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Abstract. We present an efficient method for people counting in video sequences from 
fixed cameras by utilising the responses of spatially context-aware convolutional neural 
networks (CNN) in the temporal domain. For stationary cameras, the background 
information remains fairly static, while foreground characteristics, such as size and 
orientation may depend on their image location, thus the use of whole frames for training a 
CNN improves the differentiation between background and foreground pixels. Foreground 
density representing the presence of people in the environment can then be associated with 
people counts. Moreover the fusion, of the responses of count estimations, in the temporal 
domain, can further enhance the accuracy of the final count. Our methodology was tested 
using the publicly available Mall dataset and achieved a mean deviation error of 0.091.
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1 Introduction

Counting people can provide useful information for monitoring purposes in public 
areas, assist urban planners in designing more efficient environments, provide cues for 
situations that might endanger the safety of civilians, and also be used by shopping 
mall and retail store managers for evaluating their business practices. In principle, such 
knowledge can be obtained by analysing image and video footage from location 
specific cameras with the goal to measure the number of people in them. For this reason 
in this work we present an efficient method for counting people in images and video
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sequences, from fixed cameras which incorporates the fusion of context aware cues from 
CNN in the temporal domain.

People counting is a very challenging problem, and although commercial solutions 
exist, these focus mainly in top-view cameras, where occlusions between people are 
minimal. An effective approach is to detect the heads of the pedestrians present in an 
image, since they are less prone to disappear in the image through occlusions, and then 
sum the head detections to measure the total count. Such an approach seems consistent 
to how humans would approach the problem, as implied by expressions such as 
‘headcount’. Furthermore since our interest is in measuring the count of people using 
stationary cameras, where background is assumed fairly static, a local context-aware 
detector that is spatially tuned to distinguish foreground objects (e.g. heads) from the 
background scene is more promising than a general-purpose detector.

The main contribution of this work is the proposal of a convolutional neural net-
work (CNN) that uses global image information, rather than cropped images, for people 
counting and the use of temporal coherence for enhancing the precision in the obtained 
results. Feeding the CNN with whole images allows modelling of the local context, i.e. 
the expected local appearance (e.g. size, orientation) of the foreground pedestrian heads 
and the spatial distribution of pixel luminance in the background. The output of the 
CNN for each frame is an intermediate density map and head counts are estimated using 
regression. Temporal coherence is exploited by refined regression of count estimations 
from multiple frames. In Sect. 2 a background study on the methods for people counting 
is presented, while in Sect. 3 the methodology of our approach is described. Finally in 
Sect. 4 the results and a critical discussion of our methodology are given followed by the 
concluding section in Sect. 5.

2 Previous Work

Counting methods can be mainly categorised into two groups. Counting by detection 
and counting by regression. In the former case, human shape models are used to 
localise people on the image plane, while the latter is based on the relationship between 
a distribution of low level features in the whole image and the number of people in it. 
Hybrid methods combine these two approaches, i.e. a person detector is used to create a 
footprint on a distribution describing the whole image, which then is used to infer the 
number of people in it. The use of CNNs for the task of people counting is by its nature 
such an approach. In the following sections we identify some methods, but as the 
literature on the topic is extensive, space limitations prevent us from giving a fuller 
review.

In counting by detection [16] the idea is to detect the presence of people in an image 
and then sum the detections to produce the final count. People detections is achieved by 
object detectors (whole or part-based), based on learned models that use features such as 
histogram of oriented gradients (HOG), poselets, edgelets and others which describe a 
shape model of a human body using pixel information. Traditionally, a location 
invariant object detector is applied using a sliding window technique followed by non-
maximal suppression to localise the objects of interest.
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In [16] a HOG detector is used to create a probability distribution over the image. To 
deal with occlusions, the HOG detector is trained to learn only the upper part of the 
human body. Next the optical flow between two consecutive frames is computed. 
Assuming that the upper human body exhibits a uniform motion in contrast with the 
motion generated from the limbs, a mask resembling the shape of upper human body, is 
scanned through the optical flow response and a probability distribution of uniform 
motion is computed. The probability distributions learned from the shape model and the 
uniform motion model are then combined and the fused probability distribution is 
searched, using Mean Shift Mode Estimation to localise head detections.

A pitfall of using counting by detection techniques is that they do not perform well 
in images with low resolution, since objects, in these, appear small and they do not 
generate enough information in order to be detected. Moreover, since most of these 
approaches use a sliding window to scan the whole image multiple times in different 
scales, they are computational heavy and thus slow.

In counting by regression [1, 11, 13], a mapping from some low level image 
characteristics, like edges or corners, to the number of objects is estimated using 
machine learning methods. Although this approach avoids the hard task of object 
detection, ambiguities may arise from the presence of objects of other classes that may 
also generate responses. Furthermore since some of these methods are location-
invariant,, the training phase requires large amount of data, in order to cover all the 
possible perspective nonlinearities of the image plane. On the other hand, annotating 
the ground truth data is simpler as it only involves manual counting.

In [13] the main idea is that integrals of density functions over pixel grids should 
match the object counts in an image. It is assumed that each pixel is characterised by a 
discretized feature vector and the training data are dot annotated (e.g. torso). Each 
annotated pixel is then characterised, using a randomised tree approach, by a feature 
descriptor combining the modalities of the actual image, the difference image and the 
foreground image. For each pixel, a linear transformation of its feature descriptor is 
learned, using a random forest to match the ground truth density function.

In [11] a mixture of Gaussians is initially applied to extract foreground information. 
Histograms of the area of the foreground blobs and edge orientation are then used as 
features to describe the image. Finally a feed forward back propagation neural network 
is used with the histograms of the normalised features as inputs, learning the number of 
pedestrians in the image.

In [1] a method for counting people using the Harris corner detector is presented. 
Motion vectors are used to differentiate between static and moving corners. Assuming 
that each person in the image generates the same amount of moving corners, the 
number of people in a frame is therefore computed based on the ratio of the moving 
corners detected over the average number of corners per person. As a consequence, this 
approach fails to recognise static people. Also the camera perspective effect is not taken 
into consideration which could invalidate the regression assumption.

A drawback of all regression approaches is that they cannot discriminate well 
between intra class variations (i.e. differences in human sizes, humans carrying objects, 
humans with bicycles etc.) and since they lack learning object shape models, they are 
unable to differentiate between interclass (e.g. animals) differences. Thus their appli-
cation is mostly location specific.
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Hybrid methods [7, 10, 17, 20] aim to combine the benefits of both approaches by 
fusing their techniques. For instance, in [17] combines a density image is computed 
where each pixel value defines the confidence output of the person detector used in [13]. 
This value is then discretized and represented by a binary feature vector. SIFT features 
are extracted from the image in order to compute another binary feature vector. The 
concatenation of the two binary feature vectors is then used to describe each pixel, and 
by minimizing the regularised MESA distance, the weight of each discretized feature is 
learned. The density of each pixel is thus calculated by multiplying its feature descriptor 
with the learned weight vector, and the count of people in the image is then estimated by 
the integral of the density of the image.

Another example of a hybrid approach is presented in [10] that copes with crowded 
situations. A Gaussian mixture model is initially applied on a grayscale video sequence 
to obtain the foreground information. After perspective correction this is further pro-
cessed using a closing operation. Counting then becomes a problem of finding a 
relationship between the number of foreground pixels and the number of humans 
present in the image, a relationship which is learned using a neural network.

Finally two hybrid approaches [7, 20] are the only ones, as far as we know, that use 
CNN purely for people counting. Both attempt to exploit the CNN characteristic of the 
spatial invariance in the detection of patterns, and thus the networks described are 
trained as human detectors by using spatial crops from whole images for training. In [7] 
a CNN learns to estimate the density of people in an image by using cropped images 
from the full resolution training dataset. The trained network is then applied to the whole 
image information to produce a density map of human presence and moreover its 
parameters are transferred to two similar networks that are applied on different 
resolutions of the global image. The response from the three networks is then averaged 
to produce a final density map. To count the number of people in the density image, 
each point of the density estimated is fed to a linear regression node. The weights then of 
the node are learned independently for the density estimation. In [20] cropped images 
are also used for training, however the learning of the density and the total count is not 
sequential, but takes place in parallel. Both the density map and the linear regression 
node are connected to the same CNN and learning takes place by altering the cost 
function between the one used for the density estimation and the one used for count 
estimation.

3 Method

Deep learning machines have addressed many problems that were deemed as unsolvable 
in a surprisingly easy way. However, most of the research has focused on the use of 
static architectures ignoring relevant dynamics aspects of some of the problems. This is 
especially true in video analytics, where analysis is mainly frame-based, and tradi-
tionally the information obtained from each of them has been integrated using some 
heuristic-based algorithm. This has been recognized by many in the field and many 
recent publications extended and complemented the convolutional neural network 
(CNN) architecture into the time domain achieving good results (e.g. [4, 8, 9, 19]). Our 
work explores how to use time cues in an efficient manner, therefore we avoided
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recurrent neural networks or other time domain architectures. Specifically, three repli-
cated CNNs are used to process consecutive time frames and their combined output is 
fed into a final layer to produce the final estimate. Our approach, following the 
methodology proposed in [7], first generates a density map to indicate the presence of 
humans in the image followed by learning the regression relationship between the 
distribution of activations and the actual count number. The proposed architecture is 
shown in Fig. 1 and it uses the outcomes of three different instants in time learning the 
relationship between them to produce the desired results. This is a generalization of 
averaging the three results. The pipelines are identical in their parameters settings and 
only one is needed to be trained to reproduce the others. For more information on 
convolutional layers and their structure the reader is referred to [15].

The performance of a supervised neural network is dependent mainly on three 
factors: (a) the input data, (b) the network’s architecture and its parameters and (c) the 
ground truth data. Appropriate representation of the input can lead to better and faster 
learning of the network [15]. In our case the input layer of a single pipeline is an RGB 
image of size 240 � 320 pixels. Every frame, is pre-processed by initially calculating 
the mean in all training images and subtracting it from all the pixels, before entering the 
network. Then data is centred around zero in all dimensions and scaling in values 
between -1 and 1 is performed applying Eq. 1 on each pixel:

px;y;c;s ¼ 2 � px;y;c;m�minðftÞ
max ftð Þ � minðftÞ � 1 ð1Þ

where px;y;c;m is the pixel value of frame ft at location x,y of channel c, after the mean 
subtraction and px;y;c;s is the pixel value after the scaling which we will refer as px;y;c. 
The data is zero centred to facilitate learning of the network and specifically for the 
gradient descent algorithm to avoid zigzagging while minimising the cost of the 
network.

3.1 Density Estimation

The density learning pipeline (Fig. 1) is comprised of four convolutional layers fol-
lowed by a fully connected one. For the convolutional part of the density estimation 
pipeline, C1 has 15 features of size 316 � 236, C2 has 10 features of size 154 � 114, C3 

has 20 features of size 73 � 53 and finally C4 has 10 features of size 33 � 23. The 
detection kernel of all convolutional layers is 5 � 5 with a stride of 1 and the feature 
activations, except from those of C4, are max pooled with a kernel of shape 2 � 2 and 
stride of 2; thus halving each dimensionality of a feature before feeding it as an input to 
a subsequent convolutional layer.

In contrast to [7], where all activations in a feature share the same bias, in our case 
each feature activation is characterised from its own bias. Since the input is the whole 
image, the network is allowed to further tune the importance of a feature to a spatial 
location. Following the notation of Eq. 1 the activation function applied for a neuron 
belonging to a feature f in the proposed CNN is the hyperbolic tangent given by
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af ;j;k ¼ 1� e�2�z

1þ e�2�z ð2Þ

wherez ¼ bf ;j;k þ
X

f�1

X4

l¼0

X4

m¼0

vf ;l;m � af�1;jþ l;kþm ð3Þ

where the leftmost summation sums over all the features present in the previous layer 
(as mentioned before, in the case where the previous layer is the input image, each 
channel of the image represents one feature). The last layer of the density estimation 
pipeline is a fully connected one (F1 in Eq. 1) and has as many neurons as there are 
present in one feature of the previous layer (i.e. C4). Each neuron in F1 is connected to 
all the neurons present in C4 and thus the weight vector vi of each neuron i has 7590 (33 
� 23 � 10) dimensions. The activation function used for each neuron of this layer is the 
sigmoid thus Eqs. (4) and (5) apply.

ai ¼ 1
1þ ez

ð4Þ

z ¼ bi þ
X10

f¼1

X33

l¼1

X23

m¼1

vi;r � af ;l;m; r ¼ 759 � ðf � 1Þþ 23 � ðl� 1Þþm ð5Þ

Fig. 1. The proposed architecture for pedestrian counting. In the left we can see the temporal
data input in a form of consecutive in time RGB frames, while for the density estimation a
pipeline with 4 convolutional layers followed by a full connected sigmoid layer having the task to
produce the density images. For the count of a single pipeline a linear regression unit combines
the 759 inputs to produce a final result. Finally by combining the results from the counts of 3
pipelines in full connected rectifier layer we feed a node to perform linear regression and produce
the final result.
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F1 is the last layer in our density estimation pipeline and the 33 � 23 responses ai 
of the layer are compared against the equivalent yi of a ground truth density of same 
dimensionality to measure the error that will be back propagated for the learning. The 
cost function we use for the comparison is the Kullback–Leibler divergence shown in 
Eq. 6, and the error produced is the mean cost across all the examples seen.

KLðyijjaiÞ ¼ yi � log yiai þð1� yiÞ � log 1� yi
1� ai

ð6Þ

3.2 Counting

The final layer of each pipeline is dedicated to estimate the relationship between this 
density and the actual count of people. So, a single linear neuron (L1 in Fig. 1) is fully 
connected with the sigmoid neurons of F1. Learning is performed by linear regression 
using the mean square error across a number of examples as cost function. Thus if ai 
denotes the ith activation from layer F1 and vi the entry in the weight vector of L1 
associated with ai, and bc the bias and ac activation value of L1 then,

ac ¼ bc þ
X

i

vi � ai ð7Þ

and the cost for a single example, when y is the ground truth count, is given by
ðac � yÞ2.

3.3 Refined Counting

The accuracy of people counting, is further improved by fusing measurements from 
networks operating on subsequent frames along the temporal dimension. Hence, three 
pipelines operating on frames with timestamps t − 1, t and t + 1 are fully connected to 
a vector of five rectified linear units. Each rectified neuron has as activation function 
similar to Eq. 7 with the only difference that negative values, produced by the sum-

mation of the weighted input with the bias, produce a zero output. Finally, all five 
outputs from the rectified linear units are connected to the linear neuron L2 for the 
refined count. The only difference in the linear regression performed in this neuron 
compared to the one in L1 is the cost function, since for this we use the absolute 
difference of the estimated count against the ground truth.

4 Results

The network described earlier was implemented using Python and the pylearn2 and 
theano machine learning libraries [2, 3]. For our experiments we used the publicly 
available Mall crowd counting dataset [5, 6, 14], of which a couple of illustrative 
frames are shown in Fig. 2(a)-(b).
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Fig. 2. By measuring the size of people in different time frames (a), (b), the perspective map 
denoting the relative scale of pixels in the real word dimension.

The dataset consists of 2000 time consecutive frames recorded by a fixed camera in 
an indoor shopping mall in 640 � 480 resolution with a frame rate around 2 Hz. Over 
60.000 pedestrians are annotated, with a point indicating their head location. It is a 
challenging dataset with constant movement, where pedestrians wander freely, alone or 
in groups, forming a cluttered environment with many occlusions. Moreover, reflec-
tions occur in both the shop windows and the floor, the lighting conditions change, and 
the viewing angle of the camera causes pedestrians to vary in scale.

We also implemented the only two other methods, that to our knowledge, [7, 20] 
perform people counting using CNNs. As in our case, the three main pipelines of the 
architecture in [7] are identical in their configuration and in their parameter settings. 
However they apply each pipeline at different scales of the images in order to infuse 
scale invariance in their network. To train a single pipeline they use cropped images thus 
aiming to get a location invariant person detector, which is then applied to the whole 
image for density estimation. Since the scale of the input images in the pipelines is 
different, they use one bias per feature in contrast to our approach where every node in a 
feature is associated with a single bias. Each pipeline estimates a human density and 
their average merge layer merges the three different density estimations into one 
followed by a linear regression node for the count estimation.

The second method we implemented is the one presented in [20]. In this approach, 
similarly to [7], cropped images are used for training, however the learned network is 
applied on the whole image in a sliding window fashion, where each detection window 
generates a local density. The density estimate for the whole image is calculated by 
creating a mosaic from the local ones. Instead of learning a density and then performing 
a linear regression to estimate the count, the training of the density and the counting 
takes place in an alternate way. The layers are alternated until neither cost is further 
improved. To learn the density estimation, the ground truth consists of a density image 
created from the responses of a Gaussian distribution, centred at the head of a person, 
and a bivariate normal distribution, placed at the body of the person. The combined 
distributions describing a person are then normalised to add up to one. Then, counting 
is just a summation of the entries in the ground truth density image.

The head regions were represented by squares centred at the annotation points and 
size consistent to the perspective map of the scene. Pixels that belong to head regions 
have a value of 1, while all other pixels have a value of 0. Since the density estimation
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resolution in our pipeline is 33 � 23, the generated binary images of 640 � 480 were 
scaled down and each image was normalised to have values in the range between zero 
and one. For [7], the ground truth was based on cropped images of size 320 � 240 from 
the original 640 � 480 binary images created in the previous step, scaled to a resolution 
of 33 � 23 and normalised with values between 0 and 1. For [20] the ground truth 
density images were generated using a Gaussian kernel summing to one, centred at each 
annotation point and with a standard deviation based on the values of the perspective 
map of the dataset. Crops of size 72 � 72 from the 640 � 480 density images were then 
extracted and scaled down to size 18 � 18. Figure 3 shows some examples.

Fig. 3. Examples of training input images (upper row) generated from the same frame, to the three 
different networks and their associated ground truth (lower row) for density estimation.(a) 
resample whole frame 320 � 240 used by our approach, (b) cropped images 320 � 240 used by 
[7], (c) cropped images 72 � 72 used by [20]

From the 2000 frames of the dataset, 1000 were used for training 250 for validation 
and 750 for testing. For [7] we used 5 cropped images (size 320 � 240) per training 
whole image (640 � 480), while for [20] we extracted 50 cropped images. The input 
image resolution we used to test out methodology is 320 � 240.

Training a CNN requires fine tuning of various parameters. However some of the 
training parameters were kept constant through all the experiments. The dropout rate 
was fixed to 0.5 for all layers. This means that during training each node has 50 %
chance to be activated, and its parameters to get updated, which assists for regulari-
sation and thus avoiding overfitting the network parameters to the training dataset. 
Another parameter we kept constant was pooling, by always using the same pooling 
kernel with same stride. Also all weights were initialised using a uniform distribution 
and with range (−0.05, 0.05). Other parameters however, such as the learning rate, the 
use of momentum, the maximum norm of the weight vectors were selected separately 
for each experiment by testing their impact on the learning behaviour of a network on 
small subset of the training dataset. The algorithm used for the training was stochastic 
gradient descent with mini batches. Thus the update of the network parameters
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occurred regularly and not at the end of each epoch (i.e. estimating the cost after seeing 
all training data once).

Figure 4 shows density estimation results from the different methods. Our approach 
manages to describe the distribution of the pedestrians quite well. In contrast, the 
responses from [7] are not descriptive, since it appears that although there is a change 
in the density estimation from frame to frame it follows a general pattern, and it seems 
that the network failed to learn the people’s density. Also the density results derived by 
[20], although more descriptive regarding the presence and the position of the 
pedestrians in the space than [7], still generates many false positives.

Fig. 4. Density estimation results. (a) Input frame, (b) The response from our approach, (c) The 
response from [20], (d) The response from [7]

Let’s consider the number of parameters in the configuration of each network. The 
total number of free parameters for learning in the network of [6] is 14,930. While for 
the one in [20] the number of parameters that are available for learning is 21,373,532. In 
our proposed network the number of parameters is 5,871,954. Finally the difference 
between our approach and the other two is that we use for training input whole images 
while they use cropped images.

Based on the information provided above, our assumption is that the method of [7], 
not only has too few parameters to offer a reliable solution to the problem, but also 
because it lacks any fully connected layer, no information is exchanged between the 
nodes that can result to a combination of features detected. On the other hand the 
approach in [20], has a plethora of parameters to adjust and to solve the problem of 
detecting people in an image, and furthermore they exchange node information by 
using fully connected layers. However by using cropped images as input it does not 
provide any spatial localised information that would facilitate learning the presence of 
the background in the whole image.
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Our proposed network, with almost a quarter of parameters compared to [20], 
assumes whole input images, combines the information from the various nodes of the 
detectors and therefore it can learn localised background/foreground information. In 
other words, if our task was to find a fly on a wall, the approach in [7] scans the wall to 
find the fly with a lens that makes things to appear very blurry and the presence of the fly 
is diffused on the wall, while the one in [20] scans the wall with a lens that can see every 
little detail, thus some irrelevant complex patterns of the wall may confuse it. In contrast 
to the other two methods, our approach instead of scanning the wall, it just subtracts it 
and observes the difference.

After the density is estimated, the next step is to perform the counting. The mean 
deviation error (MDE) e of the counting step,

e ¼ 1
N
�
X

N

y� �yj j
y

ð8Þ

where y is the ground truth, �y is the estimated count and N the number of images in the 
test dataset, is shown on Table 1.

As expected from the resulting density images, the error of the two competitive 
methods is relatively high. For [7] the linear regression is unable to learn the proper 
relationship between density and the count number. Even the approach in [20], which 
estimates the count by summing up all the responses from the density map, the counting 
error is significant. The counting error can further be reduced, by combining temporal 
information to remove noise from the measurements. Specifically, the com-bination of 
three pipelines with input frames at t − 1, t and t + 1 in order to estimate the count of 
frame t generates a mean relative error of 0.091. Table 2 presents results obtained by 
combining information from varying number of frames (one pipeline per frame is used) 
using the MDE and the Mean Squared Error (MSE) and the Mean Absolute Error 
(MAE). Considering the frame rate of the MALL dataset (2fps), optimal coherence is 
achieved in a temporal window of 1 s, i.e. using 3 consecutive frames. For videos with 
higher frame rate, optimal performance would be achieved by using more frames.

Table 3 compares our method with other non-CNN approaches for people counting 
performed in the MALL dataset. Our approach seems to perform similarly with other 
people counting methods.

Table 1. Mean Deviation Error for Counting.

Approach MDE

Ours 0.094
Method presented in [20] 0.770
Method presented in [7] 0.230
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5 Conclusion

In this work a methodology using CNN was presented for people counting. We have
demonstrated that using the whole image information as training input instead of using
cropped images, performs better as the network is able to learn how to distinguish
between the foreground and the background. Furthermore by fusing the count estimate
in the temporal domain, count estimations are further improved. To the best to our
knowledge, our method is the first to propose the application of a CNN on the whole
image for the task of people counting and furthermore to use temporal information for
the same task. Possible future lines of research may include to minimise the infor-
mation theoretical measure instead of the Euclidean error in order to take into account
the probabilistic nature of the problem. Moreover network architectures that utilise
recurrent nodes can be used to take advantage of their application in the temporal
domain, but also the use of other CNN architectures which incorporate temporal fea-
tures, such as optical flow, can be investigated.
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