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Enhan
ed stability of tetrati
 phase due to 
lusteringYuri Martínez-Ratón∗Grupo Interdis
iplinar de Sistemas Complejos (GISC), Departamento de Matemáti
as,Es
uela Polité
ni
a Superior, Universidad Carlos III de Madrid,Avenida de la Universidad 30, 28911-Leganés, Madrid, SpainEnrique Velas
o†Departamento de Físi
a Teóri
a de la Materia Condensada and Instituto de Cien
ia de Materiales Ni
olás Cabrera,Universidad Autónoma de Madrid, E-28049 Madrid, Spain(Dated: September 24, 2008)We show that the relative stability of the nemati
 tetrati
 phase with respe
t to the usual uni-axial nemati
 phase 
an be greatly enhan
ed by 
lustering e�e
ts. Two�dimensional re
tangles ofaspe
t ratio κ intera
ting via hard intera
tions are 
onsidered, and the stability of the two nemati
phases (uniaxial and tetrati
) is examined using an extended s
aled�parti
le theory applied to apolydispersed �uid mixture of n spe
ies. Here the i�th spe
ies is asso
iated with 
lusters of i re
t-angles, with 
lusters de�ned as sta
ks of re
tangles 
ontaining approximately parallel re
tangles,with frozen internal degrees of freedom. The theory assumes an exponential 
luster size distribu-tion (an assumption fully supported by Monte Carlo simulations and by a simple 
hemi
al�rea
tionmodel), with �xed value of the se
ond moment. The 
orresponding area distribution presents ashoulder, and sometimes even a well-de�ned peak, at 
luster sizes approximately 
orrespondingto square shape (i.e. i ≃ κ), meaning that square 
lusters have a dominant 
ontribution to thefree energy of the hard�re
tangle �uid. The theory predi
ts an enhan
ed region of stability of thetetrati
 phase with respe
t to the standard s
aled�parti
le theory, mu
h 
loser to simulation and toexperimental results, demonstrating the importan
e of 
lustering in this �uid.PACS numbers: 61.30.Cz, 61.30.Hn, 61.20.GyI. INTRODUCTIONThe hard re
tangle (HR) �uid 
onstitutes a paradig-mati
 example of a two-dimensional �uid exhibitingsurprisingly 
omplex phase behavior: di�erent phasesymmetries, phase transitions with di�erent order, anddefe
t�mediated 
ontinuous transitions of the Kosterlitz�Thouless type [1℄, all governed solely by entropy. Thispe
uliar two�dimensional system has three equilibrium�uid phases: isotropi
 (I), where parti
le axes are ran-domly oriented, uniaxial nemati
 (Nu), with parti
lespreferentially aligned along a single nemati
 dire
tor, andtetrati
 nemati
 (Nt), possessing two equivalent perpen-di
ular nemati
 dire
tors, with long parti
le axes orientedalong one of two dire
tors with equal probability.In a pioneering study, S
hla
ken et al. [2℄ applieds
aled�parti
le theory (SPT) on a �uid of HRs to demon-strate the stability of the Nt phase, a phase whi
h 
annotbe stabilised in a �uid of hard ellipses. The interse
tionbetween the two spinodals asso
iated with the I-Nt andI-Nu transitions de�nes a limiting aspe
t ratio κ = L/σ0(with L and σ0 the length and width of the re
tangles,respe
tively) for the stability of the Nt phase, whi
h islo
ated at κ ≃ 2.62. Thus, for lower values of aspe
tratio, the isotropi
 �uid exhibits a 
ontinuous transitionto the Nt phase, whereas if κ > 2.62 the I phase goes
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dire
tly to the uniaxial nemati
 phase Nu.The study of S
hla
ken et al. was later supplementedby the 
al
ulation of the 
omplete phase diagram [3℄, alsowithin the 
ontext of SPT. It was found, in parti
ular,that the Nt phase undergoes a transition to the Nu phaseat high density, the nature of whi
h 
hanges from se
ondto �rst order at a tri
riti
al point. In addition, it wasshown [3℄ that, at the level of a parti
ular approximationfor density�fun
tional theory, the Nt �uid is metastablewith respe
t to a phase with (either partial or 
omplete)spatial order; the theory was approximate in the sensethat it in
luded the exa
t fun
tional form of two-body
orrelations, but only approximate higher�order 
orrela-tions. On the other hand, Monte Carlo (MC) simula-tions 
ondu
ted on hard squares [4℄ and on a HR system[5℄ with κ = 2 indi
ated, as expe
ted, that the �uid ex-hibits quasi�long�range tetrati
 order, and that the high�density phase 
onsists of an aperiodi
 
rystalline tetrati
phase exhibiting random tiling on a square latti
e. MCsimulation of a HR �uid 
on�ned in a slit pore [6℄ showthe presen
e of weak tetrati
 
orrelations at the 
entre ofthe pore.In the experimental front, re
ent results for 
olloidaldis
s for
ed to stand on edge by external potentials [1℄(and hen
e intera
ting approximately as HRs) have alsodemonstrated that tetrati
 
orrelations play a vital rolein this system. Also, experiments 
ondu
ted on a mono-layer of vibrated granular 
ylinders lying on a plate [7℄have shown tetrati
 
orrelations for 
ylinders with aspe
tratio as high as κ = 12.6.In Ref. [8℄ strong eviden
e, based on MC simulations,
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2was presented for the thermodynami
 stability of a Nt�uid when κ is at least as large as 7. These simulationswere supplemented by an extended SPT model that ex-a
tly in
orporates the se
ond and third virial 
oe�
ientswhile resumming the remainder of the virial series. Thein
lusion of the third virial 
oe�
ient in
reases the in-terval in κ where the Nt phase is stable, approa
hing thesimulation result. Spe
i�
ally, the I-Nt transition linemoves to lower pa
king fra
tions, while the interse
tionpoint between the I-Nu and the I-Nt transitions shifts to
κ = 3.23. However, this value is still lower than the valueindi
ated by simulations.The properties of the HR �uid are to be 
ontrastedwith those of hard dis
ore
tangles. MC simulations ofthis system have been 
ondu
ted [9℄, and the global phasediagram was 
omputed. A 
areful inspe
tion of parti
le
on�gurations in the isotropi
 phase shows that there arepe
uliar equilibrium textures, with large 
lusters 
ontain-ing parti
les arranged side by side, exa
tly as in the HR�uid. These 
on�gurations are favoured by the parti
ularshape of the parti
les and by the redu
ed dimensional-ity. However, in 
ontrast with the HR �uid, neighbouring
lusters do not exhibit strong tetrati
 
orrelations and,therefore, the formation of a tetrati
 nemati
 phase isdis
ouraged in the hard dis
ore
tangle �uid.In this arti
le we address the problem of how thepresent theoreti
al understanding of the HR �uid 
anbe improved by 
onsideration of 
lustering e�e
ts. Ourthesis is that these e�e
ts, very apparent in our own MCsimulations but not addressed by the theories proposedup to now, are a key fa
tor in the stabilisation of theNt phase. In
lusion of 
luster formation is responsiblefor the enhan
ement of the region of Nt stability in thephase diagram. In the model proposed, 
lustering is ap-proximately taken 
are of by treating 
lusters as distin
tspe
ies in a mixture of polydispersed re
tangles. Thefun
tional form for the 
luster size distribution is as-sumed to be exponential, an assumption supported by
luster statisti
al results based on MC simulations andby a simple 
hemi
al�rea
tion model (see Appendix), andis introdu
ed in the model as an input. The thermody-nami
s of the polydispersed mixture is analysed usingSPT. The results indi
ate that 
lustering (assimilated inthe theory by means of a polydispersity parameter) sta-bilises the Nt phase for values of aspe
t ratio mu
h higherthan κ = 2.62 if the polydispersity is su�
iently high.Polydispersity parameters obtained from simulation givesupport to the model.The arti
le is organized as follows. In Se
tion IIwe present numeri
al eviden
e that the size distribu-tion in the HR �uid is an exponentially de
aying fun
-tion. Se
tion III presents the main ideas of the theo-reti
al model proposed. The 
on
lusions are drawn inSe
tion IV. Finally, details on the model and on the pro-
edure of solution are relegated to Appendi
es A and B,while Appendix C 
ontains a 
hemi
al�rea
tion model formonomer aggregation whi
h also supports the assump-tion of an exponential 
luster size distribution.

FIG. 1: (Colour online). Con�guration of hard re
tanglesof aspe
t ratio κ = 7 at pa
king fra
tion η = 0.655, as ob-tained from MC simulation. Clusters, de�ned by the pair 
on-ne
tedness 
riterion explained in the text, have been 
oloureda

ording to their size.II. MONTE CARLO SIMULATION OFCLUSTERINGWe started by applying standard isobari
 (NPT) MCte
hniques on a two�dimensional �uid of hard re
tangles,with aspe
t ratios κ = 3, 5 and 7, using N = 1400 re
t-angles. The transition from the I phase to the Nt phasewas identi�ed approximately by inspe
tion of the tetrati
order parameter q2 = 〈cos 4φ〉, where φ is the angle be-tween the long axis of the parti
le and an axis �xed inspa
e. On
e the samples were equilibrated, 
luster statis-ti
s was applied. The 
riterion for pair 
onne
tedness,i.e. for de
iding when two neighbouring re
tangles 
anbe 
onsidered to be `bonded', was based on the relativeangle φ12 between the long axes of the parti
les and theirrelative 
entre�of�mass distan
e r12, by demanding that
φ12 < δ and |r12| < ǫ. Typi
al values adopted were
δ = 10◦ and ǫ = 1.3σ0, although the 
on
lusions to bepresented below do not seem to depend qualitatively onthe exa
t values (provided they are not too large).Fig. 1 presents a 
on�guration of re
tangles with κ = 7at a pa
king fra
tion η = 0.655. This 
orresponds to atetrati
 phase. Identi�ed 
lusters have been 
oloured a
-
ording to their size. One 
an see how these 
lusters looklike large �super�re
tangles� arranged along two perpen-di
ular dire
tions. Therefore, the tetrati
 stru
ture ismaintained not only for single re
tangles, but also atthe level of 
lusters (�polydispersed super�re
tangles�).This hierar
hi
al feature of the tetrati
 symmetry willgive support to the theoreti
al model to be presented inthe following se
tion. In Fig. 2 a logarithmi
 histogramof the size distribution (averaged over 
on�gurations) isshown; in the �gure, xi is de�ned as the fra
tion of 
lus-ters of size i (see next se
tion). The distribution looksexponential. All the 
urves in the �gure pertain to a
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FIG. 2: Size distribution fun
tion xi as obtained from MCsimulation, in logarithmi
 s
ale, for a �uid of HRs with di�er-ent values of aspe
t ratio and pa
king fra
tion: �lled 
ir
les,
κ = 3 and η = 0.635; open squares, κ = 7 and η = 0.600; andgrey squares, κ = 5 and η = 0.657. Straight lines are linear�ts. Inset: area distribution fun
tion ixi for the 
ase κ = 5and η = 0.692.tetrati
 phase, but the same behaviour is observed alsoin the isotropi
 phase (with the general trend that, forgiven κ, the slope de
reases, i.e. the size distributionfun
tion be
omes wider, hen
e the average 
luster size,as density in
reases). In the size region 
orrespondingto square 
lusters (i.e. 
lusters with aggregation num-ber i ∼ κ) it is possible to see an in
ipient shoulder thatgrows as density is in
reased. This feature is more appar-ent in the area distribution fun
tion, ixi (giving the fra
-tion of area o

upied by 
lusters of a given size), whi
hpresents a shoulder and sometimes even a well�de�nedpeak (inset of Fig. 2), indi
ating that square 
lusters arestru
turally very relevant and 
ontribute very de
isivelyto the thermodynami
 properties of the �uid.We end this se
tion by dis
ussing the orientational dis-tribution fun
tions. Let hm(φ) be the monomer orien-tational distribution fun
tion, giving the probability of�nding a given re
tangle with its long axis forming anangle φ with respe
t to the dire
tor. Having de�ned 
lus-ters in the �uid, we may also de�ne an orientational dis-tribution fun
tion asso
iated with 
lusters, hc(φ), givingthe probability of �nding an average 
luster (regardlessof its size) oriented with angle φ. In the simulations we
ompute hc(φ) by averaging over all the identi�ed 
lus-ters, and then over all MC 
on�gurations. Fig. 3 givesthe fun
tions hm(φ) and hc(φ) for a state with tetrati
symmetry. It is interesting to note that these fun
tionsare almost identi
al (with the same symmetry and, 
on-sequently, with peaks with the same height), so thatthe stru
ture of tetrati
 ordering is maintained from themonomer level to the 
luster level, the fun
tions hm(φ)and hc(φ) obeying a kind of �similarity� property. This
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FIG. 3: Monomer hm(φ) (solid line) and 
luster hc(φ)(dashed line) orientational distribution fun
tions for the 
ase
κ = 7 and η = 0.655, as obtained from MC simulation.property does not seem to be followed in the uniaxialnemati
 phase.III. THEORETICAL MODELThe model we propose a

ounts for 
lustering e�e
ts inan approximate way. The 
lear identi�
ation of 
lustersin the simulations, along with their approximate re
t-angular shape, leads to a simple model where 
lustersare regarded as single re
tangular parti
les with no in-ternal degrees of freedom. Therefore, we 
onsider a n�
omponent mixture of two-dimensional hard re
tanglesof dimensions L and σi, with σi = iσ0 and i the aggrega-tion number. Ea
h of these re
tangles is assumed to be
omposed of i monomers in perfe
t 
onta
t in a side-by-side 
on�guration. The total number of monomers, N0,
an be written as

N0 =
n
∑

i=1

iNi, (1)where Ni is the number of 
lusters 
ontaining imonomers. Dividing by the volume V ,
ρ0 =

n
∑

i=1

iρi, (2)where ρ0 = N0/V is the total monomer density, and
ρi = Ni/V = xiρ is the density of 
lusters of size i, with
xi = Ni/N their number fra
tion, while N =

∑

i Ni isthe total number of 
lusters and ρ = N/V their den-sity. The set {xi}, i = 1, · · · , n, is a 
entral quantity inour model, sin
e it 
ontains information about 
lusteringtenden
ies. We will assume xi to be an exponential with
i, as explained later. The total pa
king fra
tion of the
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FIG. 4: (Colour online). Multi
omponent isotropi
 mix-ture 
omposed of di�erent spe
ies, where spe
ies, depi
ted indi�erent 
olours, 
orrespond to 
lusters of a parti
ular size.Clusters are de�ned as aggregates of re
tangular monomersin a side-by-side 
on�guration. In this instan
e the monomeraspe
t ratio is κ = 5.system is
η =

n
∑

i=1

ρiai, (3)where ai = ia0 (a0 = Lσ0) is the area of a 
luster of size
i. Using (2), we easily obtain η = ρ0a0.Fig. 4 shows a s
hemati
 representation of an isotropi

on�guration of 
lusters of di�erent sizes (with monomeraspe
t ratio κ = 5). The original monomers that give riseto ea
h 
luster are indi
ated but note that, in our model,the identity of the monomers is lost, as monomers in thesame 
luster do not intera
t dynami
ally, always beingin perfe
t side-by-side 
onta
t.The free�energy of this multi
omponent mixture ofhard re
tangles will be modelled by means of SPT ap-plied to a �uid mixture of freely�rotating hard re
tangles.The orientational properties of the mixtures will be 
har-a
terised by orientational distribution fun
tions hi(φ) forea
h 
omponent i. The free�energy density fun
tional
Φ = βF/V is written as
Φ[{hi}] = ρ

{

n
∑

i=1

xi

[

ln (xiVi) +

∫ π

0

dφhi(φ) ln[hi(φ)π]

]

− 1 + ln y + yS [{hi}]
}

, (4)where Vi is the thermal volume of i�sized 
lusters, and wede�ned y = ρa0/(1− η). Due to the head�tail symmetryof the parti
les, the angle φ 
an be restri
ted to the inter-val [0, π] and the fun
tions hi(φ) normalised a

ordingly.

The fun
tion S [{hi}] =
∑

i,j xixjSij [{hi}], with
Sij [{hi}] =

1

2

(

κ + ijκ−1
)

〈〈| sin φij |〉〉

+
1

2
(i + j)〈〈| cos φij |〉〉, (5)is related to Aij , the angle�averaged ex
luded areabetween 
lusters i and j, as Sij = (Aij/a0 − i −

j)/2. The shorthand notation 〈〈f(φij)〉〉 has been usedfor the double angular average of a generi
 fun
tion:
〈〈f(φij)〉〉 =

∫ π

0
dφi

∫ π

0
dφjhi(φi)hj(φj)f(φij). Now a bi-fur
ation analysis of (4) at the I-Nu,t transition (see Ap-pendix) allows us to obtain the pa
king fra
tions of theI-Nu,t spinodal lines as

η∗ =

[

1 − 4

π
gk

(

κ

m
(1)
0

+
m

(2)
0

κm
(1)
0

+ 2(−1)k

)]−1

, (6)with k = 1 for the uniaxial and k = 2 for the tetrati
 ne-mati
, while m
(α)
0 =

∑

i xii
α (α = 1, 2), are the �rst andse
ond moments of the 
luster size distribution fun
tion.Based on the MC results, we adopt an exponential 
lus-ter size distribution:

xi =
1 − q

1 − qn
qi−1, i = 1, · · · , n, (7)with q = e−λ (λ > 0). The prefa
tor in (7) ensures thatthe distribution is normalised, i.e. that ∑i xi = 1. The�rst two moments 
an be derived analyti
ally:

m
(1)
0 =

1 − [1 + n(1 − q)] qn

(1 − q)(1 − qn)
, (8)

m
(2)
0 =

1 + q −
[

q + (1 + n(1 − q))2
]

qn

(1 − q)2(1 − qn)
. (9)Now we use (6) to obtain the maximum aspe
t ratiowhi
h 
an support a stable tetrati
 phase. This followsby imposing the 
ondition η∗

0,t = η∗
0,u, i.e. by sear
hingfor the interse
tion point of the two spinodal lines I�Nuand I�Nt in the phase diagram η − κ. Solving for the
orresponding value of κ, we obtain

κ =
1

2

(

3m
(1)
0 ±

√

9
(

m
(1)
0

)2

− m
(2)
0

)

. (10)In the spe
i�
 
ase where the number of spe
ies goes toin�nity, n → ∞, we obtain from (8)-(10)
∆ = κ−1

[

1

2

(

2κ2 − 3κ− 1 ±
√

κ2 + 6κ + 1
)

]1/2

, (11)where ∆ =

√

m
(2)
0 /

(

m
(1)
0

)2

− 1 =
√

q, a measure ofpolydispersity, is the relative mean square deviation. Thetwo fun
tions ∆(κ), 
orresponding to the two signs in(11), are plotted in Fig. 5 (note that one of the bran
hes,
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FIG. 5: The fun
tions ∆(κ) in terms of inverse aspe
t ra-tio κ−1. Symbols indi
ate the nemati
 phase whi
h is stablein the region in question. The region of tetrati
 stability isshaded. Open squares indi
ate values of polydispersity, forvalues of aspe
t ratio κ = 3, 5 and 7, at the I�Nt transition,as obtained from MC simulation; error bars 
orrespond toun
ertainty in ∆ originating from un
ertainty in lo
ation ofspinodal.the one with minus sign, 
an be only 
al
ulated for
κ ≥ κ∗ = (3 +

√
5)/2). The two lines de�ne a region(shaded in the �gure) where the tetrati
 phase may bestabilised. Thus we see how, as the value of polydisper-sity ∆ is in
reased, the maximum value of κ for whi
hthe tetrati
 phase 
eases to exist in
reases, whi
h meansthat polydispersity enhan
es the formation of tetrati
 or-dering.Note that the values of ∆ at the upper boundary ofthe tetrati
 region are very high, whi
h means that thereshould be a large number of 
lusters with their long side

iσ0 ≫ L, while their width is L. This 
auses the e�e
tiveaverage 
luster aspe
t ratio iσ0/L to be very high, whi
hindu
es formation of uniaxial nemati
 order and thus theNt phase is destabilised in favour of the Nu phase. Thepresen
e of su
h big 
lusters is not observed in the sim-ulations, whi
h means that a more sophisti
ated modelshould somehow in
lude additional entropy terms thatdis
ourage the formation of big 
lusters; for the sake ofsimpli
ity, we have kept the ingredients of our model to aminimum and avoided any su
h additional 
ompli
ations.Finally, in Fig. 5 values of polydispersity ∆ 
al
ulatedfrom the simulated 
luster size distribution fun
tion havebeen indi
ated by symbols. These values 
orrespond tothe estimated spinodal line of the I�Nt transition for the
ases κ = 3, 5 and 7. Sin
e these estimations are veryrough, the un
ertainty in pa
king fra
tion at the spin-odals goes over to the value of polydispersity (whi
h nat-urally depends on κ and η), whi
h is represented in ea
h
ase by error bars. We 
an see that in two of the 
asesthe symbols are well inside the tetrati
 stability region


al
ulated from the theory. In the 
ase κ = 7, whereun
ertainty is larger, the MC estimate of ∆ lies outside(but 
lose to) this region.IV. CONCLUSIONSBe
ause of the redu
ed dimensionality, �uids of two�dimensional hard anisotropi
 parti
les exhibit strong
lustering e�e
ts: parti
les have less freedom to orient inspa
e, whi
h fosters 
on�gurations where neighbouringparti
les lie parallel to ea
h other. However, the impa
tof this on the onset of new ma
ros
opi
 symmetries de-pends very sensitively on the parti
ular geometry of theparti
les. Thus, in �uids of re
tangles, neighbour 
lus-ters have a strong tenden
y to adopt orthogonal relative
on�gurations, sin
e these 
lusters are almost perfe
t bigre
tangles made of several, almost parallel, monomers.These strong tetrati
 
orrelations are 
apable of generat-ing full ma
ros
opi
 tetrati
 order and a thermodynam-i
ally stable tetrati
 phase. Therefore, 
lustering e�e
tsare 
ru
ial to understand phase behaviour in the HR �uid(and possibly also in the HDR and related �uids), butsimple theories at the level of two�body monomer 
or-relations (Onsager, SPT, et
.) 
annot a

ount for thesee�e
ts.In this work we have presented a simple theory thatin
orporates 
lustering in terms of 
luster polydispersity,where 
lusters are 
onsidered to be inert parti
les with nointernal degrees of freedom. This assumption may be a
-
urate provided the 
luster lifetime (i.e. the average timeit takes for a 
luster to disappear sin
e it was formed) islonger than the typi
al 
luster di�usion rates in the �uid.Validation of this 
ondition will have to wait for mole
-ular dynami
s simulations of the hard�re
tangle �uid.On
e the �uid is modelled in terms of a multi
ompo-nent mixture, one of the available theories for mesophaseformation 
an be used. We have used SPT and have ex-amined the 
onsequen
e of polydispersity in the phasediagram. As expe
ted, polydispersity enhan
es the sta-bility of the tetrati
 phase. Due to the limitations of ourmodel (e.g. the 
luster size distribution has to be im-posed from outside and does not result from the theory),we 
annot make any quantitative 
omparison with avail-able simulation and experimental results. However, themodel 
an qualitatively explain the formation of tetrati
order for rather high values of aspe
t ratio, as shown bysimulation and experiment.A
knowledgmentsY.M.-R. gratefully a
knowledges �nan
ial supportfrom Ministerio de Edu
a
ión y Cien
ia (Spain) undera Ramón y Cajal resear
h 
ontra
t and the MOSAICOgrant. This work has been partly �nan
ed by grantsNos. FIS2005-05243-C02-01 and FIS2007-65869-C03-01,also from Ministerio de Edu
a
ión y Cien
ia, and S-



60505/ESP-0299 from Comunidad Autónoma de Madrid(Spain). V. APPENDIXIn this appendix we provide additional details and fur-ther information on the 
onsequen
es of the model. It
ontains two se
tions. In Se
tion A, details on the setof non�linear equations that have to be solved to obtainthe equilibrium properties of the HR �uid are provided.Also, the bifur
ation analysis of the I�Nu,t transitions ispresented. Se
tion B is devoted to dis
ussing the natureof the di�erent phase transitions, together with the be-haviour of the distribution fun
tions and to a 
omparisonwith simulations. In Se
tion C, a simple 
hemi
al modelof aggregation is dis
ussed.A. Minimisation of free energy and bifur
ationanalysisUsing Fourier series to represent the orientational dis-tribution fun
tions,
hi(φ) =

1

π

∑

k≥0

h
(i)
k cos(2kφ), (12)with h

(i)
0 = 1 ∀i, together with Eqn. (5), we �nd

Sij =
1

π

∑

k≥0

[

κ +
ij

κ
+ (−1)k(i + j)

]

gkh
(i)
k h

(j)
k , (13)where gk = −(1 + δk0)/2(4k2 − 1). De�ning

m
(α)
k =

∑

i

xii
αh

(i)
k , α = 0, 1, (14)we obtain

∑

ij

xixjSij =
κ

π

∑

k

gks2
k, sk = m

(0)
k + (−1)k m

(1)
k

κ
.(15)Note that m

(0)
0 =

∑

i xi = 1 while m
(1)
0 =

∑

i xii isthe �rst moment of the dis
rete 
luster size distributionfun
tion {xi}. Using this notation, the free-energy perparti
le ϕ = Φ/ρ0 
an be written
ϕ = ln

(

y0

m
(1)
0

)

− 1 +

n
∑

i=1

xi

{

ln (xiVi)

+

∫ π

0

dφhi(φ) ln [hi(φ)π]

}

+
y0κ

πm
(1)
0

∑

k

gks2
k, (16)with y0 = η/(1 − η). The fun
tional minimization of(16) with respe
t to hi(φ) gives a set of self�
onsistent

non-linear equations whi
h, after some algebrai
 manip-ulations, 
an be transformed into a set of equations forthe new variables sk:
sk = 2

n
∑

i=1

xi

[

1 +
(−1)k

κ
i

]

Q
(i)
k , (17)

Q
(i)
k =

∫ π

0

dφ cos(2kφ)hi(φ), (18)where the normalized orientational distribution fun
tionsare
hi(φ) =

e−Λi(φ)

∫ π

0

dφe−Λi(φ)

, (19)
Λi(φ) =

4y0κ

πm
(1)
0

∑

k≥1

sk

[

1 +
(−1)k

κ
i

]

gk cos(2kφ).(20)The linearization of (17) with respe
t to sk (k ≥ 1) allowus to obtain the expression (6) for the pa
king fra
tionsat the I-Nu,t spinodal lines.B. Phase transitions and distribution fun
tionsIn this subse
tion we analyse the free energy bran
hesof the model in order to understand the nature of thedi�erent phase transitions. The 
luster distribution fun
-tion xi of the mixture is assumed to be exponential, andthe width of the distribution is �xed via the polydisper-sity parameter q (or ∆). Eqns. (17)�(20) are solvedfor di�erent values of η to �nd all metastable and sta-ble phases, either I, Nu or Nt phases. In Fig. 6 thefree-energy bran
hes as a fun
tion of η−1 for di�erentvalues of q (and hen
e for di�erent polydispersities) areshown. As 
an be seen, the Nt phase begins to be sta-ble from q ≈ 0.30. Also, it is 
lear that, for q = 0.25and 0.35, the I-Nu or Nt-Nu transitions are of �rst order(free�energy bran
hes 
ross with di�erent slopes). The
oexisten
e values of η 
annot be determined from thestandard double�tangent 
onstru
tion, sin
e the presentsystem is polydisperse. The usual pro
edure then is to�x the distribution fun
tion x
(0)
i and pa
king fra
tion η(0)for the parent phase (I or Nu,t phases) and �nd the 
loudand shadow 
urves. We have not implemented this pro-
edure here. However, for those values of q for whi
h thetransitions are 
ontinuous (i.e. q = 0.5 and 0.65), thepresent pro
edure adequately determines the transitiondensities. A similar situation o

urs for the 
ases κ = 5and κ = 7 (not shown).It is also interesting to look at the orientational dis-tribution fun
tions of monomers and 
lusters. From the
orresponding fun
tions for 
lusters of size i, i.e. hi(φ),it is easy to de�ne a 
luster orientational distribution
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FIG. 6: Free energy per parti
le Φ/ρ vs. inverse pa
kingfra
tion η−1 from SPT results for the multi
omponent HR�uid of monomer aspe
t ratio κ = 3 and with di�erent val-ues of polydispersity: (a) q = 0.25, (b) 0.35, (
) 0.50 and(d) 0.65. Continuous 
urves: tetrati
 phase; dashed 
urves:uniaxial nemati
 phase; dotted 
urves: isotropi
 phase. In (
)and (d) symbols indi
ate bifur
ation points from the isotropi
to the tetrati
 (�lled 
ir
les) and uniaxial nemati
 (open 
ir-
les) phases. In (a) and (b) a straight line in η−1 has beensubtra
ted to better visualise the 
urves.fun
tion hc(φ) as
hc(φ) =

n
∑

i=1

xihi(φ). (21)From this, order parameters of the multi
omponent mix-ture 
an also be de�ned:
Q(k) =

∑

i

xiQ
(k)
i , k = 1, 2. (22)In the 
ase of monomers the situation is a bit more
ompli
ated, sin
e in our model we have lost tra
k ofmonomers as distin
t entities. However, we 
an simply
ount the number of monomers pointing along some an-gle φ from the set hi(φ) and then divide by the averagenumber of 
lusters. Here we have to bear in mind that
lusters of size i (having i monomers) with i < κ (and κan integer) have a long axis in a dire
tion perpendi
ularto that of 
lusters with i > κ; therefore we write:

hm(φ) =
1

m
(1)
0

[

n0
∑

i=1

xiihi(φ) +

n
∑

i=n0+1

xiihi(φ + π/2)

]

,(23)with n0 = [κ] (note that in the 
ase where κ is not aninteger this division has to be done also). Thus the order
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FIG. 7: Cluster (a) and monomer (b) orientational distribu-tion fun
tions for κ = 5 and q = 0.65. The 
ontinuous line
orresponds to a stable Nu phase with η = 0.85, whereas thedis
ontinuous line is for the metastable Nt phase at the samevalue of η.parameters of the monomers 
an be 
al
ulated as
〈cos(2φ)〉m =

1

m
(1)
0

∣

∣

∣

∣

∣

n0
∑

i=1

xiiQ
(1)
i −

n
∑

i=n0+1

xiiQ
(1)
i

∣

∣

∣

∣

∣

,(24)
〈cos(4φ)〉m =

1

m
(1)
0

n0
∑

i=1

xiiQ
(2)
i . (25)Even for values of aspe
t ratio for whi
h there exists a re-gion of tetrati
 stability, the Nu is always the more stablephase for high values of pa
king fra
tion. It is interestingto note that, in this situation, the 
luster and monomerdistribution fun
tions hc,m(φ) usually have a se
ondarypeak at φ = π/2 
orresponding to tetrati
 ordering (thisfeature is also present in the simple SPT for the one�
omponent HR �uid). Fig. 7 shows these distributionsfor the 
ase κ = 5 and q = 0.65. Note that, a

ording toFig. 5, there exists a stable tetrati
 phase in this 
ase,with a value of pa
king fra
tion at the Nt�Nu transitionof η∗ = 0.839. In the �gure, the pa
king fra
tion 
ho-sen is η = 0.85 > η∗ and, therefore, the stable phasehas an orientational distribution fun
tion pertaining to aNu. However, both the 
luster and the monomer orienta-tional distribution fun
tions of Nu have se
ondary peaks.We have also plotted in Fig. 7 the distribution fun
tionsof a metastable Nt at the same value of η. Finally, itis also interesting that, although the distribution fun
-tions hm(φ) and hc(φ) in the tetrati
 region are alwaystetrati
�like (i.e. all maxima have the same height, as itshould be by 
onstru
tion), they do not 
oin
ide in theuniaxial nemati
 phase and, 
onsequently, the similarityproperty at work in the tetrati
 phase is not obeyed forthe uniaxial nemati
 (see Se
tion II).C. Chemi
al rea
tion modelAggregation phenomena in dilute �uids (e.g. mi
elleaggregation) are very often des
ribed in terms of a 
hem-
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FIG. 8: Pa
king fra
tions η of the I�Nt (
ontinuous line) andI�Nu (dashed line) transitions versus aspe
t ratio κ.i
al rea
tion model. An exponentially de
aying size dis-tribution immediately emerges from these models. Herewe exploit the idea and 
arry it further using our density�fun
tional approximation. This model assumes that thelifetime of a 
luster is su�
iently long that it 
an be de-�ned as a distin
t `
hemi
al' spe
ies.One assumes a 
hemi
al rea
tion of the type Cl+C1 ⇀↽
Cl+1, with Cl denoting a `
hemi
al' spe
ies (i.e. a 
luster)
ontaining l monomers. Chemi
al equilibrium between
lusters and monomers then implies the relation

µi = iµ1, i = 2, · · · , n. (26)Now the 
hemi
al potential of the i�th spe
ies 
an be
al
ulated from our density�fun
tional theory as
βµi =

∂Φ

∂ρi
, (27)whi
h results in

βµi = ln (xiVi) +

∫ π

0

dφhi(φ) ln[hi(φ)π] + ln y

+yi + 2y
∑

j

xjSij + y2Si. (28)The n−1 Eqns. (26), together with the 
ondition (2), area set of n equations with n unknowns (x2, · · · , xn and ρ)whi
h allow to �nd the equilibrium 
on�guration of the�uid. Due to the simpli
ity of the model an analyti
alsolution 
an be found.Sin
e, for the isotropi
 phase, we have
∑

j

xj (iS1j − Sij) =
(i − 1)

π
(κ + m

(1)
0 ), (29)

Eqns. (26), together with (28), give xi = x1q
i−1 with

q = x1
y0

m
(1)
0

exp

[

2y0

π

(

κ

m
(1)
0

+ 1

)]

. (30)Here we assumed that Vi = V i
1 (
onsistent with the ab-sen
e of internal degrees of freedom in the 
lusters andalso with the assumption that all 
lusters have the samemass). Now, sin
e∑i xi = 1, we �nd, for a �uid with anin�nite number of spe
ies, 1 = x1/(1−q) whi
h, togetherwith (30), give

x1 =

{

1 +
y0

m
(1)
0

exp

[

2y0

π

(

κ

m
(1)
0

+ 1

)]}−1

. (31)Also, the �rst moment 
an be 
al
ulated self�
onsistentlyas
m

(1)
0 = x1

∞
∑

i=1

iqi−1 =
x1

(1 − q)2

= 1 +
y0

m
(1)
0

exp

[

2y0

π

(

κ

m
(1)
0

+ 1

)]

. (32)This solution means that xi =
(

1 − 1/m
(1)
0

)i−1

/m
(1)
0 .While the �rst moment m

(1)
0 is the solution of Eqn. (32),the se
ond moment results in

m
(2)
0 = x1

∞
∑

i=1

i2qi−1 = x1
1 + q

(1 − q)3
= m

(1)
0 (2m

(1)
0 − 1).(33)The polydispersity 
oe�
ient, de�ned as ∆ =

√

m
(2)
0 /

(

m
(1)
0

)2

− 1, turns out to be ∆ =

√

1 − 1/m
(1)
0 .Now the I-Nu and I-Nt spinodals 
an be 
al
ulated bysolving Eqn. (32), together with the value of y0 obtainedfrom Eq. (6). Fig. 8 
ontains the fun
tions ηu,t(κ) ob-tained as the solutions of (32) and (6). As 
an be seen theuniaxial nemati
 is more stable than the tetrati
 up to

κ∗ ≈ 41.65. This results from the pe
uliar behaviour ofthe area distribution fun
tion ixi: its zeroth�order mo-ment is always greater than κ, while it is larger in thetetrati
 phase when κ < κ∗ [Fig. 9(a)℄; this behaviouris inverted for κ > κ∗, and the moment be
omes largerfor the uniaxial nemati
 phase, as 
an be seen in Fig.9(b). Again this pe
uliar behaviour is due to the rela-tively high proportion of very big 
lusters, with iσ0 > L,whi
h stabilise the Nu phase against the Nt phase. Thisbehaviour is not observed in simulations, be
ause the for-mation of very big 
lusters is penalised by �u
tuations.The model has the value that an exponential 
luster dis-tribution fun
tion is predi
ted.
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FIG. 9: Area distribution fun
tions for tetrati
 Nt and uni-axial Nu nemati
 phases. (a) κ = 10 and (b) κ = 100.
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