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We show that the relative stability of the nematic tetratic phase with respect to the usual uni-
axial nematic phase can be greatly enhanced by clustering effects. Two—dimensional rectangles of
aspect ratio x interacting via hard interactions are considered, and the stability of the two nematic
phases (uniaxial and tetratic) is examined using an extended scaled—particle theory applied to a
polydispersed fluid mixture of n species. Here the i—th species is associated with clusters of 7 rect-
angles, with clusters defined as stacks of rectangles containing approximately parallel rectangles,
with frozen internal degrees of freedom. The theory assumes an exponential cluster size distribu-
tion (an assumption fully supported by Monte Carlo simulations and by a simple chemical-reaction
model), with fixed value of the second moment. The corresponding area distribution presents a
shoulder, and sometimes even a well-defined peak, at cluster sizes approximately corresponding
to square shape (i.e. ¢ ~ k), meaning that square clusters have a dominant contribution to the
free energy of the hard-rectangle fluid. The theory predicts an enhanced region of stability of the
tetratic phase with respect to the standard scaled—particle theory, much closer to simulation and to

experimental results, demonstrating the importance of clustering in this fluid.

PACS numbers: 61.30.Cz, 61.30.Hn, 61.20.Gy

I. INTRODUCTION

The hard rectangle (HR) fluid constitutes a paradig-
matic example of a two-dimensional fluid exhibiting
surprisingly complex phase behavior: different phase
symmetries, phase transitions with different order, and
defect—mediated continuous transitions of the Kosterlitz—
Thouless type ﬂ], all governed solely by entropy. This
peculiar two—dimensional system has three equilibrium
fluid phases: isotropic (I), where particle axes are ran-
domly oriented, uniaxial nematic (N,), with particles
preferentially aligned along a single nematic director, and
tetratic nematic (Ny), possessing two equivalent perpen-
dicular nematic directors, with long particle axes oriented
along one of two directors with equal probability.

In a pioneering study, Schlacken et al. ﬂ] applied
scaled—particle theory (SPT) on a fluid of HRs to demon-
strate the stability of the Ny phase, a phase which cannot
be stabilised in a fluid of hard ellipses. The intersection
between the two spinodals associated with the I-Ny and
I-N,, transitions defines a limiting aspect ratio x = L/og
(with L and o¢ the length and width of the rectangles,
respectively) for the stability of the Ny phase, which is
located at xk ~ 2.62. Thus, for lower values of aspect
ratio, the isotropic fluid exhibits a continuous transition
to the Ny phase, whereas if £k > 2.62 the I phase goes
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directly to the uniaxial nematic phase Ny.

The study of Schlacken et al. was later supplemented
by the calculation of the complete phase diagram [3], also
within the context of SPT. It was found, in particular,
that the Ny phase undergoes a transition to the N, phase
at high density, the nature of which changes from second
to first order at a tricritical point. In addition, it was
shown B] that, at the level of a particular approximation
for density—functional theory, the N; fluid is metastable
with respect to a phase with (either partial or complete)
spatial order; the theory was approximate in the sense
that it included the exact functional form of two-body
correlations, but only approximate higher—order correla-
tions. On the other hand, Monte Carlo (MC) simula-
tions conducted on hard squares [4] and on a HR system
B] with £ = 2 indicated, as expected, that the fluid ex-
hibits quasi-long-range tetratic order, and that the high—
density phase consists of an aperiodic crystalline tetratic
phase exhibiting random tiling on a square lattice. MC
simulation of a HR, fluid confined in a slit pore [6] show
the presence of weak tetratic correlations at the centre of
the pore.

In the experimental front, recent results for colloidal
discs forced to stand on edge by external potentials ﬂ]
(and hence interacting approximately as HRs) have also
demonstrated that tetratic correlations play a vital role
in this system. Also, experiments conducted on a mono-
layer of vibrated granular cylinders lying on a plate ﬂ]
have shown tetratic correlations for cylinders with aspect
ratio as high as k = 12.6.

In Ref. [§] strong evidence, based on MC simulations,
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was presented for the thermodynamic stability of a Ny
fluid when & is at least as large as 7. These simulations
were supplemented by an extended SPT model that ex-
actly incorporates the second and third virial coeflicients
while resumming the remainder of the virial series. The
inclusion of the third virial coeflicient increases the in-
terval in k where the Ny phase is stable, approaching the
simulation result. Specifically, the I-Ny transition line
moves to lower packing fractions, while the intersection
point between the I-N, and the I-N; transitions shifts to
k = 3.23. However, this value is still lower than the value
indicated by simulations.

The properties of the HR fluid are to be contrasted
with those of hard discorectangles. MC simulations of
this system have been conducted 9], and the global phase
diagram was computed. A careful inspection of particle
configurations in the isotropic phase shows that there are
peculiar equilibrium textures, with large clusters contain-
ing particles arranged side by side, exactly as in the HR
fluid. These configurations are favoured by the particular
shape of the particles and by the reduced dimensional-
ity. However, in contrast with the HR fluid, neighbouring
clusters do not exhibit strong tetratic correlations and,
therefore, the formation of a tetratic nematic phase is
discouraged in the hard discorectangle fluid.

In this article we address the problem of how the
present theoretical understanding of the HR fluid can
be improved by consideration of clustering effects. Our
thesis is that these effects, very apparent in our own MC
simulations but not addressed by the theories proposed
up to now, are a key factor in the stabilisation of the
N; phase. Inclusion of cluster formation is responsible
for the enhancement of the region of Ny stability in the
phase diagram. In the model proposed, clustering is ap-
proximately taken care of by treating clusters as distinct
species in a mixture of polydispersed rectangles. The
functional form for the cluster size distribution is as-
sumed to be exponential, an assumption supported by
cluster statistical results based on MC simulations and
by a simple chemical-reaction model (see Appendix), and
is introduced in the model as an input. The thermody-
namics of the polydispersed mixture is analysed using
SPT. The results indicate that clustering (assimilated in
the theory by means of a polydispersity parameter) sta-
bilises the Ny phase for values of aspect ratio much higher
than k = 2.62 if the polydispersity is sufficiently high.
Polydispersity parameters obtained from simulation give
support to the model.

The article is organized as follows. In Section II
we present numerical evidence that the size distribu-
tion in the HR fluid is an exponentially decaying func-
tion. Section III presents the main ideas of the theo-
retical model proposed. The conclusions are drawn in
Section IV. Finally, details on the model and on the pro-
cedure of solution are relegated to Appendices A and B,
while Appendix C contains a chemical-reaction model for
monomer aggregation which also supports the assump-
tion of an exponential cluster size distribution.
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FIG. 1: (Colour online). Configuration of hard rectangles
of aspect ratio k = 7 at packing fraction n = 0.655, as ob-
tained from MC simulation. Clusters, defined by the pair con-
nectedness criterion explained in the text, have been coloured
according to their size.

II. MONTE CARLO SIMULATION OF
CLUSTERING

We started by applying standard isobaric (NPT) MC
techniques on a two—dimensional fluid of hard rectangles,
with aspect ratios xk = 3, 5 and 7, using N = 1400 rect-
angles. The transition from the I phase to the Ny phase
was identified approximately by inspection of the tetratic
order parameter go = (cos4¢), where ¢ is the angle be-
tween the long axis of the particle and an axis fixed in
space. Once the samples were equilibrated, cluster statis-
tics was applied. The criterion for pair connectedness,
i.e. for deciding when two neighbouring rectangles can
be considered to be ‘bonded’, was based on the relative
angle ¢12 between the long axes of the particles and their
relative centre—of—mass distance ris, by demanding that
¢12 < ¢ and |ri2| < e. Typical values adopted were
0 = 10° and € = 1.30¢, although the conclusions to be
presented below do not seem to depend qualitatively on
the exact values (provided they are not too large).

Fig. M presents a configuration of rectangles with k = 7
at a packing fraction n = 0.655. This corresponds to a
tetratic phase. Identified clusters have been coloured ac-
cording to their size. One can see how these clusters look
like large “super—rectangles” arranged along two perpen-
dicular directions. Therefore, the tetratic structure is
maintained not only for single rectangles, but also at
the level of clusters (“polydispersed super—rectangles”).
This hierarchical feature of the tetratic symmetry will
give support to the theoretical model to be presented in
the following section. In Fig. 2] a logarithmic histogram
of the size distribution (averaged over configurations) is
shown; in the figure, x; is defined as the fraction of clus-
ters of size ¢ (see next section). The distribution looks
exponential. All the curves in the figure pertain to a
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FIG. 2: Size distribution function z; as obtained from MC
simulation, in logarithmic scale, for a fluid of HRs with differ-
ent values of aspect ratio and packing fraction: filled circles,
k = 3 and n = 0.635; open squares, Kk = 7 and n = 0.600; and
grey squares, £ = 5 and n = 0.657. Straight lines are linear
fits. Inset: area distribution function ix; for the case kK = 5
and n = 0.692.

tetratic phase, but the same behaviour is observed also
in the isotropic phase (with the general trend that, for
given k, the slope decreases, i.e. the size distribution
function becomes wider, hence the average cluster size,
as density increases). In the size region corresponding
to square clusters (i.e. clusters with aggregation num-
ber i ~ k) it is possible to see an incipient shoulder that
grows as density is increased. This feature is more appar-
ent in the area distribution function, iz; (giving the frac-
tion of area occupied by clusters of a given size), which
presents a shoulder and sometimes even a well-defined
peak (inset of Fig. @), indicating that square clusters are
structurally very relevant and contribute very decisively
to the thermodynamic properties of the fluid.

We end this section by discussing the orientational dis-
tribution functions. Let h,,(¢) be the monomer orien-
tational distribution function, giving the probability of
finding a given rectangle with its long axis forming an
angle ¢ with respect to the director. Having defined clus-
ters in the fluid, we may also define an orientational dis-
tribution function associated with clusters, h.(¢), giving
the probability of finding an average cluster (regardless
of its size) oriented with angle ¢. In the simulations we
compute h.(¢) by averaging over all the identified clus-
ters, and then over all MC configurations. Fig. [ gives
the functions hp,(¢) and h.(¢) for a state with tetratic
symmetry. It is interesting to note that these functions
are almost identical (with the same symmetry and, con-
sequently, with peaks with the same height), so that
the structure of tetratic ordering is maintained from the
monomer level to the cluster level, the functions hy,(¢)
and h.(¢) obeying a kind of “similarity” property. This
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FIG. 3: Monomer h,(¢) (solid line) and cluster h.(¢)
(dashed line) orientational distribution functions for the case
k =7 and n = 0.655, as obtained from MC simulation.

property does not seem to be followed in the uniaxial
nematic phase.

III. THEORETICAL MODEL

The model we propose accounts for clustering effects in
an approximate way. The clear identification of clusters
in the simulations, along with their approximate rect-
angular shape, leads to a simple model where clusters
are regarded as single rectangular particles with no in-
ternal degrees of freedom. Therefore, we consider a n—
component mixture of two-dimensional hard rectangles
of dimensions L and o;, with o; = iop and i the aggrega-
tion number. Each of these rectangles is assumed to be
composed of ¢ monomers in perfect contact in a side-by-
side configuration. The total number of monomers, Ny,
can be written as

n

No = ZiNi, (1)

=1

where N; is the number of clusters containing 1
monomers. Dividing by the volume V,

po = Zipi, (2)
i=1

where pg = Ny/V is the total monomer density, and
pi = N;/V = x;p is the density of clusters of size i, with
x; = N;/N their number fraction, while N = . N; is
the total number of clusters and p = N/V their den-
sity. The set {x;}, ¢ = 1,---,n, is a central quantity in
our model, since it contains information about clustering
tendencies. We will assume z; to be an exponential with
i, as explained later. The total packing fraction of the



FIG. 4:

(Colour online).
ture composed of different species, where species, depicted in
different colours, correspond to clusters of a particular size.
Clusters are defined as aggregates of rectangular monomers
in a side-by-side configuration. In this instance the monomer
aspect ratio is kK = 5.

Multicomponent isotropic mix-

system is

n=>_ pia, (3)
i=1

where a; = iag (ag = Loyg) is the area of a cluster of size
i. Using (), we easily obtain n = poao.

Fig. M shows a schematic representation of an isotropic
configuration of clusters of different sizes (with monomer
aspect ratio k = 5). The original monomers that give rise
to each cluster are indicated but note that, in our model,
the identity of the monomers is lost, as monomers in the
same cluster do not interact dynamically, always being
in perfect side-by-side contact.

The free—energy of this multicomponent mixture of
hard rectangles will be modelled by means of SPT ap-
plied to a fluid mixture of freely—rotating hard rectangles.
The orientational properties of the mixtures will be char-
acterised by orientational distribution functions h;(¢) for
each component ¢. The free—energy density functional
® = BF/V is written as

n

[{h;}] = P{ Zﬂfz {111 (z:Vi) + /0Tr dohi (o) ln[hi(d’)ﬂ]}

i=1

- 1+1ny+y5’[{hi}]}, (4)

where V; is the thermal volume of i—sized clusters, and we
defined y = pap/(1 —n). Due to the head—tail symmetry
of the particles, the angle ¢ can be restricted to the inter-
val [0, 7] and the functions h;(¢) normalised accordingly.

The function S [{h;}] = >, ; wix;S:5 [{hi}], with

Sii {hi}] =

+

(k+ijr™") (| sin gy )
(i + ) ((| cos ¢451)), (5)

N =N =

is related to A;;, the angle-averaged excluded area
between clusters ¢ and j, as S;; = (Aij/ao — 1 —
7)/2. The shorthand notation ((f(¢;;))) has been used
for the double angular average of a generic function:
({(f(@is))) = [y doi [y dpihi(¢i)hi(;)f(4ij). Now a bi-
furcation analysis of (@) at the I-N,, ; transition (see Ap-
pendix) allows us to obtain the packing fractions of the
I-N,,; spinodal lines as

4 K mé2) b -
=11 gk W‘Fﬁ*@(—l) , (6)
0

Ry

with k& = 1 for the uniaxial and k = 2 for the tetratic ne-
matic, while m((Ja) = >, z;i% (a = 1,2), are the first and
second moments of the cluster size distribution function.

Based on the MC results, we adopt an exponential clus-
ter size distribution:

:11_‘51611'—1
—q

) izl)"'a”? (7)

Ty

with ¢ = e=* (A > 0). The prefactor in (7)) ensures that
the distribution is normalised, i.e. that >, x; = 1. The
first two moments can be derived analytically:

@ _ 1-[+n-q)]q"
my’ = o
(1-¢)(1—-¢q")
1+q- [(14'(14'”(1—(]))2} q"
m® — i )
(1-9q)3*(1—q")

Now we use (Bl to obtain the maximum aspect ratio
which can support a stable tetratic phase. This follows
by imposing the condition 75, = 7, i.e. by searching
for the intersection point of the two spinodal lines I-N
and I-N; in the phase diagram 7 — k. Solving for the
corresponding value of x, we obtain

2
K= % <3m(()1) + \/9 (mél)) - méz)) . (10)

In the specific case where the number of species goes to
infinity, n — oo, we obtain from (&)-(I0)

(8)

1 1/2
A:n_1[§(2n2—3m—1i 52—1-6&—1—1)} , (11)

= @ () =
where A = /my”/ (myg 1 = /g, a measure of

polydispersity, is the relative mean square deviation. The
two functions A(k), corresponding to the two signs in
(), are plotted in Fig. Bl (note that one of the branches,
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FIG. 5: The functions A(k) in terms of inverse aspect ra-
tio k™. Symbols indicate the nematic phase which is stable
in the region in question. The region of tetratic stability is
shaded. Open squares indicate values of polydispersity, for
values of aspect ratio k = 3, 5 and 7, at the [-N transition,
as obtained from MC simulation; error bars correspond to
uncertainty in A originating from uncertainty in location of
spinodal.

the one with minus sign, can be only calculated for
k > k* = (3++/5)/2). The two lines define a region
(shaded in the figure) where the tetratic phase may be
stabilised. Thus we see how, as the value of polydisper-
sity A is increased, the maximum value of k for which
the tetratic phase ceases to exist increases, which means
that polydispersity enhances the formation of tetratic or-
dering.

Note that the values of A at the upper boundary of
the tetratic region are very high, which means that there
should be a large number of clusters with their long side
109 > L, while their width is L. This causes the effective
average cluster aspect ratio iog/L to be very high, which
induces formation of uniazial nematic order and thus the
N; phase is destabilised in favour of the N, phase. The
presence of such big clusters is not observed in the sim-
ulations, which means that a more sophisticated model
should somehow include additional entropy terms that
discourage the formation of big clusters; for the sake of
simplicity, we have kept the ingredients of our model to a
minimum and avoided any such additional complications.

Finally, in Fig. Bl values of polydispersity A calculated
from the simulated cluster size distribution function have
been indicated by symbols. These values correspond to
the estimated spinodal line of the [-Ny transition for the
cases k = 3, 5 and 7. Since these estimations are very
rough, the uncertainty in packing fraction at the spin-
odals goes over to the value of polydispersity (which nat-
urally depends on x and 7)), which is represented in each
case by error bars. We can see that in two of the cases
the symbols are well inside the tetratic stability region

calculated from the theory. In the case kK = 7, where
uncertainty is larger, the MC estimate of A lies outside
(but close to) this region.

IV. CONCLUSIONS

Because of the reduced dimensionality, fluids of two—
dimensional hard anisotropic particles exhibit strong
clustering effects: particles have less freedom to orient in
space, which fosters configurations where neighbouring
particles lie parallel to each other. However, the impact
of this on the onset of new macroscopic symmetries de-
pends very sensitively on the particular geometry of the
particles. Thus, in fluids of rectangles, neighbour clus-
ters have a strong tendency to adopt orthogonal relative
configurations, since these clusters are almost perfect big
rectangles made of several, almost parallel, monomers.
These strong tetratic correlations are capable of generat-
ing full macroscopic tetratic order and a thermodynam-
ically stable tetratic phase. Therefore, clustering effects
are crucial to understand phase behaviour in the HR. fluid
(and possibly also in the HDR and related fluids), but
simple theories at the level of two—body monomer cor-
relations (Onsager, SPT, etc.) cannot account for these
effects.

In this work we have presented a simple theory that
incorporates clustering in terms of cluster polydispersity,
where clusters are considered to be inert particles with no
internal degrees of freedom. This assumption may be ac-
curate provided the cluster lifetime (i.e. the average time
it takes for a cluster to disappear since it was formed) is
longer than the typical cluster diffusion rates in the fluid.
Validation of this condition will have to wait for molec-
ular dynamics simulations of the hard-rectangle fluid.
Once the fluid is modelled in terms of a multicompo-
nent mixture, one of the available theories for mesophase
formation can be used. We have used SPT and have ex-
amined the consequence of polydispersity in the phase
diagram. As expected, polydispersity enhances the sta-
bility of the tetratic phase. Due to the limitations of our
model (e.g. the cluster size distribution has to be im-
posed from outside and does not result from the theory),
we cannot make any quantitative comparison with avail-
able simulation and experimental results. However, the
model can qualitatively explain the formation of tetratic
order for rather high values of aspect ratio, as shown by
simulation and experiment.
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V. APPENDIX

In this appendix we provide additional details and fur-
ther information on the consequences of the model. It
contains two sections. In Section A, details on the set
of non-linear equations that have to be solved to obtain
the equilibrium properties of the HR fluid are provided.
Also, the bifurcation analysis of the I-N,, + transitions is
presented. Section B is devoted to discussing the nature
of the different phase transitions, together with the be-
haviour of the distribution functions and to a comparison
with simulations. In Section C, a simple chemical model
of aggregation is discussed.

A. DMinimisation of free energy and bifurcation
analysis

Using Fourier series to represent the orientational dis-
tribution functions,

th cos(2ke), (12)

k>0

with héi) = 1 Vi, together with Eqn. (@), we find

1 1 L )7 (j
S = ;Z [H — (- l)k(z—l—])} ght"nt?(13)
k>0
where g = —(1 + dx0)/2(4k? — 1). Defining
V=S winy, a=o0,1, (14)
we obtain
k 2 0) 4 kml(c )
inxjsij = ngsk, sp=my +(—1) T
17 k
(15)
Note that m = Y .z; = 1 while mO = Y xi is

the first moment of the discrete cluster size dlstrlbutlon
function {x;}. Using this notation, the free-energy per
particle ¢ = ®/po can be written

¢ =1In ( y(ol)> -1 —I—in{ln(xﬂ&)
Mg i=1
+ / dehi(¢) In [h; (¢)7] } yOH ngsk, 16)

0
with yo = n/(1 —n). The functional minimization of
(@I6) with respect to hi(¢) gives a set of self-consistent

non-linear equations which, after some algebraic manip-
ulations, can be transformed into a set of equations for
the new variables sy:

sk—2sz [1+ D*

= /0 s cos(2k6) (), (18)

} ®, (17)

where the normalized orientational distribution functions
are

o)
hi(¢) = ﬂiw, (19)
d — g
J, e
4 1)k
Ai(o) = W:;((:f) ];Sk [1 + ( H) z} gi cos(2ko).
(20)

The linearization of ([I7)) with respect to si (k > 1) allow
us to obtain the expression (@) for the packing fractions
at the I-N,,+ spinodal lines.

B. Phase transitions and distribution functions

In this subsection we analyse the free energy branches
of the model in order to understand the nature of the
different phase transitions. The cluster distribution func-
tion x; of the mixture is assumed to be exponential, and
the width of the distribution is fixed via the polydisper-
sity parameter ¢ (or A). Equns. ([I7)—@20) are solved
for different values of 7 to find all metastable and sta-
ble phases, either I, N, or Ny phases. In Fig. the
free-energy branches as a function of 5! for different
values of ¢ (and hence for different polydispersities) are
shown. As can be seen, the Ny phase begins to be sta-
ble from ¢ =~ 0.30. Also, it is clear that, for ¢ = 0.25
and 0.35, the I-N, or N(-N,, transitions are of first order
(free—energy branches cross with different slopes). The
coexistence values of 1 cannot be determined from the
standard double-tangent construction, since the present
system is polydisperse. The usual procedure then is to
fix the distribution function ;v( ) and packing fraction n(®)
for the parent phase (I or Nuyt phases) and find the cloud
and shadow curves. We have not implemented this pro-
cedure here. However, for those values of ¢ for which the
transitions are continuous (i.e. ¢ = 0.5 and 0.65), the
present procedure adequately determines the transition
densities. A similar situation occurs for the cases Kk = 5
and k = 7 (not shown).

It is also interesting to look at the orientational dis-
tribution functions of monomers and clusters. From the
corresponding functions for clusters of size i, i.e. h;(¢),
it is easy to define a cluster orientational distribution
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FIG. 6: Free energy per particle ®/p vs. inverse packing

fraction n~* from SPT results for the multicomponent HR
fluid of monomer aspect ratio x = 3 and with different val-
ues of polydispersity: (a) ¢ = 0.25, (b) 0.35, (¢) 0.50 and
(d) 0.65. Continuous curves: tetratic phase; dashed curves:
uniaxial nematic phase; dotted curves: isotropic phase. In (c)
and (d) symbols indicate bifurcation points from the isotropic
to the tetratic (filled circles) and uniaxial nematic (open cir-
cles) phases. In (a) and (b) a straight line in ™' has been
subtracted to better visualise the curves.

function h.(¢) as

n

he(9) =Y wihi(9).

=1

(21)

From this, order parameters of the multicomponent mix-
ture can also be defined:

QW =Y. k=12 (22)

In the case of monomers the situation is a bit more
complicated, since in our model we have lost track of
monomers as distinct entities. However, we can simply
count the number of monomers pointing along some an-
gle ¢ from the set h;(¢) and then divide by the average
number of clusters. Here we have to bear in mind that
clusters of size ¢ (having ¢ monomers) with ¢ < x (and &
an integer) have a long axis in a direction perpendicular
to that of clusters with i > k; therefore we write:

n

Z xiihi(p+7/2) ],

1=no+1

1

D

() = — |3 wiiha(9) +
=1
(23)

with ng = [k] (note that in the case where x is not an
integer this division has to be done also). Thus the order

o/n

FIG. 7: Cluster (a) and monomer (b) orientational distribu-
tion functions for k = 5 and ¢ = 0.65. The continuous line
corresponds to a stable N, phase with n = 0.85, whereas the
discontinuous line is for the metastable Ny phase at the same
value of 7.

parameters of the monomers can be calculated as

1 no ) n .
(cos(20))m = —q7| Do wi@Y = D @i,
mgy " | =1 i=ng+1
(24)
1 S~ @)
(cos(4¢))m = TiniQi . (25)
Mgy~ =1

Even for values of aspect ratio for which there exists a re-
gion of tetratic stability, the N, is always the more stable
phase for high values of packing fraction. It is interesting
to note that, in this situation, the cluster and monomer
distribution functions h¢ m(¢) usually have a secondary
peak at ¢ = m/2 corresponding to tetratic ordering (this
feature is also present in the simple SPT for the one—
component HR fluid). Fig. [[ shows these distributions
for the case kK = 5 and g = 0.65. Note that, according to
Fig. Bl there exists a stable tetratic phase in this case,
with a value of packing fraction at the Ny—N, transition
of n* = 0.839. In the figure, the packing fraction cho-
sen is 7 = 0.85 > n* and, therefore, the stable phase
has an orientational distribution function pertaining to a
N,. However, both the cluster and the monomer orienta-
tional distribution functions of N, have secondary peaks.
We have also plotted in Fig. [ the distribution functions
of a metastable Ny at the same value of 7. Finally, it
is also interesting that, although the distribution func-
tions hy,,(¢) and h.(¢) in the tetratic region are always
tetratic-like (i.e. all maxima have the same height, as it
should be by construction), they do not coincide in the
uniaxial nematic phase and, consequently, the similarity
property at work in the tetratic phase is not obeyed for
the uniaxial nematic (see Section [[I).

C. Chemical reaction model

Aggregation phenomena in dilute fluids (e.g. micelle
aggregation) are very often described in terms of a chem-
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FIG. 8: Packing fractions 7 of the I-N; (continuous line) and
I-N, (dashed line) transitions versus aspect ratio x.

ical reaction model. An exponentially decaying size dis-
tribution immediately emerges from these models. Here
we exploit the idea and carry it further using our density—
functional approximation. This model assumes that the
lifetime of a cluster is sufficiently long that it can be de-
fined as a distinct ‘chemical’ species.

One assumes a chemical reaction of the type C;+C; =
Ci41, with C; denoting a ‘chemical’ species (i.e. a cluster)
containing ! monomers. Chemical equilibrium between
clusters and monomers then implies the relation

:U“L:Z,ula 12257,”’ (26)
Now the chemical potential of the i—th species can be
calculated from our density—functional theory as

0P

(27)
which results in

Bui = In (z;V;) +/0 dohi(¢) In[hi(#)7] + Iny
+yi+2y Y w;Si; +y7Si (28)
J

The n—1 Eqns. ([26]), together with the condition (@), are
a set of n equations with n unknowns (zz, - -, z, and p)
which allow to find the equilibrium configuration of the
fluid. Due to the simplicity of the model an analytical
solution can be found.

Since, for the isotropic phase, we have

ZIJ ZS1J ZJ) (;1)

(k+m"), (29)

Eqns. (26), together with [28), give z; = 1¢°~! with

2y0 K
q= (1) exp | — @ +1]]. (30)
Here we assumed that V; = Vi (consistent with the ab-
sence of internal degrees of freedom in the clusters and
also with the assumption that all clusters have the same
mass). Now, since ), x; = 1, we find, for a fluid with an
infinite number of species, 1 = 21 /(1 —q) which, together

with B0), give
—1
} . (31)

Yo 2y [ K

Also, the first moment can be calculated self-consistently
as

N

Yo 2yo K
0 exp [7 ( ) + 1>
mygy mgy

1—1
—1/m) mi?.

While the first moment mgl) is the solution of Eqn. (32),
the second moment results in

=1+ (32)

This solution means that x; = (1

i— 1+q 1 1
—;101222 ! _xlil—q)P’ :mé)(2mé)—1).

(33)

The polydispersity coefficient, defined as A =

2
mg/ (mél)) — 1, turns out to be A = /1 — 1/m{".

Now the I-N,, and I-N; spinodals can be calculated by
solving Eqn. (B2), together with the value of yo obtained
from Eq. (6). Fig. B contains the functions 7, (k) ob-
tained as the solutions of (B2) and (6). As can be seen the
uniaxial nematic is more stable than the tetratic up to
k* = 41.65. This results from the peculiar behaviour of
the area distribution function ix;: its zeroth—order mo-
ment is always greater than k, while it is larger in the
tetratic phase when x < £* |Fig. B(a)]; this behaviour
is inverted for k > k*, and the moment becomes larger
for the uniaxial nematic phase, as can be seen in Fig.
Q(b). Again this peculiar behaviour is due to the rela-
tively high proportion of very big clusters, with icq > L,
which stabilise the N, phase against the Ny phase. This
behaviour is not observed in simulations, because the for-
mation of very big clusters is penalised by fluctuations.
The model has the value that an exponential cluster dis-
tribution function is predicted.




FIG. 9: Area distribution functions for tetratic N; and uni-
axial Ny nematic phases. (a) k = 10 and (b) x = 100.
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