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Apparent phase transitions in finite one-dimensional sine-Gordon lattices
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We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the
fact that it has been recently proven that this model cannot have any phase transition@J. A. Cuesta and A.
Sánchez, J. Phys. A35, 2373~2002!#, Langevin as well as Monte Carlo simulations strongly suggest the
existence of a finite temperature separating a flat from a rough phase. We explain this result by means of the
transfer operator formalism and show as a consequence that sine-Gordon lattices of any practically achievable
size will exhibit this apparent phase transition at unexpectedly large temperatures.
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I. INTRODUCTION

More than 50 years ago, van Hove@1# proved that true
thermodynamic phase transitions, defined as singularitie
the free energy, could not occur in a class of one-dimensio
~1D! systems, a result later extended to lattice systems in
same class by Ruelle@2#. In spite of the fact that the cond
tions for van Hove’s theorem to apply were clearly stated@1#
~see also Ref.@3#!, there is nowadays a very general bel
that 1D systems cannot exhibit phase transitions unless
have long range interactions. This misinterpretation of v
Hove’s mathematical results has been reinforced by
abuse of Landau’s@4# argument about the entropic contrib
tion of domain walls to the free energy. This argument, be
physically very intuitive and useful, is not a rigorous res
~assumptions such as a dilute concentration of domain w
are made along the way! and, furthermore, it does not app
to every 1D system. In fact, there are many examples of
systems with true thermodynamic phase transitions@5–9#
which, unfortunately, have remained largely unnoticed.

In the more specific context of models of growth pr
cesses@10,11#, the unsustained belief discussed above is
ten translated by saying that 1D interfaces are always rou
This is actually not the case, as shown in the early eigh
with several examples@7,8#. Only recently, two of us@12#
have proven a theorem showing rigorously that a wide fa
ily of 1D models, including the sine-Gordon model as a p
ticular example, cannot have phase transitions~some nonrig-
orous, phenomenological arguments in the same direc
had been proposed earlier@13#!. However, as we will see
below, this theorem turns out to be in conflict with som
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numerical simulation results that seem to provide strong e
dence supporting the existence of a roughening phase tra
tion in the 1D sine-Gordon model. In view of the fact th
simulations are very often the only way of studying a lar
class of models, it is most important to understand this c
tradiction in order to distinguish between true and appar
phase transitions.

To the above end, in this paper we focus on the 1D si
Gordon model as a canonical example, widely applicable
representative of the phenomenology of many model syst
@14# ~see also Ref.@15# for a review!. Thus, in Sec. II we
give results of simulations that suggest the existence o
phase transition at a~not necessarily small!nonzero tempera-
ture. By means of a transfer operator approach and using
probabilistic meaning of the corresponding eigenfunctio
in Sec. III we analyze the origin of this behavior; from th
analysis, we are able to conclude that such apparent p
transitions will occur not only for lattice sizes achievab
within the present computational capabilities, but also
very much larger lattices. Finally, in Sec. IV we discuss t
consequences of this result, which we believe are relevan
computational studies where no analytical support exi
Furthermore, additional important implications of our r
search for experimental studies of small systems far from
thermodynamic limit are also considered.

II. NUMERICAL SIMULATIONS

The 1D sine-Gordon model is defined by the followin
Hamiltonian:

H5(
i 51

N H J

2
~hi 212hi !

21V0@12cos~hi !#J , ~1!

whereN is the number of lattice nodes~or the system size!
J is the coupling constant, and2`,hi,` is a real variable
on sitei. We assume periodic boundary conditionsh0[hN .
For visualization of our results, we interprethi as the height
©2003 The American Physical Society08-1
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of a surface above sitei of the lattice; then, the two terms o
the Hamiltonian correspond, respectively, to surface tens
and to a local potential~of strengthV0) favoring multiple
values of 2p for the height, representing that growth tak
place preferentially by addition of discrete units~layers!. For
surface growth on two-dimensional~2D! substrate lattices
this interpretation has proven itself rather fruitful in the pa
~see Refs.@16–19# and references therein!. However, we
want to stress that the results we present in this paper
independent of any specific interpretation one makes ofhi .
In fact, previous studies of the 1D sine-Gordon latti
@14,20,21#were more interested in understanding the role
solitons in statistical mechanics models@15# than in any par-
ticular application.

In our study, we concentrate on two magnitudes in or
to characterize the model behavior: the surface width
roughness,

w25K 1

N (
i 51

N

@hi2h̄#2L , ~2!

where

h̄[
1

N (
i 51

N

hi ~3!

is the mean height, and the height-difference correlat
function,

C~r !5K 1

N (
j 51

N

@hr 1 j2hj #
2L . ~4!

Averageŝ •••& are to be understood with respect to a sta
tical weight given by the Gibbs factor,e2H/T, at equilibrium
at a temperatureT.

The above defined are crucial quantities in the 2D vers
of the model. This exhibits a Kosterlitz-Thouless-type pha
transition from a low temperature flat phase to a high te
perature rough phase@17,19,22–24#. In the flat phase, sma
systems have a size dependent width, whereas the wid
large systems is independent of the size. The crossover
tem size separating both regimes is closely related to
correlation length, which is finite in the low temperatu
phase, and can be defined as the distance beyond whic
height-difference correlation function saturates. On the c
trary, in the rough phase the correlation length is infinite a
correspondingly, the roughness increases~logarithmically in
the 2D case!with the system size for all sizes, i.e., it is als
infinite in the thermodynamic limit. In 1D, the theore
proved in Ref.@12# prohibits any phase transition, and at a
nonzero temperatures the system is in the rough phase
roughness increasing linearly with the system size.

In the lack of detailed analytical results, the statistic
averages can be computed approximately by means of
merical simulations. This kind of analysis has become a r
tine tool for the study of the equilibrium properties of ma
models and a problem of interest is to extract from the
merical studies, necessarily performed in finite size lattic
the asymptotic behavior in the thermodynamic limit. We w
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show that a naïve extrapolation of the finite size results
the 1D sine-Gordon model can lead to erroneous results
cerning the existence of a phase transition at a finite valu
the temperature.

For our numerical study, and in order to assess the vali
of our results, we have used two completely different pro
dures: Langevin dynamics and parallel tempering Mo
Carlo. The Langevin dynamics procedure has been wid
used in this context with very good results@17–19#, and it
consists of the numerical integration of the Langevin eq
tion following from the HamiltonianH:

dhi~ t !

dt
52

]H
]hi~ t !

1h i~ t !, ~5!

whereh i are Gaussian white noises obeying the fluctuati
dissipation theorem at temperatureT, i.e.,

^h j~ t8!h i~ t !&52Td i j d~ t2t8!. ~6!

A major problem with the Langevin dynamics is the presen
of systematic errors, in addition to the unavoidable statist
errors, due to the finiteness of the time step used in the
merical integration~in our studies, we have used a stochas
Heun method@25#!.

The second procedure, parallel tempering, is the one
have mostly relied on. The reason is that it is a very effici
algorithm to prevent the system from being trapped in lo
minimum energy configurations. Parallel tempering requi
any Monte Carlo method that generates representative
figurations at a given temperature. In this case, we h
implemented a heat bath algorithm@26#, in which new values
hi8 for the height at sitei are proposed according to the ru

hi85
hi 211hi 11

2
1jA T

2J
, ~7!

j being a Gaussian random variable of zero mean and
variance, and are accepted with a probability
min@1,e2dH/T# with dH52V0@cos(hi8)2cos(hi)#. The paral-
lel tempering algorithm considers then simultaneous cop
of the system at different temperatures, allowing exchang
configurations between them. The exchange occurs a
enough configurations have been generated at each tem
ture for a time greater than the energy autocorrelation t
~see, e.g., Refs.@27,28#for details!. This is particularly effi-
cient for low-temperature configurations, which are mo
susceptible to being trapped in metastable regions. All
results reported in this paper have been obtained by mean
this parallel tempering Monte Carlo algorithm, although w
have checked that Langevin dynamics produces the s
results~quantitatively within error bars!.

Before proceeding with the discussion of the simulati
results, let us recall the theoretical background. As we h
already mentioned, the theorem proven in Ref.@12# implies
that the system is in the rough phase at all nonzero temp
tures. This can be interpreted in terms of general renorm
ization group arguments~for a renormalization group stud
of the 2D sine-Gordon model, see Refs.@22–24#; see also
8-2
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APPARENT PHASE TRANSITIONS IN FINITE ONE- . . . PHYSICAL REVIEW E 67, 046108~2003!
Refs. @10,11# for a more general perspective!: in the 1D
model, fluctuations should be enough to effectively suppr
the potential part of the Hamiltonian at any nonzero tempe
ture, leaving as the only relevant term the discrete grad
~surface tension!. In that case, the sine-Gordon model
haves effectively as the Edwards-Wilkinson model@29#,
whose associated Langevin equation~5! is simply the dis-
crete linear diffusion equation with additive noise, and all t
properties of interest can be calculated. This approach
been very successful in characterizing the 2D sine-Gor
model behavior@19#, and particularly in locating the rough
ening transition temperature. In our 1D case, it is easy
show that in the Edwards-Wilkinson regime the roughn
must scale linearly with the system size for nonzero temp
ture @30#.

Figure 1 displays the simulation results for the roughn
for several system sizes as a function of temperature. Fo
sake of definiteness we have chosenJ5V051 in Eq. ~1!;
other choices yield the same qualitative results. Figur
shows that, as expected, the data tend asymptotically,
high values of the temperature, to the Edwards-Wilkins
result,v2/N5T/12 @30#. This linear scaling of the roughnes
with system size indicates clearly that the surface is roug
high temperatures. However, the main plot in the figure
dicates a clear change of behavior around a temperatuT
.1. In fact, as shown in the inset zoom, at low temperatu
(T&0.8) the linear scaling dependence of the roughness
system size is lost and in that region the roughness beco
fairly independent of the system size, a behavior that acc
ing to the preceding discussion would correspond to a
phase. To obtain a theoretical prediction for low tempe
tures, we have analyzed yet another linear model, in wh
the cosine term in the Hamiltonian is substituted by a pa
bolic potential,V0„12cos(hi)…→V0hi

2/2. Such a model is
flat at all temperatures~basically because the parabolic p
tential confines the surface to lie around its minimum! and,

FIG. 1. Roughness scaled by the system size,v2/N, vs tempera-
ture for the 1D sine-Gordon model. System sizes are as indicate
the figure. The dotted line corresponds to the theoretical va
v2/N5T/12 obtained for the Edwards-Wilkinson model. Inse
zoom of the low temperature region showing the lack of scali
The dashed line corresponds to the parabolical approximation
cussed in the text, and is given byv25T/AV0

214V0.
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as can be observed in Fig. 1, agrees very well with the
merical simulations at low temperatures. We thus see tha
spite of the fact that we know that no phase transition c
take place in this model, something very similar to a pha
transition from a flat to a rough phase appears in the sim
lations for a temperatureT* .0.8.

The above indications are reinforced by looking at t
correlation function, shown in Fig. 2, where we can see t
for low temperatures there is a finite correlation leng
whereas for high temperatures the correlation extends a
as half the system size~recall that we use periodic boundar
conditions!. It can also be appreciated again that for h
temperatures the simulation results reproduce quite well
Edwards-Wilkinson prediction. In the opposite limit, muc
as it occurs with the roughness, the correlation behaves
the parabolic approximation. We have also studied ot
magnitudes, such as the specific heat, finding exactly
same result as Schneider and Stoll@14# that the specific hea
exhibits a maximum at a value somewhat higher thanT* .
We want to stress that all this is very reminiscent of t
behavior in 2D, where the maximum of the specific hea
interpreted as a Schottky anomaly~see Ref.@19# and refer-
ences therein!. Hence, from the available numerical e
dence, we would be forced to conclude that there would b
roughening transition at a temperatureT* in the 1D sine-
Gordon model were it not for the theorem in Ref.@12#.

III. TRANSFER OPERATOR APPROACH

In order to understand the numerical results, we will u
the transfer operator approach@1,9,14,15#; specifically, to
make the connection with the presentation in Ref.@12#, we
rewrite our Hamiltonian~1! rescaling thehi variables by a
factor of 2p, i.e.,

in
e

.
is-

FIG. 2. Log-log plot of the height-difference correlation fun
tion scaled by temperature vs distance scaled by the system
Bottom to top, temperatures are 0.0956, 0.2407, 0.7029, 0.8
0.9896, 1.1689, 1.4819, 1.9016, 2.5562, 3.7044, 6. Also plotted
the predictions of the Edwards-Wilkinson model and of a parab
approximation~see text!. Error bars are typically as shown in one
the curves.
8-3
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H5(
i 51

N H 4p2J

2
~hi 212hi !

21V0@12cos~2phi !#J . ~8!

In this notation, the preferred values forhi are the integer
numbers, and the Hamiltonian is invariant under the tra
formation hi°hi11. This means that we can choose f
convenienceh1P(2 1

2 , 1
2 # without loss of generality. With

this choice in mind, the corresponding partition function b
comes

ZN~b!5E
21/2

1/2

dh1E
2`

`

dh2•••E
2`

`

dhNe2bH, ~9!

b being the inverse temperature in units of the Boltzma
constant. We now writehi5ni1f i , with niPZ and 2 1

2

,f i<
1
2 , with i 51, . . . ,N. Let us define

V~b,f,u![ (
n52`

`

e2b4p2J/2(n1f)2
e2 in u, ~10!

a 2p-periodic function ofu, and the operator

Tb,u f ~f![E
21/2

1/2

df8Tb,u~f,f8! f ~f8!, ~11!

Tb,u~f,f8![V~b,f2f8,u!expH 2
b

2
V0@22cos~2pf!

2cos~2pf8!#J ; ~12!

with these definitions, the partition function can be written

ZN~b!5
1

2pE2p

p

du Tr~Tb,u!N. ~13!

Tb,u is called the transfer operator for this model. Using t
operator properties, it can be shown~see Ref.@12# for de-
tails! that in the thermodynamic limit (N→`),

Tr~Tb,u!N5 (
n>1

@ln~b,u!#N

5m~b,u!@lmax~b,u!#N@11o~1!#, ~14!

whereln are the operator eigenvalues, necessarily real
isolated,lmax is the maximum eigenvalue, necessarily po
tive, and m(b,u) is its multiplicity, necessarily finite. Fi-
nally, Laplace’s method yields the free energy in the therm
dynamic limit:

2b f ~b![ lim
N→`

1

N
ln ZN~b!5 max

2p<u<p

ln@lmax~b,u!#.

~15!

Based on this expression, in Ref.@12# it was proven that
the maximum of lmax(b,u) occurs at u50, and that
lmax(b,0) is analytic forb.0, which leads to the conclusio
that the free energy itself is analytic for allb.0 and, sub-
04610
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sequently, that there are no phase transitions in the mo
However, that is not all the information we can obtain fro
this approach, as we will now show.

In Ref. @14#, the squared modulus of the eigenfunction
the largest eigenvalue is interpreted as the probability den
for the hi variables. As the transfer operator in Ref.@14# is
different from that we are using here, and for the sake
completeness, we now proceed to show that we can reso
the same interpretation here. Leaving out irrelevant c
stants, and keeping in mind that as we have just said the
contribution to the free energy comes fromu50, we can
write

ZN~b!5Tr~Tb,0!
N. ~16!

We can now compute averages of functionsg(f j ) in the
following way @14#:

^g~f j !&5
TrTb,0

j g~f j !Tb,0
N2 j

TrTb,0
N

. ~17!

In the thermodynamic limit, it can be shown that the pre
ous equation becomes

^g~f j !&5E
21/2

1/2

dfuw0~f!u2g~f!, ~18!

wherew0(f) is the eigenfunction of the largest eigenvalu
We thus see that, indeed,uw0(f)u2 can be understood as th
probability density for the height to be in the interv
(2 1

2 , 1
2 # modulo 1.

In order to apply this result, we must compute the eige
values and eigenfunctions of the transfer operator. This
to be done numerically: to this end, one has to discretize
operator and transform it into a matrix~see Refs.@9,14#, see
Ref. @31# for a detailed account!. The advantage of t
present formulation of the transfer formalism is that integr
are to be carried out on a finite interval, and therefore we
not need to introducead hoc any cutoff as in the case o
integrals on an infinite interval, thus eliminating one possi
source of error or inaccuracy. Specifically, in our numeri
diagonalization procedure we have used 200132001 matri-
ces; we have checked that increasing their size does
change the results significantly. As another check, we h
computed the specific heat from the numerically compu
eigenvalues, finding perfect agreement with the output of
simulations.

The inset of Fig. 3 shows the squared modulus of a typ
eigenfunction at low temperature. The interpretation in ter
of probability density indicates that probable values for t
height lie close to the minimum of the potential, i.e., tof
50, whereas values close to the maxima of the potentia
f561/2 are very unlikely to occur. We can associate t
probability of taking a value off561/2 with the probabil-
ity of formation of a kink or step, as once the height is a
maximum it can cross over to the neighboring potential w
thus giving rise to a kink. This interpretation suggests us
compare that estimate with the inverse of the system s
studied in this work, which is a reasonable estimation of
8-4
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APPARENT PHASE TRANSITIONS IN FINITE ONE- . . . PHYSICAL REVIEW E 67, 046108~2003!
probability of observing a kink in our numerical system. Fi
ure 3 compares both quantities, making clear that for ev
system size there is a temperature at which the probabilit
formation of one kink becomes smaller than the inverse
the system size. In fact, the probability of formation of o
kink decays extremely rapidly below~orders of magnitude
note the logarithmic scale!the crossing temperature.

Following the discussion above, it is very natural then
associate that crossing temperature withT* , the temperature
at which we observe the apparent phase transition in
simulations. This is very well confirmed by Fig. 4, in whic
the roughness obtained from our numerical simulations
plotted along with the temperatures predicted by our cr

FIG. 3. Kink density as estimated from the probability that t
value of the height goes over the potential maxima atf561/2 ~see
text!. Horizontal lines correspond to the inverses of the system s
studied. For comparison, the approximate result obtained
Schneider and Stoll@14# is included as a dotted line. Inset: squar
modulus of the eigenfunction of the largest eigenvalue at low te
perature.

FIG. 4. Roughness vs temperature for different system s
~right to left, N550, 125, 250, 500, 1000, 2000!. The arrows mark
the temperature predicted by our criterion based on the eigenf
tion for each of those system sizes. Inset: estimates forT* vs
1/ln N. Points are obtained from our criterion; the line is a line
regression fit.
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rion above. We note in passing that this result allows us
understand the reason why the crude parabolic approxi
tion coincides so well with the numerical results at low te
peratures: the hypothesis underlying the approximation
that kinks do not form and the whole surface lies close t
single potential minimum. Indeed, we have seen that
probability of kink formation at low temperatures is certain
negligible.

Summarizing, we have support for the criterion, as co
firmed by the comparison of the transfer eigenfunction
proach to the results of the numerical simulations, that
apparent transition temperatureT* coincides with the one
that yields a kink formation probability smaller than the i
verse of the system size. This criterion allows us to make
following quantitative prediction: for a system of sizeN,
there is an apparent flat-rough phase transition at a temp
tureT* ;1/lnN, as shown in the inset of Fig. 4. This can b
easily understood if we realize that as kink formation is
activated phenomenon, the kink density follows
Arrhenius-type law~with corrections, see Ref.@14#!. The de-
pendence ofT* on N follows from our criterion by imposing
the proportionality of the kink density and 1/N. We can now
estimate the size of the system needed in order to observ
rough phase all the way down to any given temperature,T* .
Taking as an exampleT* 50.1, which is certainly not small
we find that lattices of the order of 1030 sites are required to
ensure a reasonable chance that kinks are formed during
simulation and the rough phase is observed forT.T* ; we
would still find such an exceedingly large system in the fl
phase forT,T* . It is important to realize that the values w
obtained forT* are likely to be as small as possible, becau
they come from a very efficient, parallel-tempering Mon
Carlo algorithm that favors nucleation events through
exchange of configurations at different temperatures. O
procedures can perform worse leading to even larger va
for T* ; this is the case, for instance, of Langevin dynam
simulations of the underdamped sine-Gordon equation wi
damping term, as the nucleation rate decreases with incr
ing damping@32#. We have thus shown clearly that system
of any practically achievable size will always exhibit an a
parent phase transition at a temperature far fromT50.

IV. CONCLUSIONS

In this paper, we have studied analytically and nume
cally, by Langevin dynamics and mostly by parallel temp
ing Monte Carlo simulations, the 1D sine-Gordon model. W
have found in the simulations that there exists a tempera
at which an apparent roughening phase transition takes p
We have shown that it is possible to understand the con
diction of such phenomenon with the theorem that prohib
phase transitions in this model@12# through the analysis o
the eigenfunctions of the corresponding transfer opera
The interpretation of these functions as probability densi
makes clear that lattices of any finite size will always sh
an apparent phase transition, because the probability
kinks are formed becomes negligible below certain tempe
ture. We have also seen that even in extremely large latt
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ARES et al. PHYSICAL REVIEW E 67, 046108~2003!
the apparent transition occurs at temperatures far from
and, in fact,T* ;1/lnN.

The results summarized above are relevant in a m
broader context, basically in two directions. First, our co
clusion should be kept in mind when analyzing the outco
of numerical simulations of models about which there is lit
or none analytical information. Were it not for the fact th
we know that such a phase transition is not possible,
would have concluded from our simulations that the 1D si
Gordon model presents a roughening phase transition
fact, simulations for the 2D sine-Gordon model yield resu
very similar to those presented here@19#, although in that
case we have a true phase transition according to sev
approximate calculations including renormalization group
sults @16,22–24#. It is important to realize that finite siz
analysis, which in principle could signal that the transiti
goes toT50 with system size, becomes questionable if
values for the apparent transition at the sizes amen
within computational capabilities are still very far fromT
50. In addition, in our model, approximate analytical resu
in the low temperature limit support the existence of t
nonexistent phase transition. Therefore, we conclude that
has to be extremely careful with claims of this kind.

The second direction that our work points to is related
the very nature of phase transitions. True thermodyna
phase transitions, understood as singularities of the free
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