-distance and therefore,

it is properly defined.

Proposition 2.2.3. Let χ1, χ2 and χ3 be three independent and identically distributed
functional random variables defined in L2(T ) with mean function µχ and compact co-
variance operator Γχ. For any positive integer K, dKFM is a functional semi-distance, as
it satisfies the following three properties:

1. dKFM(χ1, χ2) ≥ 0.

2. dKFM(χ1, χ2) = dKFM(χ2, χ1).

3. dKFM(χ1, χ2) ≤ dKFM(χ1, χ3) + dKFM(χ3, χ2).

The proof of this proposition is straightforward in view of Proposition 2.2.2. Note that

dKFM(χ1, χ2) is not a functional distance because dKFM(χ1, χ2) = 0 if χ1 and χ2 have the

same first K functional principal component scores, which does not imply χ1 = χ2. To

end this subsection, the following result, shows that for a Gaussian process, the squared

functional Mahalanobis semi-distance between χ and µχ has a chi-squared distribution.

Theorem 2.2.1. If χ is a Gaussian process, dKFM(χ, µχ)2 ∼ χ2
K.

Proof. The result is trivial because, as χ is a Gaussian process, the standardized func-
tional principal component scores, ωk, for k = 1, 2, . . . are independent standard Gaussian
random variables, see Ash and Gardner [2]. �

2.2.2 Practical implementation

As mentioned in the Introduction of this thesis (see Section 1.1), the functions are usually

observed with noise and are not observed continuously over all the points of T = [a, b].

Thus, calculation of the functional Mahalanobis semi-distances as defined in (2.2.2) and

(2.2.3) is not possible. Recall that the observed dataset is previously smoothed using the

expression (1.1.1). Then, we work with the smoothed functional sample and estimate

the functional mean µχ and the covariance operator Γχ by the relations (1.2.5) and

(1.2.6), respectively. Eigenfunctions and eigenvalues of the covariance operator Γχ can

be approximated with those of Γ̂χ. Additionally, The functional principal component
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scores corresponding to χi, i.e., θi,k = 〈χi − µχ, ψk〉, are estimated with θ̂i,k as defined in

(1.2.7) which allows us to define the functional Mahalanobis semi-distance between χi

and the functional sample mean µ̂χ as follows:

dKFM(χi, µ̂χ) =

(
K∑
k=1

ω̂2
ik

)1/2

,

where ω̂ik = θ̂i,k/λ̂
1/2
k , for k = 1, . . . , K, are the sample standardized functional principal

component scores and λ̂k are the eigenvalues of the sample covariance operator Γ̂χ.

Similarly, using Proposition 2.2.2, the functional Mahalanobis semi-distance between

two functions of the sample, χi and χi′ , can be written as follows:

dKFM(χi, χi′) =

(
K∑
k=1

(ω̂ik − ω̂i′k)2
)1/2

,

where ω̂i′k = θ̂i′,k/λ̂
1/2
k , for k = 1, . . . , K.

The choice of the regularization parameter K is an important aspect in practice

depending on the situation where the functional Mahalanobis semi-distance is used.

In the case of classification, we choose the threshold value K via leave-one-out cross

validation as will be seen in Section 2.4.1.

Finally, we note that we use the methods described in Ramsay and Silverman [48]

and implemented in the R package fda, see Ramsay et al. [47] to carry out all the

computations.

2.3 Classification with the functional Mahalanobis

semi-distance

The aim of this section is to propose new procedures based on the combination of well-

known functional classification methods with the functional Mahalanobis semi-distance.

We consider a sample of functional observations coming from G predefined groups. Then,

the whole sample can be split into G subsamples, denoted by χg1, . . . , χgng , for g =

1, . . . , G, respectively, where n = n1 + · · · + nG is the sample size of the whole dataset.
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The goal is to classify a new functional observation χ0 in one of the G groups based on

the sample information.

2.3.1 The k-nearest neighbor (kNN) procedure

The k-nearest neighbor (kNN) procedure is one of the most popular methods used to

perform classification in multivariate settings. Its generalization to infinite-dimensional

spaces has been studied by Biau et al. [7], Cérou and Guyader [8] and Báıllo et al. [3],

among others. The kNN method starts by computing the distances between the new

function to classify, χ0, and all the functions in the observed sample. Then, the method

classifies χ0 in the group which is most common among the k functional observations

closest in distance to χ0. Cérou and Guyader [8] have obtained sufficient conditions for

consistency of the kNN classifier when the functional random variable takes values in a

separable metric space. Additionally, Báıllo et al. [3] have shown that the optimal classi-

fication rule can be explicitly obtained for a class of Gaussian processes with triangular

covariance operators.

Our proposal is to use the kNN classifier in conjunction with the functional Maha-

lanobis semi-distance. To this end, two different ways to compute the functional Maha-

lanobis semi-distance can be considered, depending on whether the covariance operator

can be assumed to be the same for all the classes.

In the first way, assume that the functional means under class g, denoted by µχg ,

are different but the covariance operator, denoted by Γχ, is the same for all the classes.

Then, the functional means, µχg , are estimated using the functional sample mean of the

functions in class g, i.e.:

µ̂χg =
1

ng

ng∑
i=1

χgi, (2.3.1)

while the common covariance operator, Γχ, is estimated with the within class covariance

operator given by:

Γ̂χ (η) =
1

n− 1

G∑
g=1

ng∑
i=1

〈
χgi − µ̂χg , η

〉 (
χgi − µ̂χg

)
, (2.3.2)
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for any η ∈ L2 (T ). Let ψ̂1, . . . , ψ̂K and λ̂1, . . . , λ̂K be, respectively, the eigenfunctions

and eigenvalues of the sample within class covariance operator (2.3.2). Using Propo-

sition 2.2.2, the functional Mahalanobis semi-distance between χ0 and the functional

observation χgi for g = 1, . . . , G and i = 1, . . . , ng is given by:

dKFM (χ0, χgi) =

(
K∑
k=1

(ω̂g0k − ω̂gik)2
)1/2

, (2.3.3)

where ω̂g0k = θ̂g0k/λ̂
1/2
k and ω̂gik = θ̂gik/λ̂

1/2
k , respectively, are the standardized sam-

ple functional principal component scores given by θ̂g0k =
〈
χ0 − µ̂χg , ψ̂k

〉
and θ̂gik =〈

χgi − µ̂χg , ψ̂k

〉
, respectively. Under the same assumptions for the means and covari-

ance operator of the G classes, the functional principal components (FPC) semi-distance

proposed by Ferraty and Vieu [20] between χ0 and the functional observation χgi for

g = 1, . . . , G and i = 1, . . . , ng, is given by:

dK
′

FPC (χ0, χgi) =

(
K′∑
k=1

(
θ̂g0k − θ̂gik

)2)1/2

, (2.3.4)

where K ′ is a certain threshold.

In the second way, assume that both the functional means and the covariance oper-

ators, denoted by Γχg , are different for classes 1, . . . , G. The functional means, µχg , are

estimated using (2.3.1), while the covariance operator of each class is estimated using

the functional sample covariance operator of the functions in class g, i.e.:

Γ̂χg (η) =
1

ng − 1

ng∑
i=1

〈
χgi − µ̂χg , η

〉 (
χgi − µ̂χg

)
, (2.3.5)

for any η ∈ L2 (T ). The functional Mahalanobis semi-distance between χ0 and the func-

tional observation χgi for g = 1, . . . , G and i = 1, . . . , ng, is as in (2.3.3). However,

here ω̂g0k = θ̂g0k/λ̂
1/2
gk and ω̂gik = θ̂gik/λ̂

1/2
gk , respectively, where θ̂g0k =

〈
χ0 − µ̂χg , ψ̂gk

〉
,

θ̂gik =
〈
χgi − µ̂χg , ψ̂gk

〉
and ψ̂g1, . . . , ψ̂gK and λ̂g1, . . . , λ̂gK are, respectively, the eigen-

functions and eigenvalues of the sample covariance operator (2.3.5). Also, the FPC

semi-distance in this second case can be written as in (2.3.4) but considering the sample

functional scores obtained with the eigenfunctions from (2.3.5).

34



The Mahalanobis distance for functional data with applications to classification

2.3.2 The centroid procedure

The centroid procedure for functional datasets, proposed by Delaigle and Hall [15], is

probably the fastest and simplest classification method for functional observations. The

centroid method assigns a new function χ0 to the class with the closest mean. Delaigle

and Hall [15] considered the case of G = 2 classes that have different mean and a com-

mon covariance operator and proposed to project the functions in a given direction and

then compute the squared Euclidean distance between the observations. More precisely,

Delaigle and Hall [15] proposed to use the centroid classifier with the distance between

χ0 and the sample functional mean µ̂χg , for g = 1, 2, denoted by DH, and given by:

dDH
(
χ0, µ̂χg

)
=

∣∣∣∣∣
K′′∑
k=1

ω̂0gkδ̂12k

∣∣∣∣∣ , (2.3.6)

where K ′′ is a certain threshold, ω̂0gk is computed as in the Section 2.3.1 assuming a

common covariance operator and δ̂12k =
〈
µ̂χ2 − µ̂χ1 , ψ̂k

〉
/λ̂

1/2
k , for k = 1, . . . , K ′′. Our

proposal is to use the centroid method as in the multivariate case but with the functional

Mahalanobis semi-distance. As in the kNN procedure, the method also depends on

whether the covariance operators are assumed equal or not.

2.3.3 The functional linear and quadratic Bayes classification
rules

In multivariate statistics, the Bayes classification rule is derived as follows. Let x be a p-

dimensional continuous random variable and let f1, . . . , fG be the corresponding density

functions of x under the G classes. Let π1, . . . , πG be the prior probabilities assigned to

the G classes, with π1 + · · ·+ πG = 1. Using Bayes’ Theorem, the posterior probability

that a new observation x0 generated from x comes from class g is given by:

P (g|x0) =
πgfg(x0)

π1f1(x0) + · · ·+ πGfG(x0)
, (2.3.7)

respectively. The Bayes rule classifies x0 in the class with the largest posterior prob-

ability. In particular, if the fg densities are assumed to be Gaussian with differ-

ent means mxg but identical covariance matrix Cx, this is equivalent to classify-

ing x0 in class g if dM
(
x0,mxg

)2 − 2 log πg is minimum, where dM
(
x0,mxg

)2
=
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(
x0 −mxg

)′
C−1x

(
x0 −mxg

)
is the squared Mahalanobis distance between x0 and mxg .

Our proposal for functional observations is to consider a similar rule but to replace

the multivariate Mahalanobis distance with the functional Mahalanobis semi-distance.

Consequently, assuming different means and a common covariance operator, the new

observation χ0 is assigned to the class g if dKFM
(
χ0, µ̂χg

)2 − 2 log πg is minimum.

Moreover, if in the multivariate case the fg densities are assumed to be Gaussian

with different means mxg and different covariance matrices Cxg , the Bayes rule classifies

x0 in class g if dM
(
x0,mxg

)2
+ log

∣∣Cxg

∣∣− 2 log πg is minimum, where dM
(
x0,mxg

)2
=(

x0 −mxg

)′
C−1xg

(
x0 −mxg

)
, is the squared Mahalanobis distance between x0 and mxg .

Our proposal for functional observations is to classify the new observation χ0 to the class

G0 if:

dKFM(χ0, µ̂χg)2 +
K∑
k=1

log(λ̂gk)− 2 log πg, (2.3.8)

is minimum, where λ̂gk, for k = 1, . . . , K are the eigenvalues of the estimated covariance

operators under class g, respectively, and K is the number of eigenfunctions used to

compute the functional Mahalanobis semi-distances.

It is important to note that although the proposed functional linear and quadratic

classification Bayes rules have been derived using the functional Mahalanobis semi-

distance, these methods are equivalent to applying the multivariate linear and quadratic

Bayes rules to the first K functional principal component scores. Hall et al. [25] pro-

posed to use the Bayes classification rule in (2.3.7) after estimating nonparametrically the

density function of the functional principal component scores. However, these authors

have pointed out that a computationally less expensive method is to use the multivariate

quadratic Bayes classification rule which is essentially the rule given in (2.3.8). Addition-

ally, note that the proposed functional linear and quadratic Bayes classification rules are

different than those proposed by James and Hastie [31] for classifying irregularly sampled

curves. The idea of the paper by James and Hastie [31] is to use a natural cubic spline

basis plus random error to model the observations from each individual. Then, the spline

is parameterized using a basis function multiplied by a coefficient vector. This coefficient
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vector is modeled using a Gaussian distribution that allows the pooling of the observed

functions to estimate the mean and covariance for each class by means of an Expectation-

Maximization (EM) algorithm. In other words, the method uses the usual multivariate

linear and quadratic discriminant rules on the coefficients of the cubic splines of each

curve after a convenient rank-reduced analysis and therefore, the method proposed by

James and Hastie [31] does not consider a functional Mahalanobis semi-distance based

on the structural properties of the data, as proposed here.

2.4 Empirical results

This section illustrates the performance of the functional classification procedures pre-

sented in Section 2.3 through several Monte Carlo simulations and the analysis of two

real datasets.

2.4.1 Monte Carlo Study

The Monte Carlo study considers four different scenarios. The first scenario consists

of two Brownian motions defined in the closed interval I = [0, 1] with added means

µ1(t) = 20t1.1(1 − t) and µ2(t) = 20t(1 − t)1.1, respectively. Thus, the first sce-

nario considers two Gaussian processes with different means but a common covariance

operator with eigenfunctions ψk (t) =
√

2 sin ((k − 0.5)πt) and associated eigenvalues

λk = 1/ (π (k − 0.5))2, k = 1, 2, . . . The second scenario is similar to the first one but

the second Brownian motion is multiplied by
√

2. Thus, the covariance operators of

both processes have the same eigenfunctions but the eigenvalues corresponding to the

second process are twice those corresponding to the first process. Finally, the remaining

two scenarios are similar to the first two, but they replace the Brownian motions with

standardized exponential processes with rate 1 and with the same mean functions and

covariance operators as the processes in scenarios 1 and 2, respectively.

Subsequently, 500 datasets are generated composed of n1 = 150 functions from the

first process and n2 = 125 functions from the second process. The generated functions
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are observed at J = 100 equidistant points in the closed interval I = [0, 1]. Gaussian

errors with mean 0 and variance 0.01 are added to each generated point. Once a dataset

is generated, the sample is split into a training sample composed of n10 = 100 functions

of the first process and n20 = 75 functions of the second process, respectively, and a test

sample composed of n11 = 50 functions of the first process and n21 = 50 functions of

the second process, respectively. The discrete trajectories are converted to functional

observations using a B-spline basis of order 6 with 20 basis functions which are enough

to fit the data well. Figure 2.1 shows four datasets, once smoothing has been performed,

corresponding to the four situations considered. As can be seen, all four appear to be

complicated scenarios for classification purposes. Note that we have chosen populations

of curves with similar characteristics in order to check the potential of the procedures. In

particular, we have chosen scenarios 2 and 4, which are close to scenarios 1 and 3 to show

that the methods based on the functional Mahalanobis semi-distances work quite well

when the processes have very similar covariance structures. Similarly, we have chosen

scenarios 3 and 4, close to 1 and 2, to show that similar results are obtained when non

Gaussian scenarios are considered.

We analyze the following: (1) the kNN procedure with seven different func-

tional distances, i.e., the L1, L2 and L∞ distances, given by d1 (χ1, χ2) =∫
T
|χ1 (t)− χ2 (t)| dt, d2 (χ1, χ2) =

(∫
T

(χ1 (t)− χ2 (t))2 dt
)1/2

, and, d∞ (χ1, χ2) =

sup {|χ1 (t)− χ2 (t)| : t ∈ T}, respectively, where χ1 and χ2 are two functional obser-

vations, denoted by kL1, kL2 and kLI, respectively, the functional principal compo-

nents (FPC) semi-distance assuming either a common or a different covariance operator,

denoted by kPC and kPD, respectively, and the functional Mahalanobis (FM) semi-

distance assuming either a common or a different covariance operator as proposed in

Section 2.3, denoted by kMC and kMD, respectively; (2) the centroid procedure with

eight different functional distances, the first seven as in the kNN procedure, denoted by

cL1, cL2, cLI, cPC, cPD, cMC and cMD, respectively, and the distance proposed by

Delaigle and Hall [15] given in (2.3.6) and denoted by cDH; (3) the linear and quadratic

Bayes classification rules as proposed in Section 2.3, denoted by FLB and FQB, res-

pectively; and (4) the multivariate linear and quadratic Bayes classification rules applied
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Figure 2.1: B-spline basis approximations of datasets corresponding to the four exper-
iments considered. There are 10 functions of the first process (solid) and another 10
functions of the second process (dashed).

on the coefficients of the B-spline basis representation, denoted by LBC and QBC, res-

pectively. This method can be seen as a simplification of the one proposed by James

and Hastie [31]. The values of the threshold parameter K needed to compute the kPC,

kPD, kMC, kMD, cPC, cPD, cMC, cMD, cDH, FLB and FQB methods and the

number of neighbors in the kNN procedures are determined in the simulation study and

in the real data examples using leave-one-out cross-validation on the training samples

with a maximum number of 12 eigenfunctions and 9 neighbors, respectively. Once these

quantities are selected, the observations in the test samples are classified using the esti-

mates based on all the training samples. The prior probabilities for the FLB and FQB

methods are given by the training sample proportions.

Table 2.1 show means and standard deviations of the proportion of correct classi-

fication of the test samples for the four scenarios. These results are summarized in the

boxplots shown in Figure 2.2. The boxplots only show the best performing methods.

The excluded methods are cL1, cL2, cLInf , cPC, cPD, and QBC. On the other hand,

Figure 2.3 shows the boxplots of the optimal number of principal components needed
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to compute the kPC, kPD, kMC, kMD, cPC, cPD, cMC, cMD, cDH, FLB and

FQB methods for the four scenarios. Apparently, there is no a clear pattern about

the number of principal components needed. In view of table 2.1 and figure 2.2, we

point out the following findings. First, in most of the cases, either the kMC method

or the cMC method attains the largest proportion of correct classifications. Second,

the proportions of correct classifications for the third and fourth scenarios are slightly

larger than the corresponding proportions for the first and second scenarios suggesting

that Gaussianity is not necessarily an advantage for classification methods based on the

functional Mahalanobis semi-distance. Third, in all the scenarios, classification methods

based on the functional Mahalanobis semi-distance have better performance than any

other functional distance or semi-distance or any other alternative method such as the

one based on the basis functions coefficients. Fourth, at least in these scenarios, the

use of the kPD, kMD, cPD and cMD methods is not of practical advantage. Indeed,

even if the generated processes have different covariance operators, the methods appear

to work better assuming a common covariance operator. However, remember that we

are considering two covariance operators that are quite close. Fifth, note that in most

of the situations, the spread of good classification rates linked to methods based on the

functional Mahalanobis semi-distance is smaller than using any other alternative. In

summary, this limited simulation analysis appears to confirm that the functional Maha-

lanobis semi-distance may be a useful tool for classifying functional observations.

2.4.2 Real data study: Tecator dataset

Next, we apply the classification procedures to the Tecator dataset previously analyzed

by Ferraty and Vieu [19], Rossi and Villa [52], Li and Yu [36], Alonso et al. [1] and

Mart́ın-Barragán et al. [41], among others. The dataset that consists of 215 near-infrared

absorbance spectra of meat samples, recorded on a Tecator Infratec Food Analyzer is

available at http://lib.stat.cmu.edu/datasets/tecator. The absorbance of a meat sample

is a function given by log10 (I0/I) where I0 and I are, respectively, the intensity of the

light before and after passing through the meat sample. Each observation consists of a

100-channel absorbance spectrum in the wavelength range 850 − 1050 nm, contents of
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Figure 2.2: Proportions of correct classification for all the scenarios.
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Figure 2.3: Optimal number of principal components for all scenarios.
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moisture (water), fat and protein. The recorded absorbance can be seen as a discretized

version of the continuous process. The classification problem here is to separate meat

samples with a high fat content (more than 20%) from samples with a low fat content

(less than 20%) based on absorbance. Among the 215 samples, 77 have high fat content

and 138 have low fat content. Previous analyses of this dataset have suggested that

classification of the second order derivatives of the observed functions produces lower

misclassification rates. Therefore, the analysis of the original data and their second

order derivatives are carried out. In both cases, the original discrete observations and

their second differences are converted to functional observations using a B-spline basis

of order 6 with 20 and 40 basis functions, respectively. Figure 2.4 shows the sample of

this 100-channel absorbance spectrum and its second derivatives after smoothing.
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Figure 2.4: Left: Original observations of the Tecator dataset. Right: Second order
derivatives. Curves with high fat content in solid lines and with low fat content in
dashed lines.

Next, 500 training samples composed of 58 and 104 randomly chosen functions of

meat with high fat content and low fat content, respectively, are considered. For each

training sample, the remaining 19 and 34 functions with high and low fat content are

used as a test sample. Table 2.2 show means and standard deviations of the proportion
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of correct classification of the test samples for the two cases. The results of this table

are summarized in the boxplots shown in Figure 2.5. The boxplots only show the best

performing methods. Interestingly, the methods not shown are the same as the simu-

lations. We use the same range of values on the vertical axes in the two boxplots to

make comparisons between the two boxplots easier. In both cases, the kMC method

is the winner. The highest mean proportions of correct classification for the Tecator

dataset and the second order derivatives with kMC are 0.9834 and 0.9908, respectively,

suggesting that it is not necessary to use the second order derivatives of the Tecator data

to obtain almost perfect classification. Note that using a similar experiment, Rossi and

Villa [52] obtained classification rates of 0.9672 and 0.9740 for the original and second

order derivatives with SVMs, respectively; Li and Yu [36] obtained classification rates

of 0.9602 and 0.9891 for the original and second order derivatives, respectively, with a

segmentation approach; Alonso et al. [1] obtained a classification rate of 0.9798 with

a method that takes into account the original, the first and the second order deriva-

tives; and, finally, Mart́ın-Barragán et al. [41] obtained a classification rate of 0.9891

for the second order derivatives with a method based on interpretable SVM classifiers

for functional data which have high classification accuracy. Note that all of the previous

approaches are more sophisticated than the ones taken here. Finally, boxplots of the op-

timal number of principal components needed to compute the kPC, kPD, kMC, kMD,

cPC, cPD, cMC, cMD, cDH, FLB and FQB methods for the original dataset and

their second order derivatives are found in Figure 2.6. Apparently, there is no general

rule regarding the number of principal components used.

2.4.3 Real data study: Phoneme dataset

Finally, the classification procedures are applied to the Phoneme dataset de-

scribed in Ferraty and Vieu [20] and available at http://www.math.univ-

toulouse.fr/staph/npfda/npfda-datasets.html. This dataset is a part of the

original one analyzed in Hastie, Buja and Tibshirani [28] and available

at http://statweb.stanford.edu/∼tibs/ElemStatLearn/datasets/phoneme.data. The

dataset contains log-periodograms corresponding to 32-ms recordings of a sample of
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Figure 2.5: Proportion of correct classification for the Tecator dataset. Top: original
data. Bottom: second order derivative of the dataset.
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Figure 2.6: Optimal number of principal components for the Tecator dataset. Top:
original data. Bottom: second order derivative of the dataset.
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Figure 2.7: Left: Sample of 20 curves of the phoneme dataset (log-periodograms for “aa”
in solid lines and log-periodograms for “ao” in dashed lines). Right: Means of the two
groups (for “aa” the solid line and log-periodograms for “ao” the dashed line).

speakers. Here, two populations corresponding to the phonemes “aa” as in the vowel of

“dark” and “ao” as in the first vowel of “water” are considered. Each speech frame is

represented by 400 samples at a 16-kHz sampling rate where only the first 150 frequencies

from each subject are retained. The data consists of 800 log-periodograms of length 150,

with known class phoneme membership. The classification problem here is to separate

the two phonemes. The discrete observations are converted to functional observations

using a B-spline basis of order 6 with 40 basis functions, respectively. Figure 2.7 shows

a sample of 10 log-periodograms of each class and the means of the two classes for the

whole dataset. The figure confirms that it is difficult to distinguish the log-periodograms

from one another.

Next, 500 training datasets, each containing 600 curves, are considered. They are

composed of 300 randomly chosen log-periodograms of both vowels. For each training

sample, the remaining 200 curves (100 per class) are used as a test sample. The means

and standard deviations of the proportion of correct classification of the test samples

are shown in Table 2.3. These results are summarized in the boxplots shown in Figure
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2.8. The boxplots do not show the worst performing methods, which are again the

same as in the simulations and the tecator dataset. In this case, the cMC and FLB

methods perform the best. Note that with equal class sizes (as is the case here), these

two methods are equivalent. The highest mean proportion of correct classification for

the Phoneme dataset is 0.8216, which is slightly larger than other alternatives. Boxplots

of the optimal number of principal components needed for various methods are found in

Figure 2.9. The mean number of functional principal components used with cMC/FLB

is around 9. Other methods with worse performance also have mean values close to 9.

However, the spreads of the number of principal components used by other methods are

larger than with cMC/FLB.
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Figure 2.8: Proportion of correct classification for the Phoneme dataset.
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Figure 2.9: Optimal number of principal components for the Phoneme dataset.
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2.5 Conclusions

In this chapter, we have introduced a new semi-distance for functional data that gen-

eralize the multivariate Mahalanobis distance to the functional framework. We use the

regularized square root inverse operator given in Mas [42] which allows to write the func-

tional Mahalanobis semi-distance between an observation and the sample mean function

of the set of functions in terms of the standardize functional principal component scores.

New versions of several classification procedures including kNN, the centroid method

and functional Bayes classification rules have been proposed based on the functional

Mahalanobis semi-distance. Monte Carlo experiments and the analysis of two real data

examples illustrate the good behavior of the classification methods based on the func-

tional Mahalanobis semi-distance.
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Two-sample Hotelling’s T 2 statistics based on the functional

Mahalanobis semi-distance

3.1 Introduction

In the multivariate context, the two-sample Hotelling’s T 2 statistic is frequently used to

test the equality of means of two independent Gaussian random samples with the same

covariance matrix. If equality of covariance matrices is not assumed, the testing issue is

known as the multivariate Behrens-Fisher problem although the two-sample Hotelling’s

T 2 statistic is still used. The common point of the two statistics, that is, assuming

that the covariance matrices are equal or that they are different, is that the two-sample

Hotelling’s T 2 statistics are just the squared Mahalanobis distance between the sample

means of both random samples.

Some approaches have been proposed so far to test whether the mean functions of

two functional samples are equal. For instance, Fan and Lin [18] developed tests for

comparing the means of two functional samples based on the adaptive Neyman test

and wavelet thresholding techniques. Horváth and Kokoszka [29] presented procedures

for testing the equality of the means in two independent functional random samples
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based on the functional principal components semi-distance between the sample means

of the two functional samples. The asymptotic distribution of the statistic derived in

this way converges, under the null hypothesis, to weighted sums of squares of indepen-

dent standard Gaussians. As alternative and trying to avoid the use of the weighted

asymptotic distribution, Horváth and Kokoszka [29] also proposed a normalized version

of the statistic based on the functional principal components semi-distance that has a

chi-square limit. These inferential procedures were extended to the case of functional

time series in Horváth et al. [30].

In this Chapter, we focus on the problem of testing the equality of mean functions in

two random samples independently drawn from two functional distributions. Specially,

we derive two-sample Hotelling’s T 2 statistics based on the functional Mahalanobis semi-

distance assuming either a common or a different covariance operator for the random

samples following the ideas developed in the multivariate context. We show that the

test statistics derived in terms of the Mahalanobis semi-distance coincide with the nor-

malized test statistic proposed by Horváth and Kokoszka [29], although, these authors

did not consider the functional Mahalanobis semi-distance in the development of their

normalized statistic. Therefore, we establish the link between the Hotelling’s T 2 statistic

in the multivariate and functional settings. Finally, we will illustrate with the scenarios

previously considered in Section 2.4.1 and a real data example from climatology the per-

formance of the test statistics based on the functional Mahalanobis semi-distance and

the functional principal components semi-distance.

This chapter is organized as follows. Section 3.2 introduces some preliminaries needed

to define properly the statistics associated to the homogeneity test. Section 3.3 in-

troduces the statistics based on the functional Mahalanobis semi-distance for testing

the equality of mean functions in two independent random samples and describes their

asymptotic behavior. Sections 3.4 and 3.5 evaluate the performance of the procedures

proposed in Section 3.3 by means of a simulation study and a real data application.

Finally, some conclusions are drawn in Section 3.6.
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3.2 Preliminaries

The aim of this section is to briefly review the multivariate Hotelling’s T 2 statistics to

motivate their extension to the functional framework.

3.2.1 Multivariate Hotelling’s T 2 statistics

Let x11, . . . ,x1n1 and x22, . . . ,x2n2 be two random samples independently drawn from

two multivariate Gaussian distributions with means mx1 and mx2 and positive definite

covariance matrices C1 and C2, respectively. The aim is to test:

H0 : mx1 = mx2 vs. HA : mx1 6= mx2 . (3.2.1)

Let m̂x1 = 1
n1

∑n1

i=1 x1i and m̂x2 = 1
n2

∑n2

j=1 x2j be the sample means of the two random

samples, respectively. The Multivariate Hotelling’s T 2 statistic for the test (3.2.1) is

given by:

T 2 = dM (m̂x1 , m̂x2)
2 , (3.2.2)

where dM (m̂x1 , m̂x2) is the Mahalanobis distance between m̂x1 and m̂x2 defined as:

dM (m̂x1 , m̂x2)
2 = (m̂x1 − m̂x2)

′Ĉ−112 (m̂x1 − m̂x2), (3.2.3)

and Ĉ12 is an estimate of the covariance matrix of m̂x1 − m̂x2 defined depending on

whether C1 and C2 are assumed to be equal or not. Hence, if C1 = C2 = C, the

covariance matrix of m̂x1 − m̂x2 is given by:

C12 =
n1 + n2

n1n2

C,

that can be estimated with:

Ĉ12 =
n1 + n2

n1n2

Ĉ, (3.2.4)
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where Ĉ in (3.2.4) is the pooled covariance matrix given by:

Ĉ =
1

n1 + n2 − 2

(
(n1 − 1) Ĉ1 + (n2 − 1) Ĉ2

)
,

and Ĉ1 and Ĉ2 are the sample covariance matrices of C1 and C2 based on the two

random samples, respectively, given by:

Ĉj =
1

nj − 1

nj∑
i=1

(xji − m̂xj
)(xji − m̂xj

)′, (3.2.5)

for j = 1, 2, respectively. Let T 2
C denotes the multivariate Hotelling’s T 2 statistic in

(3.2.2) where Ĉ12 is given in (3.2.4). Then, n−p−1
p(n−2)T

2
C follows a F distribution with p and

n − p − 1 degrees of freedom under the null hypothesis of equality of means given in

(3.2.1). The previous F distribution asymptotically tends to the χ2
p distribution. On the

other hand, if C1 6= C2, the covariance matrix of m̂x1 − m̂x2 is given by:

C12 =
1

n1

C1 +
1

n2

C2,

that can be estimated through:

Ĉ12 =
1

n1

Ĉ1 +
1

n2

Ĉ2, (3.2.6)

where Ĉ1 and Ĉ2 are defined in (3.2.5). Let T 2
D denotes the multivariate Hotelling’s T 2

statistic in (3.2.2) where Ĉ12 is given in (3.2.6). Then, the distribution of T 2
D under the

null hypothesis in (3.2.1) has been approximated with several scaled F distributions, see

James [32], Yao [61], Johansen [33], Nel and van der Merwe [45] and Kim [34], among

others.

3.3 Functional two-sample Hotelling’s T 2 statistics

The purpose of this section is to introduce the functional two-sample Hotelling’s T 2

statistics defined through the functional Mahalanobis semi-distance proposed by Galeano
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et al. [23]. For that, we adapt the definitions of the two-sample Hotelling’s T 2 statistics,

T 2
C and T 2

D, for multivariate data defined in Section 3.2

Let χ1 and χ2 be two independent functional random variables defined in the infinite

dimensional space L2(T ), with mean functions µχ1 (t) = E [χ1 (t)] and µχ2(t) = E [χ2 (t)]

and compact covariance operators Γχ1 and Γχ2 , respectively. Therefore, χ1 and χ2 can

be written as χ1 = µχ1 + ε1 and χ2 = µχ2 + ε2, respectively, where ε1 and ε2 are two

independent error functional random variables defined in L2(T ) with compact covariance

operators Γχ1 and Γχ2 , respectively. Additionally, we assume that E
[
‖ε1‖42

]
< ∞ and

E
[
‖ε2‖42

]
<∞, respectively.

Let χ11, . . . , χ1n1 and χ21, . . . , χ2n2 be two random samples independently drawn from

χ1 and χ2, respectively, that satisfies:

χ1i (t) = µχ1 (t) + ε1i (t) , (3.3.1)

for 1 ≤ i ≤ n1, and

χ2i (t) = µχ2 (t) + ε2i (t) , (3.3.2)

for 1 ≤ i ≤ n2, respectively, where ε11, . . . , ε1n1 and ε21, . . . , ε2n2 are two random samples

independently drawn from ε1 and ε2, respectively. The aim is to test:

H0 : µχ1 = µχ2 vs. HA : µχ1 6= µχ2 . (3.3.3)

Let µ̂χ1 = 1
n1

∑n1

i=1 χ1i and µ̂χ2 = 1
n2

∑n2

i=1 χ2i be the sample mean functions of the

two random samples, respectively, and let Γ12, be the covariance operator of µ̂χ1 − µ̂χ2 .

Similarly as in (3.2.2), we propose to test the equality of means using the functional

Hotelling’s T 2 statistic given by:

T 2
F = dKFM(µ̂χ1 , µ̂χ2)

2, (3.3.4)
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where dKFM(µ̂χ1 , µ̂χ2) is the functional Mahalanobis semi-distance between µ̂χ1 and µ̂χ2

defined as:

dKFM(µ̂χ1 , µ̂χ2)
2 =

〈
Γ̂
−1/2
K,12 (µ̂χ1 − µ̂χ2), Γ̂

−1/2
K,12 (µ̂χ1 − µ̂χ2)

〉
. (3.3.5)

where Γ̂
−1/2
K,12 is an estimate of the regularized squared root inverse covariance operator

of µ̂χ1 − µ̂χ2 given in (2.2.1). The estimate Γ̂
−1/2
K,12 is defined depending on whether Γχ1

and Γχ2 are assumed to be equal or not. In both cases, as shown in the Appendix, the

functional Mahalanobis semi-distance in (3.3.5), and thus, the test statistic T 2
F , can be

expressed as follows:

dKFM(µ̂χ1 , µ̂χ2)
2 =

K∑
k=1

θ̂212k

λ̂k
, (3.3.6)

where θ̂12k =
〈
µ̂χ1 − µ̂χ2 , ψ̂k

〉
, for k = 1, 2, . . . are the functional principal component

scores with ψ̂1, . . . , ψ̂K and λ̂1 ≥ · · · ≥ λ̂K being the eigenfunctions and associated eigen-

values, respectively, of Γ̂12, an estimate of Γ12, that will be given below. Consequently,

the functional Hotelling’s T 2 statistic T 2
F in (3.3.4), can be written using the expression

in (3.3.6) that, as mentioned before, depends on whether Γχ1 and Γχ2 are assumed to be

equal or not.

On the one hand, if Γχ1 = Γχ2 = Γχ, the covariance operator of µ̂χ1 − µ̂χ2 , is given

by:

Γ12 =
n1 + n2

n1n2

Γχ,

that can be estimated with:

Γ̂12 =
n1 + n2

n1n2

Γ̂χ, (3.3.7)

where Γ̂χ is the pooled covariance operator given by:

Γ̂χ(η) =
1

n1 + n2 − 2

(
(n1 − 1) Γ̂χ1(η) + (n2 − 1) Γ̂χ2(η)

)
,

60



Two-sample Hotelling’s T 2 statistics based on the functional Mahalanobis semi-distance

for η ∈ L2(T ), and Γ̂χ1 and Γ̂χ2 being the sample covariance operators of Γχ1 and Γχ2

based on the two random samples, respectively, given by:

Γ̂χj
(η) =

1

nj − 1

nj∑
i=1

〈
χji − µ̂χj

, η
〉

(χji − µ̂χj
), (3.3.8)

for j = 1, 2, respectively. Now, eigenfunctions of Γ̂12 are those of Γ̂χ, while the associated

eigenvalues are n1+n2

n1n2
times those of Γ̂χ. The statistic (3.3.6) derived in this way is

the functional Hotelling’s T 2 statistic assuming a common covariance operator for both

samples and will be denoted by T 2
FC .

On the other hand, if Γχ1 6= Γχ2 , the covariance operator of µ̂χ1 − µ̂χ2 is given by:

Γ12 =
1

n1

Γχ1 +
1

n2

Γχ2 ,

that can be estimated through:

Γ̂12 =
1

n1

Γ̂χ1 +
1

n2

Γ̂χ2 , (3.3.9)

where Γ̂χ1 and Γ̂χ2 are given in (3.3.8). Nevertheless, (3.3.9) is not the empirical covari-

ance operator of a functional sample, as occurs in the previous case. Thus, eigenfunctions

and eigenvalues of Γ̂12 in (3.3.9) cannot be computed from a data set built in terms of

the initial data set. For that reason, we will use the following bootstrap procedure to

estimate eigenfunctions and eigenvalues of Γ̂12:

Step 1 Let b = 1.

Step 2 Obtain a random sample with replacement from χ11, . . . , χ1n1 and another

one from χ21, . . . , χ2n2 . Denote both bootstrap samples by χb11, . . . , χ
b
1n1

and

χb21, . . . , χ
b
2n2

, respectively.

Step 3 Obtain the functional sample means of the bootstrap samples, denoted by

µ̂bχ1
and µ̂bχ2

, respectively and their difference µ̂b12 = µ̂bχ1
− µ̂bχ2

.
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Step 4 Repeat Steps 2 and 3 B times to obtain B bootstrap samples µ̂b12, for b =

1, . . . , B. Then, the covariance operator Γ12 is estimated with the sample

covariance operator of µ̂1
12, . . . , µ̂

B
12, from which we obtain the set of estimated

eigenfunctions and associated eigenvalues needed to compute (3.3.6).

The statistic (3.3.6) derived in this way is the functional Hotelling’s T 2 statistic

assuming different covariance operators for both samples and will be denoted by T 2
FD.

To analyze the convergence of the statistics T 2
FC and T 2

FD under the null and alter-

native hypotheses, we briefly review the statistics given in Horváth and Kokoszka [29]

to test (3.3.3). Firstly, Horváth and Kokoszka [29] proposed to use the statistic based

on the L2 distance defined as:

U =
n1n2

n1 + n2

d2(µ̂χ1 , µ̂χ2)
2 =

n1n2

n1 + n2

∫
T

(µ̂χ1(t)− µ̂χ2(t))
2 dt. (3.3.10)

Under the conditions given at the beginning of this section and assuming that

n1

n1 + n2

→ ν

with some 0 ≤ ν ≤ 1, the asymptotic distribution of (3.3.10) under the null hypothesis

is the distribution of
∑∞

k=1 τkz
2
k, where τ1 ≥ τ2 ≥ . . . denotes the eigenvalues of the

operator (1− ν) Γχ1 +νΓχ2 and zk are independent standard Gaussian random variables.

As these eigenvalues are unknown, alternatively, Horváth and Kokoszka [29] considered

the statistic:

UF =
n1n2

n1 + n2

dKPC(µ̂χ1 , µ̂χ2)
2 =

K∑
k=1

θ̂212k, (3.3.11)

where dKPC denoted the functional principal components semi-distance introduced in

Ferraty and Vieu [20] and θ̂121 ≥ θ̂122 ≥ . . . are the functional principal component

scores of Γ̂12. In other words, the idea is to replace in (3.3.10) the L2 distance with

the functional principal components semi-distance. The asymptotic distribution of the
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statistic UF in (3.3.11) under the null hypothesis is the distribution of
∑K

k=1 τkz
2
k, for

which critical values can be obtained by simulation. Nevertheless, to avoid the use of

simulation, Horváth and Kokoszka [29] proposed a normalized version of UF given by:

NUF =
K∑
k=1

θ̂212k

λ̂k
,

that has an asymptotic χ2
K distribution, see Theorem 5.3 in Horváth and Kokoszka [29].

Now, the statistic NUF is just the functional Hotelling’s T 2 statistic in (3.3.6) that,

consequently, inherits the χ2
K asymptotic distribution. Additionally, Theorem 5.4 in

Horváth and Kokoszka [29] establishes the consistency of the NUF statistic to reject

the null hypothesis if the means are different. For that, it is necessary to assume that

µχ1 − µχ2 is not orthogonal to the linear span of ψ1, . . . , ψK . This consistency result

is also inherited by the functional Hotelling’s T 2 statistics. In the following, we denote

by UFC and UFD, the statistic UF when assuming a common or a different covariance

operator of the random samples under analysis.

Finally, the threshold parameter K deserves some comments. In practice, the func-

tional Hotelling’s T 2 statistics T 2
FC and T 2

FD, as well as the statistics UFC and UFD based

on the functional principal components semi-distance, can be used to solve the testing

problem with several values of K. Then, one can compare the results of the tests. How-

ever, it would be advisable to define a procedure that chooses an appropriate value of

K to make a unique decision when this hypothesis test is applied to real data. Galeano

et al. [23] propose to select K to compute the functional Mahalanobis semi-distance

in classification problems by cross-validation. However, this method can not be easily

extended in the hypothesis testing framework. Alternatively, we choose the threshold

value K via the cumulative percentage of total variance (CPV ), that is the classical

approach for determining the number of sample principal components to retain. The

cumulative percentage of total variance is defined as follows:

CPV (k) =

∑k
j=1 λ̂j∑kmax

j=1 λ̂j
, (3.3.12)

63



Chapter 3

where λ̂j are the eigenvalues of Γ̂12 and kmax is the total number of estimated eigenvalues.

The CPV in (3.3.12) is an increasing function that tends to 1. Then, we select the value

of K as the value of k from which the function CPV grows very slowly to 1. This is the

method that we use in the simulated and real data examples in Sections 3.4 and 3.5.

3.4 Empirical Results

This section illustrates the performance of the test statistics presented in Section 3.3

through several Monte Carlo simulations. In particular, we compare the empirical sizes

and powers of the test statistics based on the functional Mahalanobis semi-distance, T 2
FC

and T 2
FD, with those of the test statistics based on the functional principal components

semi-distance, UFC and UFD, when the covariance operators of the two random samples

are assumed to be equal and when this is not assumed.

3.4.1 Monte Carlo Study

In this Monte Carlo study, we generate functional data sets following the structure

described in (3.3.1) and (3.3.2). In particular, we consider the functional means µχ1(t) =

20tρ(1− t) and µχ2(t) = 20t(1− t)ρ, respectively, where ρ = 1, 1.01, 1.02, 1.03, 1.04, 1.05.

Thus, when ρ = 1, the null hypothesis holds, which allows us to calculate empirical sizes

associated with the test statistics. However, when ρ 6= 1, the alternative hypothesis

holds allowing the calculation of the corresponding empirical powers. Note also that the

larger ρ, the more different are µχ1 and µχ2 , as plotted in Figure 3.1. Then, the power

is a function of the parameter ρ.

First, we compare the empirical sizes and powers of the testing procedures when the

covariance operators of the two random samples are equal. For that, we consider two

different scenarios for the error terms. In the first scenario, we have:

ε1(t) =
∞∑
k=1

λ
1/2
k z1kψk(t) and ε2(t) =

∞∑
k=1

λ
1/2
k z2kψk(t),
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where ψk (t) =
√
2 sin ((k − 0.5) πt), t ∈ [0, 1], for k = 1, 2, . . . are the eigenfunc-

tions of the covariance operator of the error functions with associated eigenvalues

λk = 1/ (π (k − 0.5))2, for k = 1, 2, . . ., and z1k and z2k are independent standard Gaus-

sian distributed, for k = 1, 2, . . . Thus, ε1 and ε2 are two Brownian motions with a

common covariance operator. In the second scenario, z1k and z2k are replaced with e1k

and e2k, that are independent standardized exponential distributed with rate 1. We con-

sider four configurations of sample sizes (n1, n2) given by (50, 50), (50, 100), (100, 100)

and (100, 200), respectively. We choose these pairs in order to see how the sample sizes

influence the test results.

ρ ρ ρ

ρ ρ ρ

Figure 3.1: Mean functions for different values of ρ. In solid, first sample, and in dashed,
second sample.

Subsequently, 1000 data sets are generated of each scenario and pair of sample sizes.

The generated functions are observed at J = 100 equidistant points in the closed interval

I = [0, 1]. Gaussian errors with mean 0 and variance 0.01 are added to each generated

point. To compute the test statistics, the discrete trajectories are converted to functional

observations using a B-spline basis of order 6 with 20 basis functions which seem enough

to fit the data well. Figure 3.2 shows a data set generated from the first scenario with
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ρ = 1.05 and sample size pair (10, 10) with the corresponding sample means. Note that it

would be difficult to affirm through visual evaluation that the mean generating functions

are different.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Sample of curves of Brownian processes

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Means of the two groups

Figure 3.2: Left: Set of 10 functions of the Brownian Motion plus mean µχ1(t) =
20t1.05(1− t) (solid) and another set of 10 functions of the Brownian Motion plus mean
µχ2(t) = 20t(1− t)1.05 (dashed). Right: the sample functional means for the first (solid)
and second (dashed) set of curves.

As mentioned in Section 3.3, the functional Hotelling’s T 2 statistics can be computed

for several values of K, for K = 1, 2, . . .. Nevertheless, it would be preferable to select an

appropriate threshold valueK and this is done using the CPV criterion in (3.3.12). In this

case, we know the true eigenvalues of the covariance operators considered in the Monte

Carlo study. These eigenvalues are proportional to those of the covariance operator

of the difference of the sample means so that we can use the cumulative percentages

obtained from them to select an appropriate threshold K. The first ten cumulative

percentages are given by 0.8216, 0.9129, 0.9458, 0.9625, 0.9717, 0.9795, 0.9843, 0.9880,

0.9908 and 0.9931, respectively. As can be seen, the cumulative percentages grow very

slowly from the fifth eigenvalue. Thus, we take CPV = 0.97 and select the K such

that the principal components explain at least the 97% of the variance. After that,
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we compute the T 2
FC and UFC statistics. Obviously, in practice (with real data) the

eigenvalues of the covariance operator of the difference of sample means are unknown.

Nevertheless, to take an appropriate CPV , we can use those eigenvalues estimated from

the samples using the methods previously described.

The results are summarized in Figure 3.3 and Tables 3.1 and 3.2. On the one hand,

Figure 3.3 shows a barplot of the values of K selected by CPV for the 1000 data sets

generated for the case of ρ = 0 in scenario 1. As can be seen, K only takes values

ranging from 4 to 7, being K = 5 and K = 6 the most frequent values. On the other

hand, Tables 3.1 and 3.2 show the empirical sizes and powers of the test statistics for

the two scenarios. Each cell in the tables displays the empirical size or power over the

1000 generated data sets. Empirical sizes and powers are calculated at the nominal sizes

α = 0.1, 0.05, 0.01. In view of these tables, several comments are in order. First, the

empirical sizes of the two test statistics are very close to the corresponding nominal sizes

in most of the cases. Indeed, the empirical sizes appears to tend to the nominal sizes

as the sample sizes increase. Second, if one of the sample sizes is 50, the test statistics

have empirical sizes slightly larger than the nominal sizes. Third, in terms of power,

the functional Hotelling’s T 2 statistic, T 2
FC , clearly dominates the test statistic based on

the functional principal components semi-distance, UFC , in all the cases. Fourth, the

functional Hotelling’s T 2 test statistic has good and similar power for both Gaussian and

exponential data sets suggesting that non-Gaussianity is not a drawback for T 2
FC . Fifth,

when the parameter ρ increases, the power of UFC increases slower than that for T 2
FC .

Sixth, the larger the sample size, the larger the power of both statistics. In summary,

we conclude that the functional Hotelling’s T 2 statistic appears to outperform the test

statistic based on the functional principal components semi-distance in terms of power.

Next, we compare the empirical sizes and powers of T 2
FD and UFD when the covariance

operators of the two random samples are different. As before, we consider two different

scenarios for the error terms. In the first scenario, we have:

ε1(t) =
∞∑
k=1

λ
1/2
1k z1kψk(t) and ε2(t) =

∞∑
k=1

λ
1/2
2k z2kψk(t),
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Tables 3.1: Empirical sizes and powers of the functional Hotelling’s T 2 statistic and the
test statistic based on the functional principal components semi-distance when Γχ1 = Γχ2

for the first scenario.

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.149 0.112 0.075 0.063 0.018 0.009
1.01 0.186 0.111 0.109 0.058 0.031 0.015

50 50 1.02 0.351 0.125 0.232 0.071 0.099 0.015
1.03 0.660 0.179 0.537 0.099 0.316 0.023
1.04 0.865 0.230 0.802 0.124 0.595 0.035
1.05 0.973 0.293 0.947 0.154 0.844 0.041

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.129 0.112 0.068 0.056 0.023 0.013
1.01 0.200 0.105 0.133 0.063 0.036 0.010

50 100 1.02 0.497 0.153 0.378 0.091 0.183 0.019
1.03 0.783 0.183 0.673 0.097 0.432 0.017
1.04 0.951 0.283 0.898 0.141 0.757 0.039
1.05 0.993 0.460 0.980 0.237 0.943 0.058

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.109 0.101 0.054 0.048 0.013 0.007
1.01 0.217 0.113 0.145 0.049 0.043 0.008

100 100 1.02 0.616 0.156 0.486 0.079 0.266 0.018
1.03 0.925 0.235 0.872 0.114 0.694 0.036
1.04 0.995 0.444 0.986 0.248 0.944 0.053
1.05 1.000 0.678 1.000 0.410 0.998 0.119

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.107 0.101 0.050 0.059 0.005 0.013
1.01 0.263 0.114 0.172 0.056 0.062 0.012

100 200 1.02 0.709 0.182 0.602 0.101 0.360 0.018
1.03 0.972 0.292 0.934 0.154 0.842 0.038
1.04 0.999 0.596 0.997 0.320 0.988 0.079
1.05 1.000 0.878 1.000 0.616 1.000 0.165
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Tables 3.2: Empirical sizes and powers of the functional Hotelling’s T 2 statistic and the
test statistic based on the functional principal components semi-distance when Γχ1 = Γχ2

for the second scenario.

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.113 0.111 0.065 0.053 0.017 0.019
1.01 0.193 0.128 0.107 0.066 0.033 0.018

50 50 1.02 0.387 0.139 0.283 0.067 0.113 0.012
1.03 0.655 0.185 0.533 0.093 0.317 0.016
1.04 0.868 0.265 0.796 0.135 0.620 0.039
1.05 0.970 0.347 0.953 0.175 0.850 0.033

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.102 0.111 0.054 0.046 0.014 0.014
1.01 0.205 0.108 0.127 0.059 0.035 0.013

50 100 1.02 0.480 0.115 0.332 0.056 0.146 0.007
1.03 0.781 0.193 0.666 0.096 0.447 0.032
1.04 0.946 0.293 0.900 0.169 0.766 0.043
1.05 0.995 0.444 0.988 0.237 0.940 0.064

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.098 0.096 0.052 0.051 0.014 0.007
1.01 0.225 0.118 0.131 0.062 0.047 0.014

100 100 1.02 0.638 0.165 0.514 0.076 0.272 0.022
1.03 0.913 0.266 0.851 0.137 0.685 0.038
1.04 0.991 0.459 0.982 0.242 0.945 0.067
1.05 1.000 0.690 1.000 0.406 0.995 0.123

n1 n2 ρ T 2
FC 10% UFC 10% T 2

FC 5% UFC 5% T 2
FC 1% UFC 1%

1.00 0.100 0.112 0.043 0.051 0.010 0.013
1.01 0.278 0.116 0.175 0.074 0.078 0.016

100 200 1.02 0.710 0.162 0.590 0.080 0.351 0.017
1.03 0.957 0.317 0.933 0.180 0.835 0.037
1.04 1.000 0.566 0.999 0.309 0.989 0.088
1.05 1.000 0.874 1.000 0.634 1.000 0.188
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Frequency distribution of K selected with CPV=0.97
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Figure 3.3: Values of K selected in the 1000 simulations with Gaussian processes.

where ψk (t) =
√

2 sin ((k − 0.5)πt), t ∈ [0, 1], for k = 1, 2, . . . are the eigenfunc-

tions of the covariance operator of the error functions with associated eigenvalues

λ1k = 1/ (π (k − 0.5))2 and λ2k = 2/ (π (k − 0.5))2, for k = 1, 2, . . ., for the first and

second random samples, respectively, and z1k and z2k are independent standard Gaus-

sian distributed, for k = 1, 2, . . . Thus, ε1 and ε2 are two Brownian motions with the

same eigenfunctions but with the eigenvalues corresponding to the second error process

twice those corresponding to the first error process. In the second scenario, and similarly

to the case of common covariance operators, z1k and z2k are replaced with e1k and e2k,

that are independent standardized exponential distributed with rate 1.

Then, 1000 data sets are generated of each pair of sample sizes and scenario with

the same configurations of samples sizes and generation mechanism as in the first set

of simulations. For each generated data set, we obtain B = 1000 bootstrap samples as

explained in Section 3.3 allowing us to obtain the eigenfunctions and eigenvalues of the

estimated covariance operator of the difference of the sample means of the two random

samples. Then, in order to fix the value of CPV used in the simulation study to compute
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T 2
FD and UFD, we compute the mean bootstrap eigenvalues based on the 1000 data sets.

A visual inspection of these eigenvalues for each pair of sample sizes and scenario leaded

us to select CPV = 0.97 in all the situations. Subsequently, once the value of K has

been fixed, we compute the two statistics for each generated data set.

The results are summarized in Tables 3.3 and 3.4 that show the empirical sizes

and powers of the test statistics for the two scenarios. As in the previous case, each

cell in the tables displays the empirical size or power calculated at the nominal sizes

α = 0.1, 0.05, 0.01 over the 1000 generated data sets. The results in terms of sizes and

powers of the simulation study when the covariance operators of the random samples are

different are very similar to those when the covariance operators of the random samples

are the same. In particular, we would like to note that the bootstrap procedure does not

appear to have a significant effect on the limit behavior of the test statistics. Finally,

we repeated the study with B = 10000 bootstrap replications obtaining similar results,

which for brevity are omitted in this Chapter.

3.5 Real data study

In this section, we compare the results obtained by the functional Hotelling’s T 2 statistics

and the test statistics based on the functional principal components semi-distance with

the Canadian Temperature data set previously analyzed by Ramsay and Silverman [48]

and Zhang and Chen [63], among others. The data set contains the daily temperature

records of 35 Canadian weather stations over a year (365 days). As in Zhang and Chen

[63], the 35 stations have been split in three regions, resulting in 15 stations in the

Eastern region, another 15 stations in the Western region and the remaining 5 stations

in the Northern region. See Table 3.5 to see the stations assigned in each of the three

regions. Following Ramsay and Silverman [48] and Ramsay et al. [47], the discrete

observations are converted to functional observations using a Fourier series basis with

65 basis functions. Figure 3.4 shows the smoothed temperature curves of the Eastern

(solid), Western (dashed) and Northern (dotted) weather stations and the estimated

mean temperature functions of these regions. As can be seen, the mean temperature
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Tables 3.3: Empirical sizes and powers of the functional Hotelling’s T 2 statistic and the
test statistic based on the functional principal components semi-distance when Γχ1 6= Γχ2

for the first scenario.

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.113 0.102 0.066 0.046 0.017 0.012
1.01 0.156 0.103 0.089 0.058 0.024 0.013

50 50 1.02 0.304 0.118 0.20 0.064 0.084 0.015
1.03 0.473 0.150 0.358 0.070 0.159 0.019
1.04 0.713 0.164 0.604 0.094 0.373 0.021
1.05 0.868 0.246 0.790 0.125 0.598 0.033

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.115 0.122 0.065 0.057 0.019 0.009
1.01 0.171 0.105 0.083 0.051 0.029 0.009

50 100 1.02 0.366 0.115 0.260 0.059 0.122 0.010
1.03 0.654 0.169 0.531 0.087 0.308 0.020
1.04 0.894 0.259 0.820 0.142 0.608 0.033
1.05 0.977 0.296 0.945 0.155 0.855 0.036

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.117 0.091 0.062 0.052 0.009 0.014
1.01 0.189 0.099 0.119 0.048 0.039 0.009

100 100 1.02 0.465 0.155 0.358 0.078 0.150 0.016
1.03 0.753 0.203 0.642 0.102 0.426 0.015
1.04 0.934 0.289 0.891 0.143 0.761 0.034
1.05 0.997 0.451 0.992 0.252 0.958 0.057

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.100 0.110 0.052 0.058 0.017 0.013
1.01 0.238 0.089 0.146 0.042 0.043 0.007

100 200 1.02 0.611 0.160 0.494 0.073 0.274 0.018
1.03 0.903 0.231 0.853 0.129 0.668 0.035
1.04 0.991 0.413 0.982 0.223 0.933 0.047
1.05 1.000 0.688 1.000 0.416 0.994 0.121
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Tables 3.4: Empirical sizes and powers of the functional Hotelling’s T 2 statistic and the
test statistic based on the functional principal components semi-distance when Γχ1 6= Γχ2

for the second scenario.

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.130 0.120 0.065 0.071 0.017 0.013
1.01 0.156 0.129 0.092 0.066 0.021 0.019

50 50 1.02 0.273 0.116 0.174 0.069 0.056 0.023
1.03 0.458 0.152 0.319 0.081 0.151 0.021
1.04 0.720 0.192 0.596 0.102 0.347 0.032
1.05 0.895 0.258 0.827 0.143 0.632 0.047

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.118 0.109 0.062 0.053 0.015 0.012
1.01 0.199 0.125 0.123 0.063 0.039 0.014

50 100 1.02 0.362 0.138 0.252 0.077 0.113 0.017
1.03 0.659 0.181 0.523 0.096 0.330 0.021
1.04 0.866 0.228 0.786 0.125 0.612 0.030
1.05 0.969 0.345 0.943 0.180 0.831 0.049

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.110 0.108 0.062 0.053 0.017 0.010
1.01 0.159 0.110 0.085 0.063 0.020 0.009

100 100 1.02 0.445 0.158 0.309 0.092 0.143 0.024
1.03 0.741 0.192 0.638 0.108 0.427 0.019
1.04 0.943 0.299 0.910 0.169 0.777 0.048
1.05 0.996 0.476 0.991 0.258 0.955 0.087

n1 n2 ρ T 2
FD 10% UFD 10% T 2

FD 5% UFD 5% T 2
FD 1% UFD 1%

1.00 0.115 0.108 0.060 0.054 0.012 0.020
1.01 0.245 0.114 0.165 0.057 0.057 0.015

100 200 1.02 0.620 0.173 0.507 0.084 0.286 0.018
1.03 0.917 0.250 0.862 0.123 0.681 0.032
1.04 0.991 0.426 0.975 0.225 0.930 0.053
1.05 1.000 0.710 1.000 0.447 0.995 0.134
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functions of the stations in the Eastern and Western regions look like similar and far

from the mean temperature function of the Northern weather stations.

Tables 3.5: Classification of the Canadian weather stations.

St. Johns Halifax Sydney Yarmouth Charlottesville
Eastern Fredericton Scheffervll Arvida Bagottville Quebec

Sherbrooke Montreal Ottawa Toronto London
Thunderbay Winnipeg The Pas Churchill Regina

Western Pr. Albert Uranium City Edmonton Calgary Kamloops
Vancouver Victoria Pr. George Pr. Rupert Whitehorse

Northern Dawson Yellowknife Iqaluit Inuvik Resolute

Based on the reconstructed temperature curves, the objective is to test if the mean

temperature functions of the Eastern and Western weather stations during the whole

year are the same. We are also interested in testing if the weather stations in the

Eastern and Northern and the Western and Northern regions have, respectively, the

same mean temperature functions. Before performing the tests, a task that we have to

carry out is to verify whether the covariance operators of the groups can be assumed

to be the same, in order to choose the appropriate test statistics. For that, Figures

3.5 and 3.6 show the estimated standard deviations and covariance operators surfaces

for the curves in the Eastern, Western and Northern regions, respectively, while Figure

3.7 show the corresponding contour plots of the estimated covariance operators. The

figures show different shapes and scales suggesting that the covariance operators of the

groups are different. Additionally, Figure 3.8 displays the eigenvalues of each estimated

covariance operator that appears to move in quite different scales again leading to similar

conclusions. Hence, we use the test statistics when the covariance operators of the

random samples are assumed to be different.

Next, we compute the statistics T 2
FD and UFD for K = 1, . . . , 15 for the three pairs

of regions with 1000 bootstrap replications. Table 3.6 displays the p-values of the two

test statistics. As can be seen, both testing procedures lead to essentially the same

conclusions, rejecting the equality of mean temperature functions between the Eastern
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Figure 3.4: Left: Daily temperature of Canada (Eastern weather stations in solid lines,
Western weather stations in dashed lines and Northern weather stations in dotted lines).
Right: Estimated mean temperature functions of the Eastern, Western and Northern
weather stations.

0 100 200 300

−
30

−
20

−
10

0
10

20

Smoothed curves

Day

Te
m

pe
ra

tu
re

0 100 200 300

−
30

−
20

−
10

0
10

20
Means of the three groups of the smoothed curves

Day

Te
m

pe
ra

tu
re

75



Chapter 3

Figure 3.5: Estimated standard deviations of the three groups of the smoothed curves
(Eastern weather stations in solid lines, Western weather stations in dashed lines and
Northern weather stations in dotted lines).
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and Northern regions and Western and Northern regions. However, for Eastern-Western

regions, UFD do not reject the null hypothesis of equality of mean functions, while T 2
FD

reject this null hypothesis when K > 2. Then, we select an appropriate value of K using

the cumulative percentage of total variance. For that, for each pair of regions, we obtain

the eigenvalues of the estimated covariance operator of the difference of the sample means

of both random samples obtained as shown in Section 3.3. For the Eastern-Western

regions, the cumulative percentage of total variance explained by the first 10 eigenvalues

are 0.8749, 0.9787, 0.9925, 0.9947, 0.9962, 0.9972, 0.9977, 0.9983, 0.9987 and 0.9989, for

the Eastern-Northern regions, these are given by 0.8822, 0.9452, 0.9755, 0.9960, 0.9981,

0.9992, 0.9995, 0.9997, 0.9998 and 0.9998, while for the Western-Northern pair these

are given by 0.7290, 0.9380, 0.9728, 0.9956, 0.9975, 0.9985, 0.9990, 0.9994, 0.9996 and

0.9997. As can be seen, in the three cases, the cumulative percentages grow slowly from

99%. Therefore, we select 99% of the total variation in the three cases. Table 3.6 shows

that the value of K selected via the CPV is 3 for Eastern-Western regions and K = 4,
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Figure 3.6: The estimated covariance operators for the three groups.
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Figure 3.7: The contours of the estimated covariance operators for the three groups.
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Figure 3.8: The first 10 eigenvalues of the estimated covariance operators for the three
groups.
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Tables 3.6: P -values (in percent) of the tests based on statistics T 2
FD and UFD ap-

plied to the Canadian Temperature data set for Eastern-Western, Eastern-Northern and
Western-Northern stations.

Eastern-Western Eastern-Northern Western-Northern
K T 2

FD UFD T 2
FD UFD T 2

FD UFD
1 30.97 31.13 1.17× 10−5 0 4.16× 10−5 0
2 53.73 34.17 1.10× 10−22 0 4.5× 10−8 0
3 2.58× 10−8 20.63 8.92× 10−22 0 2.17× 10−7 0
4 7.29× 10−11 19.74 1.44× 10−26 0 8.01× 10−7 0
5 9.14× 10−15 19.07 2.55× 10−30 0 1.27× 10−9 0
6 9.88× 10−15 19.52 7.80× 10−38 0 9.53× 10−10 0
7 7.19× 10−15 19.36 3.99× 10−40 0 1.00× 10−9 0
8 1.56× 10−15 19.07 9.88× 10−139 0 2.48× 10−10 0
9 1.20× 10−26 18.79 3.02× 10−152 0 1.54× 10−10 0
10 1.45× 10−46 19.17 2.68× 10−151 0 3.96× 10−10 0
11 2.32× 10−91 18.17 1.41× 10−181 0 2.07× 10−12 0
12 2.26× 10−94 17.62 1.88× 10−246 0 4.16× 10−31 0
13 9.91× 10−100 17.98 5.65× 10−269 0 9.13× 10−36 0
14 5.57× 10−99 18.01 0 0 6.04× 10−73 0
15 4.48× 10−100 17.52 0 0 1.10× 10−82 0

K − CPV 2.58× 10−8 20.63 1.44× 10−26 0 8.01× 10−7 0

otherwise. Thus, we conclude that the functional Hotelling’s T 2 statistic reject the null

hypothesis of equality of mean functions for Eastern-Western regions when K is properly

selected.
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3.6 Conclusions

In this chapter, we have derived two-sample Hotelling’s T 2 statistics for testing the

equality of mean functions in two samples independently drawn from two functional

distributions based on the functional Mahalanobis semi-distance. In particular, in the

case in which the covariance operators of the two random samples are not assumed to

be the same, we have proposed a bootstrap method to estimate the covariance operator

of the differences between the sample means of the two random samples. The limit

distributions of the statistics under the null hypothesis are chi-squared, a result that can

be established from the relationship between the proposed statistics and those based on

the functional principal components semi-distance proposed in Horváth and Kokoszka

[29]. Indeed, we have shown that the derived two-sample Hotelling’s T 2 statistics coincide

with the normalized functional principal components semi-distance statistics proposed

in Horváth and Kokoszka [29]. The simulations and real data application show that

the two-sample Hotelling’s T 2 statistics appears to outperform the tests based on the

functional principal components semi-distance given in Horváth and Kokoszka [29].

3.7 Appendix

Proof of (3.3.6). Using the Fourier decomposition, the difference between the sample
functional means µ̂χ1 and µ̂χ2 can be written as:

µ̂χ1 − µ̂χ2 =
∞∑
k=1

θ̂12kψ̂k, (3.7.1)

where θ̂12k =
〈
µ̂χ1 − µ̂χ2 , ψ̂k

〉
are the scores of µ̂χ1 − µ̂χ2 , for k = 1, . . . Using the

expression (2.2.1), it is straightforward to show that:

dKFM(µ̂χ1 , µ̂χ2)
2 =

〈
Γ̂
−1/2
K,12 (µ̂χ1 − µ̂χ2), Γ̂

−1/2
K,12 (µ̂χ1 − µ̂χ2)

〉
=

〈
K∑
k=1

1

λ̂
1/2
k

〈
ψ̂k, µ̂χ1 − µ̂χ2

〉
ψ̂k,

K∑
k=1

1

λ̂
1/2
k

〈
ψ̂k, µ̂χ1 − µ̂χ2

〉
ψ̂k

〉
.
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Now, from (3.7.1), the previous expression leads to:

dKFM(µ̂χ1 , µ̂χ2)
2 =

〈
K∑
k=1

1

λ̂
1/2
k

[〈
ψ̂k,

∞∑
j=1

θ̂12jψ̂j

〉
ψ̂k

]
,
K∑
k=1

1

λ̂
1/2
k

[〈
ψ̂k,

∞∑
j=1

θ̂12jψ̂j

〉
ψ̂k

]〉

=

〈
K∑
k=1

θ̂12k

λ̂
1/2
k

ψ̂k,

K∑
k=1

θ̂12k

λ̂
1/2
k

ψ̂k

〉

=
K∑
k=1

θ̂212k

λ̂k

�
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CHAPTER 4

Conclusions

This chapter summarizes the main contributions of the thesis. This dissertation is de-

voted to functional data analysis, especially to the notion of functional distance. We have

proposed a new semi-distance for functional observations, inspired by the Mahalanobis

distance frequently used in multivariate data analysis. The functional Mahalanobis semi-

distance has been proven useful in supervised classification and hypothesis testing. In

the following we present the principal aspects developed in each chapter.

In Chapter 2 we have introduced a new semi-distance for functional data that gen-

eralize the multivariate Mahalanobis distance to the functional framework. We use

the regularized square root inverse operator given in Mas [42] which allows to write

the functional Mahalanobis semi-distance between an observation and the sample mean

function of the set of functions in terms of the standardized functional principal compo-

nent scores. New versions of several classification procedures including kNN, the centroid

method and functional Bayes classification rules have been proposed based on the func-

tional Mahalanobis semi-distance. Monte Carlo experiments and the analysis of two real

data examples illustrate the good behavior of the classification methods based on the

functional Mahalanobis semi-distance.
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In Chapter 3 we have derived two-sample Hotelling’s T 2 statistics for testing the

equality of mean functions in two samples independently drawn from two functional

distributions based on the functional Mahalanobis semi-distance. In particular, in the

case in which the covariance operators of the two random samples are not assumed to

be the same, we have proposed a bootstrap method to estimate the covariance operator

of the differences between the sample means of the two random samples. The limit

distributions of the statistics under the null hypothesis are chi-squared, a result that can

be established from the relationship between the proposed statistics and those based on

the functional principal components semi-distance proposed in Horváth and Kokoszka

[29]. Indeed, we have shown that the derived two-sample Hotelling’s T 2 statistics coincide

with the normalized functional principal components semi-distance statistics proposed

in Horváth and Kokoszka [29]. The simulations and real data application show that

the two-sample Hotelling’s T 2 statistics appears to outperform the tests based on the

functional principal component semi-distance given in Horváth and Kokoszka [29].

4.1 Research Lines

We close this dissertation presenting some of the issues considered as future research

lines:

� In the definitions given in Section 2.2.1, we have assumed that all the functions

are aligned on the time axis and hence only differences in amplitude provide infor-

mation about the distance between two curves. However, functional datasets are

often distorted on the time axis. The usual approach to addressing the presence

of random variation in time in addition to amplitude variation is to perform time

warping. Given the set of curves χ1 (t) , . . . , χn (t), the idea is to seek a set of time-

warping functions wi (t), for i = 1, . . . , n, such that a new set of functions given

by χ̃i (t) = χi (wi (t)) is well aligned (see Ramsay and Silverman, [48]). Obviously,

computing the functional Mahalanobis semi-distance between the original observed

functions may not be the most appropriate idea if the data are distorted on the
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time axis. There are several possible approaches to this problem. The first is to

consider the functional Mahalanobis semi-distance in the dataset of time-warped

functions χ̃1 (t) , . . . , χ̃n (t) rather than the original functions. The second is to

consider the functional Mahalanobis semi-distance in the dataset of time-warping

functions w1 (t) , . . . , wn (t). The third is to consider a combination of the two pre-

vious approaches. Surely, more research is needed to establish efficient approaches

in order to measure distances between functional observations when time warping

is performed, and it will be an interesting topic to address in the future.

� To apply the tests in Sections 3.4 and 3.5, it is advisable to select the number of

functional principal components used in the computations of the statistics. We

propose to use the cumulative percentage of the total variance. However, other

selection methods such as the Bayesian information criterion and the Akaike in-

formation criterion proposed by Li et al. [37] could be extended to two-sample

problems. This would be an objective of future work.

� The range of applications for the new semi-distance is wide and includes clustering

and outlier detection for functional data, among others. In the future, it would be

interesting to propose new procedures based on the combination of those methods

with the functional Mahalanobis semi-distance. In this point, the idea is to adapt

methods developed to the multivariate context to the functional scenario. For

example, the techniques for outlier detection developed by Filzmoser et al. [21],

Maronna and Zamar [40], Becker and Gather [5], Rousseeuw and Van Zomeren

[54], Rousseeuw and Van Driessen [53], Rocke and Woodruff [51] and Woodruff

and Rocke [60] could be extended to functional framework. As clustering proce-

dures, it will be interesting to extend the works presented by Melnykov and Mel-

nykov [43], Fraley and Raftery [22] and Banfield and Raftery [4]. As mentioned in

Section 1.4, the notion of functional distances and semi-distances is useful in vari-

ous problems including prediction problems, unsupervised classification techniques

and for defining density functions for functional variables. In this research line, we

propose to extend these functional methodologies proposed by Ferraty and Vieu
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[20], Chiou and Li [10] and Delaigle and Hall [14] using the functional Mahalanobis

semi-distance. It aims to analyze situations in which the new semi-distance con-

tributes to the improvement of those techniques already developed with alternative

semi-distances and distances.
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