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Abstract. The use of dynami c one-point bending tests as an alternative to three-point bending tes ts a ll ows 
fracture propert ies such as dynamic initi ation frac ture toughness to be obtained at high strain rate. To 
perfo rm thi s kind of test, experimental dev ices based on modificati ons of the Hopkinson bar can be 
used. Several authors have been proposed si mpli fied procedures to obtain the dynamic stress intensity 
fac tor, K,( t ), considering the specimen as a Timoshenko cracked beam subjected to a concentrated load 
at the central cross-secti on. T he di sadvantage of thi s procedure is that normall y it is difficult to measure 
the force applied to the specimen in the above-menti oned tests. Here a simplifi ed method is proposed for 
the calcul ation of K 1 (I), based on an analys is of the behaviour of a Timoshenko cracked beam, know ing the 
displacement of the point of loading, whi ch can be measured more accurate ly than the applied load. The 
resu lts were compared with those of a fin ite element numerical simulation and good agreement was found. 

1. INTRODUCTION 

One-point dynamic bending tests may be used instead of three-po int tests to determine the initi a l fracture 
toughness, Ktd · Thi s type of test was used by Giovano la [I , 2] . A mobile mass is made to impact a 
notched spec imen as in a three-po int bending test, but with the important difference that the spec imen 
is not supported, so the stress and deformati ons produced in the specimen are due onl y to the inerti al 
fo rces. If, as a consequence of the loads generated, criti cal conditions are reached at the end of the notch , 
it will propagate. The impacting mass may be the striker of a Charpy pendulum or a mass projected by 
a pneumatic device . When the fracture properties of a material must be obtained at hi gh strain rate, 
the one-point bending test may be performed using ex perimental devices based on modifications of the 
Hopkinson bar [3-5]. These syste ms consist of a bar of a given length and di ameter (striker bar) which 
is put in contact with the central section of a cracked specimen identical to that which would be used 
in a three-po int bending test. The bar is impacted by a shorter bar of the same di ameter (projectile), 
generating a compress ive pulse that trave ls along the bar. Whe n it reaches the spec imen, one part is 
transmitted to the spec imen and another part is reflected back along the striker as a tensile load . Both 
the deformati on caused by the compressive projectil e, ei(t), and that generated by the refl ected load, 
~r(t) , are measured by strain gages attached to the striker bar. From these measurements it is poss ible to 
calculate the load applied to the specimen , F(t ), and also the di spl acement of the end of the bar initially 
in contact with the specimen, u p(l), by means o f: 

I 

F(t) = AbEb(ei(t) + e,. (t )) and up(t) = eo J (ei(t)- e,. (t))d t ( I ,2) 

0 

in which Ab stands for the area of the circul ar section of the bar, Eb for its Young modulus and c0 is the 
propagation speed of longitudinal waves along the materi al of the bar. 
To obtain K1(t) in one- point bending tests, the Fini te E lement method may be used [3- 7], but other 
simplified methods have been used . These methods are based on the modal analys is of a cracked beam 
subjected to a known load in its central secti o n. With thi s procedure, the di splacement of any section 
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of the beam can be calculated. The stress intensity factor, K 1(f) , is assumed to be proportional to the 
difference between the displ acement of the point of loading and the di splacement of the point that would 
have bee n supported in a three -point bending test. The constants of proportionality adopted are those 
of three-point bending in static conditions. This type of analysis was made by Ki shimoto et al. [8], 
considering the specimen as an Euler-Bernoulli beam. However, the geometry of the test beams, of span 
to width rati o equal to 4, indicates that the specimen must be considered as a cracked Timoshenko beam 
[9] . 
The drawback of this method, as confirmed by several authors [4, 7] is that the force is not easily 
measured accurately in a Hopkinson bar, at least when the strains are measured in onl y one section of 
the striker bar. 
We propose here a simplified method of calculating K 1(t), based on the analysis of the behaviour of a 
crac ked Timoshenko beam, knowing the loading point di splacement, a vari able that can be measured 
more easily than can the applied load . 

2. PROBLEM FORMULATION AND ITS SOLUTION 

We consider a Timoshenko beam of length L, width W and thickness 8 , with a crack of length a at its 
central secti on. The beam is without support and is subjected to a dynamic load F(t) concentrated in its 
central secti on (see Fig. l) . 

The beam is considered a one-dimensional solid , and using the modal superpos ition method, the 
temporal evolution of the vertical di sp lacements of the sectio ns, y ((, t) and of their bending slopes, 
P(( , t), may be ex pressed as : 

00 00 

y(( , t) = L Y;(( )q;(f) + Yr( ( )qr(t) and lf' (( , t) = L (p; (( )q;(f) (3,4) 
i = l i= l 

in which ( is the dimension less variab le with respect to the length L that stands for the position of any 
section of the beam . Functions Y;(( ) and r.p;( ( ) are the modes of vibrat ion assoc iated with di splacements, 
y ( (, t ) and bending slopes, lf'( (, t ), and Y r( ( ) is the mode associated with the movement of the specimen 
as a ri gid solid, which can be taken in general as equal to unity. The functions q;(t) and qr(t) are obtained 
as solutions to the fo llowing second-order differential equations: 

.. + 2 F(t)Y; (D F(t) 
q; w; q; = and qr = --

m; m p 
(5,6) 

t F(t) 

B 

L 

Figure 1. Geometry of the test speci men. 
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wi are the vibration frequencies of the spec imen, m P its total mass, and m i the masses associ ated with 
each mode of vibrati on, g iven by: 

I 
2 

m i = 2p A L I (Y?W + ~(p~W)d( 
0 

(7) 

in which p, A and I are respecti vely the de nsity, the area of the cross-section of the beam, and the 
moment of inertia of thi s secti on. The expressions for the frequenci es, w i , and for the modes of vibration , 
YiC( ) and (/)i (() of a Timoshenko beam with a crack in the central secti on and without support (free-free 
cracked beam) are g iven in [9]. Taking the initi al conditions qi(O) = q r (O) = 0 and qJ O) = qr(O) = 0 , 
the so lutions of equati o n (5) and of (6), are obtained as: 

(
I ) I y. -

qi(t ) = __!__]_ I F(r) sin wi(l - r)d r 
miwi 

0 

Then, from the variables qi(l), the stress intensity fac tor, K 1(t), can be written as: 

3 L ./ (a/w) " ( (I) ) K ,(t ) = 2 BW 3f2 c L yi 2 - yi (0) qi(l ) 
1= 1 

(8) 

(9) 

( I 0) 

in which n is the number o f vibrati on modes co nsidered and the function f(a / W ) for a spec imen with 
Lj W = 4 is g iven by [ 10] : 

/(0/w)= ~ ( 1.90 + 0.41 a/W + 0.51(a /W)2 -0.17(a jW)3) ( 11) 
( I - a/W) -( I + ajW) 

C is the compliance o f the three-po int bend specime n whose express ion is g iven in [ LO]. In the test 
performed with experimental devi ces based on modifications of the Hopkinson bar, the loading point 
displacement can be measured more easil y than can the applied load. Then, if the di spl acement o f the 
loading point, u p(t) , is known , considering only the first mode of vibration we have: 

( 12) 

The prev ious equ ati on can be combined with eq . (5), (with i = I) and with eq . (6) to obtain : 

( 13) 

Eq. ( 13) can be rewritten as: 

( 14) 

where 

I + m p y~ (~) 
ln J 2 

_m P y 1 (~) 
lnJ 2 and k= ------~~~ 

I + m p y~ (~) 
lnJ 2 

( 15, 16) WJ = ----,:====== 
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Then, the so lution of eq. (14) is given by : 

I 

q 1(t ) = !:._ J iip(r)sinwd(t- r)dr 
Wd 

0 

(17) 

The above expression relates the variableq 1 (t)to the second temporal derivative of the di splacement of 
the loading point, ii p(t) .Taking into account the initial conditions, and with two integrations by parts, 
finally we obtain: 

I 

q 1(t)=ku p(t)-kwd J up(r)sinwd(l-r)dr 
0 

(18) 

The variable q 1 (I) is ex pressed now rel ated to the displacement of the load ing point, u p(t), and K1(t) is 
determined from eq. ( I 0) taking n = I . 

3. NUMERICAL SIMULATION 

To check the validity of the simplified methods of determining K1 (t) , the results were compared with 
those obtained by the Finite Element method implemented in the commerc ial code ABAQUS [ 11] . 

A two-dimensional simulation was made of an aluminium spec imen of L = 80 mm, W = 20 mm, 
B = I 0 mm and a = 10 mm. The Young modulus was E = 72 GPa, the Poisson coefficient v = 0.33, 
and the material density p = 2800 kg/ m 3. Given the symmetry of the prob le m, half the specimen was 
modelled , with 1180 four-nodes elements in plane deformation and with red uced integrati on, refining 
the mesh in the zone of the crack tip . Three different loading histori es were considered (see Fig. 2.) 

Load is rated with the maximum load (Fm ax = IOkN) and the time with the oscillation period of 
the spec imen corresponding to the fundamental frequency (T = 120 ps). The shapes of the waves are 
similar, with the same maximum load and the difference only in its duration . To integrate the equations 
of movement, the Hilber-Hughes-Tay lor method was used [ 11]. A te mporal increment of I ps was used 
in all the ana lyses. K 1(t) was obtained from the dynamic J integral, f, as proposed by Nishioka and 
Atluri [ 12] (see also [ 13]). For a stationary crack which is deformed in mode I , as in this case, K1(1) 
may be written as [12, 13]: 

~ 
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Figure 2. Loading hi stories considered . 

K 1(t) = E J! (t ) 
I - v2 

t!f 

(19) 
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4. RESULTS AND DISCUSSION 

In Figs. 3 to 5, a comparison of the values of K 1(t) obtained by numerical simulation and those 
of the simplified methods, for the three loading conditions is shown. The stress intensity factor is 
given in dimensionless form, with respect to a reference value (Ko = 5.0MPa m 112) and the time in 
dimensionless form too, with respect to the value T = 120 ftS as mentioned before. 

The stress intensity factor obtained from the applied load shown in these figures was calculated using 
only the first mode of vibration. The consideration of higher modes does not affect the final results. 

The tendencies observed in the results can be summarized as follows: 

a) In Load case A in which the duration of the applied load is more or less twice that of the oscillation 
period of the cracked specimen, the results obtained by the simplified methods are very close to 
those of the Finite Element s imulation . 

b) When the duration of the applied loads is similar to the oscillation period of the cracked specimen 
(Load case B), there is a wider difference between the simplified results in the two methods analysed 
and between these and the numerical results. In the first instants of the loading process, the solution 
obtained from the applied load is almost coincident with the numerical one, but when the time 
(dimensionless) is above t / T = 0.5, the solution obtained from the displacement of the loading 
point is closer to the numerical result. 

-Numerical 
-- from applied load 

0.15 · · · from displacement 

'lt-0 
...... 0.1 

~ 

0.5 2.5 
t!f 

Figure 3. Temporal evolution of the stress intensity 
factor. Load case A. 
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Figure 4. Temporal evolution of the stress intensity 
factor. Load case B. 
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Figure 5. Temporal evolution of the stress intensity factor. Load case C. 



832 JOURNAL DE PHYSIQUE TV 

c) With the shortening of the duration of the pulse, the solutions based on the approximated methods 
differ more widely from the bidimensional numerical solution (load Case C). This may be because 
the analysis should include 2-D effects in frequencies and vibration modes that have not been 
considered in the present analysis. 

5. CONCLUSIONS 

For the measurement of the fracture properties of a material, at high-strain rate, one-point bending tests 
based on modifications of the Hopkinson bar may be used. To evaluate K 1 (t ), numerical techniques such 
as Finite Elements can be used, as well as simplified procedures based on the analysis of the behaviour 
of a cracked Timoshenko beam subjected to a known load in its central section. The drawback in this 
case is that it is not always easy to measure accurately the load applied to the specimen. ln this work 
we propose a simplified method for calculating K 1(t)from the analysis of the behaviour of a cracked 
Timoshenko beam, knowing the loading point displacement. It is easier to measure accurately this latter 
variable than to measure the applied load . 

The results of the simplified method agree well with those obtained numerically from two-
dimensional finite element simulations, when the loading lasts twice as long as the oscillation of the 
cracked beam. Differences arise with shorter load pulses, probably due to 2-D effects that have not been 
considered in the simplified procedures. 
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