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Abstract. In [13] a generalisation of Formal Concept Analysis was in-
troduced with data mining applications in mind, K-Formal Concept
Analysis, where incidences take values in certain kinds of semirings, in-
stead of the standard Boolean carrier set. Subsequently, the structural
lattice of such generalised contexts was introduced in [15], to provide a
limited equivalent to the main theorem of K-Formal Concept Analysis,
resting on a crucial parameter, the degree of existence of the object-
attribute pairs ϕ. In this paper we introduce the spectral lattice of a
concrete instance of K-Formal Concept Analysis, as a further means
to clarify the structural and the K-Concept Lattices and the choice
of ϕ. Specifically, we develop techniques to obtain the join- and meet-
irreducibles of a Rmax,+-Concept Lattice independently of ϕ and try to
clarify its relation to the corresponding structural lattice.

1 Motivation: the Analysis of Confusion Matrices with

K-Formal Concept Analysis

Consider sets of entities G and patterns M with |G| = g ∈ N, |M | = m ∈ N and
a device called a classifier accepting a characterisation of an entity i, 0 ≤ i ≤ g,
normally a vector of features, and returning the index of a pattern j, 0 ≤ j ≤ m .

A confusion matrix or contingency table C ∈ N
g×n tries to capture at a

glance the performance of such classifier: for each classification act we increase
Cij by one, tallying classification hits and errors, which makes C a semiring-
valued matrix. With the aim of better understanding the performance of the
classifier we would like to find a way to analyse the geometry of the spaces
associated to matrices with properties similar to those of C .

For that purpose, in [13] a generalisation of Formal Concept Analysis was
introduced that allows incidences to take values in dioids, or idempotent semi-
rings: for g, m ∈ N, given two sets of objects G = {gi}

g
i=1, and attributes

M = {mj}
m
j=1, let K, be a complete, idempotent semifield [2,13], and a K-

valued matrix, R ∈ Kg×m, the triple (G, M, R)K is called a K-formal context.
We interpret Rij = λ as “object gi has attribute mj in degree λ” or, dually,
“attribute mj is manifested in object gi to degree λ”.

⋆ This work has been partially supported by a Spanish Government-Comisión Inter-
ministerial de Ciencia y Tecnoloǵıa project TEC2005-04264/TCM.
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Fig. 1. Diagrams depicting the structures in the Galois connection of Eq. 1 (left), and
Corollary 10.1, (right).

Now, for each (multiplicatively) invertible ϕ ∈ K, call (K, ϕ) a reflexive
idempotent semiring if the following maps define a Galois connection, with Y =
K1×g, X = Km×1 and the bracket 〈· | ·〉 : Y × X → K, (y, x) 7→ 〈y | x〉 = yRx ,
([3,13] and §2.1 below):

·Rϕ : Y → X yR
ϕ =

∨

{ x ∈ X | 〈y | x〉 ≤ ϕ } (1)

R
ϕ · : X → Y R

ϕx =
∨

{ y ∈ Y | 〈y | x〉 ≤ ϕ } .

in which case we call them the ϕ-polars of the K-formal context (G, M, R)K .
Under such conditions:

1. The images Y = R
ϕ (X ) and X = (Y)

R
ϕ are dually inverse complete sub-

semimodules of Y and X , respectively. They are obtained from the original
semimodules by the closure operators: γY : Y → Y, y 7→ γY(y) = R

ϕ ((y)R
ϕ )

and γX : X → X, x 7→ γX (x) = (R
ϕ (x))R

ϕ .
2. A (formal) ϕ-concept of the formal context (G, M, R)K is a pair (a, b) ∈

Y × X such that aR
ϕ = b and R

ϕ b = a . We call a the ϕ-extent and b the
ϕ-intent of the concept (a, b), and ϕ its (maximum) degree of existence.

3. If (a1, b1), (a2, b2) are ϕ-concepts of a context, they are ordered by the rela-

tion (a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 ⇐⇒ b1

op

≤ b2, called the hierarchical
order. The set of all concepts ordered in this way is called the ϕ-concept
lattice, B

ϕ(G, M, R)K, of the K-valued context (G, M, R)K .

In [14] a preliminary application of K-Concept Lattices to data mining was
described to characterise the behaviour of n-class classifiers. Two sources of com-
plexity associated to trying to understand such lattices were detected therein:
first, the potentially vast size of K-Concept Lattices, and second, the need to
sweep over parameter ϕ ∈ K to find all possible lattices which prove only slightly
different for similar ϕ’s, pairwise considered.

To overcome the first difficulty the structural lattice of a K-formal context
was introduced in [15] as a sort of skeleton for it. This had the supplementary



benefit of providing a (limited) second half for the fundamental theorem of K-
Concept Lattices.

Discouragingly, nothing conclusive was found in the same paper with regard
to the role of ϕ in the series of lattices generated by sweeping over the parameter
apart from a non-monotone relationship on the number of concepts.

Therefore, in this paper we introduce another lattice related to a K-Formal
Context which we obtain independently of any ϕ, the spectral lattice of a K-
Formal Context. Furthemore, for gaining a more concrete understanding of the
problem, we apply the results stated so far to the well-known maxplus Rmax,+

and minplus Rmin,+ semirings [1]. This not only provides concrete examples for
all abstract notions we have been manipulating so far but also enables to leverage
powerful techniques specially developed for such semirings.

For that purpose, we introduce these concrete algebras and a notation to
be able to handle expressions mixing them in Section 2.1. With this toolkit
we easily introduce in Section 2.2 the notion of the spectrum of any square,
Rmax,+-valued matrix. As the main contribution of this paper, in Section 3 we
find dually order isomorphic lattices related to the spectra of the projectors onto
the image subsemimodules of the Galois connection, Y and X , implied in the
main theorem. Finally, in Section 4 we show a more involved application to the
analysis of confusion matrices.

2 Rmax,+ Spectral Theory

2.1 Rmax,+ and Rmin,+ Algebra

Idempotent semirings. A semiring1 S = 〈S,⊕,⊗, ǫ, e〉 is an algebra whose
additive structure, 〈S,⊕, ǫ〉, is a commutative monoid and whose multiplicative
structure, 〈S\{ǫ},⊗, e〉, is a monoid whose multiplication distributes over addi-
tion from right and left and whose neutral element w.r.t. ⊕ is absorbing for ⊗,
i.e. ∀a ∈ S, ǫ ⊗ a = ǫ . On any semiring S left and right multiplications can
be defined: La : S → S, b 7→ La(b) = ab, and Ra : S → S, b 7→ Ra(b) = ba . A
commutative semiring is one whose multiplicative structure is commutative.

A semifield K is a semiring whose multiplicative structure 〈K\{ǫ},⊗〉 is a
group, that is, there is an operation, ·−1 : K\{ǫ} → S\{ǫ} such that ∀a ∈
K, a ⊗ a−1 = a−1 ⊗ a = e . For commutative semifields whose multiplicative
structure is a commutative group we have (a ⊗ b)−1 = a−1 ⊗ b−1 .

An idempotent semiring or dioid (for double monoid) D is a semiring whose
addition is idempotent, ∀a ∈ D, a ⊕ a = a , that is, whose additive struc-
ture 〈D,⊕, ǫ〉 is an idempotent semigroup . Compared to a ring, an idempotent
semiring crucially lacks additive inverses. All idempotent commutative monoids
〈D,⊕, ǫ〉 are endowed with a natural order, ∀a, b ∈ D, a � b ⇐⇒ a ⊕ b = b ,
which turns them into ∨-semilattices with least upper bound defined as a ∨ b =
a⊕ b . Moreover, the neutral element for the additive structure of semiring D is
the infimum for this natural order, ǫ = ⊥ . Hence all dioids are sup-semilattices

1 Henceforth S will be a generic semiring, K a semifield, and D an idempotent semiring.



〈D,�〉 with a bottom element. A dioid whose multiplicative structure is a group
is an idempotent semifield. The formula for the infimum of two elements in such
case was already given by Dedekind [4]: the meet law is: a∧b = a⊗(a⊕b)−1⊗b ,
hence idempotent semifields are already lattices.

A semiring S is complete, if for any index set I including the empty set, and
any {ai}i∈I ⊆ S the (possibly infinite) summations

⊕

i∈I ai are defined and the

distributivity conditions:
(
⊕

i∈I ai

)

⊗ c =
⊕

i∈I (ai ⊗ c) and c ⊗
(
⊕

i∈I ai

)

=
⊕

i∈I (c ⊗ ai), are satisfied. Note that for c = e the above demand that infinite
sums have a result. In complete semirings one can define the Kleene star of an
element, a ∈ S, a∗ =

∑∞

i=0 ai, and also a+ =
∑∞

i=1 ai, with a+ = a ⊗ a∗ and
a∗ = e ⊕ a+ .

A dioid D is complete, if it is complete as a naturally ordered set 〈D,�〉
and left (La) and right (Ra) multiplications are lower semicontinuous, that is
join-preserving.

Example 1 (The Maxplus and Minplus semifields).

1. The Maxplus semifield, Rmax,+ = 〈R ∪ {−∞}, max, +,−∞, 0 〉 with in-
verse ·−1 : =−· is an idempotent commutative semifield. It is incomplete be-
cause its bottom has no inverse: ∀a ∈ R ∪ {−∞}, a + (−∞) = −∞ 6= 0 .

2. The Minplus semifield, Rmin,+ = 〈R∪ {∞}, min, +,∞, 0 〉 is an idempo-
tent commutative semifield, with the same inverse as the previous example.
It is incomplete for a similar reason: ∀a ∈ R ∪ {∞}, a + ∞ = ∞ 6= 0 .

Top Completion of idempotent semifields ([8,10,11,12]) . A non-trivial
idempotent semifield D 6= {ǫ, e} (that is, non-isomorphic to B ) cannot contain
a top element, ⊤, hence it cannot be a complete dioid. In [14] a procedure is
described whereby one can obtain from any (incomplete) idempotent semiring
D a completion as follows.

For any lattice-ordered group G = 〈G,�,⊗〉: adjoin two elements ⊥ and ⊤ to
G to obtain G = G∪ {⊥,⊤} and extend the order to G as ⊥ � a � ⊤, ∀a ∈ Ḡ .

Then extend the product to two different operations, upper,
�

⊗ , and lower, ⊗
�

,

multiplications:

a⊗
�

b =











⊥ if a, b ∈ G ∪ {⊥,⊤}, with a = ⊥, or b = ⊥ .

⊤ if a, b ∈ G ∪ {⊤}, with a = ⊤, or b = ⊤ .

a ⊗ b if a, b ∈ G .

(2)

a
�

⊗ b =











⊤ if a, b ∈ G ∪ {⊥,⊤}, with a = ⊤, or b = ⊤ .

⊥ if a, b ∈ G ∪ {⊥}, with a = ⊥, or b = ⊥ .

a ⊗ b if a, b ∈ G .

(3)

to obtain the structure G = 〈G,�,
�

⊗,⊗
�

〉, known as the canonical enlargement

of G = 〈G,�,⊗〉 . In this structure, ⊗
�

and
�

⊗ are associative and commutative



over G , as the original ⊗ was over G , and the isotony of the product with
respect to the natural order extends to G . Furthermore, if e is the unit element

of 〈G,⊗〉, it is similarly the unit of 〈G,
�

⊗〉 and 〈G,⊗
�

〉 . The top completion

of a dioid D is another dioid D = 〈D,⊕
�

,⊗
�

, ǫ, e〉 where: D = D ∪ {⊤} and in

which ⊗
�

coincides with its definition above when D is considered as bearing

a lattice-ordered (multiplicative semi-)group, and we extend ⊕ with the extra
top-element:

a⊕
�

b =

{

⊤ if a = ⊤ or b = ⊤ .

a ⊕ b, if a, b ∈ D .
(4)

Given an (incomplete) idempotent semifield D, on its top enlargement as
above, D , we extend the notation for the inverse with the following conventions:
ǫ−1 = ⊤, ⊤−1 = ǫ . In that way we have two related completed idempotent
semifield structures:

– a complete lattice for the natural order 〈D,�〉, the one we have been focusing
on, D = 〈D,⊕

�

= ∨,⊗
�

,⊥, e〉, and

– a complete lattice for the dual of the natural order, 〈D,�d〉 = 〈D,�〉 ,

D
d

= 〈D,
�

⊕ = ∧,
�

⊗,⊤, e〉 where the meet is defined (on D) by Dedekind’s

formula and the definition of
�

⊗ follows equation (3).

Example 2. Using the procedure above, we have that:

– The top completion of Rmax,+ is Rmax,+ = 〈R ∪ {−∞∞}, max, +
�

,−∞, 0〉,

the completed Maxplus semifield.

– The top completion of Rmin,+ is Rmin,+ = 〈R∪ {−∞,∞}, min,
�

+,∞, 0〉 the
completed Minplus semifield .

Note that in this notation we have −∞+
�

∞ = −∞ and −∞
�

+∞ = ∞, which

solves several issues in dealing with the separately completed dioids, as promised.

In the completed structure, which we prefer to denote by K, we have the fol-
lowing De Morgan-like relations between the multiplications, their residuals and
inversion:

Proposition 1 ([12], lemma 2.2). In the top enlargement K of any commu-
tative semifield K we have:

(a⊕
�

b)−1 = a−1
�

⊕ b−1 (a
�

⊕ b)−1 = a−1 ⊕
�

b−1 (5)

(a⊗
�

b)−1 = a−1
�

⊗ b−1 (a
�

⊗ b)−1 = a−1 ⊗
�

b−1



If K is the completion of an idempotent semifield, its upper and lower residuals:

a⊗
�

b � c ⇔ b � a
�

\ c ⇔ a � c
�

/ b a
�

⊗ b �d c ⇔ b �d a
�

\ c ⇔ a �d c
�

/ b (6)

can be expressed in terms of the multiplications and inversion as:

a
�

\ c = a−1
�

⊗ c = (a⊗
�

c−1)−1 c
�

/ a = c
�

⊗ a−1 = (c−1 ⊗
�

a)−1 (7)

a
�

\ c = a−1 ⊗
�

c = (a
�

⊗ c−1)−1 c
�

/ a = c⊗
�

a−1 = (c−1
�

⊗ a)−1

Although associativity of ⊕
�

with respect to
�

⊕ would be desirable, the farther

we can get is:

Proposition 2 ([8], proposition 3.c). For all x, y, z ∈ K:

(x
�

⊕ y)⊕
�

z ≤ x
�

⊕(y ⊕
�

z) (8)

Example 3 (Residuation in Rmax,+, Rmin,+). The residuals of +
�

and
�

+ are:

a
�

\ c : =(−a)
�

+ c = −(a +
�

(−c)) c
�

/ a : = c
�

+(−a) = −((−c)+
�

a)

a
�

\ c : =(−a)+
�

c = −(a
�

+(−c)) c
�

/ a : = c +
�

(−a) = −((−c)
�

+ a)

Idempotent semimodules of matrices. A semimodule over a semiring is
defined in a similar way to a module over a ring [3,7,6]: a left S-semimodule, Y
over a semiring S is an additive commutative monoid 〈Y,⊕, ǫY〉 endowed with a
map (λ, y) 7→ λ⊙ y such that ∀λ, µ ∈ S, y, z ∈ Y . Following the convention of
dropping the symbols for the scalar action and semiring multiplication we have:

(λµ)y = λ(µy) ǫS ⊙ y = ǫY (9)

λ(y ⊕ z) = λy ⊕ λz eS ⊙ y = y

The definition of a right S-semimodule X follows the same pattern with the
help of a right action, (λ, x) 7→ x ⊙ λ and similar axioms to those of (9). A
(K,S)-semimodule is a set M endowed with left K-semimodule and a right S-
semimodule structures, and a (K,S)-bisemimodule a (K,S)-semimodule such
that the left and right multiplications commute. For a left S-semimodule, Y, the
left and right multiplications are defined as: LS

λ : Y → Y, y 7→ LS
λ(y) = λy, and

RY
y : S → Y, λ 7→ RY

y (λ) = λy . And similarly, for a right S-semimodule.

Example 4. Each semiring, K, is a left (right) semimodule over itself, with the
semiring product as left (right) action. Therefore, it is a (K, K)-bisemimodule
over itself, because both actions commute by associativity. Such is the case for
the Boolean (B,B)-bisemimodule, the Maxplus and the Minplus bisemimodules.
These are all complete and idempotent.



Example 5 (Finite matrix semirings and semimodules). Let S be a semi-
ring. Mn(S) = 〈Sn×n,⊕,⊗, E , E〉 is semiring of (square) matrices over S with
Sn×n denoting the set of square matrices over the semiring, matrix operations
(A⊕B)ij = Aij⊕Bij , 0 ≤ i, j ≤ n and (A⊗B)ij =

⊕n
k=1 Aik ⊗ Bkj , 0 ≤ i, j ≤ n,

null element the matrix E , Eij = ǫ, 0 ≤ i, j ≤ n and unit E, Eii = e, 0 ≤ i ≤ n,
Eij = ǫ, 0 ≤ i, j ≤ n, i 6= j . Such semirings are not commutative in general
even if S is, except for M1(S) = S . They are complete and idempotent if S is,
in which case, the Kleene star of a square matrix, A ∈ Mn(S), can be calculated
efficiently: A∗ = E ⊕ A ⊕ A2 . . . An .

For g, m ∈ N, the semimodule of finite matrices Mg×m(S) = 〈Sg×m,⊕, E〉 is
a (Mg(S),Mm(S))-bisemimodule, with matrix multiplication-like left and right
actions and componentwise addition. Special cases of it are:

– the bisemimodules of column vectors Mm×1(S) and row vectors M1×g(S) .
– the semiring of square matrices Mg(S) with g = m , also a bisemimodule.

If S ≡ D is idempotent (resp. complete), then all are idempotent (resp. complete)
with the component-wise partial order as their natural order. If D is a completed
semifield, then matrix multiplications read for appropriate A, B and summations:

(A⊗
�

B)ij =

n
⊕

k=1

Aik ⊗
�

Bkj (A
�

⊗B)ij =

n
⊕

k=1

Aik

�

⊗Bkj

For the completed semifields Rmax,+ and Rmin,+, we have:

(A⊗
�

B)ij : =
n

max
k=1

(Aik +
�

Bkj) (C
�

⊗D)ij : =
n

min
k=1

(Cik

�

+Dkj)

Residuation in matrix semimodules. A left D-semimodule Y over an idem-
potent semiring D inherits the idempotent law: ∀v ∈ Y, v ⊕ v = v, which
induces a natural order on the semimodule: ∀v, w ∈ Y, v ≤ w ⇐⇒ v ⊕w = w ,
whereby it becomes a ∨-semilattice, with ǫY its minimum. In the following we
systematically equate left (respectively right) idempotent D-semimodules and
row (respectively column) semimodules over an idempotent semiring D . When
D is a complete idempotent semiring, a left D-semimodule Y is complete (in its
natural order) if it is complete as a naturally ordered set and its left and right
multiplications are lower semicontinuous. Trivially, it is also a complete lattice,
with join and meet operations given by: v ≤ w ⇐⇒ v∨w = w ⇐⇒ v∧w = v .
This extends naturally to right- and bisemimodules.

As in the semiring case, because of the natural order structure, the actions
of idempotent semimodules admit residuation: given a complete, idempotent
left D-semimodule, Y, we define for all y, z ∈ Y , λ ∈ D the residuals are:
(

LD
λ

)#
: Y → Y,

(

LD
λ

)#
(z) = λ\z and

(

RY
y

)#
: Y → D,

(

RY
y

)#
(z) = z/y and

likewise for a right semimodule.
If D is idempotent (resp. complete), then finite matrix semimodules are idem-

potent (resp. complete) with the componentwise partial order as their natural



order. Therefore we can define residuated operations as ([2], p. 196): let D be a
complete dioid in which ∧ exists, and A ∈ Dm×n, B ∈ Dm×p, C ∈ Dn×p, then
their left, A\B, and right B/C residuals are:

(A \B)ij =

m
∧

k=1

(Aki \Bkj) (B / C)ij =

p
∧

k=1

(Bik /Cjk) (10)

For K a completed idempotent semifield as in subsection 2.1, the left and right

residuals of ⊗
�

and
�

⊗ are (with the appropriate summations):

(A
�

\B)ij =
m

⊕

k=1

(

A−1
ki

�

⊗Bkj

)

(A
�

\B)ij =
m

⊕

k=1

(

A−1
ki ⊗

�

Bkj

)

(11)

(B
�

/ C)ij =

p
⊕

k=1

(

Bik

�

⊗C−1
jk

)

(B
�

/ C)ij =

p
⊕

k=1

(

Bik ⊗
�

C−1
jk

)

To pave the way for some results in Section 3 we have:

Proposition 3 (Adapted from [5], §5.3.3 and 5.4). For u, v, w in the appro-
priate S-semimodules, (u

�

\ v)⊗
�

w ≤ u
�

\(v ⊗
�

w) and equality holds when w ∈ S

is invertible or w ∈ Mg×m(S) has at least one finite component in every row
and column.

Definition 6 (Conjugations). For Y ∼= K1×n,X ∼= Kn×1 left and right semi-
modules, respectively, over an idempotent reflexive semifield (K, ϕ) and bracket
〈· | ·〉 : Y ×X → K, 〈y | x〉 = y⊗

�

x [13] we define a conjugation to be the Galois

connection obtained from the maps in eq. (1): y⊛ = y
�

\ eD , ⊛x = eD
�

/x, and

we write simply: (·⊛,⊛ ·) : Y ⇀↼X . For any other invertible element ϕ ∈ K we

have the ϕ-conjugations: y⊛
ϕ = y

�

\ϕ = y
�

\(eD
�

⊗ϕ) = y⊛
�

⊗ϕ and ⊛
ϕ x = ϕ

�

⊗⊛x .

For instance, the conjugations in Rmax,+ are: y⊛ : =−yt,⊛ x : =−xt , where ·t :
Y → Y stands for transposition. We also define without further ado: y−1 =
(yt)⊛ = (y⊛)

t
and similarly for right semimodules.

For adequate invertible unitary matrices, EMn(D), (Mn(D), EMn(D)) is re-
flexive hence the conjugations of Def. (6) exist for R ∈ Dg×m:

R⊛ = R
�

\EMg(D)
⊛R = EMm(D)

�

/ R (12)

and we can write analogues of Prop. 1 compactly:

Proposition 4. In the top completion, D, of an idempotent semifield the fol-
lowing De Morgan-like laws hold:

(A⊕
�

B)⊛ = A⊛
�

⊕B⊛ (A
�

⊕B)⊛ = A⊛ ⊕
�

B⊛ (13)

(A⊗
�

B)⊛ = B⊛
�

⊗A⊛ (A
�

⊗B)⊛ = B⊛ ⊗
�

A⊛



the following residuation laws hold:

A
�

\C = A⊛
�

⊗C = (C⊛ ⊗
�

A)⊛ A
�

\C = A⊛ ⊗
�

C = (C⊛
�

⊗A)⊛ (14)

C
�

/A = C
�

⊗A⊛ = (A⊗
�

C⊛)⊛ C
�

/A = C ⊗
�

A⊛ = (A
�

⊗C⊛)⊛

and similarly for left conjugates.

2.2 Spectra of Reducible and Irreducible Matrices

Graphs related to a matrix. Consider a digraph Γ = (V, E), with V a set of
vertices and E ⊆ V 2 a set of edges. If there is a walk from a vertex i to a vertex j
in Γ we say that i has access to j, i j. This relation is transitive and reflexive.
The access equivalent classes of Γ are the equivalence classes of the transitive,
symmetric and reflexive closure of the access relation, i! j ⇔ i j ∧ j  i .
Γ is strongly connected if it only has one class. When C, C′ ∈ V/ !, we say
that a class C has access to a class C′, if some vertex of C has access to some
vertex of C′, and we say that it is final if it has only access to itself.

Now consider a matrix with values in a semiring, A ∈ Dn×n. The digraph
Γ (A) associated to this matrix consists of the set of vertices V = {1, . . . n} and a
set of edges, E = {(i, j) | Aij 6= ǫD} . The classes of a matrix A are the (access
equivalent) classes of Γ (A), hence we say that the matrix A is irreducible if Γ (A)
is strongly connected, and reducible otherwise.

A walk in Γ (A) is a sequence of edges pairwise sharing an element w =
(v1, v2), (v2, v3), . . . , (vk−1, vk) . The weight of a walk is |w|A = Av1v2

⊗Av2v3
⊗

. . . ⊗ Avk−1vk
, and its length is |w| = k − 1 . Call a cycle a walk with v1 = vk

and its cycle mean the ratio of weight-to-length. Therefore the maximal cycle
mean, ρmax(A), is the maximum of the cycle means over all cycles of Γ (A):

ρmax(A) = max
c cycle of Γ (A)

|c|A
|c|

(15)

A cycle that attains such a maximum is called a critical cycle. Call the union of
the critical cycles the critical digraph, Γc(A), and its vertices, the critical vertices,
Vc . Also, call the (access equivalent) classes of the critical digraph Γc(A) the
critical classes of A.

Eigenvalues and eigenvectors in idempotent semimodules. Let D be a
completed dioid. An eigenvector of A ∈ Dn×n is a vector x ∈ Dn\{ǫ} such
that A⊗

�

x = λ⊗
�

x for some λ ∈ D which is called the (geometric) eigenvalue

corresponding to x. If λ is an eigenvalue of A then the eigenspace of A for the
eigenvalue λ is the set of vectors, eig(A, λ) = {x ∈ D

n
| A⊗

�

x = λ⊗
�

x}.

To put a concrete example, the Rmax,+ spectral theory shows notorious dif-
ferences with normal spectral theory. For D : = Rmax,+ the eigenvalue equation



becomes:

max
1≤j≤n

{Aij +
�

xj} = λ+
�

xi, ∀1 ≤ i ≤ n (16)

Now, if we define the normalised matrix as Ã = ρmax(A)−1A when D is a
semifield, the following facts all refer to irreducible A ∈ R

n×n
max,+ [1]:

Property 7 (Spectra of irreducible Rmax,+-matrices).

1. For any matrix A, ρmax(A) is an eigenvalue of A, and any eigenvalue of A
is less than or equal to ρmax(A) .

2. An eigenvalue of A associated with an eigenvector in R
n

max,+ must be equal
to ρmax(A).

3. If A is irreducible, then ρmax(A) > ǫ and it is the only eigenvalue of A .
4. For all critical vertices i ∈ Vc(A), the column Ã∗

·i is an eigenvector of A for
the eigenvalue ρmax(A).

5. If i and j belong to the same critical class, then Ã∗
·i = Ã∗

·j ⊗
�

Ã∗
ji .

6. (Eigenspace for the eigenvalue ρmax(A)). Let {Ct}
s
t=1 be the set of critical

classes of A. Arbitrarily select one vertex it from each class. The columns
Ã∗

·is
, t = 1 . . . s span the eigenspace of A for the maximal cycle mean ρmax(A),

eig(A, ρmax(A)) = span
(

{Ã∗
·is
}s

t=1

)

.

The most notable difference here is the existence of a single eigenvalue ρmax per
irreducible matrix. In fact in such situations we drop the specification of the
eigenvalue from the eigenspace notation eig(A) = eig(A, ρmax) thereby implying
that A is irreducible.

Now, denote by A[C, C] the submatrix of A selected by the vertices in class
C and call a class C of A basic if ρmax(A[C, C]) = ρmax(A) . The following facts
relate to reducible matrices2:

Property 8 (Spectra of reducible Rmax,+-matrices).

1. A scalar λ 6= ǫ is an eigenvalue of A if and only if there is at least one class
of A such that ρmax(A[C, C]) = λ and ρmax(A[C, C]) ≥ ρmax(A[C′, C′]) for
all classes C′ that have access to D . The spectrum of A, spec(A), is the
set of such eigenvalues, which is essentially the union of the spectra of some
of its irreducible blocks.

2. A ∈ R
n×n has an eigenvector in R

n iff all its final classes are basic.
3. (Eigenspace for eigenvalue λ.) Let {Ck}m

k=1 denote all the classes of A such
that if ρmax(A[Ck, Ck]) = λk then ρmax(A[C′, C′]) ≤ λk for all classes C′

that have access to Ck . For every 1 ≤ k ≤ m, let {Ck
t }

sk

t=1 denote the
critical classes of the matrix A[Ck, Ck] . For each 1 ≤ k ≤ m, 1 ≤ t ≤ sk,
choose an arbitrary jk,t ∈ Ck

t . Then the columns of the λ-normalized columns
eig(A, λ) = span({(λ \A)∗·jk,t

| 1 ≤ k ≤ m, 1 ≤ t ≤ sk, jk,t ∈ Ck
t }) span the

eigenspace of A for λ and any spanning family of this eigenspace contains a
scalar multiple of every one of these.

2 We mention in passing that there are algorithms for transforming a reducible matrix
into an upper or lower block-triangular form.



Again the extra requisites on the spectral eigenvalues related to the order of the
reachable classes is a deviation from “standard” spectral theory.

Calculating such spectra is specially easy in a certain kind of matrices:

Definition 9. Let A ∈ Mn(Rmax,+). After [9], we call A definite if its maximal
cycle mean is ρmax(A) = e and its diagonal entries equal Aii = e .

We have the following:

Proposition 5 ([9], prop. 7). If A is a definite matrix, then:

1. It has a unique eigenvalue λ = e = ρmax(A) .
2. eig(A) = span(A∗) .

The important thing about definite matrices is that the very complex eigenvalue-
eigenvector calculation is reduced to the calculation of a star operation. We
prove in passing the next result to be used later implying that the left and right
residuals of any rectangular matrix are halfway to being a definite matrix:

Proposition 6. Let K be the top completion of an idempotent semifield. For
R ∈ Mg×m(K), the diagonal entries of R

�

\R ∈ Mm(K) and R
�

/R ∈ Mg(K)

equal e iff at least some row, or column of R is finite.

Proof. Call P = R
�

\R ∈ Mm(D) . Recall that R
�

\R = R⊛
�

⊗R, so for each

1 ≤ i ≤ m, Pii =
·

⊕

1≤i≤m R⊛

ij

�

⊗Rji . Now, R⊛

ij = R−1
ji . Hence, for Rji ∈ D

this means R⊛

ij

�

⊗Rji = R−1
ji

�

⊗Rji = e , and for Rji ∈ {⊥,⊤} , R−1
ji

�

⊗Rji = ⊤ .
If at least one of the elements is finite, then the total sum, being an inf, becomes
e . The proof for R

�

/ R is the same. ⊓⊔

3 The Spectral Lattice of an Rmax,+-Context

Consider the right semimodules Y ∼= K
g×1

, X ∼= K
m×1

and the bracket
〈y | x〉 = yt ⊗

�

R⊗
�

x where we have switched to consider columns as vectors

as customary in data mining and signal processing applications3. We can give
algebraic expressions for the ϕ-polars in the completed semifield:

Proposition 7. The ϕ-polars have the algebraic form: yR
ϕ = R⊛

�

⊗ y−1
�

⊗ϕ ,

R
ϕx = ϕ

�

⊗x⊛
�

⊗R⊛ .

Proof. This is straightforward using the maxplus/minplus algebra developed in
section 2.1:

yR
ϕ = (yt ⊗

�

R)
�

\ϕ R
ϕx = ϕ

�

/(R⊗
�

x) (17)

= (yt ⊗
�

R)⊛
�

⊗ϕ = ϕ
�

⊗(R⊗
�

x)⊛

= R⊛
�

⊗ y−1
�

⊗ϕ = ϕ
�

⊗x⊛
�

⊗R⊛

3 This will only entail minimal tinkering with the notation.



⊓⊔

This suggests that we call x̃ = x
�

/ϕ = x⊗
�

ϕ⊛ and ỹt = ϕ
�

\ yt = ϕ⊛ ⊗
�

yt,

equivalently ỹ = y
�

/ϕt = yt ⊗
�

ϕ−1 , so that the normalised semimodules (wrt.

ϕ) are:

Ỹ
t
= {ỹt | yt ∈ Yt} Ỹ = {ỹ | y ∈ Y} X̃ = {x̃ | xt ∈ X} (18)

Then we have the following:

Proposition 8 (Decoupled eigenequations).

1. With PYt = R
�

⊗R⊛ ∈ Mg(Rmax,+), we have ỹt ⊗
�

PYt = ỹt .

2. With PX = R⊛
�

⊗R ∈ Mm(Rmax,+) we have PX ⊗
�

x̃ = x̃ .

3. With PY = (PYt)
t
= (R

�

⊗R⊛)
t

= R−1
�

⊗Rt we have PY ⊗
�

ỹ = ỹ .

Proof. The equation for the concepts can be written as:

R
ϕx = yt yR

ϕ = x (19)

Therefore, equating Eqs. (17) and (19):

ϕ
�

⊗x⊛
�

⊗R⊛ = yt R⊛
�

⊗ y−1
�

⊗ϕ = x

hence from x⊛ = ϕ⊛ ⊗
�

yt ⊗
�

R and y−1 = R⊗
�

x⊗
�

ϕ⊛ we get:

ϕ
�

⊗(ϕ⊛ ⊗
�

yt ⊗
�

R)
�

⊗R⊛ = yt R⊛
�

⊗(R⊗
�

x⊗
�

ϕ⊛)
�

⊗ϕ = x

whence, for invertible ϕ:

(ϕ⊛ ⊗
�

yt ⊗
�

R)
�

⊗R⊛ = ϕ
�

\ yt R⊛
�

⊗(R⊗
�

x⊗
�

ϕ⊛) = x
�

/ ϕ

(ỹt ⊗
�

R)
�

⊗R⊛ = ỹt R⊛
�

⊗(R⊗
�

x̃) = x̃

Finally, by Prop. 3 we have:

ỹt ⊗
�

(R
�

⊗R⊛) = ỹt (R⊛
�

⊗R)⊗
�

x̃ = x̃ (20)

For the third proposition we write PY = (PYt)
t

= (R
�

⊗R⊛)
t

= R−1
�

⊗Rt and
then transpose the whole equation for ỹt in Eq. (20). ⊓⊔



Note that although it is apparently a major unbalance, the eigenvalue equa-
tion for PY allows us to write the very balanced:

[

R−1
�

⊗Rt 0g×m

0m×g R⊛
�

⊗R

]

⊗
�

[

ỹ
x̃

]

=

[

ỹ
x̃

]

(21)

For ϕ⊛ = ϕ−1 and z̃ = [ỹt x̃t]
t
= z ⊗

�

ϕ⊛ we can write C ⊗
�

z̃ = z̃, and call it the

extended eigenvalue equation, which shows that the normalised formal concepts
are also the fixpoint of some sort of matrix operator.

Another practical advantage of using PY is to be able to refer all results to
column semimodules. This is what we will do hence.

Consider now K = Rmax,+. With regard to the eigenspaces of these projec-
tions we have the following proposition:

Proposition 9. PY and PX are definite matrices.

Proof. The proof that they are matrices with their diagonals set to eD is in
Prop. 6. Now consider any of the equations in Proposition 8. These are clearly
equations for the eigenvalue λ = eD. From Property 7.2 this eigenvalue has to
be ρmax. ⊓⊔

Proposition 10. 1. PY and PX are closure operators in matrix form over their
respective normalised semimodules.

2. PY = P ∗
Y and PX = P ∗

X .

Proof. From Props. 2 and 2, eig(Y
t
, ρmax) = span(

(

Y
t
)∗

) = span(X ). ⊓⊔

Then we have the following easy corollaries:

Corollary 11 (The spectral Galois connection).

1. PYt and PX are the closure operators in matrix form of the Galois connection

((·)R
ρmax

, R
ρmax

(·)) : Ỹ ⇀↼ X̃

2. The subsemimodule Ỹ is the eigenspace eig(PY) = span(PY) and the sub-

semimodule X̃ is the eigenspace eig(PX ) = span(PX ).

Proof. For the first subproposition, consider the polars of the generic Galois

connection and rewrite: yR
ϕ = R⊛

�

⊗(ϕ⊛ ⊗
�

y)⊛ = (ỹt ⊗
�

R)
�

\ e = ỹR
e = ỹR

ρmax
, and

similarly n R
ϕx = R

ρmax
x̃ . By ([3], Th. 42) this is a Galois connection, whose

closure operators by the proof of Proposition 8 are exactly the matrices pointed
to above. For the second proposition, combine Propositions 5.2 and 10.2 to get

the closure lattices, Ỹ and X̃ . ⊓⊔

This suggests that ϕ = ρmax = e for both matrices is a special choice, so we
give it its right status:



Definition 10. For a set G of objects and a set M of attributes, of widths
g, m ∈ R respectively, with R ∈ Mg×m(Rmax,+) building the Rmax,+-formal
context K = (G, M, R)

Rmax,+
the spectral lattice, B

ρmax(G, M, R)
Rmax,+

is the

lattice of ρmax-formal concepts of the connection ((·)R
ρmax

, R
ρmax

(·)) : Ỹ ⇀↼ X̃

Indeed, this is the Galois connection depicted to the right of Figure 1. The next
proposition paves the way for a more familiar representation, the structural
lattice:

Proposition 12. 1. The join irreducibles J
(

B
ρmax(G, M, R)

Rmax,+

)

are the

pairs (ai, bi) such that i ranges over the columns of PY and bi = (ai)
R
ρmax

.

2. The meet irreducibles M
(

B
ρmax(G, M, R)

Rmax,+

)

are the pairs (aj , bj) such

that j ranges over the columns of PX and aj = R
ρmax

(bj) .

Proof. The Galois connection between the closure lattices Ỹ and X̃ ensures that
the columns of each of the projectors are the basis of the eigenspaces, that

is the join-irreducibles of each lattice. The join-irreducibles of Ỹ generate the
join-irreducibles of B

ρmax(G, M, R)
Rmax,+

by applying the polars of the Galois
connection. However, because of the inversion for the second domain, the join-

irreducibles of X̃ generate the meet-irreducibles of B
ρmax(G, M, R)

Rmax,+
. ⊓⊔

Once we have both meet- and join-irreducibles it is easy to obtain the structural
(concept) lattice of the spectral lattice by the procedure described in [13].

4 Application: the Analysis of Confusion Matrices

To illustrate the calculations behind the spectral lattice we retake now the prob-
lem of analysing confusion matrices. Figure 2 illustrates one such matrices with
the usual hypothesis in pattern recognition, g = m .

For simplification’s sake, consider every row and column in C to have at
least one non-null entry and call DG and DM those diagonal matrices such
that their diagonal elements are the sums of rows and columns respectively,
(DG)ii =

∑m
j=1 Cij , (DM )jj =

∑g
i=1 Cij , (DG)ij = (DM )ij = 0, i 6= j . There-

fore, DG, DM are invertible so the matrix R = log[(DG)−1C(DM )−1] is defined
and has entries in R ∪ {−∞} . In this case, R happens to be irreducible.

M =

2

4

5 3 0
2 3 1
0 2 11

3

5 R =

2

4

3.821457e 2.852357 ε

−0.7378621 2.272438 −5.856696
ε −1.249387 2.796319

3

5 · 10−01

Fig. 2. The confusion matrix, M , its version as a Rmax,+ matrix, R.

Now consider PY and PX as per the definitions in Eq. (8). These are both
definite and irreducible hence their eigenvectors are all of their columns. The



structural spectral Formal Context and its Concept Lattice are shown in Fig. 3.

dog? cat? rabbit?

Dog × ×

Cat ×

Rabbit ×

rabbit?

Rabbit dog?

Dog

cat?

Cat

Fig. 3. Structural spectral context and Concept lattice for matrix R in Figure 2.

Interestingly, this trivial lattice already justifies the asymmetric treatment of
real and recognised classifier tags. It questions Pattern Recognition approaches
to confusion matrix analysis that impose a symmetrical structure on these.

As a further example we introduce the (abridged) analysis of the performance
of an automatic speech recognizer for Spanish in figure (4). Its confusion matrix
(and Rmax,+-Formal Context), illustrates the baseline performance for a certain
type of recognition technology: most of the vowels can be adequately decoded,
the less so nasals. However, approximants (soft /b/,/d/,/g/ in vocalic context)
cannot be told apart in the spectral lattice at all, a weakness of this recognizer.

Fig. 4. Confusion matrix for an automatic speech recognizer for Spanish. Objects: real
phonemes; attributes: recognised phonemes (SAMPA). /J/ stands for the phoneme of
letter “ñ”.



5 Conclusion

In this paper, we have tried to justify the importance of a particular value of the
exploration parameter ϕ to obtain structural lattices [15] for the concrete case
of Rmax,+-Formal Concept Analysis, viz, the case where we consider it to be an
eigenvalue of the projectors onto the closure lattices in the Galois connection.
The latter can be readily obtained as the left and right residuals of the Rmax,+-
valued incidence in the completed semiring, which makes the spectral estimation
a very light process computationally speaking.
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