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Abstract

In this paper, we assume that firms can create independent divisions which compete in
guantities in a homogeneous good market. Assuming identical firms and constant returns to scale,
we prove that the strategic interaction of firms yields Perfect Competition if the number of firmsis
beyond some critical level. Assuming a fixed cost per firm and an upper bound on the maximum
number of divisions, we show that when this upper bound tends to infinity and the fixed cost tends
to zero, market equilibrium may yield either Perfect Competition or a Natural Oligopoly.
00 2000 Elsevier Science BV. All rights reserved.
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1. Introduction

One of the reasons for the popularity of the Cournot model is that it provides a
justification for the assumption that, only in large economies, perfect competition occurs
(see, for example, JET, 1980). This contrasts with the Bertrand model where, with
homogeneous product and average costs constant and identical across firms, perfect
competition is achieved with two firms, so market structure jumps from monopoly to
perfect competition. When firms face an entry cost (no matter how small), monopoly
occurs irrespective of the number of potentia firms (see Sutton, 1991, p. 32). In both
cases, Bertrand equilibrium is not sensitive to an increase in the number of firms beyond
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two. All this suggest that, in despite of the appeal of a model with price-setting firms, it
may be preferable to model oligopolistic competition as Cournot did.

However, the performance of the Cournot model depends on the assumption that firms
cannot create independent divisions (see Milgrom and Roberts (1998)) for some
empirical evidence of divisionalization in oligopolistic markets). When divisionalization
is feasible, the Cournot model behaves very much like the Bertrand model: Corchon
(1991) showed that with linear or unit-elastic demand functions, Subgame Perfect Nash
Equilibrium (SPNE) in pure strategies of a two-stage game (where in the first stage firms
decide on the number of divisions competing a la Cournot in the second stage) yields
perfect competition even with a small number of firms. Subsequently Polasky (1992)
showed a similar result by allowing mixed strategies. In this paper we study the
robustness of this result.

In Section 2 we assume zero fixed costs. We show that if the number of firmsis large
(but finite) in relation to the degree of convexity of the inverse demand function, SPNE
yields perfect competition (Proposition 1). If the inverse demand function is concave or
the industry profit function is concave and there are more than two firms, SPNE yields
perfect competition (Proposition 2). These results generalize those obtained by Corchon
(1991).

These results bear some similarity with those obtained in the (polar) case of merger.
For instance Salant, Switzer and Reynolds (1983) find that, under linear demand and
costs, in some cases, merger is not profitable for the merging firms. Their results have
been generalized by Fauli-Oller (1997). He has shown that the degree of convexity of
the inverse demand function is the main determinant of merger profitability. However, in
despite of the fact that divisionalization is just merger in reverse and the similar role
played in both problems by the degree of convexity, results are different. On the one
hand, in order to model mergers as a fully fledged non-cooperative game, we have to
introduce a bidding stage, as done by Kamien and Zang (1990). This stage does not
make sense in the analysis of divisionalization. On the other hand, Kamien and Zang's
main insight is that monopolization by merger is unlikely. Our result is that gains from
divisionalization are not exhausted until the number of divisions is so large that the
output reaches the perfectly competitive level. Thus our Proposition 1 and the results
obtained in the merger literature are different.

The results obtained in Propositions 1 and 2 differ also from those obtained from
other models of strategic delegation. For instance, in Vickers (1985), Fershtman and
Judd (1987) and Sklivas (1987), it is assumed the use of incentive contracts between
every firm and its (unique) manager, where a non-negative weight is given to sales or
output. Under Cournot competition, those contracts yield equilibrium outcomes more
competitive than without delegation, but still different from perfect competition. More
recently, Kithn (1994) has shown, in the context of a duopoly with vertical integration
and uncertainty, that with more general contracts, marginal cost pricing is achieved, in
equilibrium, for constant marginal cost. However, in his model, the set of possible
demangj shocks must be unbounded. This restrictive assumption is not necessary in our
model.

'In fact, our Proposition 1 can be proved under the assumption that demand and costs are stochastic (see
Section 4)
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In Section 3 we perform a sensitivity analysis of the previous results by introducing
two frictions. In particular, we assume that each active firm has to pay an entry fixed
cost and there is an upper bound on the number of divisions which can be created. We
analyze SPNE when frictions disappear, i.e. when the upper bound tends to infinity and
the fixed cost tends to zero. We show that depending on the rate at which frictions
vanish, the limit may be either perfect competition or a Natural Oligopoly, i.e. a
situation with a finite number of active firms (see Shaked and Sutton, 1983). This
contrasts with the standard theorem with no divisionalization in which convergence to
perfect competition aways obtains, (see Novshek, 1980).

Finally Section 4 discusses how to extend our results to environments with
uncertainty, product differentiation, etc., and the possible significance of our findings.

2. The model with no entry costs

We consider a homogeneous good market. There is a given number (possibly infinite)
of firms, denoted by k(> 1), which can create independent divisions. The inverse
demand function is written as p = p(2), where z is total output and p is the price of the
product. The cost function for each division is given by cx,, where ¢ >0 and ¥x; is the
output of division i.

If firm j creates m divisions producing x; each, profits of firm j are:

I = m[p@@x — cx].

All our results hold if divisions pay a fraction of their profits. In this case, the model
can be interpreted as each firm holding a patent and deciding on the number of sellers
who are allowed to use the patent.

Throughout the paper we will assume that p( ) is a twice continuously differentiable
function satisfying the following conditions:

(i) There is a number y such that for any z>vy, p(2) <c (for large outputs, costs are
not covered).

(ii) There is a number y <0 such that for any z<vy, dp/dz=p’(2) =< y (the slope of
the inverse demand function is negative and bounded away from zero).

(iii) There is a number w > 0 such that p(w) > c (feasibility of positive production).

Under assumptions (i) and (iii), aggregate output can be restricted to lie in the closed
interval #=[0, y].

Let us define B = B2 =(p"(@ 2/p' (2. We may interpret — B as a measure of the
degree of convexity of the inverse demand function. Under assumption (ii), B() is
continuous. Since B() is defined on a closed interval, 38" such that B(2) = B'VzeE $.

We will now investigate the properties of Subgame Perfect Nash Equilibrium in pure
strategies (SPNE) of the following game.

G.1: Sage 1: Every firm decides (simultaneously) its number of divisions.
Sage 2: Every division decides (simultaneously) its output.

Notice that the Cournot Equilibrium at Stage 2 is symmetric: Indeed suppose it is not.
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Then, there are two divisions, say, i and r with different outputs. W.l.0.g. let us assume
that division i is active. Then

p'’X,+p—c=o0,and p’x, +p—Cc=o.
If division r is not active p — ¢ =< 0 which is impossible since p’ <0 and division i is
active. Therefore, both divisions are active and first-order conditions hold with equality.

Then p'x, = p'x, and thus x, = X,.
The SPNE of Game G.1 satisfies the following:

Proposition 1. If — B’ =(k—2)(k+ 1)/k — 1 Perfect Competition is the only SPNE of
the game G.1.
Proof. First-order conditions in the second stage are given by

p@—-c+xp'@=0, i=1...,n (1)

where n is the total number of divisions. Moreover, as noticed before, the Cournot
equilibrium in the second stage is symmetric, which implies

z=nx. (2
Implicit differentiation in Eq. (1) and Eq. (2) gives,
z’—;>0 and x’—ﬂ<0 3)
- n(B+n+1) " n((B+ n+1)

where ' =dz/dm and x| =dx /dm, while the inequalities follow from the fact that
—-B' =k—-2)(k+1)/(k—1) implies B+n>0 (for a justification of the use of
derivatives with respect to an integer variable see Seade, 1980, p. 482).

In the first stage, total profits earned by firm j can be written as

IE = (m/n)(p@) — c)z={m/(m + t){ p(z(m + 1)) — cjz(m + t) 4

where m is the number of divisions created by firm j, and t is the number of divisions
created by the rest of the firms. The equilibrium value for n is determined by backward
induction: every firm maximizes its total profits given the number of divisions created by
its competitors. Let 9IL/om (t, m) be the partial derivative of profits of firm j with
respect to m. From Eqg. (4) we obtain

ol n-m
am_ n2

m dz
(p—0z+(p—ct )5,
which, after substitution of Egs. (1), (2) and (3), gives

o _n-m mo
= (P 02+ (P91 gy

_(p—9Z(B+n+1)n—(B+2n)m}
B n’(B +n+1) '
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If the equilibrium is symmetric, n =km and t = (k — 1)m. We will show that in this
case this derivative is positive, when al other firms have (k — 1)m divisions and firm j
has m+i divisions Vi €[0,1]. This implies that at any symmetric SPNE with finite m,
firm j has an incentive to deviate.

If oIl/om ((k—1)m, m+i)=0 then Eqg. (5) must be negative or zero with m
substituted by m + i, so that

B+n+i+l=m+i)2+B/n+i)

If the proposition were false and the SPNE symmetric, the previous inequality, the
definition of B’ and symmetry would imply

{Mmk-2)+@A—-i)}km+i)/mk—-1) = —g".
Since the left-hand side of this inequality is non-decreasing on m and m= 1,
{k=2)+(1-ik+i)/k-1)= -8
Again the left-hand side of this inequality is decreasing on i so
{k=2)+(1-D}k+1D)/k-D<k-1-i)k+i)/k-1)=-p8
=k-2)k+1)/(k—1).

Therefore, we arrive at a contradiction.

If the equilibrium is not symmetric, then there must be a firm, say j’, with a number
of divisons m’ <m=n/k. Defining t" as the number of divisions of the firms created by
firms other than j’, Eq. (5) implies that

[
om’

t',m+i)y=zp—c(B+n+i+L)n+i)—(B+2n+i)m +i)

ot
>%(t,m+i)=z(pfc){,6’+n+i +1)(n+i)
—(B+2n+i){m+i)=0

where the first inequality comes from the fact that m" < m, while the second comes from
a similar argument to the one used in the symmetric case. Therefore, al firms with a
number of divisions equal or smaller than m=n/k want to set up at least one extra
division, which shows that there cannot be a SPNE with a finite number of divisions per
firm. O

Notice that the function F(k) = (k — 2)(k + 1)/(k — 1) isincreasing in k if k= 2 and
tends to infinity when k tends to infinity. Thus Proposition 1 says that perfect
competition is achieved if k is large enough in relation to the degree of convexity of the
inverse demand function.

The intuition behind Proposition 1 is that the higher — 8’, the more competitive the
second stage and therefore the lower the incentive to create divisions in the first stage.
Thus, a high value of — B8’ makes it less likely that perfect competition is a SPNE.
Notice that Proposition 1 includes, as specia cases, Examples 1 and 2 in Corchon
(1991).
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The following result identifies three alternative sufficient conditions for — g'=
(k—2)(k+ 1)/k — 1 to hold. These conditions are reasonable and suggest that a small
number of firms may suffice for perfect competition to occur.

Proposition 2. Any of the following conditions imply — 8’ =(k—2)(k +1)/k—1

(@ p(@ concave for all ze 4.
(b) p(2) having constant elagticity, denoted by A — and 1 —A=(k—2)(k+ 1)/k — 1.
(¢) II(2) concave for all ze # and k> 2.

Proof. Parts (8) and (b) are obvious. In order to prove (c), notice that concavity of 71(2)
impliesthat 8(2z= — 2z, Vz& 4. Thus, 8’ = — 2, and (c) holds since F(3) = 2 and, as
we remarked before, F() isincreasing. O

3. The model with an entry cost
In this section we will consider the following game:

G.2: Sage 1 Every firm decides (simultaneously) on entry. A fixed cost £>0 is paid
by a firm if it decides to enter into the market.

Sage 2: Every firm decides (ssmultaneously) on the number of divisions, this number
being less than or equal to a given number d.

Sage 3: Every division decides (simultaneously) on its output.

Now markets contain two kind of frictions, d and &. Both frictions depend on a
parameter p € [0,1] so we can write d(p) and &(p). Notice that if £=0, at any SPNE of
G.2 al firms will enter and, for any given positive d, if — 8’ =<F(k), Proposition 1
implies that each firm will create d divisions. The outcome of this game will be close to
perfect competition for sufficiently large values of d. If d =, for any positive ¢ and
— B’ =F(K), Proposition 1 implies that were al firms to enter, perfect competition will
prevail in the last stage and firms will not recoup the entry cost. Therefore in any SPNE,
there is an upper bound (which is independent of the fixed cost) on the number of active
divisions. Thus, the outcome is a natural oligopoly?

We will assume that d'(p) < 0, £'(p)> 0, d(0) == and &0)= 0. A frictionless
market is one for which p = 0, which is just game G.1. The purpose of this section is to
study the limit of SPNE in the game G.2 when p - 0. In the rest of this section, we will
assume that for any value of p there exists a unique Cournot equilibrium. In relation to
this Cournot equilibrium, we will define 71(n) as the industry gross profits (i.e aggregate

2An aternative assumption, which would produce identical results, is that there is a fixed cost for each division
as in Baye, Crocker and Ju (1996).
®In this case, contrary to Schwartz and Thompson (1986), an incumbent firm does not need to create more than
one division in order to deter entry.

6



profits before subtracting the fixed costs), as a function of the total nhumber of divisions.
Also we will define R(p,k) as follows,

1T [kd(p)]
Rip,K)=—7F7+1—
(p: K) ke(p)
where k is the number of firms entering the market. That is, R(p, K) is the ratio (total
industry gross profits)/(total industry fixed costs) for a given degree of friction p.
Let us introduce some more notation. Let R, =9dR/dp and R, =dR/ok. We will
denote equilibrium values of the variables by an asterisk. We now present the following
result:

Proposition 3. If sign {R,} is constant and R, <0, then

@ If lim,_, R(p, K) <1 for all k such that F(k)> — g’, the only SPNE of the game
G.2 when p is small enough implies that F(k*)=< — 8’ and m* = 1.

(b) 1f lim,_, R(p, k) > 1 for some k such that F(k) > — B', when p is small enough the
only SPNE of the game G.2 implies that F(k*) > — g’, and m* =d.

Proof. By using a similar argument as that in Proposition 1, if F(k) > — B’, then SPNE
of G.1 implies m* =d. Now, let us consider parts (a) and (b):

(8 The assumption made in this part and the monotonicity of R(p, k) with respect to p,
implies that profits will be negative, for small enough p, if F(k) > — B’. Thus, SPNE
of G.2 is inconsistent with k* such that F(k*) > — B’.

(b) Under our assumptions on R(p, k), in this case, if p is small enough, profits are
positive for some k such that F(k) > — B’. Also, the monotonicity of R(p, k) with
respect to k and p, ensures that k* is such that F(k*) > — 8’ for small enough p, and
this completes the proof. [

In contrast to the standard limit theorem with quantity-setter firms the main
conclusion of Proposition 3 is that when frictions are removed, i.e. when d - o and ¢ -
0, the outcome of a SPNE may be either very close to perfect competition or to natural
oligopoly. Therefore, the convergence to perfect competition or to a natura oligopoly
depends on how frictions vanish, and this aso contrasts with the standard Cournot
model.

4. Summary and conclusions

In this paper we have shown that if the number of firms is large enough in relation to
the degree of convexity of the inverse demand function, the possibility of divisionaliza-
tion plus Cournot competition implies perfect competition. In many cases, a small
number of firms is enough to obtain perfect competition. However, when there is a
positive entry cost, the outcome of divisionalization may be a natural oligopoly. This
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implies that, in the context of entry deterrence, the possibility of divisionalization might
not be desirable from the point of view of social welfare. In both cases, in contrast with
standard models, the equilibrium number of independent sellers depends on the shape of
the demand function and not on the magnitude of fixed costs.

One may wonder about the robustness of our results. They are till valid under
uncertain demand or costs or if firms receive payments from divisions which are based
on sales (a proof is available under request). The consideration of product heterogeneity
produces more complex results: In the case in which the product is homogeneous across
divisions of the same firm but heterogeneous across firms, Ziss (1998) has shown that
the result obtained in our Proposition 1 does not hold in the case of linear demand.
However, if the product is heterogeneous across divisions of the same firm, the
equilibrium number of divisions is not finite in at least three cases: In the Salop model
(see Gonzalez-Maestre, 1997)”, when the inverse demand function is linear and when
the inverse demand function is of the form xi"_ll(EJ":1 xj“), where 0<a <1 as in
Spence (1976) or Dixit and Stiglitz (1997). The latter result follows from the fact that
letting y, = X", profits for division i become yi/(EJ.":l yj)—cyi”". Thus, as noticed by
Yarrow (1985), the model is identical to a homogeneous product model with decreasing
returns and there is an extra incentive to create new divisions (proofs of the last two
results are available on request).

Finally, we might ask about the significance of our results. There are two possible
interpretations. A positive interpretation is that our results explain the extreme tendency
to divisionalize that occurs in some industries (e.g. fast food). Another interpretation of
our resultsis that they might point out a difficulty the Cournot model has in coping with
the possibility that firms become divisionalized, since it produces results that are too
extreme. Unfortunately, our analysis does not provide any clue about how to build an
alternative model of competition.
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