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ABSTRACT 

The detection of acoustic em1ss1ons with mult iple channels and different kind of sensors (ultrasound 

electronic sensors and optical fiber sensors) is presented. The source localization based on the times of arrival 

is also carried out and different strategies for solving the location equations are compared. The most efficient 

strategy in terms of computational and complexity costs versus performance has been selected and the error 

propagation is analyzed. The errors of the acoustic emission source location (localization process) are 

evaluated from the errors of the t imes of arrival (detection process). For that, a hybrid programming 

architecture is proposed. It is formed by a virtual instrumentation system for the acquisition and the detection 

of multiple acoustic channels and an algorithms-oriented programming system for the implementation of the 

localization techniques (back-propagation and multiple-source separation algorithms could also be 

implemented in this system). Finally the communication between both systems is performed by a packet 

transfer protocol that allows remote operation (e.g. a local monitoring and a remote analysis and diagnosis). 

Keywords: Acoustic Emission, Ultrasonic Detection, Source Location, Multichannel Instrumentation System, 

Optical Fiber Sensors, Denoising, Lab VIEW, Hybrid Programming System (Lab VIEW - Matlab). 

1. INTRODUCTION 

Acoustic Emission (AE) is the study and practical use of elastic waves generated by a material subjected to an 

external stress. Strictly, acoustic refers to the pressure waves detected by ear. However, the elastic waves in 

solids are not limited to pressure waves, since all types of vibration modes are generated by acoustic emission 

sources (AES). Still, the term AE has become almost universally used for the phenomena of elastic waves 

generated by an internal event in a medium. In this case, acoustic refers to any elastic wave generated by an 

AES. Therefore, AE is the generation of an elastic wave by rapid change in the stress state of a region in the 

material. The change of stress must be fast enough to transmit some energy to the surrounding material. The 

material may be a solid, liquid, gas or plasma and the external stress can be applied mechanically, thermally, 

magnetically, etc. A large scale example may be that of an earthquake or thunder, while small-scale breakage 

of crystalline microstructures (metal plates, etc.). 
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The elastic wave generated travels throughout the material and can be detected at considerable distances from 

the point of origin. Thus, the characteristics of the wave (amplitude, phase, frequency, etc.) vary due to the 

effect of dispersion along its acoustic path. The most important information of the AE is the time of arrival 

(TOA) to each sensor and its amplitude. The TOA provides information on the distance of the event and the 

amplitude of its magnitude. The information obtained from the wave allows calculating the location of the 

AES, but the detected signals at different sensors depend on each specific path and each sensor characteristics. 

Leakages, friction, impact, chemical reactions, electrical discharges ( e.g. partial discharges - PDs) are 

examples of AES. This work is based on the application of AEs from PDs in power transformers [l]. There 

are many other applications for which the detection and location of AEs is a useful diagnosis tool, from the 

structural health monitoring (metals, concrete and other composite materials) [2-3], the detection of cracks in 

the fuselage for the aerospace industry, the detection of leaks in the chemical industry, to the analysis of 

insulation failures in the electrical industry. 

Regarding the detection of AE, piezoelectric sensors of Lead Zirconate Titanate (PZT) are typically used. In 

addition, other sensors that use optical fiber (OF) are being developed. In the case of detection of PDs in 

transformers, these OF sensors are very suitable because they are embedded in the insulating medium and can 

detect the acoustic signal directly within the transformer tank, whereas the PZT sensors are located externally 

on the walls. 

In the fie ld of acoustic detection, several companies offer their equipment based on proprietary systems for 

specific applications that solve different aspects of the detection and processing of AE signals. Main modules 

are for multichannel acquisition; some of them include integrated processors and others are connected to an 

external PC (Personal Computer). They are usually modular devices that integrate power supplies, data 

acquisition cards, processors and even FPGAs (Field Programmable Gate Array). Some examples are AMSY-

6 of Vallen Systeme [4], LAN-XI of Brue! & Kjrer [5] or PXI (Peripheral Component Interconnect (PCI) 

eXtensions for Instrumentation) of National Instruments [6]. The instrumentation system used in this work 

includes the PXI. Besides having specialized modules for acquisition and signal processing, this platform has 

software flex ibility by virtual instrumentation. 

There has been important research effort with respect to the hardware for AE monitoring, such as data 

acquisition, communication systems and sensor arrays [7-9]. The objective of an automatic AE monitoring 

system is the identification of the AES [ 10-11] and its localization. The localization is based on measurements 

of the TOAs of the AE signal to individual sensors of an array. Efforts are being made to implement faster 

and more efficient algorithms. 

The hybrid programming system described in this paper is an evolution of previous systems in order to 

improve the performance. A previous approach included a single architecture based on LabVIEW [12] . It 

implemented a module of detection/conditioning and a module with an acoustic localization method based on 

lookup tables. It exhibited a resolution of I cm. However, the graphical design based on Lab VIEW is 
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inefficient with other complex algorithms that aic used extensively in this kind of applications [13-16). and 

therefore, a design based on Matlab was proposed for the localization stage. 

As a result, the hybrid programming system is as follows. A first stage is programmed in Lab VIEW, which is a 

powerful tool for managing the acquisition with multiple channels and the on-line denoising of each channel 

[17-18]. The second stage is programmed in Matlab. which is a tool of numerical calculation that is 

specialized in data processing and representation [8. 19), thus the localization algorithms and the presentation 

were programmed with this tool. The localization stage is based on the common teclm.ique of trilateration [:?0-

22] and different strategies can be used [13-16] . All these methods of localization were firstly implemented in 

[23] with a resolution of 1 mm and they were compaied experimentally. In the present paper the hybrid 

programming system is described and analyzed. In addition. the error propagation is studied. The errors of the 

AES location (localization process) aic evaluated from the errors of the TOAs (detection process) . 

This paper is organized as follows: the instrumentation system is described in Section 2 . It was designed and 

implemented for the detection and location of AE based on PZf and OF sensors . The strategies for the 

location of the AES and their implementation are presented in Section 3. The characterization of the 

localization system is presented in Section 4, which includes the description of the hybrid programming 

system and the error propagation analysis. Finally, the conclusions are summarized in Section 5. 
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Figure l. The instrumentation system based on OF and PZT sensing . 

2. INSTRUMENTATION SYSTEM 

Two types of acoustic sensors have been used: OF sensors and PZT sensors (Figure 1). OF sensors can be 

embedded in the insulating medium closer to the AES, which allow detecting a stronger acoustic signal. These 
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sensors also provide a time reference in the location process. The optoelectronic conditioning scheme for the 

optical fiber sensor was previously designed [24]. It consists of a sensor head of single-mode optical fiber 

illuminated by a He-Ne laser (633nm) and a fiber-optic stabilized interferometer. It is sensitive to AE of /50 

kHz. 

Tue PZf ultrasonic sensors are typically used for acoustic detection. These sensors work with ultrasonic 

frequencies and are mounted on metal surfaces (Figure 1), for example, on the walls of a trausfonner tank. 

The use of several sensors or a sensor array allows carrying out the AES location. The model of the PZT 

sensor is Rl51-AST (Physical Acoustic Corporation), with the following characteristics: operating range 80-

200 kHz, resonant at / 50 kHz, low noise integrated preamplifier of 40dB. The sensitivity of these sensors is 

about J V/Pa. Because the sensoc RISI bas integrated electronics but it has not separate ports for power and 

output, a Bias-T circuit is necessary. 

OF Sensor Conditioner PlT Sensor conditioner 

Figure 2. Multichannel acquisition atd conditioning system. 

A.n industrial PXI has been used in order to integrate into the same system different types of sensors (PZf . 

OF, etc .) and signal processing units. The PXI system (National Instnunents) is a PC-based open platfonn for 

test, measurement and control. It includes a data acquisition module (NI PXl-5105) with 8 channels of 

simultaneous acquisition of 12-bit resolution, 60 MS Is acquisition rate in real tune. up to 60 MHz bandwidth 

and 128 MB onboard memory. Tue graphical programming tool used is lab VIEW. 

Figure 2 shows the components of the overall system: PXI based multichannel acquisition and denoising 

system, OF sensor conditioning system and multichannel PZT sensors conditioning system. 

After comparing different techniques of denoising, a combination of wavelet techniques and digital filtering 

was selected [1. 12] . They can be used alone or together depending on the application . 
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3. LOCATION BASED ON ACOUSTIC EMISSION

Tue cotmnon technique for 3-D spatial location of AE is the trifateration. Tilis teclulique determines the 

position of the AES measuring the TOAs [20-??]. 

The model is a 3-D space with k+ 1 acoustic sensors at specific positions (an internal OF sensor and k external 

PZT sensors in the surrounding of the AES). Tue resulting tinies of anivail. aie T from the AES to the OF 

sensor .and Tit. from the AES to die PZTk sensor. In this case, the reference is the OF sensor. 

There are several approaches to trilateration but, due to au all-acoustic instmmental s�beme is employed in 

this work, the time-differences appi:oach (time difference of anival - TDOA) has been chosen ('Figme 3). 
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Figure 3. Schematic of time differences with Wlknown time reference T. 

In this case, the acoustic wave reaches the nearest sensor first (straight l)topagation is assumed) and it triggers 

the process of recording the signals from all sensors simultaneously. Four time-differences (�oJ are obtained 

from five sensors and die reference is from the sensor closest to die AES (J), Egure 3 iflustrates these time 

differences of the acoustic signals with an um.known tinling reference. 

'I1he system of nonlinear equations of 3-D location with a time-differences approach is as follows: 

(x- Xs,e/)
2 

+ (y- Ysref)
'l 

+ (.: - Zs,qf" = (v, · T)2 {l) 

(x - Xpzn>
1 + (y - Ynn )! + (<'. - ::nnf = (v, · (T +-ro1:)) 2 , k =1 .. N (2) 

where .v. is tlte speed of sound in the medium, XoFJ YoF and ZOF are the coordinates of the reference seusor and 

Xpzn, YPm and ZPZ11c are the coordinates of the kt.h PZf sensor. Tiie minimum 11.umber of sensors is 5 (N � 5). 

The position is determined by obraining x, y, z, T. 

In [23], differeur methods of localization with a resolution of 1 mm were impiemented and compared 

experimentally. In these solution strategies, except te PSO method [14-16]. the equations -system should be 

adapted to the matrix structure A*X=B. This is obtained in (3) by subtracting (1) from (1) for k=l to N:

5
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2(xsi: - x.vt/ )X + 2(Ys, - Ys,.,1 ) y + 2(.:st - Zs,.., )~ + 2v.2r0J· = 
(
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... . .. 
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.s.., 
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(xs/ - xs./ ) + (y,1= - Y . ..,_/ ) + (~/ - Zs.,/ ) - v/ r0 / 

B= ... 

(xs/ - x..,,/ ) + (y.s./ - Y.1,/) + ( i.1/ - ~.r • ./) - v/ r0/ J 

TABLE I sununarizes the location solution strategies. 

TABLE I. LOCATION SoumoN STRATEGIES 

x 

)' 
X = 

T 

,-~1~l - -l~l 
,,·~· ~·-,: .... ~ j ........ 

• - ,·:"k-. .;=cJ,._-::r~ ..:. --
"Solve" (Matlab) . 5 -

Least Squares (LS) x =(ATA).1ATB 5 -

Least Nonn (LN) X=AT(AAT) -1B 5 -
Direct 

A-[A,A,.A,AT] ,IAI .. O 

x 
IBAyA,ATI IA,BA,Ayl 

Cramer IAI .y IAI 5 -

JA, A., BATI JA, A.,A. BJ 
z - IAI .T - IAI 

Non-Iterative (INI) - 4 1131 
Fimess function: 

/(p>-fi:J[(p.t, 
/ "1 i•l 

:c.)' + ( py, - y,)' + (p1.1 - :,): - v.'(pT
1 

+ r,)' JI 
Refinement equations: 

'';V +l) w, · ",(r) + c1R1(pf" (t) - p1(r)] + c:R:[g ... (t )- p,(t)] 

Indirect Particle Swann p 1(t+l)- p,(t)+ Y ·l'j<t +l) 
Optimization Inertia weight: 5 (14-16 ) 

(PSO) K-' - I\,' . 
w, -wma m.u. mm k 

N 
Constriction coefficieru: 

y 
., 

I - , 
1

.r -c.+c·:andy>-4 
:?-r-Jr· -41 

The JN1 and PSO methods provided the best results (the figure of merit was precision over nmti~). 
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4. CHARACTERIZATION OF THE LOCATION SYSTEM 

A. Hybrid processing system 

An experimental platfom1 for acoustic emission testing was used to characterize the hybrid processing system 

for AE multichannel detection and AES localization. The experimental platform consists mainly of a container 

of cubic shape and the following effective dimensions 900 mm x 550 mm x 370 mm. The walls of the container 

are made of PMMA (PMMA is short of polymethylmethacrylate). A wave generator applied to a PZf 

ultrasonic transducer (hydrophone B&K 8103) has been employed as a source to generate ultrasonic acoustic 

emissions. Six PZT ultrasonic sensors have been used on the surface of a wall (Rl51/AST- Physical Acoustic 

Corporation) . In addition. an OF sensor has been used within the tank. According to the example of 

application, the placement of the PZf sensors follows the typical pattern of the three-phase transfonners. with 

two sensors per phase. This platfonu includes only one OF sensor because of the difficulty of introducing 

more sensors inside the transformer tank. 

~·- ·-
LabVIEW 

• · Acquisition. 
& Detection 
& _Denoising 

Hybrid Architecture 
(LabVIEW - Matlab) 

- · - ·--, 
SORWARE 

Times Of Arrival 
(TOAs) 

TCP/IP 

Matlab 

Figure 4. Hybrid processing system for detecting and locating the AES. 

The multichannel inshllmentation system has a specific hardware of acoustic signal conditioning and 

acquisition (PXI-National Instmments). and several software blocks for detecting and locating the acoustic 

signals. Figure 4 shows the general block diagram of the hybrid processing system for the detection of AE and 

the localization of the AES (hybrid architecture). It is formed by two pai1s; the first one is programmed in 

Lab VIEW and it is devoted to the detection process. The acquisition of the acoustic signals is perfonued in all 

channels simultaneously and a signal processing of each channel is applied, which is based on digital filtering 

and Wavelet denoising [11] . As a result of the processing. the time of anival (TOA) is obtained by the first 

stage for each and every channel and each acoustic emission event . Other information can be also extracted, 

such as the amplin1de of the AE. 

The second part is progranuued in Matlab and it is dedicated to locating the AES. It solves the equations 

system of trilateration for a 30 model of localization. The collllmmication between both parts (from 

LabVIEW module to Matlab module) is mainly in tenns of the infocmation contained in the TOAs. It is 

performed efficiently tlu-ough a packet transfer protocol. Particularly, TCP/IP is used (TCP/IP is sho11 of 

Transmission Control Protocol / Internet Protocol (TCP/IP) . A real-time localization of the AES is obtained 

by these means. In addition, remote data analysis is provided by this communications protocol. 
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B. Analysis of the error propagation to the location o_f the AES 

A simulation study was perfonned in order to evaluate what is the influence of the error in the TOAs on the 

accuracy of the location. For that, on the one hand, a sweep of the position within the tank was realized by 

moving the AES along the axis XYZ as shov.'ll in Figure 5. On the other hand , different percentages of enor 

were added to the TOAs. 

Scanning in• --· I -- ·--- ·---· AES 
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!ii PZT3 A PZT2 
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• 

b) 

ljj PZTl 

i 

. )( ' 

Figure 5. Sweep of the AES position within the tank. scanning XY (top view) in a) and scanning XZ (front view) in b) . 

The results of the PSO method are shown below, considering that it was the selected method that obtained the 

best response in the previous comparison ['.!3]. For each location of the AES. JOO samples were taken. In order 

to present and analyze the results an offset error and a dispersion error have been defined as follows . 

The offset error is the distance between the real position of the AES and the mean value of the solutions of 

location: 

(4) 

where (xR, .VR• ZR) are the coordinates of the real position of the AES and (x,.,, y,.,, ~,.,) are the mean value of the 

solutions. 

The dispersion of solutions is quantified as the STD (O') of the solutions of location: 

o- = a_; +a_; + a; . a = Ja.; + ~ + a; (5) 

where O'", O'~- and O'. are the STD of each axis . 

Both errors are presented as a ratio (pen:entage) to the diagonal of the tank (3-D space dimensions), which is 

the maximum distance between two points inside it: 

Error 
%Error= · 100 

DTunk 
(6) 

where Dr,,,,k is the diagonal: 

Dran1c = Jlfr
2 + dy2 + d;:.2 = l l l 7'766mm (7) 
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where (dx, dy. dz) = (900, 550, 370) mm are the dimensions of the tank. 

First, a random error up to 2% (standard tmiform distribution - mean= 1%) was applied to each and every 

TOA. The results are shown in Figure 6. TI1e mean solution for each coordinate, the offset error. the dispersion 

error and the percentage of each error are represented. 
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These results show different axis-dependent zones. The Bk areas are zones with small limited stable e1ror and 

the Wk areas are zones in the borders that exhibit higher errors. Edge and depth effects are observed in the 

zone Wx and ~v. respectively. hi this case, the maximum dispersion error is 9.5 mm and the maximum offset 

error is 4 mm (less than 1% in both cases). 

Second, a more intense error source (up to I 0% - standard uniform distribution- mean = 5%) was applied. The 

results are similar to the previous case except of the scale . The results of 10% follow the same pattem as 1% 

with a factor of about 5. However, in the second case , the effect of the proximity to the PZT sensors is more 

pronounced (Wy area) . The maximum dispersion e1Tor is 45 cm and the maximum offset e1ror is 3 5 cm (less 

than5% in both cases) . 
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5. CONCLUSIONS 

The detection of acoustic em1ss1ons with mult iple channels and different kind of sensors (ultrasound 

electronic sensors and optical fiber sensors) has been implemented in a modular configuration, thus it is easily 

adapted to different applications. The source localization based on t imes of arrival was also implemented and 

analyzed, by comparing different strategies for solving the location equations. For that, a hybrid programming 

architecture has been proposed and demonstrated. It is composed by a virtual instrumentation system for the 

acquisition and detection of multiple acoustic channels, an algorithms-oriented programming system for the 

implementation of localization techniques and a communication module between them that is performed by a 

packet transfer protocol that allows remote operation. 

The Particle Swarm Optimization strategy of localization was demonstrated as the most efficient in terms of 

computational and complexity costs versus performance. In addit ion, an analysis of the error propagation from 

the times of arrival to the results of location was applied to this strategy under different conditions of error 

magnitude and positions of the acoustic source. The edge, depth and proximity effects were clearly identified 

during the analysis of the location results. Even so, the maximum relative errors of location (offset and 

dispersion) are limited to less than the TOA relative mean errors. Results of location better that I cm in I m 

were obtained with TOA uniform (0% - 2%) error distribution. 
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