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RESUMEN EXTENDIDO

En este resumen se pretende dar una visión de conjunto del trabajo realizado

durante la elaboración de la presente Tesis Doctoral. Tras introducir el objetivo

general de la misma, describimos la organización y las aportaciones originales del

trabajo de investigación para por último presentar las conclusiones que se consideran

más relevantes.

Motivación y metodoloǵıa

El principal objetivo de esta Tesis es la definición y estudio de nuevas funciones

de pérdida que sean de utilidad a la hora de encontrar soluciones para el problema

conocido dentro del aprendizaje máquina como clasificación sensible a costes.

La mayoŕıa de los problemas de clasificación que se plantean en situaciones coti-

dianas son sensibles a costes. Desde un punto de vista abstracto, si hay una persona

(o programa informático) que realiza acciones a partir de una decisión, las conse-

cuencias de esas acciones pueden depender de la propia decisión, de la clase a la que

pertenecen los datos, del valor de las observaciones o de otros factores que puede que

ni siquiera sean observables antes de tomar la decisión. Cuantificar esas consecuen-

cias es el primer paso para trabajar con máquinas sensibles al coste.

En la literatura de aprendizaje máquina se aprecia una preferencia por métodos

que no tienen en cuenta los costes a la hora de clasificar. Esto no es extraño debido

a que la evaluación de los costes entraña dificultades hasta en los problemas más

simples. Como consecuencia, la mayoŕıa de las bases de datos t́ıpicas en las que

se evalúan algoritmos de clasificación, fundamentales para el trabajo experimental

de los investigadores, no ofrecen información relativa al coste. Además, en general,

realizar una predicción acertada sobre la clase a la que pertenecen los datos es menos

costoso que errar (lo contrario llevaŕıa a situaciones anómalas). Por lo tanto, diseñar

sistemas que minimicen el error de la decisión parece una asunción razonable en
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muchas situaciones, aunque no deja de ser subóptima. En cambio, nuestro objetivo

se centra en minimizar el coste total en vez del número de errores. Es sencillo

encontrar ejemplos en los que el aprendizaje sensible a costes resulta desde útil hasta

vital. Por ejemplo, considere el problema de clasificar clientes en función de su riesgo

de cara a conseguir créditos. La tarea consiste en separar a los posibles prestatarios

en dos categoŕıas: buenos o malos clientes. Desde el punto de vista del prestamista,

el coste de clasificar un cliente de alto riesgo como bueno puede ser muy superior

al coste de clasificar como malo un cliente de bajo riesgo. Este comportamiento se

observa también en el campo del diagnóstico médico: un falso positivo (clasificar a

un paciente como enfermo cuando está sano) puede ser menos costoso que clasificar

un paciente enfermo como sano.

De entre los primeros trabajos rigurosos en esta dirección podemos destacar

[Elkan, 2001a], que estableció una descripción del problema de aprendizaje con costes

que sigue vigente en la actualidad. Nuestra propuesta encuentra su origen dentro

del marco dispuesto por Charles Elkan, el cual se basa en la teoŕıa de la decisión de

Bayes a la hora de asignar las muestras a la clase con el mı́nimo coste esperado. Las

reglas de decisión que siguen esta formulación se definen a través de la información

disponible de los costes y de las probabilidades a posteriori de cada una de las clases.

Si, como primera aproximación al problema, aceptamos que los costes tienen un valor

determinista conocido, nuestro problema se centra en encontrar estimaciones precisas

de las probabilidades a posteriori. Para llevar a cabo esta tarea debemos disponer

de arquitecturas de aprendizaje adecuadas, conjuntos de datos que sean representa-

tivos del problema y una función de pérdidas para minimizar durante el proceso de

aprendizaje. Asumimos que el conjunto de datos nos es dado y no tenemos control

sobre él. Por el contrario, el diseño de la función de pérdidas nos da margen para

proponer modelos que tengan en cuenta los costes: la teoŕıa clásica de la decisión

muestra que las matrices de costes definen las fronteras a través de las estimaciones

de las probabilidades a posteriori de las mismas. Se puede concluir que, para tomar

decisiones óptimas, sólo son necesarias estimaciones de las probabilidades que sean
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precisas cerca de las fronteras de decisión. Esto nos lleva a pensar en estimas de

probabilidad que sean más sensibles a las muestras que están cerca de la frontera

que a las que se encuentran alejadas. Es importante destacar que la elección de la

función de pérdidas es especialmente relevante cuando nuestra información a priori

sobre el problema sea reducida, la arquitectura sea limitada o en el caso en el que los

datos de entrenamiento de los que disponemos no sean adecuados en algún sentido.

Es en estas situaciones donde el empleo de diferentes funciones de pérdida puede

llevar a resultados drásticamente dispares.

Para nuestro estudio nos centraremos en funciones de pérdidas que pertenecen a

la familia de las divergencias de Bregman [Bregman, 1967]. Estas medidas surgieron

de la mano de L.M. Bregman en el ámbito de la obtención de probabilidades en

estad́ıstica. Las razones de esta elección se pueden resumir en tres. En primer lu-

gar, se trata de un conjunto de divergencias que incluye a algunas de las funciones

de pérdidas más conocidas: la pérdida loǵıstica, la cuadrática o la exponencial son

sólo algunos ejemplos de las posibilidades que ofrece. En segundo lugar, se trata de

una familia con propiedades muy adecuadas para su manipulación con herramientas

matemáticas sencillas. Por último, cabe destacar la relevancia que han adquirido

en los últimos años en las comunidades de aprendizaje máquina y mineŕıa de

datos [Banerjee et al., 2005b, Reid and Williamson, 2009a, Nock and Nielsen, 2009]

debido a que ofrecen la posibilidad de reintrepretar, desde un punto de vista teórico,

algoritmos tan extendidos como las Máquinas de Vectores Soporte o Adaboost. A

pesar de este interés, no hab́ıa trabajos recientes que empleasen las divergencias de

Bregman en escenarios de aprendizaje sensible a costes.

Si retrocedemos hasta finales de la década de los noventa, en el campo de

las redes neuronales, se encuentran estudios que presentan resultados relativos a

las divergencias de Bregman, aunque bajo otras denominaciones. Se exploran

posibles aplicaciones de divergencias alternativas a las clásicas. Finalmente, en

[Cid-Sueiro and Figueiras-Vidal, 2001] se sugiere la posibilidad de aplicar estas di-

vergencias a aprendizaje sensible a costes y aprendizaje semi-supervisado. En cuanto
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a la primera idea, los resultados son prometedores en casos en los que arquitectura

del estimador es limitada. Sin embargo se limita a trabajar con costes en errores y

no se analiza el caso en el que los costes son dependientes de la muestra. Además, no

se realiza un análisis asintótico del comportamiento de las divergencias. En cuanto

al aprendizaje semi-supervisado, se realiza un trabajo experimental preliminar sobre

el problema de sensado remoto y no se explora el uso combinado de muestras no

etiquetadas y aprendizaje sensible a costes.

En general, en la literatura no existe una metodoloǵıa general de diseño de

clasificadores sensibles a costes susceptible de aplicarse a problemas binarios y mul-

ticlase, supervisados o semi-supervisados, con costes dependientes e independientes

de las muestras. Por el contrario, los métodos propuestos son en muchos casos

especialmente dif́ıciles de aplicar a modelos multiclase, o con datos no etiquetados,

o con costes dependientes de las muestras, o con incertidumbre en los costes, o con

conocimiento de los costes en test, ... Esto indica que, bajo nuestro punto de vista,

aunque es posible diseñar clasificadores sensibles a costes empleando otros criterios

de optimización, las divergencias de Bregman constituyen una aproximación natural

a los diferentes problemas. En primer lugar, conducen a estimaciones de probabili-

dades que, de acuerdo con la teoŕıa de la decisión, son estad́ısticos suficientes para

clasificación con costes. En segundo lugar, las divergencias de Bregman tienen una

estructura fácilmente interpretable, con un término de entroṕıa independiente de las

etiquetas y un término de error dependiente de las etiquetas, que permite adaptar

el diseño a escenarios muy distintos.

Aportaciones originales de la Tesis

La Tesis tiene como punto de partida el diseño de una novedosa familia

paramétrica de divergencias de Bregman. Uno de sus rasgos más destacados es

que ofrece la posibilidad de crear una divergencia espećıfica e individual para cada
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problema concreto: la divergencia integra la información de la matriz de costes del

problema en cuestión en su expresión anaĺıtica. Otro aspecto fundamental es que,

debido a su formulación, resulta muy adecuada para problemas con más de dos clases.

Los problemas multiclase con costes ha supuesto un reto hasta la fecha y la solución

propuesta en esta Tesis ofrece una forma natural de abordarlos.

A partir de esta nueva familia de divergencias se desarrollan cuatro ĺıneas funda-

mentales:

• Clasificación supervisada sensible a costes: En este sentido derivamos

varios resultados asintóticos que caracterizan las divergencias propuestas. Un

primer análisis garantiza que la divergencia de Bregman tiene tiene una sensi-

bilidad máxima a cambios en vectores de probabilidad que se encuentran cerca

de la frontera de decisión. Esto quiere decir que se cumple la propiedad que

buscábamos y podemos garantizar que disponemos de una familia de medidas

que da prioridad a obtener estimaciones de probabilidad más precisas en re-

giones que se encuentran cerca de zonas cŕıticas: no tendremos dudas a la hora

de clasificar puntos que se encuentran muy lejos de la frontera y por ello vale la

pena intentar volcar todo el potencial de nuestras divergencias sobre las áreas

más complicadas, las fronteras de decisión. Un segundo análisis garantiza que

la optimización de nuestra divergencia resulta equivalente a una minimización

del coste total en problemas donde los conjuntos de datos no son separables.

Por último, establecemos relaciones entre la minimización de la divergencia

propuesta y nociones relativas al máximo margen, siendo este el clasificador

ĺımite.

• Clasificación semi-supervisada sensible a costes: Habitualmente se

plantean escenarios donde se recibe un conjunto escaso de datos etiquetados

pero es posible encontrar datos no etiquetados en grandes cantidades. Normal-

mente, conseguir cada muestra etiquetada supone un esfuerzo mucho mayor

que el que representan los datos no etiquetados. Es en estos casos en los que
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se aplica el paradigma de aprendizaje semi-supervisado: se trata de buscar un

buen clasificador para los datos etiquetados, modificando la solución para tener

en cuenta de alguna modo los datos no etiquetados. En relación con nuestra

familia de divergencias de Bregman, discutimos la posibilidad de emplear el

principio de Minimización de la Entroṕıa. Esta idea consiste en buscar fron-

teras de decisión que hagan que la entroṕıa total de los datos sea baja. Para

ello, se favorecen las soluciones en las que las fronteras de decisión atraviesan

regiones de baja densidad de puntos. Para ello proponemos un planteamiento

del problema que resulta estar relacionado con métodos muy relevantes de la li-

teratura, incluyendo la Regularización por Entroṕıa y las Máquinas de Vectores

Soporte Transductivas. El resultado final es el primer algoritmo de aprendizaje

semi-supervisado sensible a costes para problemas multiclase.

• Definición y bases de las secuencias de divergencias de Bregman: Se

discute la transformación de las familias paramétricas de divergencias de Breg-

man en secuencias de divergencias de Bregman. En primer lugar tratamos de

motivar la necesidad de este nuevo concepto a partir del estudio de las posi-

bles relaciones entre las divergencias de Bregman y la convexidad. Para ello

derivamos y redefinimos resultados sobre las propiedades de las funciones de

activación y su papel en el aprendizaje. Posteriormente, intentamos responder

a la pregunta de si es posible encontrar secuencias de divergencias de Bregman

sensibles a costes que satisfagan propiedades similares a las descritas en los

puntos anteriores, siendo la respuesta positiva. Bajo condiciones bastante ge-

nerales es posible diseñar secuencias de divergencias cuya minimización lleve,

asintóticamente, a soluciones de mı́nimo riesgo (sensible a costes) en problemas

no separables y maximice un margen generalizado en problemas separables.

• Aprendizaje sensible a costes cuando los costes son dependientes

del ejemplo: Aśı como considerar que un problema no es sensible a costes

cuando intŕınsecamente śı lo es, asumir que los costes son deterministas
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puede ser incorrecto en muchas situaciones. En cualquiera de los ejemplos

presentados anteriormente, decir que el coste es fijo para todos los casos

es una aproximación que puede dar lugar a inconvenientes. Cada cliente o

cada paciente son diferentes y eso puede verse reflejado en el coste que llevan

asociado. En este sentido se propone una generalización de las secuencias de

divergencias de Bregman para conseguir introducir esta nueva información de

la forma más natural posible. Eso nos conduce a diferentes enfoques que tienen

como resultado un algoritmo orientado a este problema, a veces olvidado en la

literatura.

Conclusiones

A lo largo de esta Tesis exploramos la aplicación de divergencias de Bregman

a problemas sensibles a costes. La flexibilidad de la formulación se demuestra en

diferentes escenarios: aprendizaje supervisado, aprendizaje semi-supervisado y en

escenarios donde los costes dependen de la muestra en cuestión. La idea clave es

asociar cada muestra o conjunto de muestras del conjunto de entrenamiento con su

propia divergencia, adaptada a sus costes. De esta manera, la función de pérdidas

derivada de la divergencia refleja intŕınsicamente la estructura del coste del problema.

Optimizar la función resultante conduce a estimaciones de probabilidades de poste-

riori que son especialmente sensibles y precisas cerca de las fronteras de decisión

óptimas. Este enfoque explota de forma natural la capacidad de las máquinas de

aprendizaje para clasificación, poniendo énfasis en las zonas más relevantes del mapa

de probabilidades a posteriori.

Cabe resaltar que el método presentado se beneficia de ventajas propias de

métodos clásicos de clasificación discriminativa como las Máquinas de Vectores

Soporte, aśı como las de métodos que se basan en estimar probabilidades. Ejemplos

de ello se pueden encontrar a lo largo de los diferentes caṕıtulos de forma expĺıcita:
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la relación con algoritmos de máximo margen, las resultados asintóticos de mini-

mización del coste total o la posibilidad de utilizar los costes de las muestras en test

(siempre que esa información esté disponible).



ABSTRACT

The main object of this PhD. Thesis is the identification, characterization and

study of new loss functions to address the so-called cost-sensitive classification. Many

decision problems are intrinsically cost-sensitive. However, the dominating prefer-

ence for cost-insensitive methods in the machine learning literature is a natural con-

sequence of the fact that true costs in real applications are difficult to evaluate.

Since, in general, uncovering the correct class of the data is less costly than any

decision error, designing low error decision systems is a reasonable (but suboptimal)

approach. For instance, consider the classification of credit applicants as either being

good customers (will pay back the credit) or bad customers (will fail to pay off part of

the credit). The cost of classifying one risky borrower as good could be much higher

than the cost of classifying a potentially good customer as bad.

Our proposal relies on Bayes decision theory where the goal is to assign instances

to the class with minimum expected cost. The decision is made involving both

costs and posterior probabilities of the classes. Obtaining calibrated probability

estimates at the classifier output requires a suitable learning machine, a large enough

representative data set as well as an adequate loss function to be minimized during

learning. The design of the loss function can be aided by the costs: classical decision

theory shows that cost matrices define class boundaries determined by posterior class

probability estimates. Strictly speaking, in order to make optimal decisions, accurate

probability estimates are only required near the decision boundaries. It is key to

point out that the election of the loss function becomes especially relevant when

the prior knowledge about the problem is limited or the available training examples

are somehow unsuitable. In those cases, different loss functions lead to dramatically

different posterior probabilities estimates. We focus our study on the set of Bregman

divergences. These divergences offer a rich family of proper losses that has recently

become very popular in the machine learning community [Nock and Nielsen, 2009,

Reid and Williamson, 2009a].

The first part of the Thesis deals with the development of a novel parametric
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family of multiclass Bregman divergences which captures the information in the cost

matrix, so that the loss function is adapted to each specific problem. Multiclass cost-

sensitive learning is one of the main challenges in cost-sensitive learning and, through

this parametric family, we provide a natural framework to successfully overcome

binary tasks. Following this idea, two lines are explored:

• Cost-sensitive supervised classification: We derive several asymptotic re-

sults. The first analysis guarantees that the proposed Bregman divergence

has maximum sensitivity to changes at probability vectors near the decision

regions. Further analysis shows that the optimization of this Bregman diver-

gence becomes equivalent to minimizing the overall cost regret in non-separable

problems, and to maximizing a margin in separable problems.

• Cost-sensitive semi-supervised classification: When labeled data is

scarce but unlabeled data is widely available, semi-supervised learning is an

useful tool to make the most of the unlabeled data. We discuss an optimiza-

tion problem relying on the minimization of our parametric family of Bregman

divergences, using both labeled and unlabeled data, based on what is called the

Entropy Minimization principle. We propose the first multiclass cost-sensitive

semi-supervised algorithm, under the assumption that inter-class separation is

stronger than intra-class separation.

The second part of the Thesis deals with the transformation of this parametric

family of Bregman divergences into a sequence of Bregman divergences. Work along

this line can be further divided into two additional areas:

• Foundations of sequences of Bregman divergences: We generalize some

previous results about the design and characterization of Bregman divergences

that are suitable for learning and their relationship with convexity. In addition,

we aim to broaden the subset of Bregman divergences that are interesting for

cost-sensitive learning. Under very general conditions, we find sequences of
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(cost-sensitive) Bregman divergences, whose minimization provides minimum

(cost-sensitive) risk for non-separable problems and some type of maximum

margin classifiers in separable cases.

• Learning with example-dependent costs: A strong assumption is

widespread through most cost-sensitive learning algorithms: misclassification

costs are the same for all examples. In many cases this statement is not true.

We claim that using the example-dependent costs directly is more natural

and will lead to the production of more accurate classifiers. For these rea-

sons, we consider the extension of cost-sensitive sequences of Bregman losses

to example-dependent cost scenarios to generate finely tuned posterior proba-

bility estimates.
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hizo mucho más soportable.

En un departamento tan grande como el de Teoŕıa de la Señal y Comunica-
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Chapter 1

Cost-sensitive learning

The one where cost-sensitive learning is presented as a well-established and relevant

area in machine learning. Many (likely, most) decision problems are cost-sensitive:

if there is a (human or machine) actuator after a decision maker, the consequences of

the actions taken after any decision may depend on the decision itself, on the class of

the data, on the values of the observations and even on other unobserved factors that

may be unpredictable before deciding. The dominating preference for cost-insensitive

methods in the machine learning literature is likely a natural consequence of the fact

that true costs in real applications are difficult to evaluate, and cost information is

usually not available in benchmark databases. Also, it is a consequence of the fact

that the cost is often a non-homogeneous measure and dealing with a mixture of

-economic, social, personal, ...- costs is a non-trivial issue. Since, in general, deciding

the actual class of the data is less costly than any decision error, designing low error

decision systems is a reasonable (but suboptimal) approach. This chapter presents

a qualitative description of what is called cost-sensitive learning.
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1.1. WHY COST-SENSITIVE LEARNING?

1.1 Why cost-sensitive learning?

Let us commence this Thesis with an example that is far from machine learning. Ev-

eryday, living beings face problems that involve decision making. Thomson’s gazelles

live on dry, grassy plains in Sudan, Tanzania and the Serengeti areas of Kenya. The

gazelle is a main food item of many savanna predators such as lions, leopards, hyenas,

hunting dogs and cheetahs. When a gazelle spots a stalking predator, it will pronk

to alert other gazelles to the danger and escape if it is the objective of the predator.

It lives on alert because it is continuously running into a situation where a decision

has to be made: have I sensed the presence of a predator or not? A clear answer

to this question is crucial. It is easy to see that failing to recognize a predator and

hence not fleeing is far most costly than fleeing from a non-predator.

Getting closer to computer science, in applications related with text retrieval or

image retrieval, failing to display a relevant could be more/less costly than displaying

a completely irrelevant one. In general, any situation of life that involves decision

making and where costs can be quantified will lead to cost-sensitive learning. Ap-

propriately, The Encyclopedia of Machine Learning [Ling and Sheng, 2008] defines

cost-sensitive learning as the type of learning that takes the misclassification costs

(and possibly other types of cost) into consideration. The goal of this type of learning

is to minimize the total cost. The key difference between cost-sensitive learning and

cost-insensitive learning is that cost-sensitive learning incorporates the different cost

information to the game. Cost-insensitive learning does not take the costs into con-

sideration even under circumstances where obviating the costs could be potentially

fatal.

In the International Conference on Data Mining (ICDM) 2005, Qiang Yang

and Xindong Wu Yang [Yang and Wu, 2006] started an initiative to identify 10

challenging problems in data mining research, by consulting some of the most active

researchers in data mining and machine learning for their opinions on what are

considered important and worthy topics for future research in both communities.
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CHAPTER 1. COST-SENSITIVE LEARNING

Problem number 10 was stated as Dealing with Non-Static, Unbalanced and Cost-

Sensitive Data. They argue the following

“...how to deal with unbalanced and cost-sensitive data is a major challenge in

research. Charles Elkan made the observation in an invited talk at ICML 2003 Work-

shop on Learning from Imbalanced Data Sets. First, in previous studies, it has been

observed that UCI datasets are small and not highly unbalanced. In a typical real-

world dataset, there are at least 105 examples and 102.5 features, without single well-

defined target class. Interesting cases have a frequency of less than 0.01. There

is much information on costs and benefits, but no overall model of profit and loss.

There are different cost matrices for different examples. However, most cost matrix

entries are unknown. Furthermore, the costs of different outcomes are dependent on

the examples; for example, the false negative cost of direct marketing is directly pro-

portional to the amount of a potential donation. Traditional methods for obtaining

these costs relied on sampling methods. However, sampling methods can easily give

biased results.”

This passage reflects the relevance of cost-sensitive learning, as one of the most

active and important research areas in machine learning. It plays an important role

in real-world machine learning and data mining applications. This was also sup-

ported by the Technological Roadmap of the MLnetII project (European Network

of Excellence in Machine Learning, [Saitta and Lavrač, 2001]), stating that “the in-

clusion of costs into learning and classification is one of the most relevant topics of

future machine learning research”.

1.2 Types of costs

In business, retail, and accounting, a cost is the value of money that has been used

up to produce something, and hence is not available for use anymore. In economics,

a cost is an alternative that is given up as a result of a decision. In business, the cost

5



1.2. TYPES OF COSTS

may be one of acquisition, in which case the amount of money expended to acquire

an item is counted as cost. In general, the cost is a variable to be minimized. In

the following, cost should be interpreted in its most abstract sense. Cost may be

measured in many different units, such as monetary units (dollars), temporal units

(seconds), or abstract units of utility. Turney [Turney, 2000] provides a comprehen-

sive survey of a large variety of different types of costs in data mining and machine

learning, including misclassification costs and data acquisition costs. In this section

we revise the most representative types of cost.

1.2.1 Misclassification Costs

The misclassification cost is singled out as the most important cost because it is

the only relevant cost when there is a perfect knowledge of data distributions, and

it has also been mostly studied in recent years. Different types of misclassification

errors usually involve different costs. They can either be deterministic or example-

dependent.

It is common practice the representation of the misclassification costs in a matrix.

The cost matrix is organized so that cij is the i-th row, j-th column element of the

cost matrix C, and contains the cost of classifying as class i when the true class is j

[Elkan, 2001a, O’Brien et al., 2008]. Table 1.1 shows the structure of a cost matrix

for two classes.

In our notation, the cost of a false positive is c10 while the cost of a false negative

is c01. Conceptually, the cost of labeling an example incorrectly should always be

greater than the cost of labeling it correctly. Mathematically, it should always be

the case that c10 > c00 and c01 > c11. These conditions are called reasonableness

conditions [Elkan, 2001a]. Suppose that the first reasonableness condition is violated,

so c10 < c00 but still c01 > c11. In this case the optimal policy is to label all examples

positive. Note that, even though these are reasonable requirements, all the results

in this Thesis would apply to situations where these conditions do not hold.

Given a cost matrix, the decisions that are optimal are unchanged if each entry in
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actual negative actual positive

predict negative C(0, 0) = c00 C(0, 1) = c01

predict positive C(1, 0) = c10 C(1, 1) = c11

Table 1.1: Example of cost matrix.

the matrix is multiplied by a positive constant. This scaling corresponds to changing

the unit of account for costs. Similarly, the decisions that are optimal are unchanged

if a constant is added to each entry in the matrix. This shifting corresponds to

changing the baseline away from which costs are measured. We will discuss further

results about the cost matrix in later chapters.

1.2.2 Other common costs

The literature studies a wide variety of costs. We just describe the most relevant

ones. For a detailed list we refer the reader to [Turney, 2000].

• Test costs: Each test (i.e., attribute, measurement, feature) may have an as-

sociated cost. For example, in medical diagnosis, a blood test has a cost. If

the misclassification costs surpass the test costs greatly, then all tests should

be performed. If the test costs are much more than the misclassification costs,

then it is rationale not to do any tests.

• Cost of acquiring new examples: There is often a cost associated with acquiring

cases (i.e., examples, feature vectors). Typically a machine learning researcher

is given a small set of cases, and acquiring further cases is either very expensive

or practically impossible.

• Cost of teacher (labeling cost): Suppose we have a practically unlimited supply

of unclassified examples (i.e., cases, feature vectors), but it is expensive to

determine the correct class of an example. For example, every human is a

potential case for medical diagnosis, but we require a physician to determine

7



1.3. CLASSICAL COST-SENSITIVE PROBLEMS

the correct diagnosis for each person. A learning algorithm could seek to reduce

the cost of teaching by actively selecting cases for the teacher. A wise learner

would classify the easy cases by itself and reserve the difficult cases for its

teacher.

• Cost of computation: Computers are a limited resource, so it is meaningful to

consider the cost of computation. The various types of computational com-

plexity are essentially different forms of cost that we may wish to take into

account.

• Cost of learning: This cost includes finding the right features for describing

the cases, finding the right parameters for optimizing the performance of the

learning algorithm, converting the data to the format required by the learning

algorithm, analyzing the output of the learning algorithm, and incorporating

domain knowledge into the learning algorithm or the learned model.

It is important to note that all the presented types of costs (including misclassifi-

cation costs and additional costs the reader could think of) differ on nature, i.e., they

might potentially be non-homogeneous measures and therefore difficult to combine.

1.3 Classical cost-sensitive problems

Based on the existing types of costs and the typical machine learning tasks, some sce-

narios have become more popular in cost-sensitive learning. Nevertheless, the scope

of cost-sensitive learning goes beyond the restricted list presented in this section. In

fact, most machine learning problems are susceptible to be modified in order to take

into account cost information [Santos-Rodriguez and Garcia-Garcia, 2010].

1.3.1 Cost-sensitive classification

Consider a standard classification task. A learner can be trained from a set of training

examples with class labels, and can be used to predict the class labels of new exam-

8
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ples. The class label is usually discrete and finite. Many effective algorithms and

techniques have been developed, such as Decision Trees, Neural Networks, Support

Vector Machines or Gaussian Processes. However, most of the algorithms pursue to

minimize the error rate: the percentage of the incorrect prediction of class labels.

They ignore the difference between types of errors. In particular, they implicitly as-

sume that all misclassification errors cost are equal. In many real-world applications,

this assumption is not true. The differences can be dramatic. The first examples

a cost-sensitive learning practitioner comes across when starting in cost-sensitive

learning are related to classification tasks in medical diagnosis. It is easy to see that

a false negative prediction (failing to detect an existing disease) can be extremely

delicate, while a false positive (treating a patient that does not have a certain dis-

ease) can be less severe. Another application is the classification of credit applicants

to a bank as either being a good customer (the person will pay back the credit) or

a bad customer (the person will not pay back part of the credit loan). We suggest

the reader [Elkan, 2001a] as one of the first major attempts to address cost-sensitive

classification in a rigorous way. The Thesis mainly focuses in this task, so it will be

studied in detail in subsequent chapters.

1.3.2 Cost-sensitive learning for data acquisition

In this setting, the goal of cost-sensitive learning is to minimize data acquisition

costs while maximizing the accuracy of the learner/predictor [Ji and Carin, 2007].

Many fields in machine learning attempt to address this task. For example, in semi-

supervised learning, class-labels are assumed to be expensive and features are im-

plicitly assumed to have zero cost. In active learning, labels are again assumed to be

expensive; however the learner may ask an oracle to reveal a label for unlabeled data

for selected examples. Active feature acquisition assumes that obtaining features is

expensive (but typically all features are assumed to be equally expensive), and the

learner identifies instances for which complete information is most informative to

classify a particular test sample. Inductive transfer learning and domain adaptation

9
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methods assume that training data for a particular task is expensive or but other

data from other domains may be cheaper (although relative costs are usually not

explicitly modeled). Cascaded classifier architectures are primarily designed in order

to reduce the cost of acquiring features to classify a sample (a sample may be clas-

sified the moment the available data is sufficient to provide sufficient classification

confidence, without waiting for all features to be obtained).

There is an underlying common thread linking all of these different learning meth-

ods: the need to minimize the cost of data acquisition in many different application

domains such as computer-aided medical diagnosis, computational linguistics, com-

putational biology, and computer vision. Although all of these areas have felt the

need for a principled solution to the problem, the partial solutions that have tried

to solve the problem rarely model the cost explicitly, and very little effort has been

expended on modeling application specific characteristics. Few successful ideas have

been proposed in this direction. In [Ji and Carin, 2007] Ji and Carin describe this

scenario. In their classification problem the features (sensing results) are not given

a priori; the algorithm determines which features to acquire next, as well as when

to stop sensing and make a classification decision based on previous observations

(accounting for the costs of various types of errors, as well as the rewards of being

correct). They define the cost-sensitive classification problem using a partially ob-

servable Markov decision process. Recently, [Settles et al., 2008] analyzes the novel

problem of performing active learning on spatial data where label acquisition costs

are proportional to distance traveled. It is motivated by the following example: con-

sider the task of classification of land-cover using hyperspectral data. Then, acquiring

labels may involve traveling to a particular location and performing some sort of test

such as determining the type of land at that point or collecting various samples, such

as soil, water, or foliage samples, that require physical access. Traveling to this point

incurs some type of cost (e.g., gas or time) proportional to the distance traveled.

The distance traveled also depends on the order in which one visits the points that

need to be labeled, meaning that the label acquisition cost for a particular point is
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dependent on other, previously visited points.

1.3.3 Cost-sensitive learning for class-imbalance

Another widely addressed problem is class-imbalance. In many applications,

the categories that we particularly want to model are rare [Elkan, 2001b,

Liu and Zhou, 2006]. Given a training set with a small number of members of rare

categories, it is pointless to apply excessively complicated learning methods, or to

use an excessively time-consuming model search method.

Take into account that, if the goal of a classifier is to maximize the accuracy

(or minimize the error rate) instead of minimizing the cost, predicting everything as

member of the majority class for a highly imbalanced dataset is often the solution

provided by cost-insensitive methods.

Nonetheless, note that sometimes the number of examples of the minority class

is too small for classifiers to learn adequately. This is the problem of insufficient

training data, different from that of the imbalanced datasets.

1.4 Creating cost-sensitive algorithms

Broadly speaking, cost-sensitive learning can be categorized into two categories. The

first one is to design classifiers that are cost-sensitive in themselves. We call them

the direct method. The other category is to design a wrapper that converts any ex-

isting cost-insensitive (or cost-blind) classifiers into cost-sensitive ones. The wrapper

method is also called cost-sensitive meta-learning method. These sets of algorithms

are not disjoint: the boundary between then is sometimes diffuse and combinations

of both approaches are possible.
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1.4. CREATING COST-SENSITIVE ALGORITHMS

1.4.1 Direct method

The main idea of building a direct cost-sensitive learning algorithm is to directly

introduce and utilize misclassification costs into the learning algorithms. There are

several works on direct cost-sensitive learning algorithms. A classical example is

ICET [Turney, 1995], a method that incorporates misclassification costs in the fit-

ness function of genetic algorithms. Note that, as ICET directly takes costs into

model building, the algorithm could also take easily attribute costs (and perhaps

other costs) directly into consideration, while cost-sensitive meta-learning algorithms

generally cannot.

1.4.2 Cost-sensitive meta-leaning method

Cost-sensitive meta-learning converts existing cost-insensitive classifiers into cost-

sensitive ones without modifying them. Thus, it can be regarded as a middleware

component that pre-processes the training data, or post-processes the output, from

the cost-insensitive learning algorithms.

Cost-sensitive meta-learning can be further classified into two main categories:

thresholding and sampling.

Thresholding methods

Thresholding uses as a threshold to classify examples into positive or negative if the

cost-insensitive classifiers can produce probability estimations. The classical algo-

rithm MetaCost [Domingos, 1999] is a thresholding method. It first uses bagging on

decision trees to obtain reliable probability estimations of training examples, rela-

bels the classes of training examples, and then uses the relabeled training instances

to build a cost-insensitive classifier. In general, thresholding-based meta-learning

methods relies on accurate probability estimations. To achieve this, Zadrozny and

Elkan propose several methods to improve the calibration of probability estimates

[Zadrozny and Elkan, 2001a].
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Sampling methods

Sampling first modifies the class distribution of training data, and then applies cost-

insensitive classifiers on the sampled data directly. There is no need for the classifiers

to produce probability estimations, as long as it can classify positive or negative ex-

amples accurately. [Zadrozny et al., 2003] shows that proportional sampling with

replacement produces duplicated cases in the training, which in turn produces over-

fitting in model building. Therefore, [Zadrozny et al., 2003] proposes to use rejection

sampling to avoid duplication. More specifically, each instance in the original train-

ing set is drawn once, and accepted into the sample with the accepting probability

related to the cost.

1.5 Motivation of the Thesis

Following [Elkan, 2001a], this Thesis addresses the problem of cost-sensitive classi-

fication. Note that, from now on, we will assume homogeneous costs (measured in

the same units) and also additive (the total cost of a series of decisions is the sum

of the cost of each individual decision).

Our approach relies on Bayes decision theory, where the goal is to assign in-

stances to the class with minimum expected cost. Therefore, we aim to obtain a

calibrated probability estimates at the classifier output. For that reason, we need

a suitable learning machine, a large enough representative dataset and an adequate

loss function to be minimized during learning. The so-called Bregman divergences

offer a rich family of proper losses [Reid and Williamson, 2009a] that have recently

become very popular. Bregman divergences are named after L. M. Bregman, who

introduced the concept in 1967 in the framework of a relaxation method of finding

the common points of convex sets and its application to the solution of problems

in convex programming [Bregman, 1967]. In line with Bregman’s work, the same

concept arose in the literature of probability elicitation, i.e. [Savage, 1971]. There

are two ways in which Bregman divergences are important. Firstly, they generalize
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squared Euclidean distance to a class of distances that all share similar properties.

Secondly, they bear a strong connection to exponential families of distributions.

In modern machine learning, Bregman divergences have attracted interest because

they allow to re-interpret well-known algorithms such as the Support Vector Ma-

chine [Cristianini and Shawe-Taylor, 2000] or Adaboost [Freund and Schapire, 1995]

as minimizers of certain surrogate losses and permit to develop theoretical founda-

tions of the consistency of those methods [Zhang, 2003], as an alternative to expla-

nations based on the VC dimension vapnik1998. Despite the interest in Bregman

divergences, recent applications to cost-sensitive learning go no further than a few

words in [Shirazi and Vasconcelos, 2008].

In the field of Neural Networks different authors rediscovered Bregman diver-

gences [Miller et al., 1991, Cid-Sueiro et al., 1999] without explicitly naming them

Bregman divergences. They preliminary explored possible applications of different

divergences, as alternatives to the classical cross-entropy or the L2 norm. In partic-

ular, [Cid-Sueiro and Figueiras-Vidal, 2001] pointed the possibility of applying these

divergences to cost-sensitive learning or semi-supervised learning. Regarding cost-

sensitive learning, both in binary and multiclass problems, the initial results sup-

ported the idea that Bregman divergence might be useful when dealing with limited

architectures. In relation to semi-supervised learning, an application of cross-entropy

to remote sensing was presented.

Although the idea of applying Bregman divergences to cost-sensitive learning is

not new, it is not explored enough. Previous works do not consider the possibility of

combining unlabeled samples and cost-sensitive learning. Also, they do not examine

alternative divergences other than the cross-entropy. The analysis is limited to label-

dependent costs instead of considering example-dependent costs. Lastly, the state

of the art provides no study of the asymptotic properties of cost-sensitive Bregman

divergences.

The main objective of this Thesis is to investigate the possibilities of Bregman

divergences in cost-sensitive learning in depth and provide with a framework to design
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cost-sensitive divergences. Specifically, we aim to:

• Explore novel (cost-sensitive) divergences and analyze their asymptotic prop-

erties in multiclass problems (Chapter 2).

• Describe a general cost-sensitive semi-supervised learning method for multiclass

tasks (Chapter 3).

• Analyze in detail the asymptotic properties of Bregman divergences in binary

experiments (Chapter 4), establishing links between the minimization of certain

sequences of Bregman divergences and some margin maximization.

• Extend the previous analysis to the case where the costs are example-dependent

instead of just class-dependent (Chapter 5).

1.6 Outline

The structure of the Thesis remains as follows. In Chapter 2 we propose a gen-

eral procedure to train multiclass classifiers for particular cost-sensitive decision

problems, which is based on estimating posterior probabilities using Bregman diver-

gences. Chapter 3 introduces a general procedure to train multiclass semi-supervised

classifiers, establishing an optimization problem relying on the empirical risk min-

imization of a Bregman loss together with what is called Entropy Minimization

principle. Chapter 4 broads the approach to uncover the links between Bregman

divergences and convexity and also looks for general conditions to define a richer

family of cost-sensitive sequences of Bregman divergences with nice properties. In

Chapter 5 we extend the cost-sensitive sequences of Bregman divergences to tackle

example-dependent costs (non-deterministic cost matrices). Finally, Chapter 6 sub-

sumes the main conclusions of this dissertation and the on-going and future research

lines.
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Additionally, the reader may seek advice from Appendix A to consult some useful

properties of Bregman divergences. Appendix B briefly discusses other families of

divergences and the relationships among them.

We do not devote an entire chapter to revise the state of the art. Instead, we

discuss the state of the art regarding each individual aspect of the Thesis in the

introductory section of the different chapters.

1.7 Summary

This chapter tries to motivate the relevance of a dissertation on cost-sensitive learn-

ing. Cost-sensitive learning is sometimes forgotten or obviated in many machine

learning applications even if the problem is inherently cost-sensitive. Several meth-

ods have been proposed since the late 90s in the machine learning and data mining

communities. Looking back in time is nice to see an evolution from genetic algorithms

and tree-based methods towards nowadays methods, relying on advanced learning

techniques.

We just scratched the surface of the state of the art of cost-sensitive learning. For

a comprehensive list of well-known cost-sensitive learning algorithms, please refer to

[Qin et al., 2010, Zhou and Liu, 2010, Ling and Sheng, 2008].

Next chapters will insist on some of the concepts already described in this review.

In particular, this Thesis will be focused on the broad problem of cost-sensitive

learning classification, approached from Bayes decision theory. We will deeply study

multiclass and binary problems while dealing with supervised and semi-supervised

learning or deterministic and example-dependent cost matrices.
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Chapter 2

Cost-sensitive learning based on

Bregman divergences

The one where a parametric family of Bregman divergences is designed for mul-

ticlass cost-sensitive learning. This chapter analyzes the application of a par-

ticular class of Bregman divergences to design cost-sensitive classifiers for mul-

ticlass problems. We show that these divergence measures can be used to es-

timate posterior probabilities with maximal accuracy for the probability values

that are close to the decision boundaries. Asymptotically, the proposed diver-

gence measures provide classifiers minimizing the sum of decision costs in non-

separable problems, and maximizing a margin in separable MAP problems. The

chapter subsumes the joint work with Jesus Cid-Sueiro, Rocio Alaiz-Rodriguez,

Alicia Guerrero-Curieses and Dario Garcia-Garcia [Santos-Rodriguez et al., 2009b,

Santos-Rodriguez et al., 2009a, Santos-Rodriguez et al., 2009c].

2.1 Introduction

As we mentioned in Chapter 1, the general problem of cost-sensitive learning consists

in designing decision or regression machines that take into account the costs involved
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in the whole decision/estimation process: this includes the cost of data acquisition,

which may depend on the attributes, the cost of labeling training samples, and

the cost of each possible decision error. This chapter is focused in the latter case,

though we believe that the proposed approach to the problem could be extended to

some more general situations, like those where the cost may depend on the selected

features.

Three main general approaches have been proposed to deal with multiclass cost-

sensitive problems:

1. Data-based methods: these methods are based on modifying the training

dataset. The most popular technique lies in rescaling the original class distri-

bution of the training dataset according to the cost decision matrix by means

of subsampling/oversampling, modifying decision thresholds or assigning in-

stance weights. These modifications have shown to be effective in many binary

problems and can also be applied to any cost insensitive learning algorithm

[Zadrozny et al., 2003, Liu and Zhou, 2006].

2. Training-based methods: these methods change the learning process in order

to build a binary cost-sensitive classifier, such as those proposed for neural

networks [Kukar and Kononenko, 1998] decision trees [Bradford et al., 1998] or

boosting-based ensemble machines like AdaCost [Fan et al., 1999]. Finally,

3. Decision-based methods: these methods based on the Bayes decision theory

that assign instances to the class with minimum expected cost. Obtaining cali-

brated probability estimates at the classifier output requires a suitable learning

machine, a large enough representative dataset as well as an adequate loss func-

tion to be minimized during learning. Nonetheless, real-valued scores from any

classifier can also be transformed into calibrated probabilities by methods like

Platt Scaling [Platt, 1999] or Isotonic Regression [Zadrozny and Elkan, 2002].

Though less popular [Zadrozny and Elkan, 2001a], this is the approach that

uses a natural way to cope with multiclass cost-sensitive problems.
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Cost-sensitive learning in multiclass domains becomes a challenging task due to

the number of misclassification costs involved the decision making process. Abe

et al. [Abe et al., 2004] propose an iterative method for these problems that can

be used by any binary classification algorithm. Other works tackle this issue

by decomposing the original problem into multiple two-class classification tasks

[Marrocco and Tortorella, 2004, Lozano and Abe, 2008] or converting the cost ma-

trix with L × L elements (where L is the number of classes) into a cost vector

[Kukar and Kononenko, 1998, Liu and Zhou, 2006] with L components.1

Our proposal belongs to the third category (based on Bayes decision theory)

and focus on the unequal costs that result from the different misclassification errors.

Classical decision theory shows that cost matrices define class boundaries determined

by posterior class probability estimates. So, accurate posterior class probabilities

estimates should be achieved to optimize decisions.

In a binary problem, a empirical threshold can be found with the

ROC (Receiver Operating Characteristics) curve plotted for different thresholds

[Provost and Fawcett, 2001]. Recently, it has also been extended for multiclass prob-

lems [O’Brien and Gray, 2005, O’Brien et al., 2008] using a greedy optimization ap-

proach that may lead in some cases to local optima. Another alternative is to improve

the overall quality of the probability estimates. Zadrozny and Elkan propose several

post-processing methods to transform classifier scores into calibrated probability es-

timates for binary [Zadrozny and Elkan, 2001b] and multiclass problems (through a

decomposition into binary classification problems) [Zadrozny and Elkan, 2002].

Strictly speaking, in order to make optimal decisions, accurate probability es-

timates are only required near the decision boundaries. This chapter is grounded

on some previous works [Miller et al., 1993, Cid-Sueiro et al., 1999] on the analysis

and description, in the context of machine learning, of proper loss functions, which

are those minimized at calibrated probabilities. The idea of designing proper loss

1 Note, however, that its effectiveness depends on the cost information which is lost with the

transformation.
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functions to increase the estimation accuracy for some pre-defined probability values

was initially suggested in [Cid-Sueiro and Figueiras-Vidal, 2001], further explored in

[Guerrero-Curieses et al., 2004] for binary classification, and extended to multiclass

problems in [Guerrero-Curieses et al., 2005].

In this chapter, we reformulate some of these previous results by using Bregman

divergences [Bregman, 1967]. Our first purpose is to establish some links between

several results published in the machine learning literature, concerning the estimation

of posterior class probabilities, with some general results on the problem of probabil-

ity elicitation, which has been widely studied in the context of subjective probability:

general conditions on proper loss functions can be dated back to [Savage, 1971], and

it is also well known (see [Gneiting and Raftery, 2007] and the references therein)

that any proper loss function is essentially characterized by a Bregman divergence.

Bregman divergences have attracted recent attention in the machine learn-

ing literature [Banerjee et al., 2005b]. The utility of these measures to de-

fine tailored loss functions for cost-sensitive classification has been explored in

[Buja et al., 2005] for binary problems. The application of Bregman divergences

(though under the name of strict sense Bayesian divergences) was also proposed in

[Guerrero-Curieses et al., 2005], which is, up to our knowledge, the first published

work on the multiclass case.

In this chapter, we propose a novel parametric family of Bregman divergences that

may be used to train cost-sensitive classifiers in multi-class situations. The proposed

divergence measures are in general non-convex functions of the model parameters,

but we show some connections between the minimization of the divergence measures

and some kind of large margin classifiers, which opens the door to some convex

optimization algorithms.

The structure of this chapter is as follows: Section 2.2 states the learning and

decision problem and shows the fundamentals of entropy and divergence measures.

Section 2.3 presents a new family of entropy functions used to design a Bregman

divergence that achieves maximal sensitivity near the decision boundaries defined by
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unequal costs. The asymptotic behavior of this divergence measure is analyzed in

Section 2.4. Its application to some different real datasets is exposed in Section 2.5.

Finally, we summarize the main conclusions in Section 2.6.

2.2 Decision and learning

2.2.1 Cost-sensitive decision problems

Let X be an observation space and UL a finite set of L classes or labels. For math-

ematical convenience, we assume that the i-th class in UL is a binary unit vector ui

with components uij = δi−j (that is, a unique “1” at the i-th position).

In a general classification problem, a pair (x,y) ∈ X ×UL is generated according

to a probability model p(x,y). The goal is to predict class vector y when only x is

observed.

In a general setting, a cost c(ŷ,y,x) can be associated with deciding in favor

of class ŷ when the true class is y and the observation is x. The general decision

problem consists in making decisions minimizing the mean risk E{c(ŷ,y,x)}.

It is well-known that such minimum is reached by taking, for every sample x,

class ŷ∗ such that

ŷ∗ = arg minby
{

L∑

j=1

E{c(ŷ,uj,x)|x}pj

}
(2.1)

where pj = P{y = uj | x} is the posterior probability of class j given sample x.

In this chapter we assume that c is deterministic, and it does not depend on the

observation, so that, defining cij = c(ûi,uj,x), we can write the optimal decision as

ŷ∗ = ui∗ such that

i∗ = arg min
i

{
L∑

j=1

cijpj

}
(2.2)

In particular, taking cij = (1 − δi−j), we get i∗ = arg maxi{pi}, which is the

decision rule of the Maximum A Posteriori (MAP) classifier. The reader can compare
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the general cost-sensitive setting and the MAP classifier in Figure 2.1. The triangle is

the simplex containing all possible posterior probability values. The figure illustrates

that the cost values shift the decision boundaries with respect to those of the MAP

classifier.

Figure 2.1: Simplex containing all possible posterior probabilities values. Cost-

sensitive decision boundaries and MAP boundaries.

2.2.2 Posterior probability estimation

In a general learning problem, the probability model p(x,y) is unknown, and only a

training set S = {(xk,yk), k = 1, . . . , K} of statistically independent samples (drawn

from model p) is available. The classical discriminative approach to the problem

consists in estimating a posterior probability map z = fw(x), where fw : X → PL is

a function with parameters w, transforming every element of the observation space

into an element of the set of probability vectors PL = {p : 0 ≤ pi ≤ 1,
∑L

i=1 pi = 1},
and replace the true probabilities pi in (2.1) by their estimates zi.

Estimating posterior probabilities may be inefficient. If the goal is to optimize de-

cisions, accurate estimates of posterior probabilities far from the decision boundaries

are actually not needed, and focusing learning on these estimates may be suboptimal.
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Some previous definitions are required. Following [Kapur and Kesavan, 1993], we

define generalized entropy and divergence measures as follows.

Definition (Entropy)

Function h : PL → R, is an entropy if h(ui) = 0, for every ui ∈ UL and h is

strictly concave2 in PL

Note that any entropy verifies h(p) ≥ 0, for every p ∈ PL.

Definition (Divergence)

Function D : PL×PL → R, is a divergence among probability vectors p and z if

it satisfies the following properties:

1. Non-negativity: D(p, z) ≥ 0;

2. Identity: D(p, z) = 0 iff p = z;

3. Convexity: D(p, z) is a strictly convex function of p.

Our approach in this chapter is based on the estimation of posterior class prob-

abilities by minimizing divergence sums (Empirical Risk Minimization principle

[Devroye et al., 1996]) given by

R(w) =
K∑

k=1

D(yk, zk) (2.3)

where zk = fw(xk). One may wonder if parameters w∗ minimizing R(w) provide an

estimate of posterior probabilities p. The answer is positive for a particular class of

divergence measures.

2Since concavity and convexity are not unanimously defined in the literature, let us make clear

that, in this chapter, a function is strictly concave (convex) if its Hessian matrix is negative definite

(positive).
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Definition (Bregman Divergence [Bregman, 1967])

Given entropy h : PL → R, the Bregman divergence D : PL × PL → R relative

to h is defined as

Dh(p, z) = h(z)− h(p) + (p− z)T∇zh(z) (2.4)

where ∇zh(z) represents the gradient vector of h evaluated at z.

Figure 2.2: Bregman divergence.

An example of the definition is shown in Figure 2.2. The main result is the following

Theorem 2.2.1 Let (x,y) ⊂ X ×UL a pair of random variables with arbitrary joint

distribution p(x,y), and let p be the posterior probability map given by pi = P{y =

ui|x}. The divergence measure D : PL × PL → R satisfies

arg min
z

E{D(y, z)|x} = arg min
z

E{D(p, z)|x} (2.5)

for any distribution p(x,y) if and only if D is a Bregman divergence for some entropy

measure h.

The theorem shows that probability estimates minimizing the mean divergence

can be found by minimizing E{D(y, z)}, which, in practice, can be estimated from
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samples as in Eq. (2.3). Moreover, since arg minz E{D(p, z)|x} = p, the posterior

class probability vector is the minimizer of the expected divergence.

As a particular case, if h(z) = −
∑L

i=1 zi log(zi) (i.e., the Shannon entropy),

Dh(p, z) is the Kullback-Leibler divergence, and Dh(y, z) is the cross-entropy. A

concise summary of many of the properties of Bregman divergences is given in Ap-

pendix A.

Theorem 2.2.1 is a reformulation of Th. 1 in [Cid-Sueiro et al., 1999] by using

Bregman divergences (details of the proof can be found there), though the role of

these divergences in the calibration of probabilities is well known in the area of sub-

jective probability (see, for instance, a similar result in [Gneiting and Raftery, 2007]).

A recent generalization can be found in [Banerjee et al., 2005a].

Our approach in this chapter is based on the idea (also explored in

[Guerrero-Curieses et al., 2005]) of optimizing Bregman divergences which are very

sensitive to deviations of z from values of p close to the decision boundaries. The

strategy that we follow in the next section is to design specific divergence measures

for each decision problem.

2.2.3 Sensitivity of a divergence measure

In general, posterior probability vector p is an unknown function of observation x.

If the final goal is to minimize a mean risk function, the accuracy of the probability

estimates near the decision regions should be maximized. To do so, the Bregman

divergence should have maximum sensitivity to changes at probability vectors near

the decision regions. The sensitivity can be defined as follows:

Definition The sensitivity of a Bregman divergence at p ∈ PL in direction a (with
∥∥a
∥∥ = 1 and

∑
i ai = 0) is

s(p, a) =
∂2Dh(p,p + αa)

∂α2

∣∣∣∣∣
α=0

= −aTHzz(p)a (2.6)

where Hzz is the Hessian matrix of the corresponding entropy h(z).
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(note that condition
∑

i ai = 0 is necessary for p+αa in Eq. (2.6) to be a probability

vector). The sensitivity measures the velocity of change of the divergence around p.

It is always non negative, since Dh(p, z) is a convex function of z at z = p, for any

p ∈ PL.

2.3 Designing Bregman divergences

2.3.1 A parametric family of entropies

If decision rule in Eq. (2.1) is based on estimates of posterior probabilities pi, small

estimation errors near the decision boundaries may change decisions and reduce the

overall performance. This is the motivation to search for Bregman divergences with

the highest sensitivity at probability values close to the decision boundaries and in

the direction orthogonal to the boundary.

Since, according to Def. 2.2.2, a Bregman divergence can be specified from an

entropy function (Eq. (2.4)), we define the family of entropies given by

hR(z) = −‖s−Cz‖R + bTz (2.7)

where s = maxz

{
uT

i Cz
}

= maxj {cij} , ‖ · ‖R is the R-norm (i.e., for any t ∈ RL,

‖t‖R =
(∑L

i=1 t
R
i

)1/R

), C is the cost matrix with components cij (the cost of deciding

in favor of class i when the true class is j), and R is a smooth parameter.

Parameter vector b should be adjusted so that hR(ui) = 0, for any ui ∈ UL,

though, as we will see later, it has no influence on the Bregman divergence. It is

easy to see that bi = ‖s−Cui‖R.

The concavity of hR arises from the fact that the R-norm is strictly convex for any

finite R, and convexity is preserved after any affine transformation of the variables.

Moreover, if C is invertible, hR is strictly concave so that it satisfies Def. 2.2.2,

and the divergence DR emanated from hR using Eq. (2.4) is actually a Bregman

divergence.

28



CHAPTER 2. COST-SENSITIVE BREGMAN DIVERGENCES

2.3.2 Bregman Divergence

According to Eq. (2.4), and defining

t(z) = s−Cz (2.8)

the Bregman divergence corresponding to hR is

DR(p, z) = ‖t(p)‖R − ‖t(z)‖R + ‖t(z)‖1−R
R (tR−1(z))TC(p− z) =

= ‖t(p)‖R − ‖t(z)‖R + ‖t(z)‖1−R
R (tR−1(z))T (t(z)− t(p)) =

= ‖t(p)‖R − ‖t(z)‖1−R
R (tR−1(z))T t(p) (2.9)

Before analyzing the asymptotic behavior of the sample divergence, we show

that, for large R, DR has maximal sensitivity near the decision regions defined by

mini

{∑L
j=1 cijpj

}
.

2.3.3 Sensitivity analysis

This section highlights the relevance of sensitivity when designing Bregman diver-

gences. See Figures 2.4 and 2.3 to check how the difference between two points p

and z is the same in both examples but the divergence turns out to be completely

different. This example evince that the value of the divergence drastically depends

on the curvature of the entropy at the point of interest, justifying the use of the

second derivative as sensitivity measure. According to Eq. (2.6), the sensitivity is

a function of the Hessian matrix of the divergence. Since the gradient vector of hR

has components

∂hR
∂zi

= ‖t‖1−R
R

L∑

n=1

|tn|R−1 cni + bi (2.10)

the second-order derivatives are

∂2hR
∂zi∂zj

= (R− 1)‖t‖1−2R
R

L∑

m=1

|tm|R−1 cmi

L∑

n=1

|tn|R−1 cnj −

−(R− 1)‖t‖1−R
R

L∑

n=1

|tn|R−2 cnicnj (2.11)
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Figure 2.3: Bregman divergence, for large R, close to the high-sensitivity region.

Figure 2.4: Bregman divergence, for large R, far from the high-sensitivity region.

Thus, the Hessian matrix of hR can be expressed as

Hzz = (R− 1)‖t‖1−2R
R

(
CT tR−1(tR−1)TC− ‖t‖RRCTDR−2

t C
)

(2.12)

where Dt is a diagonal matrix with diag(Dt) = t and tR−1 denotes a vector whose

i-th component is tR−1
i , for i = 1, . . . , L.

Using Eq. (2.12) the sensitivity defined in Eq. (2.6) is

s(z, a) = −(R− 1)‖t‖1−2R
R

(
aTCT tR−1(tR−1)TCa− ‖t‖RRaTCTDR−2

t Ca
)

= −(R− 1)‖t‖1−2R
R

((
(tR−1)TCa

)2 − ‖t‖RRaTCTDR−2
t Ca

)
(2.13)

For any decision problem given by cost matrix C and posterior probability vector z,
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any class m satisfying
∑

j

cmjzj = min
n

{∑

j

cnjzj

}
(2.14)

is optimal (because it minimizes the expected cost). Let k be the number of optimal

classes for some z. Note that, if k = 1, z is an interior point of a decision region.

If k > 1, z is a point in the boundary between k decision regions. For large R, the

powers of ti for any non-optimal class i can be neglected, and we can approximate

s(z, a) ≈ −(R− 1)k
1−2R
R t1−2R

m

((
ktR−1
m uTCa

)2 − ktRmtR−2
m aTCTDuCa

)

≈ −(R− 1)k
1−R
R t−1

m

(
k
(
uTCa

)2 − aTCTDuCa
)

(2.15)

where u is a vector with components equal to 1 at the optimal classes, and zero

otherwise, and Du is a diagonal matrix with u in the diagonal.

Analyzing the value of Eq. (2.15), it is not difficult to see that:

1. Far from the boundary: when R→∞, then ‖t‖R → maxi{ti} and

s(z, a)→ 0 (2.16)

2. At the boundary between two or more decision regions, the sensitivity goes to

infinity for any direction a, (because of the factor R− 1 in Eq. (2.15)), unless

some other factor is zero: it is not difficult to see that, for any vector a along

the boundary decision, the right hand side of Eq. (2.15) is zero. Thus, at

each point z in the boundary between several decision regions, the sensitivity

to directions along the boundary tend to zero, while it tends to ∞ for any

orthogonal direction.

Check Figure 2.5 for a graphical interpretation of the role of R. When the value of

R is small, the corresponding entropy is smooth and its curvature varies slowly as we

get closer to the interest region (the boundaries). On the contrary, large values of R

result in a very high curvature around the decision boundaries, and the sensitivity

decreases drastically as we move away from the boundaries.
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Figure 2.5: Sensitivity analysis for large values of R (right) and low values of R (left).

2.4 Asymptotic analysis

Replacing probability vector p by the label vector, y, we obtain the Bregman loss

DR(y, z) = ‖t(y)‖R − ‖t(z)‖1−R
R (tR−1(z))T t(y) (2.17)

The sum of the above expression computed over a set of training samples (as in Eq.

(2.3)) is the objective function that should be minimized.

In order to analyze the behavior of DR for large values of R, we will use an

alternative expression. Let m be the index of the true class (i.e., y = um) and m̂ the

index of the classifier decision given z, i.e.,

m̂ = arg min
i

{
L∑

j=1

cijzj

}
= arg max

i
ti(z) (2.18)

Then, DR can be written as

DR(y, z) = ‖t(um)‖R − ‖t(z)‖R
∑L

i=1 t
R−1
i (z)ti(um)∑L
i=1 t

R
i (z)

(2.19)

2.4.1 Non-separable data

For large R, Eq. (2.19) becomes

lim
R→∞

DR(y, z) = max
i
ti(um)− tm̂(z)

tm̂(um)

tm̂(z)

= cm̂m −min
i
cim (2.20)
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(Usually, mini cim = cmm = 0 and the above limit is cm̂m). Thus, the divergence

converges to the difference between the cost of the classifier decision and the cost

of the correct decision. If the classifier makes the correct decision (i.e., the one

minimizing cim), the divergence is zero. Thus, in the limit, the objective function

given by Eq. (2.3) converges to

lim
R→∞

RR(w) =
K∑

k=1

(
cm̂kmk −min

i
cimk

)
(2.21)

where mk and m̂k represent the index of the true class and the assigned class for

sample xk, respectively. That is, the divergence converges to the difference in the

total classification cost and the minimum achievable cost. In the MAP case, this

equals the number of decision errors.

2.4.2 Separable data

If data are separable, then the limit in Eq. (2.21) is zero for any separating boundary.

In this section we analyze which zero-error boundary is obtained when the loss in

Eq. (2.3) is minimized.

It is interesting to analyze the behavior of this classifier for large R, when the

sample is correctly classified. Though we will restrict our analysis to the MAP case,

we provide a formula for the asymptotic divergence for an arbitrary cost matrix C.

Using Eq. (2.19), we can write

DR(y, z) = ‖t(um)‖R −

(
L∑

j=1

tRj (z)

) 1
R L∑

i=1

tRi (z)∑L
j=1 t

R
j (z)

ti(um)

ti(z)
(2.22)

Consider an arbitrary sample, x, from class m, that is out of any decision boundary.

If decision m̂ in Eq. (2.18) is correct, then maxi{ti(z)} = tm(z), and we can make

first order approximations

tRi (z)∑L
j=1 t

R
j (z)

=
tRi (z)

tRm(z)

1

1 +
∑L

j 6=m
tRj (z)

tRm(z)

≈ tRi (z)

tRm(z)

(
1−

L∑

j 6=m

tRj (z)

tRm(z)

)
(2.23)
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and,

(
L∑

j=1

tRj (z)

) 1
R

= tm(z)

(
1 +

∑

j 6=m

tRj (z)

tRm(z)

) 1
R

≈

≈ tm(z)

(
1 +

1

R

∑

j 6=m

tRj (z)

tRm(z)

)
(2.24)

Using Eqs. (2.23) and (2.24) in Eq. (2.22), we get

DR(y, z) ≈ ‖t(um)‖R

− tm(z)

(
1 +

1

R

∑

j 6=m

tRj (z)

tRm(z)

)
L∑

i=1

tRi (z)

tRm(z)

(
1−

L∑

j 6=m

tRj (z)

tRm(z)

)
ti(um)

ti(z)

= ‖t(um)‖R

−

(
1 +

1

R

∑

j 6=m

tRj (z)

tRm(z)

)(
1−

∑

j 6=m

tRj (z)

tRm(z)

)
L∑

i=1

tR−1
i (z)

tR−1
m (z)

ti(um)

≈ ‖t(um)‖R −

(
1− R− 1

R

∑

j 6=m

tRj (z)

tRm(z)

)
L∑

i=1

tR−1
i (z)

tR−1
m (z)

ti(um)

≈ ‖t(um)‖R − tm(um) +
R− 1

R
tm(um)

∑

j 6=m

tRj (z)

tRm(z)

−
∑

i6=m

tR−1
i (z)

tR−1
m (z)

ti(um) (2.25)

A further approximation can be made if we note that, as R grows, only the terms

with the highest values of tj/tm are relevant. Let n be the index of a “2nd-best” class,

such that n = arg maxi6=m ti(z), and q the number of classes satisfying this condition,

and Q the set of indices of such classes. For large R, we can further approximate

DR(y, z) ≈ ‖t(um)‖R − tm(um) +
R− 1

R
qtm(um)

tRn (z)

tRm(z)

− tR−1
n (z)

tR−1
m (z)

∑

i∈Q

ti(um) (2.26)
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2.4.3 Maximum margin as a limit classifier

Starting from Eq. (2.26), we will show that, in the Maximum A Posteriori (MAP)

case and using an exponential probability map, the classifier minimizing the asymp-

totic divergence tends to behave like a maximum margin classifier. To do so, let us

assume that C = 11T − I (the MAP case), so that t(z) = z, and Eq. (2.26) becomes

DR(y, z) ≈ R− 1

R
q
zRn
zRm

(2.27)

Consider the exponential posterior probability estimate given by

z = fW(x) =
exp(yT (Wφ(x) + b))∑
i exp(uTi (Wφ(x) + b))

(2.28)

where W is a parameter matrix, b is a parameter vector and φ : X → RN ′ is a

nonlinear feature map. In such case, Eq. (2.27) reduces to

DR(y, z) ≈ q exp(R(wn −wm)φ(x) + bn − bm) (2.29)

where wn is the n-th row in W. If Pn,m is the hyperplane defined by the equation

(wn−wm)φ(x)+bn−bm = 0, and d(x, Pn,m) is the euclidean distance (in the feature

space) from φ(x) to Pn,m, we can write

DR(y, z) ≈ q exp(R‖wn −wm‖2d(x, Pn,m)) (2.30)

For the whole training set, we get

RR(W) ≈
K∑

k=1

qk exp(−R‖wnk −wmk‖2d(xk, Pnk,mk))

≈ q` exp(−R‖wn` −wm`‖2d(x`, Pn`,m`)) (2.31)

where ` is the index of the sample in the training set that minimizes the negative of

the exponent,

` = arg max
k

{
‖wnk −wmk‖2d(xk, Pn`,mk)

}
(2.32)
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(if several samples attain this minimum, q` must be replaced by its sum over all that

samples). This expression can be maximized by making ‖wnk −wmk‖2 large (which

is easy to do by multiplying matrix W and b by a constant factor, which does not

modify the decision boundaries). However, imposing some constraints on the size of

W, the minimum of RR(W) is obtained by maximizing the distances from samples

to decision boundaries. Thus, for large R, the classifier optimizing RR(W) tends to

behave as a maximum margin classifier.

The analysis of the non-MAP case is more complex. However, Eq. (2.26) shows

that, for large R, the asymptotical divergence depends critically on the factor tRn (y)
tRm(z)

.

Using an exponential model t(z) ∝ exp(yT (Wφ(x) + b)), it is easy to see that the

divergence sum is similar to Eq. (2.32) and the boundary decision of the optimal

classifier (when data are separable) does not depend on the cost matrix. Though

this may seem surprising, it is in accordance with the boundary decision provided by

other maximum margin classifiers, such as cost-sensitive support vector machines,

which usually include the costs parameters in the slack variables, without apparent

influence when dealing with separable data. In Chapter 4 we will show that this

result is true for a general class of Bregman divergences.

2.5 Examples

In this section we show the results of the experiments carried out to test our approach.

2.5.1 Synthetic data

This example tries to illustrate the difference between minimizing a cost-sensitive

divergence (given by our parametric family Eq. (2.7), BD) and a cost-insensitive

divergence (cross-entropy, CE).

Consider the two-class problem with classes “0” and “1” and the probability map

given by

P (1|x) =
1

3
(Φ(w0

Tx + 2) + Φ(w1
Tx) + Φ(w2

Tx− 2)) (2.33)
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where x ∈ R, w0 = (4, 0), w1 = (2, 2) and w2 = (0, 4). The setting of this example

is a replica of experiment 5.C in [Cid-Sueiro and Figueiras-Vidal, 2001]. Function Φ

is the Logistic function given by

Φ(ξ) =
1

1 + exp(ξ)
(2.34)

Obviously, P (0|x) = 1−P (1|x). An example of the contour-plot of this probabilistic

map is represented in Figures 2.6. Colder colours correspond to higher values of the

posterior probability of class “0”. We generated 8000 training samples uniformly

distributed in the square [−1, 1] × [−1, 1]. The label of every sample was assigned

stochastically according to the previous probability map. A single layer perceptron

(SLP) with soft decisions given by

z0 = Φ(wTx) (2.35)

and z1 = 1 − z0, was used to estimate this map. Since the SLP has not capacity

enough to do it exactly, different Bregman loss functions provide different approxi-

mations.

Learning consists in estimating parameters w by means of the stochastic gradient

minimization of BD and CE. For instance, the stochastic gradient learning rule to

minimize the divergences with a probabilistic model with parameters w is given by

w(k + 1) = w(k)− ρ∇wL(z,y) = w(k)− ρ(y − z)THzz∇wz (2.36)

where ρ is the step size, L is the loss function and Hzz is the Hessian matrix (given

by Eq. (2.12) for BD). This shows the key role of Hzz: the Hessian matrix modulates

the error correcting term in the learning rule.

Figures 2.6, 2.7, 2.8 show the probability map and the decision boundaries for

R = {2, 8, 16} respectively (solid blue line, BD, and solid red line, CE), with a cost

matrix C1 = ( 0 2
1 0 ). Figures 2.9, 2.10, 2.11 show the probability map and the decision

boundaries for R = {2, 8, 16} respectively (solid blue line, BD, and solid red line,

CE), with a cost-matrix C2 = ( 0 1
2 0 ). Two conclusions are clear: BD becomes a
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Figure 2.6: Probability map as defined in Eq. (2.33), R = 2, C1.

Figure 2.7: Probability map as defined in Eq. (2.33), R = 8, C1.
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Figure 2.8: Probability map as defined in Eq. (2.33), R = 16, C1.

Figure 2.9: Probability map as defined in Eq. (2.33), R = 2, C2.
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Figure 2.10: Probability map as defined in Eq. (2.33), R = 8, C2.

Figure 2.11: Probability map as defined in Eq. (2.33), R = 16, C2.
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better approximation when the capacity of the selected architecture is limited and

does not include the optimal boundary. Moreover, as R increases, the boundary

obtained from BD varies its direction towards the optimal boundary.

2.5.2 UCI datasets

We conducted systematic experiments to compare the performance of the proposed

method with a number of existing algorithms: an cost-insensitive architecture based

on the classical CE objective function; oversampling and threshold-moving to train

cost-sensitive architectures (we refer the reader to [Liu and Zhou, 2006] for the de-

tailed description of the comparison methods we use); using datasets from the UCI

repository.

We deal with two different objective functions, CE versus BD, in both cases using

a probability map which computes the probability model given by

zi =
∑

j

zij (2.37)

being

zij =
exp(wT

ijx)∑
l

∑
m exp(wT

lmx)
(2.38)

Both, oversampling and threshold moving algorithms were coupled with the CE

scheme described above. They were selected due to its simplicity and the fact that

in two-class tasks were shown to be effective in cost-sensitive learning, reducing

the misclassification costs. In this case, the results are obtained using a network

architecture with m = 2 in Eq. (2.38); it is the configuration chosen to be trained

with both CE and BD loss functions.

Two datasets from the UCI Machine Learning Repository are used to evaluate

the algorithms: Heart Disease and German Credit data. The description of each

dataset is shown in Table 2.1.

In the same way as [Liu and Zhou, 2006], three types of cost matrices are suitable

with the selected UCI databases, defined as:
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Table 2.1: UCI datasets description (C: continuous).

Data set Size Attribute Class distribution

German 1000 24C 700/300

Heart 303 13C 164/139

1. 1.0 < cij ≤ 10.0 only for a single value j = v and cij 6=v = 1 ∀j 6= i.

2. 1.0 ≤ cij = Vi ≤ 10.0 for each j 6= i. At least one Vi = 1.

3. 1.0 ≤ cij ≤ 10.0 for each j 6= i. At least one cij = 1.

The three conditions are the same in case we work with a binary classification task.

As an example, cost matrices (C) used in the experiments are chosen similar to the

next one:

C =


 0 5

1 0


 (2.39)

The experiments are carried out in the following way: first of all, we generate ten

random cost matrices to estimate the average misclassification cost. Then, a 10-fold

cross validation scheme is implemented: each dataset is partitioned into ten subsets

with similar sizes and distributions, using nine of them as the training set and the

remaining subset as the test set. This procedure is repeated ten times to use each

set as test set at least once. The whole process is then performed for ten random

permutations of the dataset and the average results are recorded as the final results.

Table 2.2 and Table 2.3 summarize the results of our experiments, giving the av-

erage test set error, misclassification cost and standard error for each of the datasets,

and for each of four methods considered. Table 2.2 compares the average error of

all comparison methods. The column corresponding to CI-CE contains the results

of a cost-insensitive algorithm using CE as objective function for comparison. From
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Table 2.2: Average error rate for different classification procedures (BD, CI-CE,

Oversampling and Th. Moving) and different datasets.

Dataset Error rate ( Test)

BD CI − CE Oversampling Th.Moving

German 0.232± 0.032 0.247± 0.031 0.244± 0.061 0.253± 0.041

Heart 0.184± 0.049 0.187± 0.053 0.193± 0.044 0.226± 0.060

Table 2.3: Average cost and standard error for different classification procedures

(BD, CI-CE, Oversampling and Th. Moving) and different datasets.

Dataset Cost ( Test)

BD CI − CE Oversampling Th.Moving

German 43.2± 1.7 57.9± 3.3 45.9± 4.1 47.7± 1.5

Heart 9.1± 0.9 12.1± 1.3 11.7± 2.1 12.3± 1.4

these results, it appears convincing that the designed Bregman divergences family

performs better or equals all the comparison methods we have considered. Table

2.3 compares the performance, in misclassification cost, of the algorithms for both

datasets, which is the main point of interest of our approach. It is confirmed that us-

ing BD in cost-sensitive learning, for high values of R, seems to be a good alternative

to be further developed, which coincides with what was expected by our previous

motivation.

The main conclusion of the performed experiments is that the improvement in

the obtained error rate results is not statistically noteworthy but we can highlight

the behavior in average cost.

Another aspect to be stressed is the difficulty of finding out the optimum value

of R, which is a crucial and decisive factor to get adequate results, as well as a high

sensitive parameter. This problem, together with the drawbacks of the stochastic
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gradient learning rule used to minimize the loss function (in general the algorithm

converges only to a local optimum), points at the necessity of exploring alternative

optimization algorithms.

2.6 Summary

In this chapter we propose a general procedure to train multiclass classifiers for

particular cost-sensitive decision problems, which is based on estimating posterior

probabilities using Bregman divergences. We have proposed a parametric family of

Bregman divergences that can be tuned to a specific cost matrix. Our asymptotic

analysis shows that the optimization of the Bregman divergence for large values of pa-

rameter R becomes equivalent to minimizing the overall cost regret in non-separable

problems, and to maximizing a margin in separable problems. We show that using

the learning algorithm based on Bregman divergences with a simple classifier, the

error/cost results obtained are lower than those given by the cross-entropy solely or

combined with some well-known cost-sensitive algorithms.
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Chapter 3

Cost-sensitive semi-supervised

learning

The one where we change the learning paradigm from supervised to semi-supervised

classification within cost-sensitive learning. Semi-supervised learning is a special

form of learning. Traditional classifiers use only labeled data (feature/label pairs) to

train. However, labeled instances are often difficult, expensive, or time consuming

to obtain, while unlabeled data may be relatively easy to collect. We aim to make

the most of this extra data inside the framework of Chapter 2.

3.1 Introduction

Frequently, even though a large database may be available, only a small fraction of

the data can be labeled for supervised learning. Labeled instances are often difficult,

expensive, or time consuming to obtain, as they require the efforts of experienced

human annotators. Meanwhile unlabeled data may be relatively easy to collect,

but few ways to exploit them are successful. Semi-supervised learning addresses

this problem by using large amounts of unlabeled data, together with the labeled

data, to build better classifiers. Moreover, the sampling process is not always com-
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pletely random and the labeled data do not preserve the statistical features of the

complete dataset. In these applications, extracting information from the unlabeled

data becomes interesting. Because semi-supervised learning requires less human ef-

fort and gives higher accuracy, it is of great interest both in theory and in practice

[Zhu, 2005a, Chapelle et al., 2006].

In general, the discriminative value of the unlabeled data during the learning

process is highly determined by how much statistical information about the sample

space is known a priori. This is the reason why unlabeled date not always helps the

performance. Notice p(x) is usually all we can get from unlabeled data. It is believed

that if p(x) and p(y|x) do not share parameters, semi-supervised learning can not

help. We refer the reader to [Seeger, 2001] for further detail.

Very recently, [Li et al., 2010] proposed the first attempt of a cost-sensitive ap-

proach to binary semi-supervised learning tasks: the cost-sensitive semi-supervised

vector machine (CS4VM ) which considers a SVM-like objective function with un-

equal misclassification costs and the utilization of unlabeled data simultaneously. In

the following sections we describe a more general solution to deal with multiclass

cost-sensitive semi-supervised learning problems.

Our proposal is based on the Entropy Minimization principle (i.e.

[Cid-Sueiro and Figueiras-Vidal, 2001]), which is a widely extended method in semi-

supervised algorithms. For instance, the hyperparameter learning method in Section

7.2 of [Zhu, 2005b] uses entropy minimization. [Lee et al., 2006] apply the princi-

ple of entropy minimization for semi-supervised learning on 2-D conditional random

fields for image pixel classification. In particular, the training objective is to max-

imize the standard conditional log likelihood, and at the same time minimize the

conditional entropy of label predictions on unlabeled image pixels. Furthermore,

we try to establish links with different well-know strategies that avoid changes in

dense regions, such as Transductive SVM (TSVM) [Vapnik, 1998] and Entropy Reg-

ularization [Grandvalet and Bengio, 2004, Chapelle et al., 2006]. On the one hand,

TSVM propose to broaden the margin definition to unlabeled examples, by taking
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the smallest Euclidean distance between any (labeled and unlabeled) training point

to the classification boundary. On the other hand, Grandvalet and Bengio use the

label entropy on unlabeled data as a regularizer.

3.2 Problem formulation

The scenario can be described as follows: consider the set S = SL ∪SU that consists

of the labeled dataset SL = {xk,yk}KLk=1 and the unlabeled dataset SU = {xk}Kk=KL+1,

with KL and KU = (K − KL) i.i.d. samples respectively. Let us define a missing

label indicator Mk (equal to 1 when the label of the k-th sample is available and 0

otherwise). Again, C is the cost matrix with components cij (the cost of deciding in

favor of class i when the true class is j).

Let us take up again the definition of the (cost-sensitive) Bregman loss between

labels and posterior probability estimates

Lh(z,y) = Dh(y, z) = h(z) + (y − z)T∇zh(z) (3.1)

Our objective again is to minimize the expectation of the loss function. Note that

can be expressed as

arg min
w

E{Lh(z,y)} = arg min
w

E{h(z) + (y − z)T∇zh(z)} (3.2)

where the expectation is to be estimated making use of all the available information

in S. Different empirical risks can be defined to solve the problem in Eq. (3.2)

depending on the role we assign the labeled and unlabeled data.

3.3 The Entropy Minimization Principle: derivation

of the criterion

We follow a similar approach as the Entropy Minimization (HM) presented in

[Cid-Sueiro and Figueiras-Vidal, 2001]. By minimizing the entropy on unlabeled
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data, the method is based in the assumption that placing the decision boundaries in

low density regions will improve the generalization (minimal class overlap is desired).

The HM principle stems from the fact that only the second term in the left of Eq.

(3.2) depends on the class labels, and can be simply stated as use unlabeled data to

minimize the entropy. An empirical risk functional based on this is

R1(w) =
1

K

K∑

k=1

h(zk) +
1

KL

KL∑

k=1

(yk − zk)
T∇zh(zk) (3.3)

The mean risk for this expression is

E{R1} = E{h(z)}+ E{(pm − z)T∇zh(z)|M = 1} (3.4)

where pm = p(y|x,M = 1).

An alternative empirical risk based on the HM principle is given by

R2(w) =
1

K

(
K∑

k=1

h(zk) +

KL∑

k=1

(yk − zk)
T∇zh(zk)

)

=
1

K

(
KL∑

k=1

L(yk, zk) +
K∑

k=KL+1

L(zk, zk)

)
(3.5)

Note that the term L(zk, zk) = h(zk) represents the entropy we want to minimize.

It allows to interpret the minimization of R2 as an imputation strategy: posterior

probability estimate zk is assigned to unlabeled data. The mean risk for R2 is

E{R2} = E{h(z)}+ P (M = 1)E{(pm − z)T∇zh(z)|M = 1} (3.6)

Both approaches are particular cases of a more general parametric mean risk

E{Rλ} = E{h(z)}+ λE{(pm − z)T∇zh(z)|M = 1} (3.7)

where λ ∈ R+ regulates the trade-off between the labeled and unlabeled terms.

It is easy to check that we get Eq. (3.6) when we consider λ = P (M = 1) ≈
KL
K

. Obviously, for λ = 1, it becomes E{R1}. Therefore this expression provides a

generalized HM principle.

48



CHAPTER 3. COST-SENSITIVE SEMI-SUPERVISED LEARNING

Note that none of the expectations in Eqs. (3.4), (3.6), (3.7) coincide with the

original Eq. (3.2). In the case of Eq. (3.4), if the data labeling process can be

described as Missing at Random (that is, the missing process is independent of the

values of the missing labels [Little and Rubin, 1987]), then we can disregard the

condition M = 1 and the mean risk will be equivalent to Eq. (3.2). In general, the

mean risks in Eq. (3.6) and Eq. (3.7) will be different from Eq. (3.2), but we consider

them because they seem appropriate alternatives to achieve good performance in

classification.

Example. Synthetic data: HM decision boundary Consider the following

scenario with two classes. Two-dimensional data were generated according to

P{y = 1} = P{y = 0} = 1/2 (3.8)

p(x|y = 1) = N(x−m1, σ
2) (3.9)

p(x|y = 0) =
1

2
N(x−m0,1, σ

2) +
1

2
N(x−m0,2, σ

2) (3.10)

where m1 = (0, −2), m0,1 = (0, 2), m0,2 = (2, 1), N(x, σ2) is the zero-mean Gaus-

sian distribution with variance σ2. We chose σ2 = 1. 2000 independent samples were

generated to minimize a HM empirical risk, using a cost-insensitive version of the

entropy hR (Section 2.3).

The behavior of the Entropy Minimization can be understood examining the

boundary decisions in the sample space shown in Figure 3.1, where all data generated

by the Gaussian with mean m0,2 = (2, 1) missed their labels. As expected, the HM

boundary flows through the low density area that takes into account the unlabeled

data.

This method assumes that the decision boundary should avoid regions with high

p(x). Nonetheless, imagine the data is generated from two heavily overlapping Gaus-

sian, the decision boundary would go right through the densest region, and this

method could perform badly.
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3.3. THE ENTROPY MINIMIZATION PRINCIPLE

Figure 3.1: Entropy Minimization Principle. Sample distribution and boundary de-

cisions. x: class y = 1 points in the training set; ∗: class y = 0 samples in the

labeled set; +: unlabeled samples, belonging to class y = 0. The dashed line rep-

resents the boundary decision obtained using only labeled samples. The continuous

line represents the boundary of the HM method.
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3.4 Related Methods

3.4.1 Entropy Minimization and Entropy Regularization

In Chapter 9 of [Chapelle et al., 2006] and in [Grandvalet and Bengio, 2004], Grand-

valet and Bengio propose an Entropy Regularization method through a Maximum

a Posteriori estimation that enables to address the semi-supervised induction prob-

lem. They notice that the information content of unlabeled data decreases with class

overlap, which can be measured by the conditional (Shannon) entropy of labels given

patterns. Hence, the minimum entropy prior encodes a premise of semi-supervised

induction, that is, the belief that unlabeled data may be useful. The strength of the

prior is controlled by a tuning parameter, so that the contribution of unlabeled ex-

amples to the estimate may vanish. The proposed regularizer can be applied to local

and global model of posterior probabilities. As a result, it can improve over local

models when they suffer from the curse of dimensionality. Grandvalet and Bengio

conclude that minimum entropy regularization may also be a serious contender to

generative methods.

The (binary) MAP estimate is then defined as the maximizer of the posterior

distribution, that is, the maximizer of

C(w) = L(w)− ηHemp(y|x,M = 1)

=

KL∑

k=1

ln p(yk|xk) + η
K∑

k=KL+1

L∑

m=1

p(um|xk) ln p(um|xk) (3.11)

which is closely linked to the generalized HM principle. In fact, for η = 1,

an empirical risk based on Eq. (3.5), choosing h to be the Shannon entropy,

h(z) = −
∑L

i=1 zi log(zi), is exactly the optimization problem proposed by Grand-

valet and Bengio.
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3.4.2 Entropy Minimization and Transductive Support Vector

Machines

Maximal margin separators are theoretically well founded models which have shown

great success in supervised scenarios. Regarding the SVM, only the labeled data

is exploited, and the goal is to find a maximum margin linear boundary in the

Reproducing Kernel Hilbert Space. In the framework of transductive learning, the

objective is to find a labeling of the unlabeled data, so that a linear boundary has the

maximum margin on both the original labeled data and the (now labeled) unlabeled

data. The decision boundary has the smallest generalization error bound on unla-

beled data [Vapnik, 1998]. Intuitively, unlabeled data guides the linear boundary

away from dense regions.

In order to compare our approach to the SVM, we can generalize the result

of the asymptotical analysis (Section 2.4.3) in the supervised separable case with

the Entropy Minimization criterion (assuming that the best boundary occurs in this

situation). Consider the MAP case and the parametric entropy hR(z) given in Section

2.3. Using an exponential probability map for the posterior probability given by

z = fW(x) =
exp(yT (Wx + b))∑
i exp(uTi (Wx + b))

leads to linear classifiers. If we apply the semi-supervised Entropy Minimization

criterion form Eq. (3.5) and impose that the norm of the weights is arbitrarily large,

the margin (distance from the closest samples to the decision boundaries) of that

linear classifiers converges towards the maximum possible margin among all such

linear classifiers as R goes to infinity.

This result can be obtained reconstructing the steps and approximations in Sec-

tion 2.4.3. Asymptotically, for the whole training set, the risk converges to

R(W) ≈ 1

K

(
KL∑

k=1

R− 1

R
qk

(zkn)R

(zkm)R
+

K∑

k=KL+1

zkm

(
1 +

1

R
qk

(zkn)R

(zkm)R

))
(3.12)

where m represents the true class and n is the index of a “2nd-best” class. Note that

the left addend of the expression (labeled data) is equal to Eq. (2.27). The minimum
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of the objective function is obtained by maximizing the distances from both labeled

and unlabeled samples to decision boundaries.

Due to this result, the minimum entropy solution based on Eq. (3.5)

can asymptotically approach the semi-supervised SVM [Vapnik, 1998,

Bennett and Demiriz, 1999] because both methods converge to a solution maxi-

mizing the margin. It promotes classifiers with high confidence on the unlabeled

examples. However, we recall that our objective function is non-convex, so that

the convergence towards the global maximum cannot be guaranteed. Nevertheless

this problem is shared by all inductive semi-supervised algorithms dealing with

a large number of unlabeled data in reasonable time, such as mixture models or

the Transductive SVM of Joachims [Joachims, 1999]. Explicitly or implicitly, most

inductive semi-supervised algorithms impute labels which are somehow consistent

with the decision rule returned by the learning algorithm. The enumeration of all

possible configurations is only avoided thanks to heuristics which may fail.

3.5 Cost-sensitive learning and Entropy Minimization

One of the advantages of the proposed criterion is given by the freedom to choose

the concave function h that will define the divergence to minimize. Different elec-

tions of h result in different properties of the objective function. In our case, the

Entropy Minimization principle described above can be easily particularized for a

cost-sensitive case by just plugging in a cost-sensitive entropy hR (Section 2.3) in the

empirical risk functionals proposed in this chapter.

The optimization is carried out using a quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method instead of the stochastic

gradient descent applied before. All presented semi-supervised learning strategies

show some cases of convergence to wrong local minima. To avoid this, from now

on, a simple solution is implemented: for each simulation, the training process was

performed five times, and the case with the lowest value of the corresponding risk
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functional on the training set was selected.

Example. UCI datasets In this example we provide an empirical evaluation of the

cost-sensitive semi-supervised approach based on Bregman divergences. Using the

same datasets as in Section 2.5, we follow the scenario proposed in[Li et al., 2010].

We compare our method (HM-BD) against the results reported in [Li et al., 2010]

for the semi-supervised version of the cost-sensitive SVM (CS4VM), the supervised

version of the cost-sensitive SVM (CSSVM, using only the labeled training examples),

the supervised version of the cost-sensitive SVM (GT, CSSVM using the labeled

training examples and the unlabeled examples with ground-truth labels), and a cost-

sensitive version of the Transductive SVM (TSVM). GT provides an upper-bound of

performance.

Each dataset is split into two equal subsets, containing the training and test sets.

Each training set consists of ten labeled examples. Since there are too few labeled

examples for a reliable model selection, all the algorithms use the linear kernel. We

choose two versions of divergence-based methods: HM-BD1 with R1 as objective

function and HM-BD2 with R2 as objective function. Regarding the costs, c10 is

fixed at 1 while c01 is set to 2, 5, and 10 respectively. For each case, the experiment

is repeated for 30 times and then the average results are reported. The objective of

this setting is to be able to see how the performance of an approach changes as the

cost varies.

Table 3.1: Average cost and standard error for different semi-supervised classification

procedures and different datasets. Cost Ratio = 2.

Dataset Cost ( Test)

HM −BD1 HM −BD2 CSSVM TSVM CS4VM GT

German 285.33± 32.74 269.95± 25.21 276.7± 27.39 268.2± 45.57 275.0± 28.82 196.6± 8.84

Heart 69.10± 12.25 68.11± 4.38 67.46± 12.58 48.69± 14.30 49.83± 12.08 34.60± 4.43

The results in Tables 3.1, 3.2, 3.3 show that the HM-BD2 performs better o worse

than the state-of-the-art methods depending on the truthfulness of our assumption
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Table 3.2: Average cost and standard error for different semi-supervised classification

procedures and different datasets. Cost Ratio = 5.

Dataset Cost ( Test)

HM −BD1 HM −BD2 CSSVM TSVM CS4VM GT

German 488.16± 63.93 348.83± 35.19 464.4± 76.69 462.9± 85.49 406.40± 63.30 294.4± 21.13

Heart 70.11± 12.73 73.10± 8.36 73.00± 10.77 92.24± 33.03 68.60± 7.61 54.43± 9.00

Table 3.3: Average cost and standard error for different semi-supervised classification

procedures and different datasets. Cost Ratio = 10.

Dataset Cost ( Test)

HM −BD1 HM −BD2 CSSVM TSVM CS4VM GT

German 797.16± 228.67 463.14± 68.11 777.2± 174.60 767.60± 157.40 600.70± 119.30 389.3± 56.62

Heart 89.33± 21.51 84.33± 9.25 79.00± 19.27 147.60± 52.63 75.53± 6.98 71.53± 8.52

in the different datasets. For instance, German Credit is known to be more sepa-

rable than Heart Disease. Unsurprisingly, in Heart Disease, the boundary decision

is pushed towards a low-density region so that it classifies all the training points as

members of the lower-cost class. However, when the assumption holds, the advan-

tages of our method become more prominent as the cost ratio increases. HM-BD1

struggles in the proposed scenario because of the lack of labeled examples in the

training set (R2 relies more on unlabeled data than R1). In real-world problems the

strategy would be based on minimizing a risk functional from Eq. (3.7), choosing λ

by cross-validation to be adapted to the percentage of labeled examples available.

3.6 Extension: An alternative empirical risk estima-

tion principle

The risk functionals described above are not the only options we have of using the

available labels to minimize an empirical risk. For instance, imputations different
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from the one in R2 are also feasible.

One possible option is related to the Maximum Entropy Principle. The maxi-

mum entropy discrimination approach [Jaakkola et al., 1999] maximizes the margin,

and is able to take into account unlabeled data, with SVM as a special case. For

example, [Weston et al., 2006] learn with a universum, which is a set of unlabeled

data that is known to come from neither of the two classes. The decision boundary is

encouraged to pass through the universum. One interpretation is similar to the max-

imum entropy principle: the classifier should be confident on labeled examples, yet

maximally ignorant on unrelated examples. An empirical risk based in this principle

is:

RME(w) =
1

K

(
KL∑

k=1

Lh(yk, zk) +
K∑

k=KL+1

Lh

((
0.5 0.5

)T
, zk

))
(3.13)

This is an interesting line to explore in the future because all indications are that the

method in [Li et al., 2010] could be explained as a cost-sensitive version of this kind

of imputation: Li et al. propose the use of a cost-sensitive version of the standard

hinge loss together with the imputation of the estimated label means of the unlabeled

data.

3.7 Summary

In this chapter we propose a general procedure to train multiclass semi-supervised

classifiers for particular cost-sensitive decision problems, which is based on estimating

posterior probabilities using Bregman divergences. We establish an optimization

problem relying on the empirical risk minimization of a Bregman loss together with

what it is called Entropy Minimization principle. We link our work with two well-

know semi-supervised approaches: Entropy regularization and Transductive SVM.

Under the assumption that inter-class separation is stronger than intra-class sep-

aration, the use of unlabeled data to minimize the average entropy is proposed as a

multiclass cost-sensitive semi-supervised algorithm, with a performance comparable
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with the state-of-the-art in binary classification tasks (when the assumption holds).
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Part III

Cost-sensitive sequences of

Bregman divergences
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Chapter 4

Cost-sensitive sequences of Bregman

losses

The one where Bregman divergences become sequences of Bregman divergences and

some general properties are presented. We intend to extend the family of Bregman di-

vergences that are suitable for cost-sensitive learning. The result is a set of conditions

over what we call sequences of weighted Bregman loss functions. These sequences of

Bregman loss functions can be constructed in such a way that their minimization

guarantees, asymptotically, minimum number of errors in non-separable cases, and

maximum margin classifiers in separable problems. Moreover, a wide family of Breg-

man sequences exists whose minimization provides, asymptotically, classifiers with

minimum (cost-sensitive) risk in non-separable cases. Under very general condi-

tions, these sequences converge to the same maximum margin classifiers in separable

problems. The chapter subsumes the joint work with Jesus Cid-Sueiro and John

Shawe-Taylor [Santos-Rodriguez et al., 2011a].
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4.1 Introduction

Bregman divergences have been successfully translated into the cost-sensitive sce-

nario, by defining Bregman divergences which are specially sensitive to changes near

the decision boundaries (Chapter 2). In situations where the number of samples is

large enough and the capacity of the learning machine is high enough, all proper

losses achieve the same solution (namely, the Bayes classifier). However, this state-

ment is not true when resources are limited. It is key to point out that the election of

the loss function becomes especially relevant when the knowledge about the problem

is restricted or the available train examples are somehow unsuitable (i.e., applica-

tions where the high-cost examples are scarce). In those cases, different loss functions

lead to dramatically different posterior probabilities estimates and tailoring of the

loss becomes very important [Buja et al., 2005]. In Chapter 2 a parametric family of

cost-sensitive generalized entropy measures was defined in such a way that, asymp-

totically, the Bregman divergence associated with that family of functions, computed

over a non-separable set of samples, minimizes to the number of errors. Moreover,

if the dataset is separable, the classifiers minimizing the divergence converge to a

maximum margin classifier.

When estimating a (posterior) probability, a parametric representation of the

probability, o : X → R, which has a natural scale not matching [0, 1], can be used.

This function o can be later converted to a probability estimate through a link func-

tion f−1, leading to a probability estimate f(o(x)). In the literature, f is tradition-

ally referred to as the inverse link. Computationally, it is useful if the composite risk

(between labels and probability estimate) is convex with respect to the parameters.

Despite the nice properties, as we pointed before, a disadvantage of our parametric

family is the fact that, together with an exponential probability map (inverse link),

the resulting optimization problem is non-convex. That is inappropriate because

convex optimization problems are much simpler and easier to be dealt with. The

relationship between convexity and Bregman divergences have been studied recently
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[Nock and Nielsen, 2009, Reid and Williamson, 2009a]. For instance, the optimiza-

tion of other Bregman divergence, the cross-entropy, when combined with an expo-

nential probability map, turns out to be a convex problem. So, if the underlying data

distribution belongs to the model class, then minimizing the 0− 1 loss is equivalent

(asymptotically, in the limit of training samples) to minimizing the cross-entropy

and this divergence stands out as a sensible option. However, for finite samples or

for a model not in the class, different loss functions provide different results and we

saw that our parametric family with an exponential probability map, despite being

non-convex, is still interesting for cost-sensitive learning. Thus, the first question we

will try to answer in this chapter is the following: is it possible to find an inverse

link to get a convex optimization problem using our parametric family?

In addition, we will intend to address another issue: if we regard our parametric

family as a sequence (indexed by the free parameter), our second goal is to find out

whether the properties of this sequence are common to other sequences or not. That

is, we will try to discover if it is possible to find some general forms of sequences

of Bregman losses whose minimization provides minimum (cost-sensitive) risk for

non-separable problems and some type of maximum margin classifiers in separable

cases. The connection between the minimization of Bregman divergence sequences

and maximum margin classification is interesting, because even though all members

of the sequence may be non-convex functions of the model parameters, the minimizer

may converge to a maximum margin classifier, that can be efficiently obtained using

convex optimization methods.

To keep the analysis simple we will describe again the scenario but for binary

problems this time.

4.2 Cost-sensitive learning in binary experiments

In a similar way to Section 2.2, let X be an observation space with classes or labels

i ∈ {0, 1}. In a classic classification problem, a pair (x, y) ∈ X × {0, 1} is generated
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according to a probability model p(x, y). The goal is to predict the class y when only

x is observed.

The probability model p(x, y) is unknown, and only a training set

S =
{

(xk, yk), k = 1, . . . , K
}

of statistically independent samples (drawn from the

given model) is available. The classical discriminative approach to the problem con-

sists in estimating a posterior probability map z = fw(x), where fw : X → [0, 1] is

a function with parameters w, transforming every element of the observation space

into an element of [0, 1], and replace the true posterior probabilities (p) by their

estimates (z).

Note that, although our analysis is restricted to linear decision boundaries, gen-

eral non-linear boundaries can be easily considered by expanding the sample space

with a non-linear transformation t(x) mapping X into a higher dimensional space

t(X ).

In a general setting, a cost ciy(x) can be associated with deciding in favor of class

i when the true class is y and the observation is x. The general decision problem

consists in making decisions minimizing the mean risk

R = E{ciy(x)}

It is well-known that such minimum is reached by taking, for every sample x, class

i∗ such that

i∗ = arg min
i
{(1− p)E{ci0(x)|x}+ pE{ci1(x)|x}} (4.1)

where p = P{y = 1 | x} is the posterior probability of class 1 given sample x. Costs

ciy(x) can be grouped in the cost matrix

C(x) =


 c00(x) c01(x)

c10(x) c11(x)




In particular, taking cij = (1− δi−j), we get i∗ = arg maxi{pi}, which is the decision

rule of the Maximum A Posteriori (MAP) classifier.

Therefore, the risk R is minimized, if x is assigned to class 1, if

p ≥ c10(x)− c00(x)

c10(x)− c11(x) + c01(x)− c00(x)
(4.2)
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holds, and to class 0 otherwise. In (4.2) we have assumed positive regrets c10(x) −
c11(x) and c01(x)− c00(x). It follows that the classification of examples depends on

the cost regrets, not on the absolute cost values. Therefore, without loss of generality,

we will assume zero hit costs, c00 = c11 = 0 and c01, c10 > 0.

Given a training set S =
{

(xk, yk,Ck), k = 1, . . . , K
}

with Ck = C(xk), the em-

pirical risk is defined by

Remp =
1

K

K∑

k=1

cik,yk(x
k) (4.3)

where cik,yk(x
k) is the cost of sample k.

In this chapter we will address the cost-sensitive scenario where the cost matrix

is deterministic and sample-independent, so that C(x) = C and q is the normalized

regret

q =
c10 − c00

c10 − c11 + c01 − c00

.

4.3 Cost-sensitive learning with Bregman Diver-

gences

Let us introduce the concept of Bregman divergence associated with a strictly convex

function. Note that in previous chapters we define the concept of Bregman divergence

in terms of a strictly concave function.

Definition (Bregman Divergence) Given a differentiable strictly convex function

(Bregman generator) φ : A → R defined in the convex set A, and two points p, z ∈ A,

the Bregman divergence D : A×A → R relative to φ is defined as

Dφ(p, z) = φ(p)− φ(z)− 〈∇φ(z), p− z〉 (4.4)

The definition is slightly different from the one in Chapter 2: we saw how Bregman

divergences can be alternatively defined in terms of a function h = −φ, with the
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additional constraints h(i) = 0. In such a case, as we mentioned earlier h can be

interpreted as a generalized entropy (following [Kapur and Kesavan, 1993]).

Now we can simplify the previous definitions. It is easy to see the relation-

ship between the definition of the Bregman divergence and the Taylor expansion

[Reid and Williamson, 2009a].

Theorem 4.3.1 (Taylor’s Theorem) Let [m, s] be a closed interval of R and let

φ be a twice-differentiable real-valued function over [m, s], then

φ(s) = φ(m) + φ′(m)(s−m) +

∫ s

m

(s−m)φ′′(m)dm (4.5)

So, by comparing the equations Eq. (4.4) and Eq. (4.5), an integral repre-

sentation of the Bregman divergence can be inferred from the Taylor theorem

[Cid-Sueiro et al., 1999]. Given a differentiable real-valued strictly convex function

φ and two points p, z, the Bregman divergence relative to φ is

Dφ(p, z) =

∫ p

z

(p− α)g(α)dα. (4.6)

where g = φ′′ is a strictly positive function (g(z) > 0, for any z ∈ (0, 1)).

One of the main properties of Bregman divergences is that they correspond with

the set of Fisher consistent or proper losses [Reid and Williamson, 2009a]. For any

binary random variable Y ∈ {0, 1} with P{Y = 1} = p, the surrogate loss Dφ(y, z)

satisfies

arg min
z∈[0,1]

{Ey∼p{Dφ(y, z)}} = p (4.7)

According to this, given a class M of functions z : X → [0, 1], if the true posterior

probability p is in M, then, for any (strictly convex) φ,

arg min
z∈M
{E(x,y)∼P{Dφ(y, z)|x}} = p (4.8)

(note that p and z are scalar variables in Eq. (4.7) and functions in Eq. (4.8)).

Thus, if the true posterior is in the function class, the choice of φ is not critical, and

standard estimators, as the ML estimate (which is equivalent to φ(p) = p log(p) +

(1− p log(1− p))) can be efficient [Dmochowski et al., 2010].
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However, if p /∈ M, Eq. (4.8) no longer holds, and different choices of φ provide

different estimators.

The second derivative of φ(p) is an indicator of the sensitivity of Dφ to devia-

tions of z from the true posterior, p (Chapter 2). The application to cost-sensitive

learning becomes clear: since accurate posterior probability estimates are critical in

the vicinity of the normalized regret, q, Bregman generators with higher sensitivity

at q may be more efficient for classification than ML estimates.

Example Consider the binary version of the Bregman generator from Section 2.3,

given by

φn(z) = ((c01z)n + (c10(1− z))n)1/n − c01z − c10(1− z) (4.9)

where n ∈ N is a smoothness parameter. It naturally defines a cost-sensitive Bregman

divergence Dφn(y, z). Figure 4.1 shows some plots of the generator and its associated

divergence for different values of n. Note that the highest curvature region varies

with C, achieving greater sensitivity in areas close to q. As n grows larger, the

sensitivity around the boundary increases, but the loss becomes less well-behaved

from a numerical optimization point of view.

Other divergences show a similar sensitivity behavior.

Example The parametric family presented in [Guerrero-Curieses et al., 2005]:

φn(z) = − 1

n
log
(
e−n(c01z) + e−n(c10(1−z)))− 1

n
(nc01z + nc10(1− z)) (4.10)

where where n ∈ N is a smoothness parameter.

Example The Beta loss as defined in [Guerrero-Curieses et al., 2004]:

gn(z) = an(zqn(1− z)(1−q)n) (4.11)

where n ∈ R, an = β((qn+1), (1−q)n+1)−1 (β is the beta function) is a normalizing

constant, ensuring that gn has unit area. The loss function associated with this gn

results in some relevant cases of interest. In particular, Lq=0.5,n=0 is the square error

and Lq=0.5,n=−2 is the cross-entropy (L(z, y) = −y log z − (1 − y) log(1 − z)). It is

easy to check that, when n > 0, the divergence has maximal sensitivity at z = q.
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Figure 4.1: Cost-sensitive Bregman divergence (c10 = 1, c01 = 3). (a) Bregman

generator (φ) for n = 2 (blue) and n = 10 (red), (b) Bregman divergence, n = 2, (c)

Bregman divergence, n = 10.
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4.4 Convexity and Activation Functions

In this section we deal with a question we left open in Chapter 2: is it possible to

find an activation function in such a way that the resulting optimization problem is

convex with respect to the model parameters?

4.4.1 The canonical link

In [Reid and Williamson, 2009a] the authors note that sometimes, when estimating

a class probability p, a parametric representation of z, o : X → R, which has a

natural scale not matching [0, 1], can be used [McCullagh and Nelder, 1989]. This

function o can be later converted to a probability estimate through a link function

ψ, leading to a probability estimate z = ψ−1(o(x)). Th. 4.4.1 is similar to Th. 5

in [Reid and Williamson, 2009a], and demonstrates that choosing ψ = φ′, makes the

resulting Bregman divergence convex with respect to o. In this case, ψ−1 is called

canonical link.

Theorem 4.4.1 Let ψ = φ′. Then for o : X → R the Bregman divergence

Dφ(p, ψ−1(o)) is convex in o.

Details of the proof can be found in [Reid and Williamson, 2009a]. To establish a re-

lationship between g and an activation function f , this condition can be reformulated

in the following way for the binary case.

Corollary 4.4.2 Let g = −φ′′. Then for f = ψ−1(o), fw : im(o)→ R, linear in w,

if g(f(o)) · f ′(o) = 1 the Bregman divergence Dφ(p, f(o)) is convex in w.

Proof Taking the first derivative of Eq. 4.6 with respect to o

∂Dφ(p, z)

∂o
= g(f(o))(f(o)− p)∂f(o)

∂o
= g(f(o))(f(o)− p)f ′(o) = (f(o)− p) (4.12)
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Taking the second derivative with respect to o

∂2Dφ(p, z)

∂o2
=
∂f(o)

∂o
= f ′(o) =

1

g(f(o))
(4.13)

By definition g(z) > 0. So, we check that

∂2Dφ(p, z)

∂o2
> 0. (4.14)

and, if o = ow is parametrized linearly in parameter vector w, the Bregman diver-

gence is also convex with respect to the vector w.

This condition may be useful in the case in which the generator of the Bregman

divergence is given (e.g. the Bregman generator/entropy is chosen to have some

desired properties). Using the corollary, an activation function fw(o) adapted to

the entropy may be chosen. This selection makes the whole minimization problem

convex with respect to the parameters, which is convenient computationally. fw(o)

can be determined by solving the following differential equation:

f ′w(o) =
1

g(fw(o))
(4.15)

In case it is feasible, this procedure provides a tool to find functions that are suitable

to estimate probabilities. Unfortunately, in some cases it is difficult to find a solution

of Eq. 4.15 and most of the times the adapted activation function is not adequate for

classification purposes. The following examples illustrate the relationship between

the Bregman generator φ, its second derivative g and the activation function f .

Example When −φ is set to be the Shannon entropy:

φ1(z) = z log z + (1− z) log (1− z)

Taking two derivatives

g1(z) =
1

z(1− z)

It is well-know that the corresponding loss is the cross-entropy (particular case of

the Beta loss in Eq. 4.11). Using Eq. 4.15 is easy to check that the Logistic function

f1(o) =
1

1 + e−o
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is the canonical link for the cross-entropy:

f ′(o) = f(o)(1− f(o)) =
1

g(fo)

Example Let us obtain the canonical link associated with a given generator function

φ2(z) = −(
√
z(1− z))

Again, taking the second derivative

g2(z) =
1

4z3/2(1− z)3/2

This gn is also a particular case of Eq. 4.11, with q = 0.5 and n = 3. The canonical

link follows this expression

f2(o) = −1

2

(
1− sign(o)

√
(o2(o2 + 1))

(o2 + 1)

)

Example Analogously, consider the generator function given by

φ3(z) = −exp(−erf−1(2z − 1)2)

2
√
π

where erf(x) is the error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt

In this case, the second derivative of the generator is

g3(z) =
√
π exp(erf−1(2z − 1)2)

and the adapted activation function is given by

f3(o) =
erf(o) + 1

2

Example An interesting case is the function that generates the squared loss

φ4(z) = −z(1− z)
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The second derivative of this generator is

g4(z) = 2

In order to satisfy Eq. 4.15, the activation function should be

f4(o) =
1 + o

2

Example Lastly, consider a symmetric case of the example we used to motivate the

beginning of this chapter, Eq. 4.9, with n = 2:

φ5(z) = (z2 + (1− z)2)1/2 − 1

In this case, the second derivative is

g5(z) =
1

(2z2 − 2z + 1)3/2

The canonical link for this function would be

f5(o) = −1

2
− sign(o)

√
−o2(o2 − 2)

2(o2 − 2)

Figures 4.2, 4.3, 4.4 represent the different φ, g and f functions. Note that the first

three examples are cases where the activation function is adapted to classification

tasks while in the last example the domain of activation function is not entirely

satisfactory. The fourth example represents the limit case of the desirable activations

functions.

4.4.2 Convexity and potential functions

In this section we briefly discuss the relationship between activation functions

and convexity from the point of view of potential functions, as described in

[Mora-Jimenez and Cid-Sueiro, 2005]. In this case, we consider the activation func-

tion to be the derivative of a potential function, so that

f = ∇P
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Figure 4.2: Examples of Bregman generator functions

This would allow us to apply all the results from potential theory.

Let us denote by θ∗ the Legendre conjugate of θ defined by

θ∗(u) := sup
z

[vTu− θ(u)] (4.16)

The next theorem reformulates the same ideas of Th. 4.4.1 in terms of potential

functions.

Theorem 4.4.3 Dφ(p, z) is convex with respect to z = f(o) if

P = φ∗ (4.17)

where φ∗ is the Legendre conjugate of the Bregman generator φ.
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Figure 4.3: Examples of the second derivative of Bregman generator functions

Proof From Th. 4.4.1, if f(o) = ψ−1(o), then Dφ(p, z) is convex with respect to

z = f(o). As we know, ψ = ∇φ. Moreover, taking into account that the Legendre

transform satisfies that ∇φ = ∇−1φ∗ (also ∇φ∗ = ∇−1φ), it is straightforward to

state that if P = φ∗, the divergence is convex in f(o).

We can sum up this result in the following relationship

∇P = ∇−1φ (4.18)

[Nock and Nielsen, 2009] makes use of an equivalent result to define a family of func-

tions in such a way that minimizing affine transformations of the Legendre conjugate
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Figure 4.4: Examples of canonical links

of a reflected version of Bregman generators turns out to be equivalent to minimizing

convex surrogates of the empirical risk. This family spans a subclass of the convex

surrogates called permissible convex surrogates. This subset does not include multi-

class nor asymmetric losses. Using the multiclass setting described in Chapter 2 is

immediate to extend the set of permissible convex surrogates to multiclass scenarios

using potential functions and therefore generalize the concept of canonical link.
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4.4.3 An example

This example illustrates the use of the canonical link in a parametric family as those

described in Section 4.3.

For different values of the free parameter n, the canonical link determines different

activation functions. As we know, these activation functions should be defined as

f(o) : R → [0, 1]. However as we have seen in previous examples, it is easy to find

cases where the activation function coming from a canonical link is just defined in

a finite interval. In practice, this forces us to the undesirable situation of having

to normalize the data and encompass the possible value range of the weights of the

classifier. Otherwise, the activation functions are similar to a sigmoid function, which

are easier to deal with.

We present the results for the Beta family in Eq. (4.11). Figures 4.5(a), 4.5(b),

4.5(c) display the functions g, φ′ and the canonical link f for different values of n,

n = {0.05, 0.5, 1, 2, 5}. Check that for values of n < 1 the activation functions are

defined in a infinite interval while for values of n > 1 the activation functions are

defined just in a finite interval. Alternatively, studying the values of n that make g

convex also separates both cases.

We generate 50 1-dimensional data points in such a way that we draw samples

from classes “0” and “1”, where class “0” is characterized as a Gaussian distribution

with 0 mean and standard deviation equal to 3, while class “1” is characterized as

mixture of two Gaussian distributions with means 1 and 2 and standard deviation

equal to 1. The data is then normalized data to lie in a predefined interval, [−0.2, 0.2].

In this setting, we use an extremely simple classifier of the form f(x+w), with only

one free parameter, but useful to visualize 1-dimensional plots. The optimization is

carried out via the well-known Regula falsi method.

First of all, as expected, we can see in Figure 4.5(d) that, in all cases, the loss

function is indeed convex with respect to the weights of the classifier. Figure 4.5(e)

displays the points belonging to both classes together with the cost. For different

values of n, it also illustrates the input/output relationship of the corresponding
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classifier. The second conclusion of the experiment, although unclear, let us say that,

large values of n move the boundary to a position with less number of errors. The

differences are very small but this is the motivation to start studying the behavior of

this kind of sequences for large values of n, even though the canonical links associated

with them are less appropriate.

We conjecture that minimizing divergences with large values of n will lead us

to minimize the total cost. Of course, there is no free lunch. If we decide to go

for high values of n, we must give up using canonical links due to their increasing

inconsistency in those cases (classification-wise). Remember that given up canonical

links means sacrificing convexity. Note that minimizing the total cost is a non-convex

problem and if we aim to get closer to it maybe is reasonable not to impose convexity.
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Figure 4.5: Beta family. Results for different values of n, (a) function g, (b) function

φ′, (c) canonical link f , (d) Loss function, (e) Average cost.
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4.5 Cost-sensitive sequences of Bregman divergences

In Chapter 2 we derived a relationship between a particular multiclass Bregman

divergence and maximum margin. In this section we forget about achieving convexity

through the canonical link and we focus on studying the conditions we need to impose

on Bregman divergences to obtain maximum margin as a limit classifier in general.

This analysis will allow us not to rule out convex optimization methods and determine

the type of margin we can get in an asymmetric scenario as well.

We devote the rest of the chapter to provide some properties to characterize para-

metric cost-sensitive Bregman divergences that maintain the behavior of parametric

family given by Eq. 2.9. We will refer to them as sequences of weighted Bregman

loss functions.

4.5.1 Sequences of weighted Bregman loss functions

We are interested here in sequences of weighted Bregman loss functions Ln(z, y).

Given a sequence of weighting functions gn(z) depending on a parameter n ∈ N,

then Ln(z, y) is a sequence of weighted Bregman loss functions iff it can be written

in the form

Ln(z, y) =

∫ z

y

gn(α)(α− y)dα (4.19)

where gn = φ′′n is a strictly positive function (gn(z) > 0, for any z ∈ (0, 1)).

In general, we are interested in both symmetric and asymmetric loss functions.

Symmetric losses are those verifying Ln(z, y) = Ln(1−z, 1−y) for any z and y. It can

be shown that a symmetric loss function is a Bregman loss iff gn is also symmetric,

i.e.: gn(z) = gn(1 − z). We will consider the symmetric case as a particular initial

case of our study.
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4.5.2 Sequences minimizing the total cost

In this section we present and analyze the asymptotic behavior of the sequence Ln

for large values of n in the case where we deal with non-separable data.

Consider the cost-sensitive loss given by

L̂q(z, y) = q(1− y)ŷ + (1− q)y(1− ŷ) (4.20)

where ŷ = u(z − q) (and u is the step function). Note that, for q = 1/2, L̂q becomes

half the zero-one loss. For any other q, the loss is a cost indicator: for any cost-

sensitive problem with normalized costs q and 1−q, L̂q computes the cost of decision

rule ŷ = u(z− q) (which is optimal if z is the posterior probability of class 1). Given

function fw(x), the total cost computed over sample set S = {(xk, yk), k = 1, . . . , K}
is

R̂q(w) =
K∑

k=1

L̂q(f(xk), yk) = q · ne0 + (1− q) · ne1 (4.21)

where ne0 is the number of errors (NOE) of deciding in favor of class 1 (0) when the

true class is 0 (1).

We will say that f is a separating function for the sample set S if R̂q(w) = 0.

Also, we will say that S is separable by a function class F if there exists a separating

function f ∈ F .

First we show a general condition on a sequence of Bregman divergences to con-

verge to the total cost.

Theorem 4.5.1 Consider the sequence of Bregman losses {Ln(z, y), n = 0, 1, 2, ...}
given by weighting functions {gn(z), n = 0, 1, 2, . . .}, and let Rn(w) be the corre-

sponding sequence of empirical risks given by

Rn(w) =
K∑

k=1

Ln(zk, yk) (4.22)

where yk ∈ {0, 1} and zk ∈ [0, 1]. If gn converges to a delta distribution shifted to

some q ∈ (0, 1) (i.e.,

lim
n→∞

∫ 1

0

f(z)gn(z)dz = f(q) (4.23)
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for any continuous function f), then

lim
n→∞

Rn(w) = R̂q(w) (4.24)

Proof The proof is straightforward. Since Ln is a Bregman Loss, for any n, we can

express Eq. 4.22 as

Rn(w) =
K∑

k=1

∫ zk

yk
gn(α)(α− yk)dα (4.25)

Taking the limit,

lim
n→∞

Rn(w) =
K∑

k=1

lim
n→∞

∫ zk

yk
gn(α)(α− yk)dα

=
K∑

k=1

lim
n→∞

∫ 1

0

gn(α)(α− yk)·

·
(
u
(
zk − α

)
− u

(
yk − α

))
dα

=
K∑

k=1

(q − yk)
(
u
(
zk − q

)
− u

(
yk − q

))

=
K∑

k=1

(q − yk)(ŷk − yk)

=q · ne0 + (1− q) · ne1 (4.26)

In summary, if gn behaves asymptotically as a delta function centered in q, as n goes

to ∞, Rn is minimum for a function minimizing the total cost.

4.5.3 Sequences and maximum margin

If data are separable, the previous analysis shows that, for a large n, Rn is minimum

for a separating function (such that ne0 = ne1 = 0). But the number of such functions
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in the function class may be infinity. In this section we establish some connections

between the minimizers of a sequence of weighted Bregman losses and some kind

of large margin classifiers. To do so, we first state some conditions for which the

empirical risk is dominated by the cost on a reduced subset of samples, providing a

sparse representation of the problem.

To make the analysis independent of a particular function class, we consider

sample multisets1 in the form S = {(zk, yk)| zk ∈ [0, 1], yk ∈ {0, 1}, k = 1, . . . , K}.
Eventually, scalars zk will be the outputs of a particular predictor f for some input

xk. To analyze the asymptotic behavior of Bregman loss sequences, we will focus in

zero-error multisets, whose elements (zk, yk) satisfy yk = u(zk − q), where q is the

decision threshold.

In both the following theorem and its proof, we use the bar symbol “ ¯ ” over an

arbitrary variable z to denote the operation

z̄ = min{z, 1− z} (4.27)

Symmetric losses

The following theorem describes the separable case for losses with decision threshold

q = 1/2 (cost-insensitive).

Theorem 4.5.2 Consider the sequence of symmetric Bregman losses {Ln} given by

their respective symmetric weighting functions gn (such that gn(z) = gn(1 − z), for

any z ∈ [0, 1]). For any multiset S = {(zk, yk)| zk ∈ [0, 1], yk ∈ {0, 1}, k = 1, . . . , K},
let Rn(S) be the empirical loss given by

Rn(S) =
K∑

k=1

Ln(zk, yk) (4.28)

and let MS = arg maxk{z̄k} and let |MS | be the cardinality of MS .

The following conditions are equivalent

1We use multisets instead to sets to allow S to have repeated elements.
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1. For any zero-error multiset S (for decision threshold 1/2) and any m ∈MS ,

lim
n→∞

Rn(S)

Ln(zm, ym)
= |MS | (4.29)

2. For almost any pair (z, z′) ∈ [0, 1]2 such that z̄ < z̄′,

lim
n→∞

gn(z)

gn(z′)
= 0 (4.30)

Proof First we prove that Condition 1 implies Condition 2. Note that the empirical

risk satisfies
Rn(S)

Ln(zm, ym)
= |MS |+

∑

k/∈MS

Ln(zk, yk)

Ln(zm, ym)
(4.31)

Since Ln is symmetric and S is a zero-error multiset, Ln(zk, yk) = Ln(z̄k, 0), for any

k, and we can write

Rn(S)

Ln(zm, ym)
= |MS |+

∑

k/∈MS

Ln(z̄k, 0)

Ln(z̄m, 0)
(4.32)

If (4.29) is true for any S, then, using (4.32) we get

lim
n→∞

Ln(z̄k, 0)

Ln(z̄m, 0)
= 0 (4.33)

for any z̄k, z̄m such that 0 ≤ z̄k < z̄m ≤ 1. This is equivalent to

lim
n→∞

Ln(z̄m, 0)− Ln(z̄k, 0)

(z̄m − z̄k)Ln(z̄m, 0)
=

1

z̄m − z̄k
(4.34)

Since (4.34) is true for any z̄k < z̄m and Ln is a differentiable cost, we can take the

limit

lim
n→∞

lim
z̄k→z̄m

Ln(z̄m, 0)− Ln(z̄k, 0)

(z̄m − z̄k)Ln(z̄m, 0)
=∞ (4.35)

Defining L′n as the first order derivative of Ln(z, 0) with respect to z, and taking into

account that Ln is a Bregman loss given by weighting function gn,

lim
z̄k→z̄m

Ln(z̄m, 0)− Ln(z̄k, 0)

(z̄m − z̄k)Ln(z̄m, 0)
=
L′n(z̄m, 0)

Ln(z̄m, 0)

=
z̄mgn(z̄m)∫ z̄m

0
αgn(α)dα

=

(∫ z̄m

0

αgn(α)

z̄mgn(z̄m)
dα

)−1

(4.36)
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Combining (4.35) and (4.36) we get

lim
n→∞

αgn(α)

z̄mgn(z̄m)
= 0 (4.37)

for all but an enumerable set of values α ∈ [0, z̄m]. This is true for any z̄m ∈ [0, 1/2].

Because of the symmetry of g we get Condition 2.

Now we prove that Condition 2 implies Condition 1. If (4.30) is true for almost

any pair (z, z′) ∈ [0, 1]2 with z̄ < z̄′, then

lim
n→∞

zgn(z)

z̄′gn(z̄′)
= 0 (4.38)

so that

lim
n→∞

∫ z̄′
0
αgn(α)dα

z̄′gn(z̄′)
= 0 (4.39)

and, using the equality relations in (4.36), we get

lim
n→∞

L′n(z, 0)

Ln(z, 0)
=∞ (4.40)

Since Ln is convex, for any z̄ < z̄′

Ln(z̄′, 0) > Ln(z̄, 0) + L′n(z̄, 0)(z̄′ − z̄) (4.41)

Combining (4.40) and (4.41), we have

lim
n→∞

Ln(z̄, 0)

Ln(z̄′, 0)
< lim

n→∞

Ln(z̄, 0)

Ln(z̄, 0) + L′n(z̄, 0)(z̄′ − z̄)
= 0 (4.42)

Thus, using (4.31) and (4.32) we get

lim
n→∞

Rn(S)

Ln(zm, ym)
= |MS |+

∑

k/∈MS

lim
n→∞

Ln(z̄k, 0)

Ln(z̄m, 0)

= |MS | (4.43)

Th. 4.5.2 shows that, for large n, the empirical risk can be approximated as

Rn(S) ≈ |MS |Ln(zm, ym) (4.44)
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provided that Condition 2 is satisfied. This in turn implies that the risk depends

primarily on the loss of the critical samples Ln(zm, ym). In order to minimize the

risk, Ln(zm, ym) should be minimized. Since Ln is convex, this means that ẑm should

be maximized. If zm = f(wTx) with f a sigmoid-type function, this is equivalent to

maximizing the usual margin, defined as the distance from samples to the decision

boundary.

Asymmetric losses

This section describes the asymmetric case (cost-sensitive). First of all let us intro-

duce the definition of order-preserving sequence.

Definition (Order-preserving sequence)

Let L = {Ln, n = 0, 1, ...)} be a sequence of loss functions such that

limn→∞ Ln(1 − y, y) = cy > 0, for y ∈ {0, 1}. Sequence L is order-preserving with

parameter q ∈ [0, 1] if there exists some n0 > 0 such that, for any z, z′ ∈ [0, 1] \ {q},
if y = u(z − q) and y′ = u(z′ − q), either Ln(z, y) ≤ Ln(z′, y′) for all n > n0 or

Ln(z, y) ≥ Ln(z′, y′) for all n > n0.

Note that, if L is order-preserving, we can define the relation z ≺ z′ iff Ln(z, u(z−
q)) ≤ Ln(z′, u(z′− q)) for n large enough. This relation has the following properties:

• It is a preorder: reflexive, antisymmetric and transitive.

• It is complete: for any z, z′ ∈ [0, 1], z ≺ z′ or z′ ≺ z.

If L is a sequence of Bregman losses, the following properties are also satisfied:

• If z, z′ ∈ [0, q] with z 6= z′ and z ≺ z′, then z < z′. This is because Ln(z, 0) is

strictly increasing for any Bregman loss Ln.

• If z, z′ ∈ [q, 1] with z 6= z′ and z ≺ z′, then z′ > z (because Ln(z, 1) is strictly

decreasing for all n)
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Lemma 4.5.3 (Existence of a pairing function)

If the sequence of Bregman Losses L = {Ln, n = 0, 1, ...)} is order-preserving with

parameter q ∈ [0, 1], there exists a map v : [0, 1] → [0, 1] with v([0, q]) ⊂ [q, 1] and

v([q, 1]) ⊂ [0, q] such that, for any z, z′ ∈ [0, 1] with u(z − q) 6= u(z′ − q),

1. If z ≺ z′, then v(z) ≺ z′.

2. If z′ ≺ z, then z′ ≺ v(z).

Proof We complete the proof for z ∈ (q, 1] (and, thus, y = 1). Due to the symmetry

of the problem, the proof for z ∈ [0, q] follows similar steps. For any z ∈ [q, 1] we

define the sets

V−(z) = {z′ ∈ [0, q]| z′ ≺ z} (4.45)

V+(z) = {z′ ∈ [0, q]| z ≺ z′} (4.46)

and we define the extreme values

z− = sup
z
V−(z) (4.47)

(which is well defined because, since 0 ∈ V−(z), V−(z) is never empty), and

z+ =


 infz V+(z), if V+(z) 6= ∅
q, if V+(z) = ∅

(4.48)

Note that, for any z′ ∈ [0, q],

• If z′ ≺ z, then z′ ∈ V−(z) and, thus, z′ ≤ z−,

• If z ≺ z′, then z′ ∈ V+(z) and, thus, z′ ≥ z+,

Since the preorder is complete, for any z′ ∈ [0, q] we have z′ ∈ V−(z) or z′ ∈ V+(z)

and, thus z− ≥ z+.

Note also, that, for any z0 ∈ V−(z) and z1 ∈ V+(z), we have z0 ≺ z ≺ z1 and,

thus, z0 ≤ z1. Thus, z− ≤ z+

Thus, z− = z+. The function v(z) = z− = z+ satisfies the desired properties.
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• If z ≺ z′, then z′ ∈ V+(z), thus v(z) ≤ z′, thus v(z) ≺ z′.

• If z′ ≺ z, then z′ ∈ V−(z), thus z′ ≤ v(z), thus z′ ≺ v(z).

In both the following theorem and its proof, we use the bar symbol “ ¯ ” over an

arbitrary variable z to denote the operation

z̄ = min{z, v(z)} (4.49)

Theorem 4.5.4 Consider the order-preserving sequence (with parameter q) of Breg-

man losses {Ln} given by their respective weighting functions gn. For any multiset

S = {(zk, yk)| zk ∈ [0, 1], yk ∈ {0, 1}, k = 1, . . . , K}, let Rn(S) be the empirical loss

given by

Rn(S) =
K∑

k=1

Ln(zk, yk) (4.50)

and let MS = arg maxk{z̄k} and let |MS | be the cardinality of MS .

The following conditions are equivalent

1. For any multiset S with zero errors with decision threshold q, and any m ∈MS ,

lim
n→∞

Rn(S)

Ln(zm, ym)
= |MS | (4.51)

2. For almost any pair (z, z′) ∈ [0, 1]2 such that z̄ < z̄′,

lim
n→∞

gn(z)

gn(z′)
= 0 (4.52)

Proof First we prove that Condition 1 implies Condition 2. Note that the empirical

risk satisfies (4.31). If (4.51) is true for any S, then, using (4.32) we get

lim
n→∞

Ln(zk, yk)

Ln(zm, ym)
= 0 (4.53)

Since (4.53) must be true for any (zk, yk), (zm, ym) with no errors (yk = u(zk − q)
and ym = u(zm − q)), we can take them such that yk = ym = y, so that

lim
n→∞

Ln(zk, y)

Ln(zm, y)
= 0 (4.54)
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which is true for any zk, zm such that 0 ≤ zk < zm ≤ q or q ≤ zm < zk ≤ 1. This is

equivalent to

lim
n→∞

Ln(zm, y)− Ln(zk, y)

(zm − zk)Ln(zm, y)
=

1

zm − zk
(4.55)

Taking the limit

lim
n→∞

lim
zk→zm

Ln(zm, y)− Ln(zk, y)

(zm − zk)Ln(zm, y)
=∞ (4.56)

Defining L′n as the first order derivative of Ln(z, y) with respect to z, and taking into

account that Ln is a Bregman loss given by weighting function gn,

lim
zk→zm

Ln(zm, y)− Ln(zk, y)

(zm − zk)Ln(zm, y)
=
L′n(zm, y)

Ln(zm, y)

=

(∫ ¯zm

y

(y − α)gn(α)

(y − zm)gn(zm)
dα

)−1

(4.57)

Combining (4.56) and (4.57) we get

lim
n→∞

(y − α)gn(α)

(y − zm)gn(zm)
= 0 (4.58)

for all but a set of values α with zero-Lebesgue measure. Since this is true for any

zm ∈ [0, 1], we get Condition 2.

Now we prove that Condition 2 implies Condition 1. If (4.52) is true for almost

any pair (z, z′) ∈ [0, 1]2 with z̄ < z̄′, then

lim
n→∞

zgn(z)

z̄′gn(z̄′)
= 0 (4.59)

so that

lim
n→∞

∫ z̄′
0
αgn(α)dα

z̄′gn(z̄′)
= 0 (4.60)

and, using the equality relations in (4.36), we get

lim
n→∞

L′n(z, 0)

Ln(z, 0)
=∞ (4.61)

Since Ln is convex, for any z̄ < z̄′

Ln(z̄′, 0) > Ln(z̄, 0) + L′n(z̄, 0)(z̄′ − z̄) (4.62)
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Combining (4.61) and (4.62), we have

lim
n→∞

Ln(z̄, 0)

Ln(z̄′, 0)
< lim

n→∞

Ln(z̄, 0)

Ln(z̄, 0) + L′n(z̄, 0)(z̄′ − z̄)
= 0 (4.63)

Thus, using (4.31) and (4.32) we get

lim
n→∞

Rn(S)

Ln(zm, ym)
= |MS |+

∑

k/∈MS

lim
n→∞

Ln(z̄k, 0)

Ln(z̄m, 0)

= |MS | (4.64)

It is easy to check that both weighting functions given by the Bregman generators

in Eq. (4.9) and Eq. (4.10) satisfy the conditions of the theorems. Also note that

any sequence gn(z) in the form

gn(z) = anb(z)n (4.65)

where an is a normalizing constant (to ensure unit area) and b(z) is bell-shaped

(decreasing around q), satisfies the requirements of the theorem. The next examples

show different functions that can be deduced from Eq. (4.65):

Example Gaussian weighting function.

gn(z) =
1√
2π 1

n

exp

(
−n
(
z − 1

2

)2
)

where the corresponding function b(z) is given by

b(z) = exp
(
−(z − 1/2)2

)

Example Beta loss as defined in Eq. (4.11) but with n ∈ N.

gn(z) = an(zqn(1− z)(1−q)n)

where an = β((qn + 1), (1 − q)n + 1)−1 (β is the beta function) is a normalizing

constant, ensuring that gn has unit area. The corresponding function b(z) is given

by

b(z) = zq(1− z)(1−q)
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The theorem focuses on the study of the behavior of samples xm, where m is

the index of any sample maximizing the value of function gn, that is, gn(zm) =

maxk(gn(zk)). This condition can be thought as a definition of a generalized margin,

in the sense that xm must be a sample that makes z as close as possible to q (where

the value of gn(z) is maximum). This means that gn(z) will be close to gn(p) and,

therefore, z will be close to p (being p the true posterior probability). This is equiv-

alent to saying that the sample xm is close to the boundary according to the metric

defined by the function f .

We can now move towards an analysis based on the standard concept of margin.

Given a dataset S and a linear classifier with separating boundary w, the margin is

defined as

margin(w,S) = min
x∈S

dist(x,w) (4.66)

where dist(x,w) is the Euclidean distance from sample x to the boundary hyperplane

determined by w.

In the particular case in which we consider a posterior probability map z =

f(wTx), for an arbitrary increasing f which is linear in some feature space, and a

function gn(z) locally symmetric around q (e.g., if gn(z) = anb(z)n and b(z) is a

Gaussian function centered in q), then we can state that the sample xm maximizing

the margin(w,S) is the same as the sample maximizing gn(zk). Therefore, if gn(z)

is locally symmetric around q, the minimizer of the Bregman sequence converges to

a maximum margin classifier which does not depend on q.

This is in agreement with some cost-sensitive learning methods based on

weighting samples, that do not modify the decision boundary in separable prob-

lems [Bach et al., 2006, Wu and Srihari, 2003, Davenport et al., 2006]. This fact

makes a difference with respect to threshold shifting methods, such as those

based on shifting decision boundaries depending on the logarithm of cost ratios

[Dmochowski et al., 2010]. We will further explore this issue in Chapter 5.
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4.6 Summary

In this chapter we study some properties of Bregman divergences in binary exper-

iments. First of all, we explore the relationship between Bregman divergences and

convexity through the canonical link. We find that some of the families that are

particularly interesting to us lead to canonical links that are not appropriate for

classification purposes.

This chapter also describes a procedure to approximate cost-sensitive losses using

Bregman divergences. It provides a characterization of the construction of sequences

of Bregman divergences in order to achieve some nice properties in a cost-sensitive

setting. It is desired that their minimization to guarantee, asymptotically, minimum

number of errors in non-separable cases, and maximum margin classifiers in separable

problems.

The asymptotic results in the non-separable case confirm that the described se-

quences of weighted Bregman losses accomplish the first goal: if the weighting func-

tion gn behaves asymptotically as a delta function centered in q, the empirical risk

is minimum for a function minimizing the total cost.

In the separable case, two different weighting functions are considered, starting

with the simplest case (symmetric) and then extending the analysis to the general

case (asymmetric). The main result provides that, under very general conditions, it

is proven that the minimization of sequences of weighted Bregman losses is equivalent

to the maximization of a generalized margin.

One of the goals behind this work was to derive a convex loss from the asymptotic

analysis of the sequence of Bregman divergences. In this respect, a positive result is

achieved in separable problems for a large class of Bregman divergences sequences

(the classifiers converge to a maximum margin classifier which is independent on

the cost), with a negative side (the limit classifier does not depend on the cost

parameters).

These results are coherent with intuition that we have to give up convexity in
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order to approach the non-convex loss in Eq. (4.20) and achieve the minimum total

cost.
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Chapter 5

Learning with example-dependent

costs

The one where we explore the advantages and disadvantages of cost-sensitive se-

quences of Bregman divergences in example-dependent cost scenarios. In this chap-

ter we analyze the problem of designing cost-sensitive classifiers under example-

dependent costs, when complete cost matrices for each sample are available during

training and test. Our proposal consists in estimating the posterior probability map

using a combination of surrogate losses based on Bregman divergences. The contri-

bution of each sample to the empirical risk is given by a loss that depends on the cost

parameters for that sample. Our experiments show that the appropriate choice of

these sample-dependent losses can outperform conventional cost-independent poste-

rior probability estimators, at least in terms of classification performance. Moreover,

we show that probability estimators make a more efficient use of cost information

during training and test with respect to other discriminative approaches, like cost-

sensitive support vector machines. This chapter is a summary of the work with Dario

Garcia-Garcia and Jesus Cid-Sueiro in [Santos-Rodriguez et al., 2011b].
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5.1 Introduction

Most decision problems are intrinsically related to example-dependent costs. By this

we mean that the cost associated with a deciding a label for a given sample depends

not only on the actual and estimated labels, but on the sample itself. Consider

for instance the problem of credit risk classification. The task consist in classifying

borrowers as good or bad clients (more or less likely to return the whole credit). The

cost of each decision can be influenced by a number factors that vary from customer

to customer, including the amount in demand, the duration of the credit or the

previous links between client and entity.

As we mentioned before, the literature in machine classification is mainly devoted

to the cost-insensitive or minimum error probability scenario. However, in a case such

as the one defined above, minimizing the error probability is not the natural choice.

A first approach to go beyond cost-insensitive classifiers consists in introducing de-

terministic label-dependent costs to asymmetrically penalize incorrect decisions and

to reward correct ones [Elkan, 2001a], yielding the standard cost-sensitive learning

scenario. In the credit risk example, this amounts to considering, for example, that

the cost of classifying a risky borrower as good can be much higher that the cost

of classifying a potentially good customer as bad. This is just a special case of the

example-dependent cost learning framework and, as such, considers only a part of

the whole picture.

The example-dependent cost framework has been hardly treated in the litera-

ture. It can be traced back to [Lenarcik and Piasta, 1998] and is also mentioned by

Provost and Fawcett in [Provost and Fawcett, 2001]. Our approach follows mainly

from [Zadrozny and Elkan, 2001a], where misclassification costs are different for dif-

ferent examples in the same way that class membership probabilities are example-

dependent. Zadrozny and Elkan describe domains where both costs and probabilities

are unknown for test examples, so both cost estimators and probability estimators

must be learned. Few other works have dealt specifically with cost-sensitive learning
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with example-dependent costs. In [Brefeld et al., 2003, Zadrozny et al., 2003] the

classical support vector machine (SVM) was extended to handle example-dependent

costs. Very recently [Scott, 2011] studies surrogate example-dependent losses to pro-

vide conditions for the existence of surrogate regret bounds.

In this chapter we consider the application of Bregman divergences as loss func-

tions to generate finely tuned posterior probability estimates in example-dependent

costs scenarios. In our proposal, each sample contributes to the objective function

depending not only on the distance to the boundary but also through its cost. This

way we are able to obtain loss functions which try to accurately approximate the

posterior probability in the areas of interest from a classification perspective, that

is to say, near the optimal classification boundary of the example-dependent cost

problem. This implies that, if the capacity of the learning machine (or, equivalently,

the number of training examples) is limited, our approach automatically optimizes

the classification performance, in contrast with standard losses for probability es-

timation. At the same time, estimating posterior probabilities near the boundary

also allows for a more robust handling of imprecisions in the cost definitions, in

contrast with methods which directly optimize a measure of classification accuracy,

such as the SVM and its cost-sensitive extensions. In this sense, our approach can be

seen as enjoying benefits of both purely classification-oriented methods and standard

posterior probability estimation.

5.2 Cost-sensitive learning with example-dependent

costs

We slightly change the notation in order to make it more suitable for example-

dependent cost scenarios. Let X be a sample space and C the space of 2 × 2 cost

matrices. Let (X, Y,C) be a triple of random variables taking values on X×{0, 1}×C,
according to a joint probability distribution P (X, Y,C). The component ciy of matrix

C ∈ C represents the cost of deciding in favor of class i when the correct class is y.
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The goal of the cost-sensitive classification problem discussed in this chapter is to

predict the correct label y when both sample x and cost matrix C are observed, by

minimizing the expected cost or risk

R = E(x,y,C)∼P{ciy}. (5.1)

For every sample x, the optimal decision maker selects class i∗ such that

i∗(x,C) ∈ arg min
i
{(1− p(x))ci0 + p(x)ci1} , (5.2)

where p(x) = P (Y = 1 | X = x) is the posterior probability function. Assuming

positive regrets c10 − c11 and c01 − c00, it is easy to see that the risk R is minimized

by the assignment

i∗(x,C) = Ip(x)≥q(C), (5.3)

where I denotes the indicator function and q(C) is the normalized regret

q(C) =
c10 − c00

c10 − c11 + c01 − c00

. (5.4)

It follows that the classification depends just on those regrets, not on the absolute

cost values themselves.

In a standard setting, P (X, Y,C) is unknown and only a training set

S =
{

(xk, yk,Ck), k = 1, . . . , K
}

of statistically independent pairs drawn from P and

their corresponding cost matrices Ck =


 ck00 ck01

ck10 ck11


 (or, equivalently, the corre-

sponding regrets) is available. The classical discriminative approach to the problem

consists on estimating a posterior probability map z(x) using sample S. That esti-

mation can be carried out through the Empirical Risk Minimization. The empirical

risk given the samples in S is defined by

Remp =
1

K

K∑

k=1

ckik,yk (5.5)

where ik = Iz(xk)≥q(xk) is the decision for the k-th sample according to z.
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5.3 Example-dependent costs and Bregman diver-

gences

The motivation follows the same reasoning as the ideas presented in Section 4.3. Since

the loss ciy in Eq. (5.1) is neither convex nor differentiable it is then convenient from

a practical perspective to explore the use of other surrogate losses. As we have shown

previously, Bregman divergences are a natural choice.

In the general scenario discussed in this chapter, the threshold q is sample depen-

dent and, thus, there is no single choice of the Bregman generator that is appropriate

for any sample. Our approach in this chapter is based on using a different generator

for each sample. Noting that

E(x,y,C)∼P{DφC (y, z)} = EC∼P{E(x,y)∼P{DφC
(y, z)|C}} (5.6)

Since the inner expectation is minimized by z = p for any C, the whole expectation

is also minimized by p.

Given the above discussion, we propose to optimize the empirical risk based on

Eq. (5.6), given by

R(w) =
1

K

K∑

k=1

Dk(yk, zk) (5.7)

where zk = z(xk), Dk is the Bregman divergence given by generator φCk , and w is

the parameter vector specifying z. Note that each sample is associated with its very

own divergence. R(w) represents the average of these divergences evaluated in their

corresponding samples.

5.3.1 An example

This synthetic example tries to illustrate the difference between minimizing the em-

pirical risk from Eq. (5.7) (from now on, EDBD) and example-independent diver-

gences in a scenario where the capacity of the learning machine is limited. Consider
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the two-class problem with classes “0” and “1” and the probability map given by

p(x) =
1

3

(
Φ(w0

Tx) + Φ(w1
Tx) + Φ(w2

Tx)
)

(5.8)

where x ∈ R2, w0 = (4, 0), w1 = (0, 4) and w2 = (1, 1). The inverse link function

Φ : R → [0, 1] is the logistic function given by Φ(z) = 1/ (1 + exp(z)) The contour-

plot of this probabilistic map is represented in Figure 5.2. Colder colours correspond

to higher values of 1−p(x), the posterior probability of class “0”. We generated 8000

training samples uniformly distributed in the square [−4, 4] × [−4, 4]]. The label of

every sample was assigned stochastically according to the previous probability map.

A single layer perceptron (SLP) with soft decisions given by

z(x) = Φ(wTx) (5.9)

was used to estimate this map. Since the SLP has not enough capacity to do it

exactly, different Bregman loss functions provide different approximations.

Learning consists of estimating parameters w by means of the minimization of

the Bregman divergence using a quasi-Newton method. In this case, the selected

one was the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. In quasi-Newton

methods the Hessian matrix of second derivatives of the function to be minimized

does not need to be computed at any stage. The Hessian is updated by analyzing

successive gradient vectors instead.

Figure 5.1 shows the two cost policies are assigned to the samples depending

on their position in the input space: for points satisfying that their ordinate is

greater or equal than their abscissa, C =


0 3

7 0


; in any other case, C =


0 7

3 0


.

Here, for the purpose of illustrating the advantages of using the proposed approach,

Dφn is the divergence given by the convex function in Eq. (4.9) (but it could have

been replaced with any other cost-sensitive Bregman divergence). The example-

independent divergence is also based on in Eq. (4.9) but makes use of the mean

costs to estimate the posterior probability.
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C =
(

0 3
7 0

)

C =
(

0 7
3 0

)

−4 −3 −2 −1 0 1 2 3 4
−4
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−2

−1

0

1

2

3

4

Figure 5.1: Cost policies assigned in Ex. 5.3.1.

The result of any comparison between Bregman losses depends on how we mea-

sure the quality of a probability estimate. Figures 5.2(a), 5.2(b) and 5.2(c) show the

probability map and the decision boundaries for both cost matrices and n = {2, 4, 8}
respectively. It becomes clear that, as n increases, the boundary obtained from

EDBD varies its direction towards the Bayes solution, while the boundary corre-

sponding to example-independent divergence remains practically unchanged. In this

scenario, our method clearly improves locally the accuracy of the probability esti-

mates. The importance of n is highlighted in the next section.
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(c)

Figure 5.2: Probability map as defined in Eq. (5.8). Dashed line: boundary minimiz-

ing the divergence given by the mean costs; solid line: boundary minimizing EDBD,

(a) n = 2, (b) n = 4, (c) n = 8. 100
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5.4 Convergence to the minimum total cost

In this section we show that the minimization of a empirical risk of the form of

Eq. (5.7) with an adequately chosen Bregman generator leads, asymptotically, to

the minimization of the overall cost regret (or the minimum number of errors in

a cost-insensitive scenario). Note that the following results are asymptotical with

respect to a parameter of the Bregman generator and do not depend on the number

of samples.

Consider the cost-weighted classification loss given by

L̂c(z, y) = c(1− y)ŷ + (1− c)y(1− ŷ) (5.10)

where ŷ = Iz≥c. For c = 1/2 this becomes half the zero-one loss. For any other

constant, the loss is a cost indicator: for any cost-sensitive problem with normalized

costs c and 1− c, L̂c computes the cost of decision rule ŷ = Iz≥c (which is optimal if

z = p). Given a sample set S = {(xk, yk, ck), k = 1, . . . , K}, the corresponding risk

is

R̂c(w) =
K∑

k=1

L̂kc (z
k, yk)) =

K∑

k=1

(ck − yk)(ŷk − yk) (5.11)

We show a general condition on our sequence of Bregman divergences to converge

to the optimal risk.

Theorem 5.4.1 Consider the sequence of Bregman losses {Lkn, n = 0, 1, 2, ...} with

corresponding weighting functions {gkn(z) = ∂2φkn
∂z2

, n = 0, 1, 2, . . .}, and let Rn(w) be

the corresponding sequence of empirical risks given by Rn(w) =
∑K

k=1 L
k
n(zk, yk),

where yk ∈ {0, 1} and zk ∈ [0, 1]. If gkn converges to a delta distribution shifted to ck

, then

lim
n→∞

Rn(w) = R̂c(w) (5.12)

Proof The proof is straightforward. Since Lkn is a Bregman loss, we can express the

empirical risk as Rn(w) =
∑K

k=1

∫ zk
yk
gkn(α)(α − yk)dα (see e.g. [Miller et al., 1991]).
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Taking the limit,

lim
n→∞

Rn(w) =
K∑

k=1

lim
n→∞

∫ zk

yk
gkn(α)(α− yk)dα

=
K∑

k=1

lim
n→∞

∫ 1

0

gkn(α)(α− yk) ·
(
Izk≥α − Iyk≥α

)
dα

=
K∑

k=1

(zk − yk)
(
Izk≥ck − Iyk≥ck

)

=
K∑

k=1

(ck − yk)(ŷk − yk),

(5.13)

The third equality follows from the condition on the convergence to a delta distribu-

tion, which implies limn→∞
∫ 1

0
f(z)gkn(z)dz = f(ck) for any continuous f .

In summary, if the individual generators gkn behave asymptotically as delta distri-

bution centered in ck, as n goes to ∞, Rn converges to the minimum total cost.

The Bregman divergence defined by (4.9) was shown in Chapter 2 to satisfy the

conditions of the above theorem. Thus, for large n, the empirical risk in (5.7) con-

verges to the total empirical cost. On the other hand, smaller values of n provide

smoother approximations to the total cost. This way, n provides a “knob” to adjust

the behaviour of the empirical risk between a generalized 0-1 loss and numerically

and analytically better-behaved versions.

5.5 An application: Credit risk classification

In this section we show the results of experiments carried out to test our approach. To

demonstrate the effects of the example dependent costs , we have conducted experi-

ments in a real-world dataset of credit risk classification. Throughout the section we

keep the architecture and optimization procedure of Section 5.3.1: a hypothesis class

based on Eq. (5.9) and the BFGS method to minimize the objective function. We
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utilize the example-dependent cost SVM (EDSVM) proposed in [Brefeld et al., 2003]

as reference for comparison.

EDSVM extends the standard SVM formulation by adding example-dependent

coefficients for the slack variables:

min
w,b,ξ

1

2
||w||2H + λ


 ∑

k:yk=1

c01(xk)ξmk +
∑

k:yk=0

c10(xk)ξmk


 (5.14)

s.t. yk
(〈

w, ψ(xk)
〉

+ b
)
≥ 1− ξk and ξk ≥ 0 (5.15)

For samples with a margin smaller than 1, ξk represents how much the example

fails to fulfill the margin requirement, and it is then weighted with the cost value of

the sample. For m = 2 we recover the 2-nom EDSVM. In this case, it is shown in

[Brefeld et al., 2003] that the EDSVM converges to the Bayes rule for large training

sets. Note that the SVM optimizes the hinge loss, which is widely known not to be a

proper loss. This implies that SVMs bypass the probability estimation and directly

aims at optimizing the classification performance [Buja et al., 2005].

5.5.1 German credit

The German credit dataset consists of 1000 instances, 700 of which correspond to

creditworthy applicants and the other remaining to applicants to whom credit should

not be extended. Each applicant is described by 24 attributes describing the status

of existing accounts, credit history records, loan amount and purpose, employment

status and an assortment of personal information. We use the purely numerical

version of the dataset, provided by Strathclyde University. We will examine both

EDSVM and EDBD on the numerical version and we will use some information from

the symbolic attributes to computed the costs (exact quantity and period of the loan).

The task consists of classifying customers in bad or good clients. Let us consider

a simplified cost policy. Classifying a good credit customer as bad incurs a loss of

ck10 = Qk · ((1 + i)t
k − 1). where i represent a quantity related to the interest rate, Qk
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Table 5.1: Total average loss for each method on the German Credit dataset (K$).

EDBD EDSVM

113.67± 8.04 114.13± 7.36

is the amount of the loan and tk is the period of the load for sample k. Equivalently,

classifying a bad credit customer as good incurs a loss of ck01 = Qk. We chose i = 0.05

but any other value behaves similarly. To compare the performance of EDSVM and

EDBD, a linear kernel is selected for the first and a linear model is chosen for the

second. The training set and the test set contain the same number of samples. The

slack penalty λ is fixed using cross validation. Regarding the election of n, we start

with a small value and then we increase it progressively, following the philosophy

of continuation methods [Allgower and Georg, 1990]. The results displayed in Table

5.1 show that the two algorithms perform very similarly.

However, there are several advantages in using EDBD instead of EDSVM (and re-

lated methods). Firstly, EDSVM suffers in scenarios where costs consist of a example-

dependent part and a random term (i.e. the costs are noisy). Let us model the addi-

tive random term as a Rayleigh distribution ( p(x;σ) = x/σ2 exp (−x2/2σ2), x ≥ 0)

while the example-dependent term remains the same. Table 5.2 shows the effect of σ

in the performance of both methods. As σ increases, the performance of the EDSVM

degrades since it can not handle test costs which differs from the training ones. Even

inserting the costs as features for learning (ED2SVM) does not help. However, EDBD

behaves in a more robust manner since it can naturally take into account the test

costs in the Bayes decision framework. Note that the mean cost increases with σ be-

cause of the non-zero mean of the chosen Rayleigh distribution. In our formulation,

we assume that the cost information is available in test (at least partially). If this is

not the case then we should also estimate the costs [Zadrozny and Elkan, 2001a].

Secondly, the technique of biased penalties included in the EDSVM optimization
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Figure 5.3: Separable training set: EDBD (red line), EDSVM (black line).

leads to an obvious problem. It has a limited ability to enforce cost-sensitive behavior

when the training data is separable. Even for large slack penalty λ, the slack variables

ξk are zero-valued and the optimization degenerates into that of the standard SVM,

where the decision boundary is placed just in between the two classes, instead of

moving the boundary far from the high-cost examples. This is solved when using a

method based on Bayes decision theory. For instance, Figure 5.3 shows an example

of a training set where the data are separable. The costs are defined as

cko+ = 1/(1 + e−x
k
1 )

and

ck+o = 1/(1 + ex
k
1 )

where xk1 is the abscissa of the sample k.

Note that SVM-based methods for example-independent cost-sensitive

learning have been studied in [Karakoulas and Shawe-Taylor, 1999,
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Table 5.2: Total average loss for each method on the German Credit dataset with

noisty costs (K$).

σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 3

EDBD 208.11± 10.21 311.25± 13.26 427.44± 42.74 673.29± 75.32 919.51± 92.88

EDSVM 219.09± 9.65 325.07± 10.28 532.69± 31.34 789.14± 101.98 1144.36± 88.97

ED2SVM 231.15± 9.20 336.11± 10.01 542.93± 28.42 769.82± 91.26 1141.17± 88.31

Masnadi-Shirazi and Vasconcelos, 2010], and their ideas could potentially be

extended to a example-dependent cost scenario, even though the boundary

movement does not arise in such a natural way as in the Bayes decision framework.

5.6 Summary

Example-dependent cost scenarios are pervasive and generalize standard minimum-

error and (class-dependent) cost-sensitive classification. We have explored the appli-

cation of Bregman divergences to learning in example-dependent cost scenarios. The

key idea is to associate each sample in the training set with its very own divergence,

which intrinsically reflects the cost structure of the corresponding sample. Then, a

global divergence is constructed by averaging the individual divergences. Optimiz-

ing this global divergence leads to posterior probability estimates which are specially

accurate near the optimal boundary of the example-dependent cost-sensitive classi-

fication problem.

This approach naturally exploits the capacity of the learning machine for classi-

fication purposes, by focusing that capacity on most interesting area of the posterior

probability map. This way, we can enjoy benefits of both classification-based meth-

ods (SVMs) and posterior probability estimation methods. As an example of this,

experimental results show that the performance of our proposal is similar to that
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of an example-dependent cost sensitive SVM when the costs are perfectly specified.

However, when the costs are noisy the divergence-based method clearly outperforms

the SVM, due to its decision-theoretic roots. The extension of the proposed approach

to multiclass problems is straightforward, since Bayes decision theory handles those

scenarios gracefully.
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Chapter 6

Conclusions and future research lines

The last one. This chapter compiles the most relevant conclusions of this work and

outlines the future research lines and application fields.

6.1 Conclusions

This dissertation was devoted to the study of cost-sensitive learning in general and

cost-sensitive classification in particular. Contrary to most of the algorithms that

pursue to minimize the error rate, we focused on minimizing the cost of our deci-

sions, which turns out to be a much more realistic situation. The background and

motivation of the Thesis was briefly depicted in Chapter 1.

The main goal of the Thesis was to provide with a wide framework for cost-

sensitive classification based on Bayes decision theory. Throughout previous chap-

ters, we addressed the application to cost-sensitive learning of a well-known family

of measures, the so-called Bregman divergences. The flexibility that this formulation

achieves was proven to be vast: we dealt with a large range of scenarios, covering su-

pervised and semi-supervised learning, binary and multiclass problems, all together

with example-dependent and class-dependent costs. The key idea behind this work

can be condensed as the establishment of a link between each individual sample or set

111



6.1. CONCLUSIONS

of samples in a training set and their very own specific divergence, perfectly adapted

to their costs. Thereby, the loss function associated with this divergence intrinsically

reflects the structure of the cost information given in the problem. Optimizing the

resulting loss function leads to posterior probability estimates that are particularly

sensible and accurate near the optimal decision boundaries. This approach makes the

most of the natural capacity of learning machines in classification tasks, emphasizing

the most relevant areas of the posterior probability map.

The main conclusions we can extract from the Thesis, according to the different

contributions are listed below.

• In Chapter 2 we proposed a general procedure to train multiclass classifiers

for particular cost-sensitive decision problems, which was based on estimating

posterior probabilities using Bregman divergences. We designed a parametric

family of Bregman divergences that can be tuned to a specific cost matrix.

We showed that the highest curvature region of these divergences varies with

C, achieving greater sensitivity in areas close to the decision boundaries. As

R grows larger, the sensitivity around the boundary increases, but the loss

becomes less well-behaved from a numerical optimization point of view.

• Our asymptotic analysis demonstrated that the optimization problem based on

the parametric family of Bregman divergences became equivalent to minimizing

the overall cost regret in non-separable problems, and to maximizing a margin

in separable problems.

• Additionally, we showed that using the learning algorithm based on Bregman

divergences with a simple linear classifier, the error/cost results obtained are

comparable to (or better than) those given by the cross-entropy solely or com-

bined with some well-known cost-sensitive algorithms. A major drawback was

the optimization stage, as the problem is non-convex in general.

• In Chapter 3 we proposed a general procedure to train multiclass semi-

supervised classifiers for particular cost-sensitive decision problems, which was
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also based on estimating posterior probabilities using Bregman divergences. We

established an optimization problem relying on the empirical risk minimization

of a Bregman loss together with what is called Entropy Minimization principle.

We linked our work with two well-know semi-supervised approaches: Entropy

regularization and Transductive SVM. Under the assumption that inter-class

separation is stronger than intra-class separation, the use of unlabeled data to

minimize the average entropy is proposed as a multiclass cost-sensitive semi-

supervised algorithm (the first one up to our knowledge), with a performance

comparable with the state-of-the-art in binary classification tasks.

• Due to the results in supervised and semi-supervised learning for our para-

metric family of Bregman divergences, in Chapter 4 we decided to broaden the

approach in several directions: can we find an inverse link (activation function)

in order to obtain a convex optimization problem? To answer the question we

presented a some results concerning the canonical link and analyzed some ex-

amples. We also established some links with potential functions. The answer

to this first question was not entirely positive but allowed us to motivate the

need for a further the study of the sequences of Bregman divergences.

• Then, we wanted to address the following two additional questions: is it possi-

ble to define other cost-sensitive Bregman divergences that also minimize the

total cost in non-separable problems? is there a connection between maximum

margin classifiers and Bregman divergences under more general conditions?

We derived some results about the identification and characterization of se-

quences of Bregman divergences that are suitable in the cost-sensitive context.

In particular, we found some very general conditions to define sequences whose

minimization provides minimum (cost-sensitive) risk for non-separable prob-

lems and some type of maximum margin classifiers in separable cases.

• The final generalization involved substituting the once-deterministic cost ma-

trices with example-dependent cost matrices. While previous results had been
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based on the assumption that misclassification costs were equal for all sam-

ples, in Chapter 5 we extended the cost-sensitive sequences of Bregman diver-

gences to tackle non-deterministic cost matrices and studied their performance

in both synthetic and real data. In our proposal, each sample contributed to

the objective function depending not only on the distance to the boundary but

also through its cost. This chapter was particularly interesting because the

example-dependent cost framework has been hardly treated in the literature.

Let us highlight that the proposed method benefits from advantages belonging to

classical discriminative classification methods, such as SVMs, as well as those from

methods that rely on probability estimation. Along the chapters we showed several

examples, namely, the relationship with maximum margin classifiers, the asymptotic

results on the minimization of the total cost or the possibility of using the costs in

test (when available).

6.2 Future research lines

This very last section of the Thesis compiles the on-going and future research lines.

1. Improve the cost information: Throughout the Thesis we realized the

importance of what we mentioned right in the beginning of Chapter 1: in non-

synthetic problems, the cost is often a non-homogeneous measure, consisting of

a mixture of factors. Therefore, evaluating the costs is a non-trivial task and

is the main reason why cost information is not widely available in benchmark

datasets. For this reason our experiments were restricted to synthetic data and

just a few examples of real-world data (UCI). Therefore, we aim to conduct

further experiments in real-world datasets with real costs and that means start

looking for new datasets and new applications of cost-sensitive learning where

this information is available.

Additionally, given the different costs defined in Chapter 1, we should consider

how different types costs, other than, misclassification costs can be taken into
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account: we are missing the cost of acquiring data, the cost of labeling data

and many others. Make our model complex enough to deal with some of them

is a great challenge.

2. Comparative study of the performance of different sequences of Breg-

man divergences: We defined different sequences of Bregman divergences

based on [Santos-Rodriguez et al., 2009c, Guerrero-Curieses et al., 2005,

Guerrero-Curieses et al., 2004]. Even though they share a common asymptotic

behavior, providing minimum cost in non-separable problems a maximum

margin in separable data, the study of other properties would be interesting.

In cost-insensitive learning, some divergences guarantee a faster convergence

rate or might preserve sparsity better than others. We are looking for further

properties to decide which divergence we should apply to different scenarios.

3. Extension to clustering: In Chapter 3 we proposed the following expectation

to be minimized

E{Rλ} = E{h(z)}+ λE{(pm − z)T∇zh(z)|M = 1}

Remember that the role of λ is to adjust the trade-off between la-

beled and unlabeled data. This parameter poses the possibility of

learning from partially labeled data, with clustering as the limit sce-

nario. Clustering deals with finding a structure in a collection of unla-

beled data and organize samples into groups whose members are similar

in some way [Hastie et al., 2003, Garcia-Garcia and Santos-Rodriguez, 2011,

Garcia-Garcia and Santos-Rodriguez, 2009].

A different approach based on the concept of Bregman information (Section

B.5) was successfully explored for clustering in [Banerjee et al., 2005b]. Mix-

ing cost-sensitive learning and clustering is somehow related to the well-know

weighted K-means and similar algorithms [Dhillon et al., 2004], where a natu-

ral extension of the K-means problem allows us to include some information,
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namely, a set of weights associated with the data points. These might represent

a measure of the cost. The intent is that a point with a weight of 5.0 is twice

as important as a point with a weight of 2.5, for instance.

4. Extension to active learning: The key idea behind active learning

[Settles, 2009] is that a machine learning algorithm can achieve greater ac-

curacy with fewer training labels if it is allowed to choose the data from which

it learns. An active learner may pose queries, usually in the form of unlabeled

data instances to be labeled by an oracle (e.g., a human annotator). Active

learning is well-motivated in many modern machine learning problems where

unlabeled data may be abundant or easily obtained, but labels are difficult,

time-consuming, or expensive to obtain. There is a clear cost information as-

sociated with the value of obtaining labels. The cost of each new query could

potentially be introduced in our model.

5. Connections between cost-sensitive learning, reinforcement learning

and on-line learning: This three topics share some points in common. Re-

inforcement learning ([Sutton and Barto, 1998, Kaelbling et al., 1996]) is con-

cerned with how an agent ought to take actions in an environment so as to

maximize some notion of cumulative reward. Reinforcement learning differs

from standard supervised learning in that correct input/output pairs are never

presented, nor sub-optimal actions explicitly corrected. Further, there is a

focus on on-line performance, which involves finding a balance between ex-

ploration (of uncharted territory) and exploitation (of current knowledge). In

our case, we deal with costs instead of rewards. Also the example-dependent

cost framework presented in Chapter 5 seems to fit well with on-line learning.

Our problem could then be formulated as taking decisions so as to minimize a

cumulative cost.

6. Learn costs and posterior probabilities jointly in a high-dimensional

space: Other promising approach consists in unifying the example-dependent

116



CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH LINES

framework in Chapter 5 and [Zadrozny and Elkan, 2001a], where both costs

and probabilities in test are unknown. In our work we assume that the cost

matrix for each test sample is given. In many problems that could not be the

case and we would need estimate the example-specific misclassifications costs as

well as the example-specific class probabilities. The task of estimating the costs

could be even more important than the probability estimation itself. In a first

approach to the problem we can use a vanilla linear regression to estimate the

costs as in [Zadrozny and Elkan, 2001a]. An alternative more sophisticated ap-

proach would involve Multiple Kernel Learning [Bach et al., 2004] to estimate

both costs and probabilities in one step.

7. Explore the connections with related families of divergences:

[Reid and Williamson, 2011] clarifies the relationship between Bregman di-

vergences and other families of divergences, such as the f -divergences

[Ali and Silvey, 1966] and the (f, l)-divergences [Garcia-Garcia et al., 2011]

presented in Appendix B. This link opens an unexplored line to make the

most of the properties, tools and bounds defined for f -divergences and utilize

them for Bregman divergences and cost-sensitive scenarios.

8. Definition of an extended learning paradigm: Apart from supervised,

semi-supervised and unsupervised learning, regarding the relationship between

training and test we can distinguish between induction and transduction.

Roughly speaking, inductive inference is concerned with the estimation of a

model based on data from the whole problem space and using this model to

predict output values for a new input vector, which can be any point in this

space. In contrast to the inductive inference, transductive inference methods

estimate the value of a potential model only for a specific set of points of the

space utilizing additional information related to this set.

We are interested in a learning setting where three types of data are given:

labeled data, unlabeled data and objective data (half-way between semi-
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supervised learning and transductive learning). Consider the set S = SL ∪
SU ∪ ST that consists of the labeled dataset SL = {xk, yk}KLk=1, the unlabeled

dataset SU = {xk}KL+KU
k=KL+1 and the objective set ST = {xk}Kk=KL+KU+1, with

KL, KU , KT = (K − KL − KU) samples respectively. Note that we expect

the samples in SU to be i.i.d but we do not impose the same constraint on

the samples in ST . For instance, based on the Entropy Minimization principle,

consider the following empirical risk functional

RTS(w) =

KL∑

k=1

α(xk,ST )Lφ(yk, zk) + λ

KL+KU∑

k=KL+1

α(xk,ST )Lφ(zk, zk)

where α is a function measuring the distance from input examples xk to the

objective set ST and λ ∈ R+ regulates the trade-off between the labeled and

unlabeled terms. Note that the term Lφ(zk, zk) = −φ(zk) represents a gener-

alized entropy. Therefore, the unlabeled set SU acts as a regularizer, pushing

the solution to low-density regions. The unlabeled objective set SU reinforces

the weight of the samples that are close to the targets. Note that the targets

are not taken into account in the estimation because they are not forced to be

i.i.d.
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Appendix A

Some properties of Bregman

divergences

In this appendix we present some interesting properties of Bregman divergences. We

refer the reader to Appendix A in [Banerjee et al., 2005b] for additional properties.

Let φ be a strictly convex and differentiable function, then Bregman divergence

between x, y ∈ domφ is

Dφ(y, x) = φ(y)− φ(x)− (y − x)T∇φ(x) (A.1)

Remember that the Bregman divergence is the vertical distance at y between the

graph of φ and the tangent to the graph of φ in x.

Some useful properties can be easily derived from the definition of Bregman

divergence.

Non-negativity

Dφ ≥ 0 (the tangent to the epigraph is always below the graph)

Convexity

The divergence is convex in y (due to the convexity of φ)
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Linearity

Linear in φ (by definition)

Invariant to the addition of affine functions

Dφ+bT x+c = Dφ (by definition)

Linear separation

{x|Dφ(x, u) = Dφ(x, v)} is a hyperplane.

Proof

Dφ(x, u) = Dφ(x, v)

φ(x)− φ(u)− (x− u)T∇φ(u) = φ(x)− φ(v)− (x− v)T∇φ(v)

xT (∇φ(u)−∇φ(v))− [uT∇φ(u)− vT∇φ(v)− φ(u)− φ(v)] = 0

This last equation defines a hyperplane.

Expected value of a Bregman divergence

arg minu Ep[Dφ(X, u)] = Ep[X] ≡ µ for any probability distribution p over X.

Proof Denote J(u) = Ep[Dφ(X, u)], then,

J(u)− J(v) =
∑

x

p(x)Dφ(x, u)−
∑

x

p(x)Dφ(x, µ)

=
∑

x

p(x)(φ(x)− φ(u)− (x− u)T∇φ(u)− φ(x)− φ(v)− (x− v)T∇φ(v))

= φ(µ)− φ(u)−

(∑

x

p(x)x− u

)T

∇φ(u)−

(∑

x

p(x)x− µ

)T

∇φ(µ)

= φ(µ)− φ(u)− (µ− u)T∇φ(u)

= Dφ(u, µ)
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Convex duality (1)

Let φ∗(θ) = supu [θ ·u−φ(u)] be the Legendre conjugate of φ(u). Then Dφ(u1, u2) =

Dφ∗(θ1, θ2)

Proof

Dφ(u1, u2) = φ(u1)− φ(u2)− (u1 − u2)T∇φ(u2)

= φ(u1)− φ(u2)− (u1 − u2)T θ2 + (µT1 θ1 − µT1 θ1)

= [−µT1 θ1 + φ(µ1)] + [µT2 θ2 − φ(µ2)]− µT1 θ2 + µT1 θ1

= −φ∗(θ1) + φ∗(θ2)− µT1 (θ2 − θ1)

= Dφ∗(θ2, θ1)

Convex duality (2)

Dφ(u, v) = Dφ∗(∇φ(v),∇φ(u)) (consequence of convex duality (1) and ∇φ∗ =

(∇φ)−1)

Generalized Pythagorean Theorem

Dφ(u, v) ≥ Dφ(u, z) +Dφ(z, v) + (u− z)T (∇φ(z)−∇φ(v)) (by definition)
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f and (f, l)-divergences

In this appendix we describe other well-know families of divergences that are closely

related to Bregman divergences, such as f -divergences [Csiszár, 1967] and the (f, l)-

divergences we derived in [Garcia-Garcia et al., 2011]. To do so we first introduce

the standard notation for these divergences, some definitions and properties.

B.1 Notation and definitions

Let P,Q be a pair of probability distributions, and M their convex combination

M := πP + (1 − π)Q for π ∈ [0, 1]. Given a classification task (π, P,Q) whose goal

is to assign labels Y = 1 to points coming from P and Y = 0 to points from Q,

we denote by η = P (Y = 1|X = x) and η̂ the posterior class probability and its

estimate, respectively. The representations (π, P,Q) and (η,M) are interchangeable.

We write EP [f ] for the expectation of a function f(x) of a random variable x ∼ P .

Let l be a loss function l : {0, 1} × [0, 1]→ R. The point-wise risk Ll associated to l

is given by Ll(η(x), η̂(x)) = η(x)l(1, η̂(x)) + (1− η(x))l(0, η̂(x)), and the (expected)

risk Ll is thus Ll(η,M) = EM [Ll(η(x), η̂(x))]. Optimal or Bayes risks are denoted

by an underline, so Ll(η(x)) = inf η̂(x) Ll(η(x), η̂(x)) and Ll(π, P,Q) = Ll(η,M) =

EM [Ll(η(x))]. The prior Bayes risk is the optimal risk when only the prior class
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probability π is known Ll(π) = Ll(π).

B.2 f-divergences

In this section we recapitulate definitions and known facts about f -divergences.

Given a convex function f : (0,∞) → R, with f(1) = 0, the corresponding f -

divergence [Ali and Silvey, 1966] between two probability distributions P,Q over an

input space X is defined as

If (P,Q) = EQ

[
f

(
dP

dQ

)]
=

∫

X
dQf

(
dP

dQ

)
,

if P is absolutely continuous with respect to Q, and∞ otherwise. Many well-known

divergences can be cast into this framework by adequately choosing the generating

function f . Some important examples include the variational, Kullback-Leibler (KL)

and Pearson’s χ2 divergences.

Our discussion will be based mainly on a classical result (see e.g.

[Österreicher and Vajda, 1993]) that shows how f -divergences can be represented

by a weighted integral of statistical informations ∆L0−1(π, P,Q) under the 0-1 loss.

These informations can be intuitively interpreted as the risk reduction provided by

the knowledge of the exact posterior probability η instead of just the prior probability

π. They are defined as

∆L0−1(π, P,Q) = L0−1(π)− L0−1(π, P,Q)

= min(π, 1− π)− L0−1(π, P,Q).

The integral representation of f -divergences is given by

If (P,Q) =

∫ 1

0

∆L0−1(π, P,Q)γf (π)dπ, (B.1)

where the weight function γf (π) is related to the curvature of the function f defining

the divergence

γf (π) =
1

π3
f
′′
(

1− π
π

)
. (B.2)
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Since f is a convex function, the weights γf (π) are non-negative. For a comprehensive

list of well-known f -divergences and their associated f and weight functions please

refer to [Reid and Williamson, 2011].

127



B.2. F -DIVERGENCES

S
y
m

b
ol

γ
(π

)
f

(t)
N

am
e

V
(P
,Q

)
4δ(π

−
12 )

|t−
1|

V
ariation

al
D

ivergen
ce

∆
(P
,Q

)
8

(t−
1)

2/(t
+

1)
T

rian
gu

lar
D

iscrim
in

ation

K
L

(P
,Q

)
1

π
2
(1−

π
)

t
ln
t

K
u
llb

ac k
-L

eib
ler

D
ivergen

ce

I
(P
,Q

)
1

2
π

(1−
π

)
t2

ln
t−

t+
1

2
ln

(t
+

1)
+

ln
2

J
en

sen
-S

h
an

n
on

D
ivergen

ce

J
(P
,Q

)
1

π
2
(1−

π
)
2

(t−
1)

ln
t

J
eff

rey
s

D
ivergen

ce

χ
2(P

,Q
)

2π
3

(t−
1)

2
P

earson
C

h
i

S
q
u
ared

D
ivergen

ce

h
2(P

,Q
)

1

2
[π

(1−
π

)]
32

( √
t−

1)
2

H
ellin

ger
D

ivergen
ce

T
ab

le
B

.1:
S
om

e
w

ell-k
n
ow

n
f

-d
ivergen

ces
w

ith
th

eir
asso

ciated
w

eigh
ts.

E
x
tracted

from

[R
eid

an
d

W
illiam

son
,

2009b
].

128



APPENDIX B. F AND (F,L)-DIVERGENCES

B.3 (f, l)-divergences

In [Garcia-Garcia et al., 2011] we propose a risk-based generalization of the family

of f -divergences, based on the integral representation in Eq. B.1. The main idea is

to substitute the 0-1 loss for an arbitrary loss function l. This way, we can express

this new generalization as follows.

Definition For a convex function f : (0,∞) → R with f(1) = 0, and a loss l :

{0, 1} × [0, 1]→ R+, we define the corresponding (f, l)-divergence If,l as

If,l =

∫ 1

0

∆Ll(π, P,Q)γf (π)dπ, (B.3)

where γf (π) is given by Eq. B.2 and

∆Ll(π, P,Q) = Ll(π)− Ll(π, P,Q). (B.4)

Obviously, the original f -divergences can be obtained as a particular case of (f, l)-

divergences by setting l = l0−1. Note that the idea of substituting 0-1 for more general

losses is at the core of almost every practical classifier. This is the idea of surrogate

losses [Bartlett et al., 2006]: Since the 0-1 loss is not very well behaved and thus

hard to handle, most learning algorithms use, explicitly or implicitly, other kind of

losses that approximate the 0-1 loss while being much more amenable to theoretical

analysis and numerical optimization. These surrogates are almost always1 proper

losses whose second term is mapped from [0, 1] to R. Thus, if the goal is to define

divergences that can be nicely estimated using classification risks it is very natural

to work with surrogate/proper losses, since they are what most practical classifiers

optimize.

B.3.1 Some properties of (f, l)-divergences

In this section we will study how we can get interesting properties for (f, l)-

divergences by adequately choosing the loss l. We will implicitly assume all losses to

1The most important exception being the hinge loss
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be proper.

As we will show in Sec. B.4, (f, l) and f -divergences are deeply connected, so

it is natural to recover most properties of standard f -divergences with a sensible

selection of the loss function l. For an overview of the most important properties

of f -divergences, please refer to [Österreicher, 2002]. We show in the form of short

theorems a small representative selection of such properties, along with the conditions

that the losses must satisfy in order for those properties to hold. We sketch the proofs,

which are quite straight-forward.

Theorem B.3.1 (Non-negativity and identity of indiscernibles) For any

convex f and any proper loss l, If,l(P,Q) ≥ 0 for all P,Q. Moreover, if f is

non-trivial (∃π ∈ (0, 1) | γf (π) > 0) and l is such that Ll is strictly concave, then

equality holds iff P = Q.

This theorem can be easily proved by applying Jensen’s inequality, noting that point-

wise Bayes risks Ll induced by proper losses are always concave [Savage, 1971]. It is

easy to check that most common proper losses, such as square or log-losses, induce

strictly concave point-wise Bayes risks Ll, so the condition is not very restrictive.

Theorem B.3.2 (Symmetry) If l is a proper loss such that l(0, η̂) = l(1, 1 − η̂),

then If,l(P,Q) = If,l(Q,P ) if f(t) = f ∗(t) + c(t−1), c ∈ R, where f ∗ is the Csiszar’s

dual (or ∗-conjugate) of function f .

This is analogous to the standard symmetry property of f -divergences. The proof

uses the fact that the condition on f implies γf (π) = γf (1− π), and then it mainly

involves showing that ∆Ll(π, P,Q) = ∆Ll(1 − π,Q, P ) for π ∈ [0, 1]. Once again,

standard losses satisfy the simple and natural condition imposed on l for the sym-

metry property to hold.

Theorem B.3.3 (Information Processing) If,l(P,Q) ≥ If,l(Φ(P ),Φ(Q)), where

Φ is any transformation.

This is also analogous to a standard f -divergences property. The proof relies on the

non-decreasing property of Bayes risks under arbitrary transformations.
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B.4 Connecting f and (f, l)-divergences

In this section we show how some (f, l)-divergences are equivalent to standard f -

divergences via a transformation of the weight function depending on the loss l. This

will provide insight into the effect of using a surrogate loss for divergence definition,

as well as motivating surprising ways of estimating some well-known divergences.

The discussion is based on the one-to-one relationship between statistical infor-

mations and f -divergences, as stated in the following classical result

Theorem B.4.1 ([Österreicher and Vajda, 1993], Th. 2)

Given an arbitrary loss l, then defining

fπl (t) = Ll(π)− (πt+ 1− π)Ll

(
πt

πt+ 1− π

)
(B.5)

for π ∈ [0, 1] implies fπl is convex and fπl (1) = 0, and

∆Ll(π, P,Q) = Ifπl (P,Q) (B.6)

for all distributions P and Q.

This may seem at odds with the result in [Nguyen et al., 2009] which establish a

many-to-one relationship between losses and f -divergences. However, note that

in that work they are concerned with margin classification losses, while here we

work with proper losses. The many link functions that can be coupled with a

given proper loss to yield classification losses introduce that extra degree of free-

dom [Reid and Williamson, 2011].

Exploiting this representation of statistical information for arbitrary losses, Eq.

B.3 can be rewritten as If,l =
∫ 1

0
Ifπl (P,Q)γf (π)dπ. Now we can leverage the weighted

integral representation of Ifπl as given by Eq. B.1, yielding

If,l =

∫ 1

0

(∫ 1

0

∆L0−1(π′, P,Q)ϕl,π(π′)dπ′
)
γf (π)dπ

=

∫ 1

0

∆L0−1(π′, P,Q)

(∫ 1

0

ϕl,π(π′)γf (π)dπ

)
dπ′

=

∫ 1

0

∆L0−1(π, P,Q)γf,l(π)dπ, (B.7)
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where ϕl,π(π′) is the weight function corresponding to fπl , as given by Eq. B.2

ϕl,π(π′) =
1

π3
fπl
′′
(

1− π
π

)
. (B.8)

So we get the following theorem.

Theorem B.4.2 Assume a (f, l)-divergence with weight function γf (π) and loss

function l. Let ϕl,π be given by Eq. B.8. Whenever

γf,l(π) = (Tlγf ) (π) =

∫ 1

0

ϕl(π, π
′)γf (π

′)dπ′

converges, then that (f, l)-divergence is equivalent to a standard f -divergence with

weight function γf,l(π).

In this case, both divergences are intrinsically the same one, but expressed on dif-

ferent bases. The relationships between the weight functions is given by a linear

operator Tl with kernel ϕl(π, π
′) ≡ ϕl,π(π′). This connection has the important effect

of allowing the estimation of standard f -divergences by using statistical informations

under adequate proper/surrogate losses.

Note that [Reid and Williamson, 2011] connect losses and f -divergences by asso-

ciating a loss l with a divergence with f = f
1
2
l (see Th. B.4.1). That can be seen to

be a particular case of (f, l)-divergences when f is chosen to represent the variational

divergence V , since γV ∝ δ(π − 1
2
).

B.5 Link with Bregman divergences

We refer the reader to [Reid and Williamson, 2011], where Reid and Williamson

unify f -divergences, Bregman divergences, surrogate regret bounds, proper scoring

rules, cost curves, ROC-curves and statistical information.

[Banerjee et al., 2005a] introduced the notion of the Bregman information Bφ(S)

of a random variable S drawn according to some distribution σ over S. It is the

minimal σ-average Bregman divergence that can be achieved by an element s∗ ∈ S
(the Bregman representative).
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Th. 10 in [Reid and Williamson, 2011] says that for each choice of π, the classes

of f -divergences If , statistical informations ∆L and (discriminative) Bregman infor-

mations Bφ can all be defined in terms of the Jensen gap of some convex function.

Additionally, there is a bijection between each of these classes due to the mapping

λπ(c) := 1−π
π

c
1−c , c ∈ [0, 1) that identifies likelihood ratios with posterior probabili-

ties.
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