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a b s t r a c t

The natural frequencies of the flapwise bending vibrations of a nonuniform rotating nanocantilever has
been calculated, considering the true spatial variation of the axial force due to the rotation. The area of
the nanobeam cross section is assumed to change linearly. The problem has been formulated using the
nonlocal Eringen elasticity theory and it was solved by a pseudo spectral collocation method based on
Chebyshev polynomials. The effect of the nonlocal small scale, angular speed, nonuniformity of the sec
tion and hub radius on the vibration behavior of the nanocantilever is discussed.
1. Introduction development of theses theories, as well as its mining and imple
Many micro or nanoelectromechanical systems (MEMS or
NEMS) devices incorporate structural elements such as beams
and plates in micro (or nano ) length scale. Size effects are signif
icant in the mechanical behavior of these structures in which
dimensions are small and comparable to molecular distances. Since
the atomic and molecular models require a great computational
effort, simplified models are useful for analyzing the mechanical
behavior of such devices.

The nanostructures that undergoing rotation are system with a
promise future to be used in nanomachines [1,2] which include
shaft of nanomotor [3,4] devices such as fullerene gears and carbon
nanotube gears [5].

Classical continuum mechanics cannot predict the size effect,
due to its scale free character. Despite some sporadic efforts in
the 19th century and in the first half of the 20th century to capture
the effects of microstructure using the continuum equations of
elasticity with additional higher order derivatives, it was not until
the 1960s that a major revival took place. From this time are the
works of Toupin [6,7], Mindlin and Tiersten [3], Kröner [4], Green
and Rivlin [8], Mindlin [9,10], Mindlin and Eshel [11].

More recently, Eringen derived a simple stress gradient theory
from his earlier integral nonlocal theories [12].

In the early 1990s, Aifantis and coworkers suggested to extend
the linear elastic constitutive relations with the Laplacian of the
strain [1,13,14].

Askes and Gitman [15] show that both Eringen and Aifantes
theories can be unified. An excellent overview on the historical
mentation can be found in the paper by Askes and Aifantis [2].
Among the size dependent continuum theories, the theory of

nonlocal continuum mechanics initiated by Eringen and coworkers
[16,5,12] has been widely used to analyze many problems, such as
wave propagation, dislocation, and crack singularities and, from
the pioneer work of Peddieson et al. [17], for problems involving
nanostructures. Thus, the nonlocal theory of elasticity has been
used to address the behavior of beams [18 23], rods [24 29],
plates [30], as well as carbon nanotubes (CNTS) [31 37].

Nowadays, a great effort is devoted to the vibration analysis of
nanobeams and CNTS under rotation using the Eringen nonlocal
elasticity theory [38 40].

Pradhan and Murmu [38], applied a nonlocal beam model to
investigate the flap wise bending vibration characteristics of a uni
form rotating nanocantilever. The nonlocal natural frequencies
were obtained using the Differential Quadrature Method (DQM).
They also discussed the effects of the nonlocal small scale, angular
velocity and hub radius on vibration characteristics of the
nanocantilever.

Murmu and Adhikari [39], investigated the same problem, but
now considering an initially prestressed single walled carbon to
analyze the effect on the initial preload in the vibration
characteristics.

In both papers the nonlocal boundary conditions related to the
free end of the nanobeam are not properly considered.

Narendar and Gopalakrishnan [40] analyzed the wave disper
sion behavior of a uniform rotating nanotube modeled as an non
local Euler Bernoulli beam. They consider the spatial variation of
the centrifugal force in and average sense, replacing the variable ax
ial effort by the maximum force (at the root of the nanocantilever).

In this paper we investigate the flap wise bending vibration
characteristics of a nonuniform rotating nanocantilever considering
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the true (quadratic) spatial variation of the axial force due to the
rotation. The area of the nanobeam cross section of the nanocanti
lever is assumed to change linearly. The solution method of the cor
responding nonlocal equations of motion are solved using a
pseudo spectral collocation method based on Chebyshev polyno
mials. The effects of the nonlocal small scale, angular velocity, non
uniformity of the section and hub radius on vibration
characteristics of the nanocantilever are discussed.

The paper ir organized as follow: in Section 2 a brief resume of
the constitutive equations of the Eringen nonlocal elasticity theory
is given. In Section 3 the equation for the flapwise vibrations of the
rotating nanocantilever is derived as well as the proper nonlocal
boundary conditions. In Section 4 the pseudo spectral collocation
method based on Chebyshev polynomials used to find the solution
is briefly exposed. The numerical results and discussion of the
effect of different variables in the nonlocal frequencies of the
nanostructures appear in Section 5. Finally some conclusions are
given in Section 6.
Fig. 1. Schematic rotating nanocantilever system.
2. Nonlocal constitutive relations

The theory of nonlocal elasticity, developed by Eringen [16,41]
and Eringen and Edelen [42] states that the nonlocal stress tensor
components rij at any point x in a body can be expressed as:

rijðxÞ
Z

X
a jx0 xj; sð ÞtijðxÞdXðx0Þ ð1Þ

where tij(x) are the components of the classical local stress tensor at
point x, which are related to the components of the linear strain
tensor ekl by the conventional constitutive relations for a Hookean
material, i.e:

tij Cijklekl ð2Þ

The meaning of Eq. (1) is that the nonlocal stress at point x is
the weighted average of the local stress of all points in the neigh
borhood of x, the size of which is related to the nonlocal kernel
a(jx0 xj,s). Here, jx0 xj is the Euclidean distance and s is a con
stant given by:

s e0a
l

ð3Þ

that represents the ratio between a characteristic internal length, a
(such as the lattice spacing) and a characteristic external one, l (e.g.
crack length, wavelength) trough an adjusting constant, e0, depen
dent on each material.

According to [12], for a class of physically admissible kernel
a(jx0 xj,s) it is possible to represent the integral constitutive rela
tions given by Eq. (1) in an equivalent differential form as:

ð1 ðe0aÞ2r2Þrkl tkl ð4Þ

where r2 is the Laplacian operator. Thus, the scale length e0a takes
into account the size effect on the response of nanostructures.
3. Problem formulation

Let us consider a beam of length L along the axial coordinate x, of
constant thickness b and variable height t(x). The beam is clamped
at section O (x = 0) located at distance r from the axes around which
rotates at constant angular velocity X as shown in Fig. 1(a). Let
v(x, t) be the transverse deflection along the coordinate y.

The equation of motion in the vertical direction for a beam slice
of length dx (see Fig. 1(b)) can be written as:

@S
@x
þ p qAðxÞ @

2v
@t2 ð5Þ
where q is the density of the material, A(x) the cross sectional area
of the beam, p the distributed transverse force along axis x, and S
the shear force on the cross section defined as S

R
A rxydA. If the

rotational inertia is neglected, the momentum balance can be ex
pressed as:

Sþ @M
@x

N
@v
@x

0 ð6Þ

M and N being, respectively, the resultant bending moment and
axial load, given by M

R
A rxxydA and N

R
A rxxdA, where rxx is

the normal stress in the x direction.
The one dimensional specialization of general nonlocal consti

tutive equations, Eq. (4), gives:

rxx ðae0Þ2
@2r
@x2 Eexx ð7Þ

It is possible to integrate the one dimensional nonlocal consti
tutive equation, Eq. (7), multiplied by y, along the cross section
of the beam:Z

A
rxxydA ðae0Þ2

Z
A

@2rxx

@x2 ydA E
Z

A
exxydA ð8Þ

and using the basic hypothesis of the Euler Bernoulli beam theory:

exx y
@2v
@x2 ð9Þ

the following differential relation between the bending moment, M,
and the vertical displacement, v, is found:

MðxÞ EI
@2v
@x2 þ ðae0Þ2

@2M
@x2 ð10Þ
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where I is the moment of inertia ðI
R

A y2dAÞ. From Eqs. (5), (6), and
(10), the nonlocal expression of both bending moment and shear
force can be determined as a function of the displacement v and
the external force per unit of length p:

MðxÞ EI
@2v
@x2 þ ðae0Þ2 pþ @

@x
N
@v
@x

� �
qA

@2v
@t2

 !
ð11Þ
SðxÞ @

@x
EI
@2v
@x2

 !
þ N

@v
@x

ðae0Þ2
@p
@x
þ @2

@x2 N
@v
@x

� �
@

@x
qA

@2v
@t2

 ! !
ð12Þ

From now on, we consider a linear variation of the edge of the
beam, defined as:

tðxÞ t0 1þ b
x
L

� �
ð13Þ

where the parameter b, is a constant of the form:

b
tL t0

t0
ð14Þ

being t0 and tL the height of the beam at the clamped section O and
free end L, respectively. This variation results in a nonuniform nano
cantilever whose cross section is given by:
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Fig. 2. Variation of nondimensional fundamental frequency with nondimensional angular
AðxÞ A0 1þ b
x
L

� �
ð15Þ

which is related to a moment of inertia:

IðxÞ I0 1þ b
x
L

� �3
ð16Þ

where A0 and I0 are the cross section and moment of inertia of the
beam, respectively, at the clamped section O.

In the same way as the cross section variation with the spatial
coordinate x is considered, graded mechanical properties of the
material, e.g. Young’s modulus E(x), could be taken into account.
This procedure would allow to study heterogeneous materials.

Differentiating the Eq. (12) with respect to x, considering E and
q as constants, setting the external load at zero (p = 0), and
substituting into Eq. (5), we can formulate the differential equation
that governs the flapwise bending vibrations of the nonlocal Euler
Bernoulli rotating beam with nonuniform section:

qA
@2v
@t2 þ E

@2

@x2 I
@2v
@x2

 !
@

@x
N
@v
@x

� �

þ ðae0Þ2
@3

@x3 N
@v
@x

� �
q
@2

@x2 A
@2v
@t2

 !" #
0 ð17Þ
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Þ

which can be rewritten, taking into account the Eqs. (15) and (16),
as:

qA0 1þ b
x
L

� �� � @2v
@t2 þ EI0

@2

@x2 1þ b
x
L

� �� �3 @2v
@x2

 !
@

@x
N
@v
@x

� �

þ ðae0Þ2
@3

@x3 N
@v
@x

� �
qA0

@2

@x2 1þ b
x
L

� �� � @2v
@t2

 !" #
0 ð18Þ

The axial force N(x) due to the rotation, is given by:

NðxÞ
Z L

x
qAðgÞX2ðr þ gÞdg ð19Þ

and using Eq. (15):

NðxÞ 1
6L

A0qX2ðL xÞ
�
3LðLþ 2r þ xÞ

h
þbð2L2 þ 3Lr þ 2Lxþ 3xr þ 2x2Þ

�i
ð20Þ

The Eq. (18) can be solved by using the classical separation
of variables method as:

vðx; tÞ VðxÞ eixt ð21Þ
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Fig. 3. Variation of nondimensional second mode frequency with nondimensional angu
d = 1.
where x is the natural frequency of vibrations.
Substituting Eq. (21) in Eq. (18) and using the new dimension

less variables and constants given by:

n x=L; V V=L; h
ae0

L
; d r=L;

k4 qAL4

EI
x2; c4 qAL4

EI
X2; F

NL2

EI

ð22Þ

we get the spatial equation as:

6b2ð1þ bnÞV 00ðnÞ þ 6bð1þ bnÞ2V 000ðnÞ þ ð1þ bnÞ3VIV
h i

þ h2
h
F 000V 0ðnÞ þ 3F 00V 00ðnÞ þ 3F 0V 000ðnÞ þ FVIV ðnÞ

þk4�2bV 0ðnÞ þ ð1þ bnÞV 00ðnÞ
�i

F 0V 0ðnÞ FV 00ðnÞ

k4ð1þ bnÞVðnÞ 0 ð23

where ( )0 represents the derivative with respect to n. Note that the
dimensionless rotational velocity c2 is implicitly included in the
new dimensionless variable F. The above differential equation must
be solved with the following boundary conditions corresponding to
the rotating nanocantilever:

Vð0Þ 0 ð24Þ
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V 0ð0Þ 0 ð25Þ

ð1þ bÞ3V 00ð1Þ þ h2 k4ð1þ bÞVð1Þ
�

c4ð1þ bÞð1þ dÞV 0ð1Þ
�

0 ð26Þ

3bð1þ bÞ2V 00ð1Þ þ ð1þ bÞ3V 000ð1Þ

h2 c4 ð1þ bð2þ dÞÞV 0ð1Þ þ 2ð1þ bÞð1þ dÞV 00ð1Þ
� ��

þ k4 bVð1Þ þ ð1þ bÞV 0ð1Þ
� �	

0 ð27Þ

The Eqs. (26) and (27) state, respectively, that the bending
moment and shear force are zero at the free end of the nanocanti
lever. Note that these conditions are not equivalent to cancel the
second and third derivatives of the displacements.

It is important to highlight that the equations and boundary
conditions of classical local elasticity with Euler Bernoulli beam
theory, are recovered when the parameter h is null.

Similar problems has been addressed by Pradhan and
Murmu for the case of rotating nanocantilevers with constant
cross section [38], and Murmu and Adhikari for prestressed
nanotubes undergoing rotation also with constant cross section
[39], but in these papers not proper boundary conditions are
used.
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Fig. 4. Variation of nondimensional third mode frequency with nondimensional angular
4. Pseudo-spectral collocation solution based on Chebyshev
polynomials

In order to obtain the natural frequencies of the problem de
fined by Eqs. (23) (27), a pseudo spectral collocation method
based on Chebyshev polynomials will be used.

Chebyshev polynomials are recursive orthogonal polynomials
defined as:

TmðzÞ cosðm cos 1ðzÞÞ for k 0;1;2; . . . ð28Þ

where m is an integer. Due to their recursive nature and fast conver
gence characteristics, Chebyshev polynomials have been used in the
literature for the solution of boundary value problems [43 46]. This
polynomials are a stable representation only on the interval ( 1,1),
but mostly functions of interest lie on the interval (l1, l2). Because of
this, a change of variable can be defined as [47]:

zðfÞ l2 l1

2
fþ l2 þ l1

2
; fðzÞ 2

l2 l1
z

l2 þ l1

l2 l1
ð29Þ

where f 2 ( 1,1) and z 2 (l1, l2).
Thus, the scaled Chebyshev polynomials can be defined as:

T mðzÞ TmðfðzÞÞ ð30Þ
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This polynomials form a complete set in the interval (l1, l2), so that
any square integrable function y(z) that lies on the interval, can be
expressed using the series expansion:

yðzÞ
X1
m 0

amT mðzÞ ð31Þ

where am are the coefficients of the series.
If the function y(z) is infinitely differentiable and well behaved

on the interval (l1, l2), only a small number of terms, N, in the above
series will be sufficient to represent the function accurately, so, for
numerical solutions, truncated series expansions are used. Thus, a
function y(z) can be approximated as:

yðzÞ � yNðzÞ
XN

i 0

aiT N iðzÞ ð32Þ

The procedure from now on will be approximate the functions V(n)
by its series expansion VN(n) according to Eq. (32), and replace them
in the Eqs. (23) (27) that define the problem. Thus, the functions
VN(n) satisfy both differential equation, in a certain collocation
points to be detailed later, and boundary conditions.

In these equations, successive derivatives of the functions V(n)
appear, so it is necessary to differentiate the functions:
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Fig. 5. Variation of nondimensional fundamental frequency with nondimensional angu
d = 0.5.
VNðnÞ
XN

i 0

aiT N iðnÞ ð33Þ

as follows:

dnVNðnÞ
dnn

XN

i 0

ai
dnT N iðnÞ

dnn

XN

i 0

ai
dnTN iðfðnÞÞ

dnn ð34Þ

In this case, from Eq. (29), f(n) = 2n 1, since n 2 (l1, l2) = (0,1).
Therefore:

dnTN iðfðnÞÞ
dnn

dnTN iðfðnÞÞ
dfn

dfðnÞ
dn

� �n

2n dnTN iðfÞ
dfn ð35Þ

Finally, substituting last expression in Eq. (34), we obtain the n
th derivative of the functions VN(n) as:

dnVNðnÞ
dnn 2n

XN

i 0

ai
dnTN iðfÞ

dfn ð36Þ

The four first derivatives, dnTN i(f)/dfn, of Chebyshev polynomi
als, which are shown in Eqs. (23) (27), are defined, from Eq. (28),
as:
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dTmðfÞ
df

m

1 f2
p sinðm cos 1ðfÞÞ ð37Þ

d2TmðfÞ
df2

1
1 f2 f

dTmðfÞ
df

m2TmðfÞ
� �

ð38Þ

d3TmðfÞ
df3

1

ð1 f2Þ2
½1þ 2f2 þm2ðf2 1Þ� dTmðfÞ

df



3fm2TmðfÞ

�

ð39Þ
d4TmðfÞ
df4

1

ð1 f2Þ3

(
3f½3þ 2f2 þ 2m2ðf2 1Þ� dTmðfÞ

df

m2½4þ 11f2 þm2ðf2 1Þ�TmðfÞ
)

ð40Þ

As stated above, we impose that the functions VN(n) satisfy the
differential equation given by Eq. (23) in a certain collocation
points. These collocation points or nodes will be the so called
Gauss Chebyshev points, which are the roots of the Chebyshev
polynomials of the first kind defined in Eq. (28), and are defined as:

fi cos
ð2i 1Þp

2M

� �
i 1; . . . ;M ð41Þ
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Fig. 6. Variation of nondimensional second mode frequency with nondimensional angu
d = 0.5.
in the variable f 2 ( 1,1), and:

ni
1
2

1þ cos
ð2i 1Þp

2M

� �� �
i 1; . . . ;M ð42Þ

in the variable n 2 (0,1). The number of collocation points that we
use is M = (N + 1 k), where N is the number of terms in the series
given by Eq. (33), and k is the number of boundary conditions.

Thus, with the equations obtained from the compliance of the
Eq. (23) at the (N + 1 k) Gauss Chebyshev points, and the k
resulting equations from applying the boundary conditions, we ob
tain a system of (N + 1) equations with (N + 1) unknowns, which
are the series coefficients ai:

A1;1 . . . A1;Nþ1

..

. . .
. ..

.

ANþ1;1 . . . ANþ1;Nþ1

0
BB@

1
CCA

a0

..

.

aN

8><
>:

9>=
>;

0
..
.

0

8><
>:

9>=
>; ð43Þ

This system of equations can be written in a compact form as:

½A�fag f0g ð44Þ

being, as can be seen, a homogeneous system.
Hence, the terms of the matrix [A] are defined, from Eqs. (23)

(27), as:
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Aj;k 6b2ð1þ bnjÞT 00Nþ1 kðnjÞ þ 6bð1þ bnjÞ2T 000Nþ1 kðnjÞ

þ ð1þ bnjÞ3T IV
Nþ1 kðnjÞ þ c4ðdþ njÞð1þ bnjÞT 0Nþ1 kðnjÞ

FðnjÞT 00Nþ1 kðnjÞ þ h2 FðnjÞT IV
Nþ1 kðnjÞ

�
3c4ðdþ njÞð1þ bnjÞT 000Nþ1 kðnjÞ

3c4 1þ bðdþ 2njÞ
� �

T 00Nþ1 kðnjÞ 2bc4T 0Nþ1 kðnjÞ
�

þ k4



h2 2bT 0Nþ1 kðnjÞ
�

þ ð1þ bnjÞT 00Nþ1 kðnjÞ
�

ð1þ bnjÞT Nþ1 kðnjÞ
�

ð45Þ

for j = 1, . . ., N 3 and k = 1, . . ., N + 1. And:

AN 2;k T Nþ1 kð0Þ ð46Þ

AN 1;k T 0Nþ1 kð0Þ ð47Þ

AN;k ð1þ bÞ3T 00Nþ1 kð1Þ

þ h2 k4ð1þ bÞT Nþ1 kð1Þ c4ð1þ dÞð1þ bÞT 0Nþ1 kð1Þ
� �

ð48Þ
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Fig. 7. Variation of nondimensional third mode frequency with nondimensional angular v
ANþ1;k 3bð1þ bÞ2T 00Nþ1 kð1Þ þ ð1þ bÞ3T 000Nþ1 kð1Þ
h2 c4 T 0Nþ1 kð1Þ 1þ bð2þ dÞð Þ

��
þ2ð1þ dÞð1þ bÞT 00Nþ1 kð1Þ

�
k4 bT Nþ1 kð1Þ½

þð1þ bÞT 0Nþ1 kð1Þ
�	

ð49Þ

for k = 1, . . ., N + 1.
To obtain the natural frequencies of vibration of the nonuniform

rotating nanocantilever, it is not necessary to calculate the coeffi
cients ai of the expansion series, and therefore, it is not necessary
to solve the system given in Eq. (43).

In order to get the values of the dimensionless vibration fre
quencies k, we impose the system of equations given by Eq. (44)
as singular, a necessary condition for obtain other solutions than
the trivial. Thus, the determinant of matrix [A] must be zero, lead
ing to a trascendental equation for k, which solutions, kj, are the
dimensionless vibration frequencies of the problem.
5. Results and discussion

In this article the small scale effects on the vibration response
of rotating nanocantilever beams are shown with respect to the
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angular velocity of rotating and to the cross section variation for
different hub radius.

Figs. 2 7 show the variation of the three first modes nondimen
sional frequencies, k2, with nondimensional angular velocity
parameter, c2, for different values of the nonlocal parameter, h,
and different values of b, which represents the cross section
variation.

For the nonlocal model, h can be 0, 0.1, 0.2, 0.3 and 0.4, in a sim
ilar range employed by Pradham and Murmu [38] and Lu et al. [48].
For higher values of the nonlocal parameter, real values of nondi
mensional frequencies could not be obtained, as were reported
by Lu et al. [48]. In the particular case of h = 0, model solution is
agree with local elasticity theory.

The rotating nondimensional angular velocity, c2, is assumed to
be in the range of 0 4, as had been employed by Pradham and
Murmu [38]. Here is considered the nondimensional hub radius d
to be 1 (Figs. 2 4), and 0.5 (Figs. 5 7), and the cross section of
the nanocantilever change linerly, being b = 0, 0.16, 0.28 and

0.5.
Fig. 2 shows the nondimensional fundamental frequency versus

the nondimensional angular velocity c2 for different values of b and
d = 1. It is observed that the nondimensional fundamental fre
quency increases with c2 for both the local and nonlocal elastic
models, being higher as the nonlocal parameter h does. These
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Fig. 8. Variation of nondimensional fundamental frequency with cross-section variation
d = 1.
observations are in line with those of Pradham and Murmu [38],
Lu et al. [48] and Zhang et al. [49].

The difference between the frequencies by local and nonlocal
models increases with the value of angular velocity, being close
to each other at low rotating velocities. Difference are more rele
vant as the cross section changes faster. The combined effect of
high values of b and h, may cause impossibility to obtain real val
ues of nondimensional frequencies.

Figs. 3 and 4 show, respectively, the variation of the second
and third nondimensional frequency with the nondimensional
angular velocity. For second and third modes, the frequencies ob
tained by nonlocal models are smaller to that of local models,
being smaller as h increases. In both modes, opposite to the first
mode, the nonlocal effects on the frequencies diminish as the
rotating velocity is higher, and the effect of cross section variation
is almost neglected.

Figs. 5 7 show the variation of nondimensional first, second and
third frequency with nondimensional angular velocity for d = 0.5.
Similar conclusions can be obtained for this value of hub radius d.

Figs. 8 10 show, respectively, the variation of the nondimen
sional frequencies corresponding to the three first modes respect
to the cross section variation parameter, b, for different values of
the nonlocal parameter and nondimensional angular velocity
parameter.
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Fig. 9. Variation of nondimensional second frequency with cross-section variation in a rotating nanocantilever for different nonlocal parameters, c2 = cte. d = 1.
In Fig. 8 is observed that the nondimensional fundamental fre
quency decreases with the cross section variation for both the lo
cal and nonlocal elastic models, being higher as the nonlocal
parameter h does.

As the angular velocity increases, the effect induced by this
parameter begins to be more important compared to the cross
section variation. Globally, the frequencies in local and nonlocal
models increases with the velocity, but the influence of the
cross section variation diminishes. Figs. 9 and 10 show, respec
tively, the variation of the second and third nondimensional fre
quency with the nondimensional angular velocity.

For second and third modes, the frequencies obtained by non
local models are smaller to that of local models, being smaller as
h increases. Here, frequencies increases with the cross section var
iation. The effect of nonlocal parameter seems to be not very sen
sitive to b and c2. As in the fundamental case, frequencies increase
slightly with angular velocity.
6. Conclusions

In this work, The effects of the nonlocal small scale, angular
velocity, nonuniformity of the section and hub radius on the three
first flapwise vibration frequencies have been considered. By
means of a pseudo spectral collocation method, based on Cheby
shev polynomials, the nonlocal equations of motion for the beam
are solved.

It is observed that the nondimensional frequencies increase
with the rotating angular velocity for both local and nonlocal elas
tic models. For the same geometry and angular velocity, the nondi
mensional fundamental frequency obtained increases with the
nonlocal parameter, h (note that h = 0 case correspond to local elas
tic model). This trend is opposite for the second and third mode of
vibration, where the nonlocal frequencies are lower than local
ones.

The fundamental frequency is not very influenced by the small
scale parameter at low velocities, but difference between local and
nonlocal theory increases with the rotation velocity of the beam. In
higher modes, the frequencies obtained tends to be closer as the
velocity increases, being the effect of h more significant at low
velocities.

If the cross section decrease linearly from the fixed to the free
end of the beam, the mass gravity center of the beam tends to
move towards the fixed end of the beam and the fundamental fre
quency decreases. In this case, the effect of the nonlocal parameter
is more important as the rotation and cross section variation in
crease. In higher modes, the effect of the cross section variation
in the effective mass is opposite, and the effect of the nonlocal
10
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Fig. 10. Variation of nondimensional third frequency with cross-section variation in a rotating nanocantilever for different nonlocal parameters, c2 = cte. d = 1.
parameter is similar for the different values of b and rotation veloc
ities. Similar results were obtained for different hub radius.

In this work, nonuniform cross section has been considered but
similar procedure can be used in case of heterogenous materials
with graded mechanical properties.

A new work is in progress extending the present analysis to the
case of rotating nanocantilevers using the Timoshenko beam
theory.
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