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A B S T R A C T

Given the relevance of smartphones for accessing personalized services in smart cities, Continuous Authen-
tication (CA) mechanisms are attracting attention to avoid impersonation attacks. Some of them leverage
Data Stream Mining (DSM) techniques applied over sensorial information. Injection attacks can undermine the
effectiveness of DSM-based CA by fabricating artificial sensorial readings.The goal of this paper is to study the
impact of injection attacks in terms of accuracy and immediacy to illustrate the time the adversary remains
unnoticed. Two well-known DSM techniques (K-Nearest Neighbours and Hoeffding Adaptive Trees) and three
data sources (location, gyroscope and accelerometer) are considered due to their widespread usage Results
show that even if the attacker does not previously know anything about the victim, a significant attack surface
arises – 1.35 min are needed, in the best case, to detect the attack on gyroscope and accelerometer and 7.27 min
on location data. Moreover, we show that the type of sensor at stake and configuration settings may have a
dramatic effect on countering this threat.
1. Introduction

Smartphones are involved in our daily life activities where they
are being used for countless purposes. They are sophisticated devices
equipped with many sensors, such as gyroscope, magnetometer, GPS,
microphone, etc., to offer a plethora of services and functions. Indeed,
they are increasingly being adopted as the entry point for personalized
services in smart cities, such as adapted directions considering the
health status of its owner [1]. Due to the relevance of these services, it
is essential to authenticate the owner of the smartphone to grant access
accordingly [2].

There are multiple ways to achieve such an authentication, most
common being a password or a biometric trait like the fingerprint.
However, when the access is granted to the smartphone, an attacker
could get unrestricted control of it henceforth and perform malicious
actions like stealing information. Continuous Authentication (CA) tech-
niques address this shortcoming, for instance, using the accelerometer
and gyroscope to periodically verify the user’s identity [3] or combining
the use of the GPS and screen touches to do regular identity checks [4,
5].

Most smartphone CA proposals leverage sensors data assuming they
are trusted sources of information and thus disregarding their potential
threats [6]. One of these is the injection attack [7], which is gaining
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momentum. In this attack, source data is maliciously manipulated to
circumvent a given security mechanism. [8] shows the possibility of
performing an injection attack in a GPS device to infer location data.
As pointed out in [9], position sensors have been exploited by the
attackers, enabling them to corrupt or even control their output. This
can be achieved, for example, by applying an acoustic or magnetic
stimulus over the device so that sensors start malfunctioning. On the
other hand, sensorial information coming from touch screens has also
been compromised. In particular, [10] proposes a mechanism to create
fake touch events by injecting external noise signals through tailored
electrical voltages and [11] presents SMAShed, a framework to ma-
nipulate several Android sensors. Going a step further, [12] highlights
fake sensor data injection as one of the threats in IoT devices and
applications. Indeed, Giannetsos et al. already developed a working
malware that may alter the data offered by a node within a sensor
network [13].

In the context of smartphone CA, injection attacks may open up
a significant window of opportunity for the adversary. In particular,
they may enable the impersonation of the owner, thus creating the
illusion as though the legitimate user controlling the device. This may
be helpful to grant access to the device to a robber. Moreover, if the
CA decision enables granting some privileges to an external service
https://doi.org/10.1016/j.comcom.2020.08.022
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(e.g., access corporate sensitive data), this may lead to unlawful access
to them.

This kind of attack can be developed by means of malware, which
is increasingly present in smartphones [14,15], or even in more so-
phisticated threats like advanced persistent ones (APTs) [16]. Indeed,
sensor data has been at stake of malwares. For example, in 2019
a malware was shown to selectively activate its functions based on
motion sensors, as a means to evade detection methods.1 If a malware
were to compromise a CA mechanism, it could record the sensorial
readings from the legitimate user, and then reproduce (i.e., inject)
them once the device has been stolen. However, this would involve
a non-negligible storage which could simplify its detection. Therefore,
it is more realistic to assume that the malware could on-the-fly inject
manipulated sensor readings following a given policy (with or without
previous knowledge on the victim) without storing any actual readings.
However, despite the possibility of such smartphone sensors injection
attacks [8], this issue has been barely addressed so far.

To overcome this limitation, the goal of this paper is to study
the impact of injection attacks in the accuracy and immediacy of
smartphone CA schemes. This serves to illustrate the attacker window
— the time the adversary remains unnoticed. It must be noted that the
attack succeeds if it is never detected or if detection takes a lot of time.
In particular, three research questions are at stake:

• (RQ1) Are CA mechanisms effective against injection attacks?
• (RQ2) Do injection types affect the attacker window?
• (RQ3) Does the amount of injected data affect the attacker window?

To the best of authors’ knowledge, no previous work has addressed
these questions. There are several related works, e.g. [9,17], but they
do not provide any insights on the size of the attacker window. Among
all existing approaches for CA, we focus on those based on Data Stream
Mining (DSM) techniques because they are specially appropriate for
processing endless flows of data, in memory-limited devices, at a
really fast pace [18], which is the operational environment of the
proposed system. DSM has been also considered useful to prove the
authenticity of data sources [19] and more specifically it has been used
for CA [20]. In particular, two widespread DSM methods, namely K-
Nearest Neighbour (KNN) and Hoeffding Adaptive Trees (HATs), are
considered. Concerning the data at stake, motion sensors (gyroscope
and accelerometer) and location data are used for this purpose, as
they are two well-known authentication features [21]. To ensure real-
world validity, our analysis is carried out on a real-life dataset of
47 users collected over three years. The relevance of this dataset for
our purposes lies on the size of the time span — having data from
several months enables us to determine the long-term validity of our
results. Since CA decisions may take place frequently, it is critical to
ensure that the data at hand actually describes the daily routine of
several users throughout the year. Otherwise, results could be biased
by choosing a particular user or period. In this regard, to the best
of authors’ knowledge this is the largest available dataset. Moreover,
we consider two realistic adversaries — one that has some previous
knowledge on the victim (e.g., a robber that has previously tricked the
user into installing a malicious spyware app) and another one without
that knowledge.

This paper is structured as follows: Section 2 presents background
discussions. Section 3 describes the underlying model. Section 4 de-
cribes an illustrative use case for the attack. The achieved results
re presented and discussed in Section 5. Section 6 introduces related
work. Finally, Section 7 concludes the paper and points out future work
irections.

1 https://pentesttools.net/new-android-malware-apps-use-motion-sensor-
o-evade-detection/
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2. Background

This paper focuses on CA techniques that are based on exploiting
sensor information. Since Data Stream Mining (DSM) algorithms are
usually at the core of these CA approaches, this Section introduces the
basis of DSM (Section 2.1). Subsequently, the subset of DSM algorithms
considered in this paper are presented (Section 2.2). Finally, types of
sensor injection in smartphones are presented (Section 2.3).

2.1. Data stream mining

Data stream mining techniques are a branch of machine learning
procedures [18]. In machine learning, typically a pattern or feature is
learned to classify inputs to classes afterwards. The dataset is divided
into training and testing sets for this process, the former to build the
model and the latter to verify the correctness of the classification.

However, most machine learning algorithms have limitations [18],
specially when there is potentially infinite set of data at stake instead
of a pre-known, fixed-size dataset. Moreover, due to limited computa-
tional resources and memory all managed elements cannot be stored.
Data Stream Mining (DSM) techniques are proposed to address these
limitations [22]. DSM is suitable for settings in which flow of data are
received, storing in memory just some of the continuous flow. In this
way, the system learns from elements that are processed in windows
of a certain size and only once following their arrival order. Thus, for
instance, a window of x bytes means that flows of data are processed
in batches of x bytes.

DSM has the following requirements for processing continuous flow
of data [18]:

• Processing just one sample at a time: data is processed as it arrives
and retrieval is not allowed. In cases where re-analysis of a
data-stream is practical, this restriction can be relaxed.

• Limited amount of memory : the processing of data is not limited to
memory because DSM techniques can process infinite amount of
data while just the current model and some useful statistics are
stored in memory.

• Work time limits: to process data in real time, the algorithms need
to work at a high throughput rate.

• Instant predictions: the system needs to provide predictions effi-
ciently regardless of the amount of samples and without recom-
putations at any stage.

Sensor-based CA for smartphones should consider all the require-
ments mentioned above. This poses some practical limitations for their
real-life implementation. First, smartphones do not have unlimited
memory, so it is necessary to opt for computation-saving procedures.
Second, as the authentication is continuous, the system should peri-
odically provide results as fast as possible. Finally, the removal of the
training phase is a preferred approach from the usability point of view.

2.2. Classification algorithms

Among existing classification algorithms, the following ones are
applied herein [23] as they are the most prominent techniques in CA
approaches leveraging IoT devices like smartphones [21]:

• K-Nearest Neighbour (KNN). The typical algorithm looks for in-
stances in the training set that are more similar to the instance to
classify. In particular, the used algorithm classifies an instance
based on its 𝑘 nearest neighbours according to a distance. In
our case, the distance 𝑑(𝑥, 𝑦) is computed using the Euclidean
distance. For two-dimensional points, this is computed following
Eq. (1).

𝑑(𝑥, 𝑦) =
√

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (1)

The user is classified considering the predominant label of the 𝑘
nearest points.

https://pentesttools.net/new-android-malware-apps-use-motion-sensor-to-evade-detection/
https://pentesttools.net/new-android-malware-apps-use-motion-sensor-to-evade-detection/
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• Hoeffding Adaptive Trees (HAT). In order to understand HAT, the
concept of Hoeffding Window Tree (HWT) is required. A HWT is a
decision tree based on a sliding window keeping the last instances
on the stream. They use the Hoeffding bound, which states that
with probability 1- 𝛿, the true mean of a random variable of range
𝑅 will not differ from the estimated mean after 𝑛 independent
observations by more than 𝜖 (Eq. (2)).

𝜖 =

√

𝑅2 ⋅ (𝑙𝑛( 1𝛿 ))

2 ⋅ 𝑛
(2)

Based on this concept, a HAT is a HWT that learns from data
streams without a fixed size of sliding window. In this paper we
focus on the ADWIN variant, which automatically and contin-
uously estimates the rate of change in the data streams rather
than using a priori guesses. With this estimation, ADWIN adapts
the window size accordingly, using narrower windows when data
changes at a higher pace.

In this work we opt for KNN and HAT as they are two widespread
SM alternatives. Moreover, they have been shown to be comparable to
ther alternatives, or even better. For instance, as compared to Concept-
dapting Very Fast Decision Trees (CVFDT), HAT works quite similarly
ut offering better performance [18].

.3. Sensor injection techniques in smartphones

Sensor injection attacks have been studied in numerous disciplines
nd devices but the way injection can be carried out has been little
tudied, specially in the IoT field and smartphones in particular.
Injection can be achieved through signal manipulation [24] or mal-

are infection [15]. Besides, the attacker’s knowledge of the victim’s
ensor data, before the injection attack, should be also considered. In
he IoT field there are three works that study injection, though the
ocus of [15] is not related to the one proposed herein. [15] and [17]
ntroduce the injection of sensor data in between the minimum and
aximum values, thus assuming some knowledge to establish such
imits. By contrast, [9] proposes two general types of injection, one
ased on corrupting data and assuming certain knowledge of the victim;
nd another one based on rewriting data, such that data of a user is
njected in other user’s data (victim), so no knowledge of the victim
s assumed. However, there are no particular details given on how the
njection is really carried out.

. Model

This Section describes the model on top of which the experimental
nalysis is carried out. Section 3.1 gives a broad overview of the system
ettings. Section 3.2 describes the adversaries under consideration and
heir capabilities. Last but not least, the goals that are relevant in order
o determine the effectiveness of any CA approach are described in
ection 3.3.

.1. Overview

The focus of this paper is to characterize the impact of injection
ttacks on the immediacy and accuracy of CA. For this purpose, several
ttacker types are considered depending on the previous knowledge on
he target system, as it will be explained in Section 3.2. In particular,
hree sensors are taken into account, namely location, gyroscope and
ccelerometer.
An overview of the analysis to be carried out is depicted in Fig. 1.

irst, multi-sensor information is collected in a given smartphone. Each
ensor provides several features or attributes. Afterwards, such data is
reprocessed to choose the most representative features.
At this point in the process, data could be applied for CA purposes.

owever, in order to determine their resiliency against injection, the
152
Fig. 1. Overview of the analysis steps.

third step is data modification following different strategies. After this
modification, two DSM techniques, namely KNN and HAT are applied
to this data for CA purposes. Finally, the output of each DSM algorithm
under different settings is analysed to conclude how injection affects
the CA process in terms of the attacker window.

3.2. Adversarial model and types of injection

The goal of an adversary 𝐴 is to inject data in such a way that the
martphone authenticates 𝐴 as the legitimate user 𝑈 . Therefore, 𝐴 is
illing to impersonate 𝑈 in order to inherit 𝑈 ’s access rights to the
martphone functions and data.
In order to achieve this impersonation, 𝐴 needs to modify the

ensor information to defeat the CA mechanism at stake. In terms of
ocation data, injection would be analogous to using the smartphone
n a different place than that of 𝑈 but forging spatial information in
uch a way that the system is unable to notice 𝐴. By contrast, injection
n gyroscope and accelerometer data means that 𝐴 could emulate a
ovement which is different from that of 𝑈 but the system is unable
o notice the presence of 𝐴.
Disregarding the type of sensor at stake, such an impersonation

equires 𝐴 controlling 𝑈 ′𝑠 device to some extent at some point in time.
Thus, 𝐴 may either control some environmental condition to cause
ensor malfunction (e.g. presence of voltage), or inject fake data by
eans of malware (recall Section 2.3). In any case, the following pair
f adversaries are considered depending on the prior knowledge that 𝐴
has regarding 𝑈 :

• No-previous-knowledge adversary (𝐴𝑁𝐾 ): 𝐴 injects data with-
out having any kind of previous information about 𝑈 ’s legitimate
sensor data.

• Partial-previous-Knowledge adversary (𝐴𝑃𝐾 ): 𝐴 knows 𝑈 ’s le-
gitimate sensor data collected over a period of time before the at-
tack. For example, this might be achieved by previously infecting
𝑈 ’s smartphone with a spying application.

In order to carry out the experimental analysis, it is assumed that the
dversary takes control of 𝑈 ’s device and performs injection from that
oment on. Concerning the types of injection, different patterns could
e devised such as the addition of uniform or Laplace noise [25]. In this
ork we opt for a uniform distribution as it is more convenient when
t comes to smartphone sensor data [15]. However, each adversary
pplies it in a different way.
In the following, let 𝑅𝑇

𝑈 = {𝑓𝑇
𝑈,1,… , 𝑓𝑇

𝑈,𝑛} be a legitimate sensor
eading of 𝑈 at time 𝑇 . Each one is formed by a set of features 𝑓𝑇

𝑈,𝑖.
Thus, after injection they are transformed into a modified reading 𝑅𝑇

𝑈 =
{𝑓𝑇

𝑈,1,… , 𝑓𝑇
𝑈,𝑛}

• Blind Rate (BR): 𝐴𝑁𝐾 injects data in a fixed way, that is mod-
ifying the original data a particular percentage referred to as 𝑖𝑝.
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In particular, for each 𝑅𝑇
𝑈 , all features 𝑓

𝑇
𝑈,𝑖 are either increased or

decreased at a fixed ratio Eq. (3).

𝑅𝑇
𝑈 = {𝑓𝑇

𝑈,1 ⋅ (1 ± 𝑖𝑝),… , 𝑓𝑇
𝑈,𝑛 ⋅ (1 ± 𝑖𝑝)} (3)

• Slogger (S): following the pattern proposed in [15] and assuming
partial knowledge of 𝑈 ’s data, 𝐴𝑃𝐾 computes the maximum and
minimum values per 𝑓𝑈,𝑖, to inject data randomly within such
computed limits. More specifically, it is assumed that the attacker
knows the victim between 𝑇 1 and 𝑇𝑘, thus knowing 𝑅𝑇 1

𝑈 to
𝑅𝑇𝑘
𝑈 . Depending on this background information, reference values

are computed as 𝑚𝑎𝑥𝐹𝑈,𝑖 = 𝑚𝑎𝑥(𝑓𝑇 1
𝑈,𝑖,… , 𝑓𝑇𝑘

𝑈,𝑖) and 𝑚𝑖𝑛𝐹𝑈,𝑖 =
𝑚𝑖𝑛(𝑓𝑇 1

𝑈,𝑖,… , 𝑓𝑇𝑘
𝑈,𝑖). Based on them, the injection percentage per

feature 𝑖𝑝(𝑓𝑈,𝑖) is computed following Eq. (4), where 𝑟𝑎𝑛𝑑𝑜𝑚(𝑎, 𝑏)
produces a random value between 𝑎 and 𝑏. Afterwards, readings
are modified following Eq. (5).

𝑖𝑝(𝑓𝑈,𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑚𝑖𝑛𝐹𝑈,𝑖, 𝑚𝑎𝑥𝐹𝑈,𝑖) (4)

𝑅𝑇
𝑈 = {𝑓𝑇

𝑈,1 ⋅ (1 ± 𝑖𝑝(𝑓𝑈,1)),… , 𝑓𝑇
𝑈,𝑛 ⋅ (1 ± 𝑖𝑝(𝑓𝑈,𝑛))} (5)

3.3. Goals

In order to measure the degree of resilience of DSM techniques
leveraging different smartphone sensor data, it is necessary to de-
fine the goals for such a CA system. In particular, the following two
indicators are the main targets of the analysis:

• Accuracy: the system should distinguish 𝑈 from 𝐴. It means that
impersonation feasibility, the fact of 𝐴 being similar to 𝑈 , should
be minimized.

• Immediacy: the system should detect the presence of 𝐴, that is
the injection, as soon as possible. A threshold (𝑇𝐻) is introduced
to determine how many data entries (also called records) are
to be classified as 𝐴. The smaller the value of 𝑇𝐻 , the better
for security because 𝐴 is detected faster. However, small TH
might be worse for usability because the chances of getting false
positive responses will increase leading to frequently blocking of
the phone even in the presence of 𝑈 . The best 𝑇𝐻 value should
be chosen to reach a balance between security and usability.

4. Use case

Alice, the victim, uses gyroscope and accelerometer or location sen-
sor data for being continuously authenticated in her smartphone. Bob,
the attacker, prepares a malicious application which is able to inject
data in smartphone sensors [15]. The application is downloaded by
Alice and once the malicious application is running, Bob robs the device
and gets access to Alice’s smartphone to exfiltrate, collect or visualize
data. Considering that 5 min is the maximum time required for learning
to use a mobile application [26], this is the time needed for Bob when
unknown applications are at stake. However, 15 s. is enough for many
common uses such as checking and dismissing a notification, quickly
responding to a message or searching for something in the mobile
phone browser [27]. We will refer to them as quick interactions. On the
other hand, 107.6 s., 63.6 s. and 54.0 s. are the average usage times
for social networking (Facebook, Twitter, Instagram, OkCupid), SMS/
Texting (built-in Messaging) and email (Gmail, Yahoo mail, SolMail)
applications respectively [28]. These values are illustrative for the time
Bob may spend in stealing information or misbehaving through these
applications.

However, the time of the attacker is bounded by that of Alice to
identify the robbery. According to a survey, 15 min is the time needed
for a third of mobile users to notice the loss of their devices and 5
min for a quarter of young mobile users [29]. Then, time between such
limits is the one Bob may use the stolen smartphone without being
153
noticed. From then on, it is assumed that Alice applies some kind of
countermeasure, such as remotely deleting all information stored in the
device.2

5. Evaluation

This Section presents experimental results, starting by the descrip-
tion of the main implementation issues (Section 5.1). The assessment
process is composed of five different parts (recall Fig. 1). The dataset is
firstly prepared (Section 5.2). Secondly, data is analysed (Section 5.3).
Then, authentication is enforced by applying different DSM with a set of
configuration parameters. To measure the impact of injection attacks,
different variables (recall Section 3.3) are studied (Section 5.4).

5.1. Implementation

Python is the programming language used to generate multiple
scripts for doing data processing and injection, and evaluating results
according to applied CA algorithms. Different standard Python libraries
like cvs, os or numpy are used for this purpose.

In particular, for feature selection, the process performed just before
injection, Weka,3 a machine learning open source tool, is applied.
Moreover, in terms of data injection, impersonating 𝑈 involves con-
trolling his/her device at some point in time. Therefore, each file
is formed by a set {𝑅𝑇 1

𝑈 ,… , 𝑅𝑇 𝑙𝑒𝑔
𝑈 } containing 𝑙𝑒𝑔 legitimate sensor

readings, followed by {𝑅𝑇 𝑙𝑒𝑔+1
𝑈 ,… , 𝑅𝑇 𝑒𝑛𝑑

𝑈 } injected records. The size of
this second set, 𝑤 = 𝑒𝑛𝑑 − (𝑙𝑒𝑔 + 1) is the width of the DSM algorithm
window. In this way, the maximum expected amount of True Positives
(TP) and True Negatives (TN) are known beforehand which are 𝑙𝑒𝑔
and 𝑤, respectively. Algorithms 1 and 2 show how the injection is
mplemented according to Section 3.2.

ata: Operation (op), 1-addition/ 0-subtraction; Injection percentage
(ip); 𝑤;𝑙𝑒𝑔

esult: New file with injected data (𝐹 𝑖𝑙𝑒𝑈 )
for each 𝐹 𝑖𝑙𝑒𝑈 do

counter=0
while counter< 𝑙𝑒𝑔 do

𝐹 𝑖𝑙𝑒𝑈=+𝑅
𝑇 𝑗
𝑈

counter++
end
while counter< 𝑤 do

for each reading 𝑅𝑇 𝑗
𝑈 in 𝐹 𝑖𝑙𝑒𝑈 do

for each feature 𝑓𝑢𝐹𝑖 in 𝑅𝑇 𝑗
𝑈 do

if op==1 then
𝑅𝑇 𝑗
𝑈 +=𝑓𝑢𝐹𝑖+𝑓𝑢𝐹𝑖*ip;

else
𝑅𝑇 𝑗
𝑈 +=𝑓𝑢𝐹𝑖-𝑓𝑢𝐹𝑖*ip;

end
end

𝐹 𝑖𝑙𝑒𝑈=+𝑅
𝑇 𝑗
𝑈

end
counter++

end
end

Algorithm 1: Blind rate injection algorithm
Finally, once injections are carried out, MOA,4 an open source

framework for data stream mining, is used to study the CA process, us-
ing existing KNN and HAT algorithms properly tuned with parameters
𝑤 and 𝑘 detailed in the following sections.

2 https://support.google.com/accounts/answer/6160491?hl=en, last access
une 2020.
3 https://www.cs.waikato.ac.nz/ml/weka/ last access June 2020.
4 https://moa.cms.waikato.ac.nz/ last access June 2020.

https://support.google.com/accounts/answer/6160491?hl=en
https://www.cs.waikato.ac.nz/ml/weka/
https://moa.cms.waikato.ac.nz/
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Data: Operation (op), 1-addition/ 0-subtraction; 𝑇𝑘; 𝑤; 𝑙𝑒𝑔
Result: New file with injected data (𝐹 𝑖𝑙𝑒𝑈 )

for each 𝐹 𝑖𝑙𝑒𝑈 do
counter=0
while counter< 𝑙𝑒𝑔 do

𝐹 𝑖𝑙𝑒𝑈=+𝑅
𝑇 𝑗
𝑈 counter++

end
attackerKnowledge =0 while attackerKnowledge<𝑇𝑘 do

for each 𝑅𝑇 𝑗
𝑈 in 𝐹 𝑖𝑙𝑒𝑈 do

𝑚𝑎𝑥𝑢𝑖𝑓𝑗=getMaxPerFeature(𝑅
𝑇 𝑗
𝑈 );

𝑚𝑖𝑛𝑢𝑖𝑓𝑗=getMinPerFeature(𝑅
𝑇 𝑗
𝑈 );

end
attackerKnowledge++

end
while counter< 𝑤 do

for each 𝑅𝑇 𝑗
𝑈 in 𝐹 𝑖𝑙𝑒𝑈 do

for each feature 𝑓𝑢𝐹𝑖 in 𝑙𝑖𝑛𝑒𝑢𝐹𝑖 do
ip = randomBetween(𝑚𝑎𝑥𝑢𝑖𝑓𝑗 ,𝑚𝑖𝑛𝑢𝑖𝑓𝑗);
if op==1 then

𝑅𝑇 𝑗
𝑈 +=𝑓𝑢𝐹𝑖+𝑓𝑢𝐹𝑖*ip;

else
𝑅𝑇 𝑗
𝑈 +=𝑓𝑢𝐹𝑖-𝑓𝑢𝐹𝑖*ip;

end
end

𝐹 𝑖𝑙𝑒𝑈=+𝑅
𝑇 𝑗
𝑈

end
counter++

end
end

Algorithm 2: Slogger injection algorithm

For the sake of repeatability, the main scripts for running the
xperiments have been released in a GitHub repository.5

.2. Data preparation

In order to ensure the real-world validity of the analysis, it is critical
o use a realistic dataset. For this purpose, Sherlock dataset [30] is
onsidered in these experiments. Sherlock is a comprehensive dataset
ollected from 47 users for a maximum of 36 months. For each user,
ensor data was captured every minute (location sensor) or 15 s (gyro-
cope/accelerometer). Thus, after processing all users’ data, each one
ounts on around 833.3 h. of location data and 208.3 h. of gyroscope
nd accelerometer data. To promote the realism of the data, these users
ere silently monitored (using a legitimate spyware app) while using
heir device in their daily routines.
Among all Sherlock data, this analysis focuses on three sensor

ources — location, gyroscope and accelerometer. Within Sherlock,
ach location record is composed of 12 features, collected every minute.
t must be noted that for privacy reasons, these features are ob-
ained after applying a pseudoanonymisation technique (k-means in
his dataset). This contributes to support the validity of our process
ven when privacy-preserving techniques are in place (for example to
omply with legal regulations in force). On the other hand, gyroscope
nd accelerometer information is formed by 90 features collected every
5 s.
Considering existing CA approaches leveraging sensor data in smart-

hones, typically gyroscope and accelerometer are processed together.
herefore, each user 𝑈 has two associated files — one for his/her
ocation and another one containing gyroscope and accelerometer in-
ormation.

5 github.com/lgmanzan/impactSensorInjection
 J
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Once this set of files has been created, feature selection is carried
out. Three different algorithms are considered for this purpose:

• Correlation-based Feature Selection (CFS): selects a subset of
attributes by considering the individual predictive ability of each
feature along with the degree of redundancy between them. It
outputs a subset of chosen features.

• Attribute correlation (AC): evaluates attributes measuring the cor-
relation (Pearson’s) between it and the class. It outputs a ranking
of features.

• Information gain (IG): evaluates attributes measuring the infor-
mation gain with respect to the class. It outputs a ranking of
features.

In order to choose the most representative features, these three
algorithms have been evaluated. In particular, the output of CFS gives
a pre-filtered feature set. On the other hand, the top 40% of features
of each of AC and IG rankings are computed. Thus, only those features
selected by at least 2 of the aforementioned algorithms are chosen. As
a result, 5 features are selected for location and 25 for gyroscope and
accelerometer (see Appendix).

Moreover, to measure the impact of injection on CA techniques
(more precisely, on their underlying DSM algorithms), it is necessary
to prepare the files to be processed by each DSM. Thus, a set of files
per sensorial source (location and the combination of gyroscope and
accelerometer) are created per user 𝑈 as explained in Section 5.1.

In our experiments, a pair of window sizes, 𝑤1 = 1000 and 𝑤2 =
10,000 are applied, considering that 𝑅𝑇 𝑖

𝑈 refers to 223 bytes for ac-
celerometer and gyroscope and 33 bytes for location, such that the
maximum storage space refers to 2.2 MB and 330 KB in each case
respectively. Since this information is to be stored in RAM memory,
there are two practical limitations to consider. On the one hand,
the total amount of RAM, which is usually 1 GB in many countries
according to DeviceAtlas.6 On the other hand, the maximum RAM share
per app imposed by current smartphone operating systems, such as the
Android memory management policy.7 Therefore, these values for 𝑤
ensure that this mechanism is suitable for the most constrained current
devices. Moreover, 𝑙𝑒𝑔 is set to 25%, 50% and 75% of 𝑤1 and 𝑤2 values
to do the analyses in greater depth.

Based on two adversarial attacks discussed in Section 3.2, injection
strategies have been implemented as follows:

• Blind Rate (BR): percentage of injection is set to {−10%, 5%, 25%,
50%, 200%}, considering results presented later in Section 5.3.

• Slogger (S): the maximum and minimum values in 𝑅𝑜 for each file
are computed to inject random data in between such values.

In light of the above and to simulate that injection attacks can
occur at any point in time of the usage period, experimental files
are developed considering that attacks are carried out at the very
beginning, as well as at 20%, 40%, 60% and 80% of the usage periods.
Thus, each type of injection generates 150 files per user. In the case
of BR such number bases on the use of 5 percentages of injections,
𝑤, 𝑙𝑒𝑔 and usage periods. While the amount of files for S injections
is computed based on 𝑤, 𝑙𝑒𝑔, usage periods and 5 repetitions for using
a random operation. All in all, it results in a set of 14,100 experimental
files.

5.3. Data suitability assessment for CA. preliminary exploration

Before analysing the effect of injection, it is important to determine
whether the sensor data at hand is useful for CA purposes. For example,
if all sensor data were the same for all users, CA could simply not be

6 https://deviceatlas.com/blog/most-common-smartphone-ram-by-
ountry, last access June 2020.
7 https://developer.android.com/topic/performance/memory, last access
une 2020.

https://github.com/lgmanzan/impactSensorInjection
https://deviceatlas.com/blog/most-common-smartphone-ram-by-country
https://deviceatlas.com/blog/most-common-smartphone-ram-by-country
https://developer.android.com/topic/performance/memory
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achieved — it would be impossible for any system to tell the two users
apart.

To assess the suitability of the considered data, the relative dis-
tance 𝑑𝑖𝑠𝑡(𝑈𝑖, 𝑈𝑗 , 𝑠) between two users 𝑈𝑖 and 𝑈𝑗 concerning sensor
𝑠 is measured. Let 𝑇 𝑠 and 𝑇 𝑒 be the start and end times of each
recorded sensor. The average per user and feature is computed as
𝑓𝑈,𝑖 = 𝑎𝑣𝑔(𝑓𝑇 𝑠

𝑈,𝑖,… , 𝑓𝑇 𝑒
𝑈,𝑖). Thus, the said distance is computed following

Eq. (6), where 𝑛𝑓 is the number of features for sensor 𝑠.

𝑑𝑖𝑠𝑡(𝑈𝑖, 𝑈𝑗 , 𝑠) =
(
∑𝑛𝑓

𝑥=1
𝑓𝑈𝑖,𝑥

𝑓𝑈𝑗,𝑥
) ⋅ 100

𝑛𝑓
(6)

In terms of 𝐴𝑁𝐾 , which follows a 𝐵𝑅 strategy, the computed
distances serve as an inspiration for defining injection rates. In other
words, this gives us the amount of average injection rate that has to be
applied for a user to resemble another.

Figs. 2(a) and 2(b) show the percentage of modification needed
in the data of users in axis Y to become similar to users in axis X.
In these figures, the scale is experimentally defined by observing the
distribution of values for all 𝑑𝑖𝑠𝑡(𝑈𝑖, 𝑈𝑗 ). These figures show that there
is a lack of uniformity in the considered sensorial data. This is beneficial
for the sake of distinguishability among users, as inter-user distances
exhibit great variety. For instance, concerning Fig. 2(b), all users are
very different from 𝑈6, that is all users have to modify their data
between (50%; 231%) to become similar to user 𝑈6; and 𝑈23 is very
different from the rest of users, that is 𝑈23 has to modify his/her data
between (50%; 231%] to become similar to the remaining users. Note
that the percentage of increase works in line with Eq. (3) related to 𝐵𝑅
strategy.

As a result, this analysis shows that some users can resemble others
by modifying their sensorial inputs to some extent. It is remarkable
that the mean of all features is considered herein and then, the same
modification for all features is assumed. This decision has been taken
considering that 𝐴𝑁𝐾 will inject data following the same pattern in
every feature.

5.4. Analysis on the impact of injection

This Section focuses on the results of the impact of the injection
strategies on the prepared files. For this purpose, Section 5.4.1 defines
which are the metrics that will be considered for the established goals,
namely accuracy and immediacy. Section 5.4.2 discusses the global
impact of injection into the system performance, focusing on accuracy.
However, immediacy is essential in this system, being analysed in
Section 5.4.3. Last but not least, Section 5.4.4 summarizes the main
findings of the analysis.

5.4.1. Metrics
Both accuracy and immediacy are the variables under consideration

in this analysis. However, it is necessary to determine which are the fac-
tors that will be considered to measure them. Four metrics are specially
relevant in this study, accuracy, First Interval of False Positives (FIFP),
First Interval of True Negatives (FITN) and Detection Time (DT). Each
one is introduced below.

Accuracy is calculated as the amount of correctly predicted in-
stances divided by the total amount of predictions, presented in Eq. (7).
Then, it involves True Positive (TP), True Negative (TN), False Positives
(FP) and False Negatives (FN). In this particular scenario, TP means
that the system correctly predicts 𝑈 and TN that the system correctly
predicts 𝐴, while FP and FN represents the opposite respectively.
Indeed, TP and TN offer a global metric on the accuracy of the DSM
at stake even in the presence of injection.

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(7)

On the other hand, FIFP represents the period an attacker remains
unnoticed until the first detection and thus, the smaller this value is,
 f
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Fig. 2. Inter-users data similarity, in percentage.

the lower the chances for the adversary 𝐴 to succeed. FITN shows
the period needed to detect an attacker and it is bounded by a given
threshold 𝑇𝐻 , such that 𝐹𝐼𝑇𝑁 > 𝑇𝐻 . 𝑇𝐻 is defined for the sake
of usability — otherwise, any FN would cause the system to activate
protective measures, thus imposing a non-negligible burden on the user.

The last metric, Detection Time (𝐷𝑇 ), bases on both FIFP and TH.
Detecting 𝐴 will take as much time as the amount of detection errors
plus the time to determine 𝐴’s presence, following Eq. (8):

𝐷𝑇 = 𝛼 × (𝐹𝐼𝐹𝑃 + 𝑇𝐻) (8)

where 𝛼, the sampling interval, corresponds to 1 min in case of location
and 15 s for gyroscope and accelerometer data for the Sherlock dataset
(recall Section 5.2). Reasonable values for 𝑇𝐻 should not be higher
than several minutes because 𝐴 would take advantage of the situation
otherwise. For the sake of generality, we consider the amount of records
that are equivalent to 5 min, inspired by the most challenging limit
imposed in the use case. This equals to 5 records for location and 20
for gyroscope and accelerometer. However, we adopt an intermediate
value of 10 records to enrich the discussion.

Fig. 3 shows an example of FIFP, FITN and DT, where 𝑈 means
he data belongs to the user and 𝐴 means an injection attack. Array
1) shows readings of the legitimate user 𝑈 , followed by updated
eadings which the attacker (𝐴) has injected. Array (2) shows predicted
alues, appearing FIFP after some initial predictions which correspond
o data before injection. FITN appears afterwards, leading to protected
easures when it exceeds TH. Thus, the challenge is to minimize FIFP
nd producing FITN at the earliest to reduce the changes of the attacker

or going unnoticed.
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Fig. 3. Example of FIFP and FITN considering 𝑇𝐻 = 5.
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.4.2. Global impact of injection
According to the established goals, accuracy requires maximizing

P and minimizing FP. Besides, immediacy is achieved reducing TN in
erms of an established 𝑇𝐻 .
Table 1 presents the mean of TP and TN rates per DSM technique,
and type of sensor data. Generally speaking, injection attacks have a
ery discrete impact into TPs, which is beneficial for usability — each
ime 𝑈 is present, it is successfully authenticated as such. The situation
s rather similar for TN, except for HAT and 𝑤 = 10,000, where the
A system makes an error 13.2% of the times. Therefore, injection
ttacks introduce some degree of distortion into the performance of CA
echanisms, being immediacy a complementary key element to study.

.4.3. Impact on immediacy
This analysis focuses on immediacy, studying FIFP, FITN and DT.

he following graphical elements are applied:

• Plots depicting FITN and FIFP: for readability purposes, the max-
imum number of presented registers is 80, as it is regarded as an
extreme value for 𝑇𝐻 .

• Plots presenting DT: as a trade-off between security and usability
and considering that DT bases on TH and that it should be within
time limits set in the use case (Section 4).

.4.3.1. Effect of 𝑘 value in KNN. The use of KNN algorithm requires
he specification of parameter 𝑘. There is no single, globally accepted
ptimum value for 𝑘, so typically a trial-and-error approach is fol-
owed [31]. However, multiple authentication approaches commonly
se small 𝑘 values, e.g. [32,33], and [34] studies the result from 𝑘 = 1
o 𝑘 = 21. Considering these studies and the fact that several tests
onfirm that results get worse when 𝑘 increases, in these experiments
has been set to 3, 10 and 21 for comparison purposes. Figs. 4(a) and
(b) show FIFP and FITN for each type of injection and 𝑤. The system
s able to identify the attacker in both injection types but there are
elevant differences.
In terms of 𝑘 value, the smaller 𝑘, the better in all cases. Usually
small value of 𝑘 means that noise will have a higher influence on
esults. However, for location and inertial sensor data, the training set
ight have a wide variation and therefore considering more samples
ould defeat the basic philosophy behind KNN that the points near
ight have similar density or classes. It is in line with our previous
ork [20], so it seems to be a typical issue. Results are acceptable in
R injection for small 𝑘 values and 𝑤=1000 specially. The best results
re achieved for 𝑤 = 1000 and 𝑘 = 3, such that FITN = 152.11 and FIFP
2.27 for location; and FITN = 132.13 and FIFP = 1.38 for gyroscope
nd accelerometer.
S injection leads to adequate results if 𝑇𝐻 is carefully chosen,

or instance, for location, when 𝑘 = {10, 21}, 𝑇𝐻 should be set to
to detect 𝐴𝑃𝐾 in the first interval, except for 𝑘 = 10 and 𝑤 =
000 in which 𝑇𝐻 should be set to 3. Nonetheless, 𝑇𝐻 = 1 is not a
easonable value for usability because in that setting one mistake of
he CA mechanism would lead to the user being rejected from his/her
wn smartphone. In a better scenario, like 𝑘 = 3 and 𝑤 = 1000, FITN
9.69 and 12.99 (a high but sensible 𝑇𝐻) and FIFP = 3.81 and 1.28

or location, and gyroscope and accelerometer, respectively.
Table 2 shows DT for different values of 𝑘 and injection types,
here omitted values (-) mean that FITN< 𝑇𝐻 and thus, we consider i
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Fig. 4. FIFP and FITN for 𝑘 value analysis.

Table 1
Mean TP, TN and accuracy rates for each sensor and DSM technique.

𝑤 TP TN Accuracy
rate rate rate

Location
KNN 1000 99.8 95.0 96.65

10,000 100.0 96.0 97.67

HAT 1000 99.7 94.1 96.05
10,000 100.0 86.8 91.51

Gyroscope and
Accelerometer

KNN 1000 100.0 97.9 98.45
10,000 100.0 98.4 98.92

HAT 1000 99.6 97.8 98.51
10,000 100.0 97.5 98.34

the system is unable to detect 𝐴𝑃𝐾 in these cases. Though a small 𝑘
roduces smaller DT, accelerometer and gyroscope lead to nice results
n most cases, being DT = 8.32 min in the worst case (BR, 𝑤 = 10,000
and 𝑇𝐻 = 10) and DT = 1.32 min in the best one (S, 𝑤 = 1000 and
𝐻 = 5). Indeed, inertial sensors are not significantly affected by the
njection type, just around 50 s at most. By contrast, results for location
re worse in S injection, the attack can only be detected when 𝑘 =
, getting DT = 8.81 min when 𝐹𝐼𝑇𝑁 >5. This sensor type produces
cceptable results for small 𝑘 values, getting DT = 7.27 min in the best
ase (BR, 𝑤 = 1000, 𝑇𝐻 = 5).

.4.3.2. Effect of BR injection strategy. The FIFP and FITN for the BR
njection strategy are presented in Figs. 5(a) and 5(b). If the right
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Table 2
Detection time for 𝑘 value analysis in minutes.

Location Gyroscope and accelerometer
S BR S BR

w k TH=5 TH=10 TH=5 TH=10 TH=5 TH=10 TH=20 TH=5 TH=10 TH=20

1000

3 8.81 13.81 7.27 12.27 1.32 2.32 5.32 1.35 2.34 5.34
10 – – 13.50 18.50 2.37 3.37 6.36 2.50 3.50 6.50
21 – – 22.60 27.60 3.61 4.61 7.61 3,90 4.90 7,90

10,000

3 – – 7.79 12.79 1.41 2.41 5.41 1.43 2.43 5.43
10 – – 15.80 20.80 2.51 3.51 6.50 2.73 3.73 6.73
21 – – 27.56 32.56 3.80 4.80 7.80 4.32 5.32 8.32
a

A
t
c
a
f
a
c
=

5
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Fig. 5. FIFP and FITN for Blind Rate injection.

SM technique is chosen, injection attacks can be identified even when
mall injections are carried out. In all cases FIFP is slightly better (thus
maller) when higher injection rates are considered and FITN remains
cceptable, though results differ between sensor types. In terms of
ocation, HAT works better in most cases and particularly for 𝑤 = 1000.
For instance, using HAT, FIFP is between 3.77 and 2.45 for 𝑤 = 1000
and FITN high enough. By contrast the KNN algorithm leads to much
better results for accelerometer and gyroscope data, being FIFP between
5.44 and 6.1 for 𝑤 = 1000 and between 5.51 and 10.22 for 𝑤 = 10,000,
while FITN remains under sensible limits.

Concerning DT, Table 3 shows the results per algorithm. Though the
attack is detected in all cases, there are some challenging situations. Us-
ing gyroscope and accelerometer attacks can be detected significantly
fast, specially if KNN is applied. In this case 𝑤 does not affect DT, while
it is just slightly affected by injection rates, for example but under a
similar reasoning in all cases, DT = 2.46 min for 50% of injection and
DT = 2.36 min when injection increases to 200%, 𝑇𝐻 = 5 and 𝑤 =
1000. Location provides opposite results, being HAT and 𝑤 = 1000 the
most appropriate solution for being DT = 8.26 min and 13.26 min in
the worst case and DT = 7.45 min and 12.45 min in the best case for
𝑇𝐻 = 5 and 10 respectively.

5.4.3.3. Effect of S injection strategy. Having knowledge of the victim
and thus, doing S injection would presumably make detection more
difficult. Fig. 6 presents results of the analysis. KNN does not properly
work for location because FITN is very small (4.8 for 𝑤 = 10,000 and
1.13 for 𝑤 = 1000). Moreover, HAT and 𝑤 = 1000 seem to be the
only alternative for this sensor type leading to FIFP = 7.66 and FITN
157
Fig. 6. FIFP and FITN for Slogger injection.

= 670.79. Gyroscope and accelerometer produce better results for KNN
getting FIFP = 5.73 and 6.29 and FITN = 10.79 and 30.12 for 𝑤 = 1000
nd 𝑤 = 10,000 respectively.
Table 4 depicts DT for S injection and the considered values for 𝑇𝐻 .

gain, there are some cases in which 𝐴𝑃𝐾 is not detected. For location,
he best case is reached with HAT, 𝑤 = 1000 and 𝑇𝐻 = 5. Even in that
ase, DT = 12.66 min which is a poor result. By contrast, for gyroscope
nd accelerometer HAT leads to acceptable results when 𝑤 = 1000,
or instance, DT = 3.76 min for 𝑇𝐻 = 5. Nonetheless, KNN is the best
lternative of this type of sensors, leading to DT = 2.43 min in the best
ase (𝑇𝐻 = 5 and 𝑤 = 1000) and DT = 6.57 min in the worst one (𝑇𝐻
20 and 𝑤 = 10,000).

.4.4. Summary of the analysis
In light of this study different results are observed. First, injection

ffects CA systems but the type of injection is a matter of vital concern,
ogether with the type of sensorial data at stake. Results of injection
ypes and most appropriate algorithms are as follows:

• Blind Rate injection: injection rates do not significantly affect
results, though they differ between sensor data types. In terms of
location, HAT with 𝑤 = 1000 is the best choice as the detection
takes around 7–9 min if 𝑇𝐻 = 5. According to the proposed
use case, an attacker would have enough time to use common
applications and even to learn how to use an unknown one, but
the system would be useful as DT is less than that of the victim
to notice the loss of his/ her device. On the contrary, if using
gyroscope and accelerometer data KNN is preferable, as DT is
between 2.36 and 4.56 min when 𝑇𝐻<20 and between 8.14 and
13.84 if 𝑇𝐻 = 20. In this situation the attacker has time to do
common activities, for instance, in the best case (DT = 2.36)
9 quick interactions could be carried out, or an average use of
social networking applications, though the attacker would still be
detected before the victim realizes (recall Section 4).

• Slogger injection: the best results are achieved for gyroscope and
accelerometer when using KNN and 𝑇𝐻 is the smallest (1.32
min). Indeed, this type of attack could be detected in a few
minutes (between 2 and 4). However, 𝐴𝑃𝐾 cannot be detected
using KNN when using location. HAT and 𝑤 = 1000 is the only
choice for this sensor data, though there is room for significant
improvement because more than 12 min are required to detect
an attack in the best studied case. For the sake of illustration, the
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Table 3
Detection time of Blind Rate injection in minutes.

Location Gyroscope and accelerometer
KNN HAT KNN HAT

w Injection TH=5 TH=10 TH=5 TH=10 TH=5 TH=10 TH=20 TH=5 TH=10 TH=20

1000

−10% 15.09 20.09 8.26 13.26 2.53 3.53 6.52 4.19 5.19 8.18
5% 15.87 20.87 8.77 13.77 3.00 4.00 6.99 4.25 5.25 8.24
25% 14.56 19.56 7.75 12.75 2.56 3.56 6.56 4.14 5.14 8.14
50% 13.88 18.88 7.55 12.55 2.46 3.46 6.46 4.14 5.14 8.14
200% 12.87 17.87 7.45 12.45 2.36 3.36 6.36 4.14 5.14 8.14

10,000

−10% 18.81 23.81 39.51 44.51 2.90 3.90 6.89 9.99 10.99 13.99
5% 21.39 26.39 39.25 44.25 3.56 4.56 7.55 10.34 11.34 14.34
25% 16.92 21.92 18.84 23.84 2.74 3.74 6.74 9.81 10.81 13.81
50% 15.02 20.02 11.91 16.91 2.57 3.57 6.56 9.73 10.73 13.73
200% 13.12 18.12 10.67 15.67 2.38 3.38 6.38 9.73 10.73 13.73
Table 4
Detection time of Slogger injection in minutes.

KNN HAT
w TH=5 TH=10 TH=20 TH=5 TH=10 TH=20

Gyr. & Acc.
1000 2.43 3.43 6.43 3.76 4.76 7.76
10,000 2.57 3.57 6.57 9.17 10.17 13.17

Loc
1000 – – 12.66 17.66
10,000 – – 99.75 104.75
Table 5
Related work comparison.

√

means addressed.

RQ1 RQ2 RQ3 Sensors Algorithms # injection types Dataset

[9] – – – Gyroscope and
magnetometer

KNN, SVM, Tree,
Regression,
Ensemble

2 5 devices, 500
traces each one
(duration not
specified)

[15] – – – Accelerometer and
gyroscope

Random forest 1 1200 key presses
and each key 20
presses

[8] – – – accelerometer,
gyroscope, light
sensor, proximity
sensor, location,
audio, camera and
headphone

Markov chain,
Naive bayes and
PART, Logistic
Function, J48, LMT,
Hoeffding Tree, and
Multilayer
Perception

1 50 users, 25 h for
each sensor data

[35] – – – Audio Proprietary
development

1 1 device

[36] – – – Audio Neuronal networks 1 2 devices

[17]
√

– – Gyroscope and
accelerometer

SVM, Regression 1 21 users, 2 sessions

Our proposal
√ √ √

Gyroscope,
accelerometer and
location

DSM KNN, DSM
HAT-ADWIN

2 47 users, 833.3h for
location/ 208.3h for
gyracc
c

attacker has time to do 48 quick interactions; or to learn how
to use an unknown e-mail application (e.g., SolMail), carry out
an average usage session and also doing 24 quick interactions
(recall Section 4). Nonetheless, considering 15 min the maximum
for a victim to identify the loss of his/her device, DT is within the
limits.

In sum, the results show that gyroscope and accelerometer are not
ignificantly affected by the injection type and then, having knowledge
n the victim does not affect the detection. Nonetheless and in line
ith expectations, location data works differently, as detection is faster
hen the victim is unknown for the attacker (BR injection).
Second, the collection rate may affect detection. On the one hand,

ocation collection rate is 4 times lower than gyroscope and accelerom-
ter, and it inherently affects DT. On the other hand, users may change
ocation less frequently than moving the smartphone while using it.
hus, even if location data were collected at a higher rate (e.g., every
econd), results could be similar to the one achieved in this analysis.
Third, concerning parameter 𝑘 of KNN, this study shows that smaller
values (e.g. 3) lead to better results. For larger values like 10 or
 a
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21, results are reasonable for gyroscope and accelerometer data but
unacceptable in most cases for location data.

Fourth, DSM techniques have been shown to be suitable as a basis
for CA systems. However, the value of 𝑤 affects the system perfor-
mance. In general, the use of a smaller 𝑤 (e.g. 1000) produces better
results, as previous results suggested [20]. This is an intrinsic property
of how DSM works, the system stores less users’ information in memory
and thus when the adversary 𝐴 appears, the detection can be faster.
An additional benefit is that smaller 𝑤 values are better in terms of
storage because less data has to be kept in memory for the system to
work properly.

Finally, it is important to emphasize that sensors should not be
considered as trusted sources. An IoT device, like a smartphone, can be
compromised and its sensors attacked. To solve this problem the design
of the system should consider this attack from the very beginning. For
instance, in the design of CA systems leveraging sensorial data through
DSM, the management of 𝑇𝐻 , the choice of the DSM technique and its
onfiguration might have a dramatic impact on the burden of injection
ttacks.
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n

Table 6
Applied features.
Location

location_spatio_5means [int] The cluster ID of the device’s location, from a 5-means clustering of
the longitude and latitude (received from the Google Play Location
API).

location_spatio_10means [int] The cluster ID of the device’s location, from a 10-means clustering
of the longitude and latitude (received from the Google Play
Location API).

location_spatio_25means [int] The cluster ID of the device’s location, from a 25-means clustering
of the longitude and latitude (received from the Google Play
Location API).

location_spatio_50means [int] The cluster ID of the device’s location, from a 50-means clustering
of the longitude and latitude (received from the Google Play
Location API).

location_spatio_100means [int] The cluster ID of the device’s location, from a 100-means clustering
of the longitude and latitude (received from the Google Play
Location API).

Gyroscope and accelerometer

accelerometerstat_x_fourth_idx_fft [int] The index (frequency) of the FFT with the fourth most energy on
the accelerometer x-axis.

accelerometerstat_y_first_idx_fft [int] The index to the component (frequency) of the FFT with the most
energy on the accelerometer y-axis.

accelerometerstat_y_fourth_idx_fft [int] The index (frequency) of the FFT with the fourth most energy on
the accelerometer y-axis.

accelerometerstat_y_mean_fft [float] The average energy across the FFT components on the
accelerometer y-axis.

accelerometerstat_y_second_idx_fft [int] The index (frequency) of the FFT with the second most energy on
the accelerometer y-axis.

accelerometerstat_y_third_idx_fft [int] The index (frequency) of the FFT with the third most energy on the
accelerometer y-axis.

accelerometerstat_y_var_fft [float] The variance of the FFT values obtained from accelerometer y-axis
frequencies.

accelerometerstat_z_dc_fft [float] The DC component of the FFT on the accelerometer z-axis.
accelerometerstat_z_fourth_idx_fft [int] The index (frequency) of the FFT with the fourth most energy on

the accelerometer z-axis.
accelerometerstat_z_fourth_val_fft [float] The energy of the fourth strongest FFT component on the

accelerometer z-axis.
accelerometerstat_z_mean [float] The average acceleration across the sampled accelerometer z-axis

values.
accelerometerstat_z_mean_fft [float] The average energy across the FFT components on the

accelerometer z-axis.
accelerometerstat_z_median_fft [float] The median FFT value (energy) across the z-axis frequencies.
accelerometerstat_z_second_idx_fft [int] The index (frequency) of the FFT with the second most energy on

the accelerometer z-axis.
accelerometerstat_z_third_idx_fft [int] The index (frequency) of the FFT with the third most energy on the

accelerometer z-axis.
accelerometerstat_z_var_fft [float] The variance of the FFT values obtained from accelerometer z-axis

frequencies.
accelerometerstat_cov_y_x [float] The y-x covariance of the sampled accelerometer values.
gyroscopestat_x_mean [float] The average acceleration across the sampled gyroscope x-axis

values.
gyroscopestat_x_median [float] The median acceleration across the sampled gyroscope x-axis values.
gyroscopestat_y_dc_fft [float] The DC component of the FFT on the gyroscope y-axis.
gyroscopestat_y_mean [float] The average acceleration across the sampled gyroscope y-axis

values.
gyroscopestat_y_median [float] The median acceleration across the sampled gyroscope y-axis values.
gyroscopestat_z_dc_fft [float] The DC component of the FFT on the gyroscope z-axis.
gyroscopestat_z_mean [float] The average acceleration across the sampled gyroscope z-axis

values.
gyroscopestat_z_median [float] The median acceleration across the sampled gyroscope z-axis values.
6. Related work

The existence and detection of data injection attacks has been
studied for years. Given that sensors are at stake in a vast array of
settings, it has attracted research interest in a variety of scenarios, such
as power grids [37], Micro Electro-Mechanical Systems (MEMS) [38],
generic sensor-equipped systems [24], cyber–physical systems [39] or
internet of things [11].

In what comes to resource-constrained devices such as smartphones,
several works focus on the identification of these attacks in sensor net-
works. Some of them apply authentication schemes to help in injection
detection [40,41]. In [42] a hash chain of authentication keys for each
ode is used to detect malicious nodes injecting data. In [43] keys are
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bound to geographical locations of sensors to verify the legitimacy of
data. By contrast, [44] presents a statistical en-route filtering mecha-
nism which uses message authentication codes attached to sensor data.
More general techniques are mentioned in [45], which describes the use
of anomaly detection and trust management techniques for detecting
malicious sensor nodes. Similarly, [46] presents an Adaptive algorithm
to identify compromised nodes by anticipating the right measurement
in case of a false data injection attack. By contrast, [47] studies the
amount of data that an attacker can inject in a sensor network without
being detected, but it is only analysed from a theoretical perspective,
so it cannot be regarded as a practical approach.

Focusing on smartphones, [15] proposes leveraging additional sen-
sor readings while users touch screens to prevent from touchstroke
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leakage. An intrusion detection system based on sensor changes is intro-
duced in [8]. From the perspective of the signals emitted by the device
itself, [35] calculates the security level of real systems doing injection
attacks, in this case, in the smartphone microphone. [9] focused on how
to detect spoofing attacks against the magnetometer and the gyroscope.
For this purpose, they combine batch learning artificial intelligence
techniques with sensor fusion in order to distinguish between attack
and no-attack situations apart. [36] presents a spoof-resistant sensor-
based device fingerprinting method to address the challenge of getting
strong mobile device authentication. However, an upcoming trend in
authentication is the CA variant in which decisions are taken on a
rolling basis. In this scenario, [17] is the only work that points out the
impact of sensor injection in CA schemes. It shows that injection can
affect CA systems accuracy, as well as it proposes the use of sensor data
injection as a countermeasure against privacy attacks.

Table 5 compares proposals which deal with sensor data injection
attacks on smartphones. It is analysed, per proposal, the satisfaction
of established research questions (recall Section 1), sensors involved,
algorithms, number of injection types and datasets applied in the eval-
uation process. First of all, our approach is the only one that addresses
proposed research questions. Indeed, just [17] tries to address RQ1.
In relation to RQ1, [36] focuses on authentication (no CA) without
being directly interested in the analysis of injection attacks but in their
prevention. In terms of sensors, the use of gyroscope and accelerometer
are a common practice [8,9,15,17] because they lead to high accuracy
rates for authentication purposes [48,49]. Audio sensor is also applied
in several proposals [8,35,36] and just [8] works with location, in spite
of being commonly use for authentication purposes in general [50] and
also considered for CA [51,52]. Regarding algorithms, the presented
proposal differs in the use of DSM techniques, which are really appro-
priate in a CA system [21] (recall Section 2). The type of injection is
barely described in most of the cases, just [15] proposes the technique
that we called ‘‘Slogger injection’’ in this paper and [9] presents a
pair of attacks, one to replace sensor data with arbitrary corrupted
values and other to do the replacement with chosen values, but no
concrete details about the injection procedure are outlined. Finally, our
dataset is the biggest one in terms of size, which is specially appropriate
when evaluating a CA system where continuous flows of data should be
tested.

7. Conclusion and future research issues

The use of Internet of Things (IoT) devices and smartphones in par-
ticular is becoming more demanding day by day. Given such extensive
use, these devices are becoming useful tools for CA purposes, in which,
the identity of a user is periodically verified reducing impersonation
possibilities. However, the management of injection attacks in this
scenario has been barely addressed and no previous work has jointly
focused on the timeliness and effectiveness of this process. This paper
presents an analysis of CA systems leveraging DSM techniques, using
location, gyroscope and accelerometer sensor data, under the existence
of different types of injection attacks. Results show that the type of
sensor data, the CA algorithm and some relevant parameters have a
dramatic impact on detection accuracy and immediacy. Thus, while in
many cases attackers can be identified within a few minutes (between
2 and 4) using gyroscope and accelerometer data, location requires
around 8 min in the best case.

As for future directions four different approaches are suggested.

(1) The resiliency analysis of injection in more and different features
is an interesting open issue, for instance the use of audio sensors
could be a challenging line of research.

(2) The development of a dataset including real injection attacks
would help in the study of injection management to encour-
age future research. Indeed, the different types of devices and
user activities while using the smartphone should be taken into

account for the dataset generation.
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(3) A smart city is full of smart devices, like smart thermome-
ters [53], which are equipped with sensors that could be at-
tacked. Novel scenarios should be devised and tested against
injection attacks in this context.

(4) The types of injection attacks should be linked to each particular
scenario and threat model. An analysis of types of injection
attacks in different scenarios, for instance, in a smart city, would
help in the study of their impact.
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Appendix

Table 6 presents features applied for location and gyroscope and
ccelerometer data.
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