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Apparent phase transitions in finite one-dimensional sine-Gordon lattices
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We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the
fact that it has been recently proven that this model cannot have any phase trdidsifiorCuesta and A.
Sanchez, J. Phys. 85, 2373(2002)], Langevin as well as Monte Carlo simulations strongly suggest the
existence of a finite temperature separating a flat from a rough phase. We explain this result by means of the
transfer operator formalism and show as a consequence that sine-Gordon lattices of any practically achievable
size will exhibit this apparent phase transition at unexpectedly large temperatures.
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I. INTRODUCTION numerical simulation results that seem to provide strong evi-
dence supporting the existence of a roughening phase transi-
More than 50 years ago, van HoV&] proved that true tion in the 1D sine-Gordon model. In view of the fact that
thermodynamic phase transitions, defined as singularities gimulations are very often the only way of studying a large
the free energy, could not occur in a class of one-dimensiondllass of models, it is most important to understand this con-
(1D) systems, a result later extended to lattice systems in thadiction in order to distinguish between true and apparent
same class by Ruell@]. In spite of the fact that the condi- Phase transitions.
tions for van Hove's theorem to apply were clearly stdted To the above end, in this paper we focus on the 1D sine-
(see also Ref[3]), there is nowadays a very general belief Gordon model as a canonical example, widely applicable and
that 1D systems cannot exhibit phase transitions unless th?presentatlve of the phenomenology of many model systems
have long range interactions. This misinterpretation of varl14] (see also Ref[15] for a review). Thus, in Sec. Il we
Hove’s mathematical results has been reinforced by thgive results of simulations that suggest the existence of a
abuse of Landau’j4] argument about the entropic contribu- Phase transition at @ot necessarily smalhonzero tempera-
tion of domain walls to the free energy. This argument, beingure- By means of a transfer operator approach and using the
physically very intuitive and useful, is not a rigorous resultProbabilistic meaning of the corresponding eigenfunctions,
(assumptions such as a dilute concentration of domain wall§ Sec. lll we analyze the origin of this behavior; from this
are made along the wagnd, furthermore, it does not apply analysis, we are able to conclude that such apparent phase
to every 1D system. In fact, there are many examples of 1oransitions will occur not only for lattice sizes achievable
systems with true thermodynamic phase transitiffs9] within the present cpmputational_capabilities, bqt also for
which, unfortunately, have remained largely unnoticed. ~ Very much larger lattices. Finally, in Sec. IV we discuss the
In the more specific context of models of growth pro- consequences of this result, which we believe are relevant for
cesse$10,11], the unsustained belief discussed above is oftomputational studies where no analytical support exists.
ten translated by saying that 1D interfaces are always rougtrurthermore, additional important implications of our re-
This is actually not the case, as shown in the early eightie§ear0h for experimental studies of small systems far from the
with several examplef7,8]. Only recently, two of ug12]  thermodynamic limit are also considered.
have proven a theorem showing rigorously that a wide fam-
ily of 1D models, including the sine-Gordon model as a par-
ticular example, cannot have phase transiti@mne nonrig-
orous, phenomenological arguments in the same direction The 1D sine-Gordon model is defined by the following
had been proposed earligt3]). However, as we will see Hamiltonian:
below, this theorem turns out to be in conflict with some

II. NUMERICAL SIMULATIONS

N (3

H=2 {5 (hi_1=h)*+V[1-cogh)]f, (1)
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of a surface above siteof the lattice; then, the two terms of show that a naive extrapolation of the finite size results for
the Hamiltonian correspond, respectively, to surface tensiothe 1D sine-Gordon model can lead to erroneous results con-
and to a local potentialof strengthV,) favoring multiple  cerning the existence of a phase transition at a finite value of
values of 27 for the height, representing that growth takesthe temperature.
place preferentially by addition of discrete unitayers). For For our numerical study, and in order to assess the validity
surface growth on two-dimensioné2D) substrate lattices, of our results, we have used two completely different proce-
this interpretation has proven itself rather fruitful in the pastdures: Langevin dynamics and parallel tempering Monte
(see Refs[16—19]and references therginHowever, we Carlo. The Langevin dynamics procedure has been widely
want to stress that the results we present in this paper atgsed in this context with very good results7—19], and it
independent of any specific interpretation one makel; of  consists of the numerical integration of the Langevin equa-
In fact, previous studies of the 1D sine-Gordon latticetion following from the Hamiltoniar?+:
[14,20,21were more interested in understanding the role of
solitons in statistical mechanics modgl$]than in any par- dh(t) ~ JH
ticular application. dt ahi(t) + (1), ®)

In our study, we concentrate on two magnitudes in order
to characterize the model behavior: the surface width owheres; are Gaussian white noises obeying the fluctuation-
roughness, dissipation theorem at temperaturei.e.,

(m;(1") (1)) =2T 8 8(t—t"). (6)

1 N
w2=<ﬁ ) [hi—h12>, @

. A major problem with the Langevin dynamics is the presence
where of systematic errors, in addition to the unavoidable statistical
errors, due to the finiteness of the time step used in the nu-
merical integratioriin our studies, we have used a stochastic
241 h; (3)  Heun method25]).

The second procedure, parallel tempering, is the one we
function, algorithm to prevent the system from being trapped in local
minimum energy configurations. Parallel tempering requires
1 N any Monte Carlo method that generates representative con-
C(r)=<ﬁ 2 [hr+j_hj]2>- (4)  figurations at a given temperature. In this case, we have

I=1 implemented a heat bath algoritH26], in which new values

h/ for the height at sité are proposed according to the rule

N

Zl -

Averagey - - -) are to be understood with respect to a statis

tical weight given by the Gibbs factoe; "7, at equilibrium
at a temperatur@. b= hi—1+hisg [T @
The above defined are crucial quantities in the 2D version : 2 27’

of the model. This exhibits a Kosterlitz-Thouless-type phase
transition from a low temperature flat phase to a high tem<£ being a Gaussian random variable of zero mean and unit
perature rough phagé7,19,22—24]. In the flat phase, small variance, and are accepted with a probability of
systems have a size dependent width, whereas the width ofin[1,e” SHIT] with SH= —V[cos(H)—cos(h)]. The paral-
large systems is independent of the size. The crossover syl tempering algorithm considers then simultaneous copies
tem size separating both regimes is closely related to thef the system at different temperatures, allowing exchange of
correlation length, which is finite in the low temperature configurations between them. The exchange occurs after
phase, and can be defined as the distance beyond which teaough configurations have been generated at each tempera-
height-difference correlation function saturates. On the conture for a time greater than the energy autocorrelation time
trary, in the rough phase the correlation length is infinite and(see, e.g., Ref§27,28]for details). This is particularly effi-
correspondingly, the roughness increadegarithmically in ~ cient for low-temperature configurations, which are most
the 2D caseith the system size for all sizes, i.e., it is also susceptible to being trapped in metastable regions. All the
infinite in the thermodynamic limit. In 1D, the theorem results reported in this paper have been obtained by means of
proved in Ref[12] prohibits any phase transition, and at all this parallel tempering Monte Carlo algorithm, although we
nonzero temperatures the system is in the rough phase, ti@ve checked that Langevin dynamics produces the same
roughness increasing linearly with the system size. results(quantitatively within error bajs

In the lack of detailed analytical results, the statistical Before proceeding with the discussion of the simulation
averages can be computed approximately by means of nuesults, let us recall the theoretical background. As we have
merical simulations. This kind of analysis has become a roualready mentioned, the theorem proven in R&R] implies
tine tool for the study of the equilibrium properties of many that the system is in the rough phase at all nonzero tempera-
models and a problem of interest is to extract from the nutures. This can be interpreted in terms of general renormal-
merical studies, necessarily performed in finite size latticesization group argumentgor a renormalization group study
the asymptotic behavior in the thermodynamic limit. We will of the 2D sine-Gordon model, see Reffg2—24); see also
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FIG. 1. Roughness scaled by the system siZéN, vs tempera- FIG. 2. Log-log plot of the height-difference correlation func-
ture for the 1D sine-Gordon model. System sizes are as indicated o scaled by temperature vs distance scaled by the system size.
the figure. The dotted line corresponds to the theoretical valuggttom to top, temperatures are 0.0956, 0.2407, 0.7029, 0.8115,
®?N=T/12 obtained for the Edwards-Wilkinson model. Inset: g 9896, 1.1689, 1.4819, 1.9016, 2.5562, 3.7044, 6. Also plotted are
zoom of the low temperature region showing the lack of scalingtne predictions of the Edwards-Wilkinson model and of a parabolic
The dashed line corresponds to the parabolical approximation diszpproximation(see text). Error bars are typically as shown in one of
cussed in the text, and is given y?=T/\VZ+4V,,. the curves.

Refs.[10,11] for a more general perspectiven the 1D N .
model, fluctuations should be enough to effectively suppres&S can be observed in Fig. 1, agrees very well with the nu-
the potential part of the Hamiltonian at any nonzero temperaMerical simulations at low temperatures. We thus see that, in
ture, leaving as the only relevant term the discrete gradienPite of the fact that we know that no phase transition can
(surface tension). In that case, the sine-Gordon model bdake place in this model, something very similar to a phase
haves effectively as the Edwards-Wilkinson modep], transition from a flat to a rough phase appears in the simu-
whose associated Langevin equati® is simply the dis- lations for a temperatur&* =0.8.
crete linear diffusion equation with additive noise, and allthe The above indications are reinforced by looking at the
properties of interest can be calculated. This approach hamrrelation function, shown in Fig. 2, where we can see that
been very successful in characterizing the 2D sine-Gordofor low temperatures there is a finite correlation length,
model behaviof19], and particularly in locating the rough- whereas for high temperatures the correlation extends as far
ening transition temperature. In our 1D case, it is easy tas half the system sizgecall that we use periodic boundary
show that in the Edwards-Wilkinson regime the roughnesgonditions). It can also be appreciated again that for high
must scale linearly with the system size for nonzero temperaemperatures the simulation results reproduce quite well the
ture[30]. _ _ Edwards-Wilkinson prediction. In the opposite limit, much
Figure 1 displays the simulation results for the roughnesgs it occurs with the roughness, the correlation behaves like
for several ;y;tem sizes as a function of temperature. For thge parabolic approximation. We have also studied other
sake of definiteness we have choskaVo=1 in Eq. (1);  magnitudes, such as the specific heat, finding exactly the
other choices yield the same qualitative results. Figure L;me result as Schneider and SEa#] that the specific heat
shows that, as expected, the data tend asymptotically, fQtypipits a maximum at a value somewhat higher tin
high valzues of the temperature, to the Edwards-Wilkinsonye want to stress that all this is very reminiscent of the
result,w“/N=T/12[30]. This linear scaling of the roughness panavior in 2D, where the maximum of the specific heat is
with system size indicates clearly that the surface is rough a}hterpreted as a Schottky anomalee Ref[19] and refer-
high temperatures. However, the main plot in the figure in-gnces therein). Hence, from the available numerical evi-
dicates a clear change of behavior around a temperdiure yence, we would be forced to conclude that there would be a

=1. In fact, as shown in the inset zoom, at low temperature$, ghening transition at a temperatdfé in the 1D sine-
(T=0.8) the linear scaling dependence of the roughness witeyoqon model were it not for the theorem in REF2].
system size is lost and in that region the roughness becomes

fairly independent of the system size, a behavior that accord-
ing to the preceding discussion would correspond to a flat
phase. To obtain a theoretical prediction for low tempera-
tures, we have analyzed yet another linear model, in which In order to understand the numerical results, we will use
the cosine term in the Hamiltonian is substituted by a parathe transfer operator approa¢i,9,14,15]; specifically, to
bolic potential,vo(l—cos(h\))—>vohi2/2. Such a model is make the connection with the presentation in R&R], we
flat at all temperaturetbasically because the parabolic po- rewrite our Hamiltonian(1) rescaling theh; variables by a
tential confines the surface to lie around its minimwend,  factor of 2, i.e.,

IIl. TRANSFER OPERATOR APPROACH
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N
H=i21 (hi_1—h)?+V[1—cog27h)]{. (8)
In this notation, the preferred values fby are the integer
numbers, and the Hamiltonian is invariant under the trans
formation h;—h;+1. This means that we can choose for
convenienceh, e (—%,3] without loss of generality. With
this choice in mind, the corresponding partition function be-
comes

1/2

2= | dn [ dne o)

B being the inverse temperature in units of the Boltzmann

constant. We now writdh,=n;+ ¢;, with n;eZ and — 3}
<¢i<3, withi=1,... N. Let us define

V(B.¢, G)EnZ_ e BTN+ H2gmin 0 (10)

a 2m-periodic function off, and the operator

1/2

Tﬁ,ﬁf(¢)5J71/2d¢,7’ﬂ,0(¢1¢’)f(¢’)1 (1D

Tpo( " )=V(B,— ¢',0)exn[ - gVo[Z—COSZWﬁ)

—C0£(21-r¢’)]]; (12)

with these definitions, the partition function can be written as

1 T
ZN(B)IZJleﬁTr(TB,g)N. (13)

Tpg,0 Is called the transfer operator for this model. Using th
operator properties, it can be shovsee Ref[12] for de-
tails) that in the thermodynamic limitN— <),

TH(Tp"= 2 (B, 0)]"

=m(B,0)[Nmad B, 01" [1+0(1)],  (14)
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sequently, that there are no phase transitions in the model.
However, that is not all the information we can obtain from
this approach, as we will now show.

In Ref.[14], the squared modulus of the eigenfunction of
the largest eigenvalue is interpreted as the probability density
for the h; variables. As the transfer operator in REf4] is
different from that we are using here, and for the sake of
completeness, we now proceed to show that we can resort to
the same interpretation here. Leaving out irrelevant con-
stants, and keeping in mind that as we have just said the only
contribution to the free energy comes frofi=0, we can
write

ZN(B)=Tr(T g™ (16)
We can now compute averages of functigp;) in the
following way [14]:

TrTjB,og( b )TE,Bi

(17)
Ty

<9(¢j)>:

In the thermodynamic limit, it can be shown that the previ-
ous equation becomes

12
o= ddleo@Poe). a8

where () is the eigenfunction of the largest eigenvalue.
We thus see that, indeelds()|? can be understood as the
probability density for the height to be in the interval
(—%,3] modulo 1.

In order to apply this result, we must compute the eigen-
values and eigenfunctions of the transfer operator. This has
to be done numerically: to this end, one has to discretize the
operator and transform it into a matrigsee Refs[9,14], see
Ref. [31] for a detailed account). The advantage of the

epresent formulation of the transfer formalism is that integrals

are to be carried out on a finite interval, and therefore we do
not need to introduc&d hocany cutoff as in the case of
integrals on an infinite interval, thus eliminating one possible
source of error or inaccuracy. Specifically, in our numerical
diagonalization procedure we have used 20Q001 matri-

ces; we have checked that increasing their size does not
change the results significantly. As another check, we have
computed the specific heat from the numerically computed

where\,, are the operator eigenvalues, necessarily real andigenvalues, finding perfect agreement with the output of the
isolated,\ hax IS the maximum eigenvalue, necessarily posi-simulations.

tive, and m(B,0) is its multiplicity, necessarily finite. Fi- The inset of Fig. 3 shows the squared modulus of a typical
nally, Laplace’s method yields the free energy in the thermoeigenfunction at low temperature. The interpretation in terms
dynamic limit: of probability density indicates that probable values for the
height lie close to the minimum of the potential, i.e., ¢o
=0, whereas values close to the maxima of the potential at
¢=*1/2 are very unlikely to occur. We can associate the
probability of taking a value ofh= = 1/2 with the probabil-

ity of formation of a kink or step, as once the height is at a
maximum it can cross over to the neighboring potential well,
thus giving rise to a kink. This interpretation suggests us to
compare that estimate with the inverse of the system sizes
studied in this work, which is a reasonable estimation of the

1
~BH(B)= lim <In Zy()

N— o

max In[Amad B, 6)].
-0
(15)

Based on this expression, in RgL2]it was proven that
the maximum of \o{B,6) occurs at /=0, and that
M max(3,0) is analytic for3>0, which leads to the conclusion
that the free energy itself is analytic for @8>0 and, sub-
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rion above. We note in passing that this result allows us to
understand the reason why the crude parabolic approxima-
tion coincides so well with the numerical results at low tem-

peratures: the hypothesis underlying the approximation is

===+ Schneider-Stoll . .
. ranster formalism that kinks do not form and the whole surface lies close to a

7 single potential minimum. Indeed, we have seen that the
probability of kink formation at low temperatures is certainly
- negligible.
g - Summarizing, we have support for the criterion, as con-
1 - firmed by the comparison of the transfer eigenfunction ap-
A N ] proach to the results of the numerical simulations, that the
04 -02 0 02 04 apparent transition temperatui@ coincides with the one
[ R ¢ MR that yields a kink formation probability smaller than the in-
1 L5 2 2.5 3 verse of the system size. This criterion allows us to make the
T following quantitative prediction; for a system of si2g
FIG. 3. Kink density as estimated from the probability that the there is an apparent flat-rough phase transition at a tempera-
value of the height goes over the potential maximaat+1/2 (see  ture T*~1/InN, as shown in the inset of Fig. 4. This can be
text). Horizontal lines correspond to the inverses of the system sizegasily understood if we realize that as kink formation is an
studied. For comparison, the approximate result obtained byctivated phenomenon, the kink density follows an
Schneider and StoJf14]is included as a dotted line. Inset: squared Arrhenius-type law(with corrections, see Reff14]). The de-
modulus of the eigenfunction of the largest eigenvalue at low tempendence oT* on N follows from our criterion by imposing
perature. the proportionality of the kink density andNL/ We can now
estimate the size of the system needed in order to observe the
probability of observing a kink in our numerical system. Fig- rough phase all the way down to any given temperafite,
ure 3 compares both gquantities, making clear that for everjffaking as an exampl&* =0.1, which is certainly not small,
system size there is a temperature at which the probability ofve find that lattices of the order of 10sites are required to
formation of one kink becomes smaller than the inverse oensure a reasonable chance that kinks are formed during the
the system size. In fact, the probability of formation of onesimulation and the rough phase is observedTorT*; we
kink decays extremely rapidly beloyorders of magnitude, would still find such an exceedingly large system in the flat
note the logarithmic scaléhe crossing temperature. phase foflT<T*. It is important to realize that the values we
Following the discussion above, it is very natural then toobtained forT* are likely to be as small as possible, because
associate that crossing temperature With the temperature they come from a very efficient, parallel-tempering Monte
at which we observe the apparent phase transition in ouCarlo algorithm that favors nucleation events through the
simulations. This is very well confirmed by Fig. 4, in which exchange of configurations at different temperatures. Other
the roughness obtained from our numerical simulations igprocedures can perform worse leading to even larger values
plotted along with the temperatures predicted by our critefor T*; this is the case, for instance, of Langevin dynamics
simulations of the underdamped sine-Gordon equation with a

kink density (kinks per site)

S—— damping term, as the nucleation rate decreases with increas-
ing damping[32]. We have thus shown clearly that systems
of any practically achievable size will always exhibit an ap-

4ar L parent phase transition at a temperature far fios0.

e |
3_
Ns | °~8“.' IV. CONCLUSIONS

2 01 In this paper, we have studied analytically and numeri-
cally, by Langevin dynamics and mostly by parallel temper-
ing Monte Carlo simulations, the 1D sine-Gordon model. We

Ir have found in the simulations that there exists a temperature
at which an apparent roughening phase transition takes place.

86 . 0|7 We have shown that it is possible to understand the contra-

diction of such phenomenon with the theorem that prohibits
phase transitions in this modgl2] through the analysis of
FIG. 4. Roughness vs temperature for different system sizefl€ eigenfunctions of the corresponding transfer operator.
(right to left, N=50, 125, 250, 500, 1000, 20p(0The arrows mark T he interpretation of these functions as probability densities
the temperature predicted by our criterion based on the eigenfundnakes clear that lattices of any finite size will always show
tion for each of those system sizes. Inset: estimatesTforvs ~ an apparent phase transition, because the probability that
1/InN. Points are obtained from our criterion; the line is a linearkinks are formed becomes negligible below certain tempera-
regression fit. ture. We have also seen that even in extremely large lattices
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the apparent transition occurs at temperatures far from zerergy or its derivatives, can only take place in the thermody-
and, in fact,T* ~1/InN. namic limit, and no such transitions occur in finite size sys-
The results summarized above are relevant in a muckems. Hence, the apparent phase transition we see in our
broader context, basically in two directions. First, our con-simulation can indeed be thought of as a true transition in the
clusion should be kept in mind when analyzing the outcomecontext of finite systems. What is more important, similar
of numerical simulations of models about which there is littlephenomenology is bound to arise in small, mesoscopic sys-
or none analytical information. Were it not for the fact thattems, certainly far from any thermodynamic limit one can
we know that such a phase transition is not possible, wehink of. As systems of that scale become more and more
would have concluded from our simulations that the 1D sinefelevant both for theoretical and for applied reasons, the
Gordon model presents a roughening phase transition. lquestion of the definition and nature of phase transitions
fact, simulations for the 2D sine-Gordon model yield resultsgains importance. In this respect, this work hints that non-
very similar to those presented hdrE9], although in that thermodynamic transitions may well be physically existent,
case we have a true phase transition according to severat, alternatively, that computations and results in the thermo-
approximate calculations including renormalization group re-dynamic limit do not represent well the fate of large but
sults [16,22—-24]. It is important to realize that finite size finite systems, even of very large, mesoscopic ones.
analysis, which in principle could signal that the transition
goes toT=0 with system size, b_ecomes ques_tlonable if the ACKNOWLEDGMENTS
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