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Diego Ayma∗1, Maŕıa Durbán1, Dae-Jin Lee2, and Jan van de Kassteele3

1Department of Statistics, Universidad Carlos III de Madrid, Spain
2BCAM - Basque Center for Applied Mathematics, Spain

3National Institute for Public Health and the Environment, the Netherlands

25th July 2016

Abstract

Epidemiological data are frequently recorded at coarse spatio-temporal resolutions. The aggrega-

tion process is done for several reasons: to protect confidential patients’ information, to compare

with other datasets at a coarser resolution than the original, or to summarize data in a compact

manner. However, we lose detailed patterns that follow the original data, which can be of in-

terest for researchers and public health officials. In this paper we propose the use of the penalized

composite link model (Eilers, 2007), together with its mixed model representation, to estimate

the underlying trend behind grouped data at a finer spatio-temporal resolution. Also, this model

allows the incorporation of fine-scale population into the estimation procedure. We assume the

underlying trend is smooth across space and time. The mixed model representation enables the

use of sophisticated algorithms such as the SAP algorithm of Rodŕıguez-Álvarez et al. (2015) for

fast estimation of the amount of smoothness. We illustrate our proposal with the analysis of data

obtained during the largest outbreak of Q fever in the Netherlands.
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1 Introduction

In the last decades, the development of spatio-temporal statistical methods has experienced a

remarkable growth in the field of epidemiology: the cornerstone of public health. This increase has

been favored due mostly to the advances in geographic information systems (GISs), the access to

reliable health data registers, and the disposition of powerful software capable to processing and

analysing large amount of data. Methodological contributions for the analysis of spatio-temporal

health data come from several interdisciplinary researchers, whose backgrounds are mostly related

with statistics, geography, and environmental sciences.

Among the types of epidemiological inquiries, disease mapping has received a great interest

in public health since it allows the visualization of disease incidence (or mortality risk) patterns

over a specific study area. For that, appropriate statistical methods are applied to health data —

which are usually recorded over geographical units — to provide smoothed disease incidences by

unit. The spatial smoothing is performed in order to obtain more stable and less noisy estimates

of the incidence rates associated with each unit (Waller and Gotway, 2004), thus allowing the

identification of meaningful patterns. The incorporation of the temporal dimension in this context

enables the study of the disease incidence evolution in each unit, during a certain period of time

(generally divided in years). However, its inclusion implies a challenge when it comes to smoothing

data, in terms of computational time and storage. Several techniques has been proposed for

the spatio-temporal smoothing of health data; most of them developed under an empirical Bayes

approach where B-splines are used (MacNab and Dean, 2001; Ugarte et al., 2010) or a hierarchical

Bayesian framework where conditional autoregressive (CAR) structures are included (Waller et al.,

1997; Mart́ınez-Beneito et al., 2008). Within the latter approach, methods using integrated nested

Laplace approximations (INLA, Rue et al., 2009) has recently been proposed (see Schrödle and

Held, 2011; Ugarte et al., 2014; Bauer et al., 2016; among others).

All the works cited above provide smoothed estimates that are assumed constant over each

unit and year. Moreover, most of them can be extended in order to include explanatory variables,

which must be at the same spatio-temporal resolution as health data. Thus, they restrict the

incorporation of fine-scale population information and other relevant risk factors recorded at a

finer resolution (an issue known as the modifiable areal unit problem; see, for example, Gelfand

et al., 2010, Ch. 29). To overcome this and other limitations, we propose the use of the penalized

composite link model (PCLM, Eilers, 2007), together with its mixed model representation, for the

disaggregation of spatio-temporally grouped count data. The composite link mixed model (CLMM,

Ayma et al., 2016) approach allows to obtain smoothed estimates at a finer resolution, from data

aggregated over space and/or time. Moreover, it allows to include fine-scale population information

and specific random effects or further correlation structure if necessary. We assume here the

underlying spatio-temporal trend behind aggregated data is smooth. Thus no further hypotheses

(as either stationarity and isotropy) are required to define the latent spatio-temporal process. The
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flexibility of the model is given by the use of B-spline bases and a discrete penalty on the regression

coefficients, following the P-spline methodology (Eilers and Marx, 1996). Smoothness is controlled

by three smoothing parameters (two for the spatial dimension and one for the temporal dimension)

that have to be estimated together with the global trend at the fine scale. To carry out the spatio-

temporal disaggregation, the CLMM uses a composition matrix that links both coarse and fine

resolutions, which is expressed as a Kronecker product of two marginal composition matrices (one

that acts at spatial level and the other at temporal level).

In the literature we can find several techniques that allow to disaggregate health data spatially.

For example, the use of an interpolation process from empirical Bayes estimates (Berke, 2004),

(generalized) Poisson kriging methods (Goovaerts, 2006), log-Gaussian Cox processes (Diggle et al.,

2013), and spatial CLMMs (Ayma et al., 2016) have been suggested to produce a continuous

smooth surface (across the study area) from regional health data. However, as far as we know, no

appropriate model exists addressing the problem of disaggregation of health data both in space

and time (although there exist works about the spatio-temporal disaggregation of Gaussian data;

see, for example, Prairie et al., 2007; Segond et al., 2007; Schleiss and Berne, 2012; Bindhu and

Narasimhan, 2015). The approach presented here allows to obtain detailed dynamic maps for

disease incidence data, which are publicly available in an aggregated form over space and time.

The rest of the paper is organized as follows. In Section 2, we introduce the CLMM approach

for spatio-temporally grouped count data. Here we include how we can estimate the parameters

of the model and approximate standard errors associated to the estimated latent trend. Also, we

adapt the separation of anisotropic penalties (SAP) algorithm of Rodŕıguez-Álvarez et al. (2015) in

the context of CLMMs for estimating smoothing parameters, and we use generalized linear array

model (GLAM) methods (Currie et al., 2006; Eilers et al., 2006) to speed up computations. In

Section 3, we apply the CLMM to a Q fever dataset recorded over municipalities (of a specific

Dutch study area) and months in 2009, in order to visualize the Q fever incidence on a fine spatial

grid along all weeks. In Section 4, we conduct a simulation study to examine the performance of

the CLMM approach. The paper ends with a short discussion in Section 5.

2 The spatio-temporal composite link mixed model

The PCLM approach of Eilers (2007), which is based on the work by Thompson and Baker (1981),

allows to estimate the underlying or latent distribution of grouped count data at a finer resolution.

Since his work is developed in an one-dimensional context, we first extend the PCLM to the

spatio-temporal case as follows.

Let yit, i = 1, ..., n, t = 1, ..., T1, denote count data that are recorded over n non-overlapping

geographical units, which form the study area of interest, at T1 time periods. Here, the unit
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boundaries are assumed to be fixed during these periods. Now suppose that we want to estimate

the latent distribution of the vector of counts y = (y11, ..., yn1, ..., y1T1
, ...., ynT1

)′ at a spatio-

temporal support that is a (nested) refinement of the original one. The fine support is determined

by three covariates: x1 = (x11, ..., x1m)′ and x2 = (x21, ..., x2m)′, with m > n, which represent the

longitude and latitude coordinates of the spatial refinement, respectively; and x3 = (x31, ..., x3T2)′,

with T2 > T1, which represents the temporal refinement. Assuming that y is distributed Poisson

with mean vector µ = (µ11, ..., µn1, ..., µ1T1
, ...., µnT1

)′, the spatio-temporal PCLM is given by:

µ = Cγ = C exp(Bθ), (1)

where γ denotes the latent mean at the fine resolution, C is the composition matrix that describes

how these latent expectations are combined to yield µ, and B is a full regression basis constructed

from covariates x1, x2, and x3. To achieve smoothness, the vector of regression coefficients θ is

penalized by a discrete penalty matrix P in the form θ′Pθ. Matrices B, P, and C in Eq. (1) are

described below.

Following the proposal of Lee and Durbán (2011), the regression basis B in Eq. (1) is given by:

B = B3 ⊗ (B2�B1) , (2)

where B1 = B(x1), B2 = B(x2), and B3 = B(x3) are univariate B-spline bases of dimensions

m× c1, m× c2 and T2 × c3, respectively. The matrix operators ⊗ and � represent the Kronecker

and the ‘row-wise’ Kronecker (Eilers et al., 2006) products, respectively. The construction of the

B-spline bases B1, B2, and B3 in Eq. (2) depends on the number of selected equally-spaced knots

for each covariate, and the degree of the B-spline used (see Eilers and Marx (1996) and Eilers et al.

(2015), for a further discussion). For the spatio-temporal case, Lee and Durbán (2011) propose to

use the following penalty matrix:

P = λ1Ic3 ⊗ Ic2 ⊗P1 + λ2Ic3 ⊗P2 ⊗ Ic1 + λ3P3 ⊗ Ic2 ⊗ Ic1 , (3)

where Ik denotes an identity matrix of dimension k × k, λd is the smoothing parameter that

controls the amount of smoothing along the covariate xd, and Pd = D′dDd is the marginal penalty

matrix based on the matrix Dd that computes qd-th differences, i.e, ∆qdθ = Ddθ (d = 1, 2, 3).

The penalty matrix in Eq. (3) allows for anisotropy, i.e., a different amount of smoothing for x1,

x2 and x3, which is a desirable characteristic in the spatio-temporal context.

The composition matrix C in Eq. (1) can be expressed as:

C = Ct ⊗Cs, (4)

where Cs and Ct are the spatial and temporal composition matrices of dimensions n×m and T1×T2,

respectively. The definition of these matrices depends on the type and level of aggregation. For

example, if we want to estimate the latent distribution at a fine spatial grid (over the study area),
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the entries of the composition matrix Cs will be:

[Cs]ij =

{
1 if (x1j , x2j) belongs to unit vi
0 otherwise

, (5)

where (x1j , x2j) are the cell centroid coordinates of the fine grid, for i = 1, ..., n and j = 1, ...,m.

Another option to construct Cs would be to consider its entries as the proportions of area that

each grid cell shares with a specific unit. The temporal composition matrix Ct can be used to

disaggregate coarse time intervals into detailed time periods (for example, from years or trimesters

to months, weeks, or days). In Section 3, we show the structure that Ct will have, specifically

for our purposes. Notice that if Cs = In, Ct = IT1
, and the unit centroids are used as spatial

covariates, the presented methodology is reduced to the Poisson version of the proposal given by

Lee and Durbán (2011), for the smoothing of spatio-temporal count data. In this paper we refer

to this particular model as (Poisson) penalized generalized linear mixed model or, more briefly, as

PGLMM.

When spatial data are recorded over a coarse regular grid, a more appropriate definition for

the regression basis B in Eq. (1) is B = B3 ⊗ (B2 ⊗B1), where the spatial refinement correspond

to the cell centroid coordinates of a fine grid. The penalty matrix P in Eq. (3) is still valid in this

case, because its definition is independent of data structure. Moreover, the spatial composition

matrix can be written as Cs = C2 ⊗C1, where each Cd, d = 1, 2, is constructed according to the

disaggregation of the coarser grid cells into small ones.

2.1 Mixed model representation

To estimate the model in Eq. (1), subject to the penalization given in Eq. (3), we reformulate it as

a mixed model — in fact, as a generalized linear mixed model (GLMM). The reformulated model

is called (Poisson) CLMM (Ayma et al., 2016), which not only allows to analyse count data but

also rates. The CLMM is given by:

µ = Cγ = C (ef ∗ exp(Xβ + Zα)) , with α ∼ N (0,G) , (6)

where X and Z are the fixed and random effects matrices, and β and α are their associated

coefficients, respectively. The random effects have covariance matrix G that depends on the

smoothing parameters. The CLMM incorporates population information at the fine scale by means

of the vector ef in Eq. (6). If the vector of exposures is only available at the aggregated scale, i.e.,

e = (e11, ..., en1, ..., e1T1 , ...., enT1)′, a naive approach to estimate ef assumes that these aggregated

exposures are evenly distributed throughout the fine resolution. Therefore, we can compute these

naive estimates as follows:

ênaive = C−e,

where C− denotes the Moore-Penrose inverse of C.
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To obtain the mixed model representation given in Eq. (6) under a spatio-temporal context, we

follow the proposal given by Lee and Durbán (2011) where the singular value decomposition (SVD)

of each discrete penalty matrix Pd in Eq. (3), for d = 1, 2, 3, is used. Let Pd = UdΣdU
′
d be the

SVD of Pd, where Ud is the matrix of singular vectors and Σd is a diagonal matrix that contains

the singular values of the decomposition, for d = 1, 2, 3. Each matrix Ud can be partitioned in two

parts so that:

Pd = UdΣdU
′
d = [Udn : Uds]

[
0qd

Σ̃d

]
[Udn : Uds]

′,

where 0q denotes a square matrix of zeroes of dimension q × q, Udn and Uds are matrices of

singular vectors corresponding to zero and non-zero singular values, respectively, and Σ̃d is a

diagonal matrix with the non-zero singular values in the main diagonal. Using this decomposition,

the mixed model matrices of the model in Eq. (6) are obtained as:

X = X3 ⊗ (X2�X1) ,

Z = [ Z3 ⊗ (X2�X1) : X3 ⊗ (Z2�X1) : X3 ⊗ (X2�Z1) :

Z3 ⊗ (Z2�X1) : Z3 ⊗ (X2�Z1) : X3 ⊗ (Z2�Z1) : Z3 ⊗ (Z2�Z1)],

(7)

where Xd = BdUdn and Zd = BdUds, for d = 1, 2, 3. Moreover, the inverse of the covariance

matrix G of the random effects α in Eq. (6) becomes the block-diagonal matrix:

G−1 = blockdiag (λ3F3u, λ2F2u, λ1F1u,

λ2F22 + λ3F32, λ1F12 + λ3F31, λ1F11 + λ2F21,

λ1F1t + λ2F2t + λ3F3t) ,

(8)

where:

F1u = Iq3 ⊗ Iq2 ⊗ Σ̃1, F2u = Iq3 ⊗ Σ̃2 ⊗ Iq1 , F3u = Σ̃3 ⊗ Iq2 ⊗ Iq1 ,

F11 = Iq3 ⊗ Ic2−q2 ⊗ Σ̃1, F12 = Ic3−q3 ⊗ Iq2 ⊗ Σ̃1, F21 = Iq3 ⊗ Σ̃2 ⊗ Ic1−q1 ,

F22 = Ic3−q3 ⊗ Σ̃2 ⊗ Iq1 , F31 = Σ̃3 ⊗ Iq2 ⊗ Ic1−q1 , F32 = Σ̃3 ⊗ Ic2−q2 ⊗ Iq1 ,

F1t = Ic3−q3 ⊗ Ic2−q2 ⊗ Σ̃1, F2t = Ic3−q3 ⊗ Σ̃2 ⊗ Ic1−q1 , F3t = Σ̃3 ⊗ Ic2−q2 ⊗ Ic1−q1 .

If the data are spatially recorded over a regular coarse grid, the corresponding mixed model

matrices are obtained as in Eq. (7), replacing the ‘row-wise’ Kronecker products � by Kronecker

products ⊗. Under this context, the formulation of G−1 is the same as in Eq. (8).

2.2 Parameter estimation

As is usual in the theory of GLMMs, the estimation of the CLMM is carried out iteratively. The

estimation procedure involves two interrelated stages: (i) fixed and random effects coefficients

estimation (β and α); and (ii) smoothing parameters estimation (λ1, λ2, and λ3). For fixed values
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of the smoothing parameters, the estimation of the model’s fixed and random effects are obtained

using the penalized quasi-likelihood (PQL) approach of Breslow and Clayton (1993). We briefly

describe this point in Section 2.2.1. Since several matrix cross-products appear in the estimation

procedure, in Section 2.2.2 we include the use of the so-called GLAM methods (Currie et al., 2006;

Eilers et al., 2006) in the context of CLMMs, to speed up computations, and to avoid storage

problems. For the estimation of the smoothing parameters, an adaptation of the SAP algorithm

(Rodŕıguez-Álvarez et al., 2015) is used in the context of the CLMMs. This adaptation is presented

in Section 2.2.3.

2.2.1 Fixed and random effects coefficients estimation

For given values of λ1, λ2, and λ3, the estimation of the fixed and random effects coefficients of

the CLMM in Eq. (6) can be obtained by maximizing the approximate penalized log-likelihood:

y′ log(µ)− 1′nT1
µ− 1

2
α′G−1α, (9)

where 1n denotes a vector of ones of length n and µ = C (ef ∗ exp(Xβ + Zα)). As is was shown in

Ayma et al. (2016), differentiation of Eq. (9) with respect to β and α leads to the score equations:

X̆′ (y − µ) = 0,

Z̆′ (y − µ) = G−1α,
(10)

where X̆ = W−1CΓX and Z̆ = W−1CΓZ, with W = diag(µ) and Γ = diag(γ). Matrices X̆

and Z̆ are called ‘working’ mixed model matrices, since W and Γ change during the estimation

procedure. Thus defining the working vector:

z = X̆β + Z̆α+ W−1 (y − µ) ,

the solution of the score equations given in Eq. (10) via Fisher scoring algorithm can be expressed

as the iterative solution of the linear system:[
X̆′WX̆ X̆′WZ̆G

Z̆′WX̆ I + Z̆′WZ̆G

] [
β
b

]
=

[
X̆′Wz

Z̆′Wz

]
, (11)

where b = G−1α. This yields to a modified version of the standard mixed model estimators:

β̂ = (X̆′V−1X̆)−1X̆′V−1z, (12)

α̂ = GZ̆′V−1(z − X̆β̂)

= GZ̆′Nz, (13)

where:

V = W−1 + Z̆GZ̆′, (14)

N = V−1 −V−1X̆(X̆′V−1X̆)−1X̆′V−1. (15)

7
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2.2.2 GLAM methods for CLMMs

When we are dealing with the estimation of latent trends in multiple dimensions, we are susceptible

to encounter problems with storage and computational burden. In the case of data arranged in

multidimensional grids, it is possible to circumvent these problems using GLAM methods developed

in Currie et al. (2006) and Eilers et al. (2006). These methods are designed to avoid the direct

computation of matrix cross-products where Kronecker operations are involved, by using sequences

of nested matrix operations. In this section we show the use of these methods in the spatio-temporal

CLMM context.

In the previous section we have seen that several matrix cross-products have to be computed

as, for example, Z̆′WZ̆, X̆′WZ̆, and X̆′Wz. The GLAM methods offer a fast and an efficient way

to compute them as follows.

The matrix-by-vector products that we need to compute are: Xβ, Zα, and Cγ. These ex-

pressions are computed as follows:

Xβ ≡ ρ(X3, ρ(R1, Q̃)),

Zα ≡ ρ(Z3, ρ(R1, Ã1)) + ρ(X3, ρ(R2, Ã2)) + ρ(X3, ρ(R3, Ã3)) + ρ(Z3, ρ(R2, Ã4))+

ρ(Z3, ρ(R3, Ã5)) + ρ(X3, ρ(R4, Ã6)) + ρ(Z3, ρ(R4, Ã7)),

Cγ ≡ ρ(Ct, ρ(Cs, Γ̃)),

with R1 = G(X2,X1), R2 = G(Z2,X1), R3 = G(X2,Z1), R4 = G(Z2,Z1), where ρ and G
denote the rotated H−transform and the row-tensor product, respectively, which are defined in

Appendix A, and the symbol ≡ means that both sides have the same elements but in a different

order. The matrices Q̃, Γ̃, and the Ãk’s (for k = 1, ..., 7) are arrangements of the vectors β, γ, and

αk’s, respectively, with α = (α′1, ...,α
′
7)′, whose dimensions correspond to the number of columns

of the first matrix where ρ acts, times the number of columns of the second matrix where ρ acts (i.e,

Q̃ has dimension ncol(R1)×ncol(X3) = q1q2× q3, Γ̃ has dimension ncol(Cs)×ncol(Ct) = m×T2,

and so on). Therefore, it holds that vec(Q̃) = β, vec(Γ̃) = γ, and vec(Ãk) = αk, for k = 1, ..., 7.

Also, the following matrix cross-products are needed: X̆′WX̆, Z̆′WZ̆, X̆′WZ̆, Z̆′WX̆ (which

is equal to (X̆′WZ̆)′), X̆′Wz, and Z̆′Wz. First, note that they can be reduced as:

X̆′WX̆ = (CΓX)′W−1(CΓX),

Z̆′WZ̆ = (CΓZ)′W−1(CΓZ),

X̆′WZ̆ = (CΓX)′W−1(CΓZ),

X̆′Wz = (CΓX)′z,

Z̆′Wz = (CΓZ)′z.

8
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Thus, we only need to compute CΓX and CΓZ. These expressions are computed as follows:

CΓX ≡ ρ(G(X3,C
′
t)
′, ρ(G(R1,C

′
s)
′, Γ̃)),

CΓZ ≡ [ρ(G(Z3,C
′
t)
′, ρ(G(R1,C

′
s)
′, Γ̃)) : ρ(G(X3,C

′
t)
′, ρ(G(R2,C

′
s)
′, Γ̃)) :

ρ(G(X3,C
′
t)
′, ρ(G(R3,C

′
s)
′, Γ̃)) : ρ(G(Z3,C

′
t)
′, ρ(G(R2,C

′
s)
′, Γ̃)) :

ρ(G(Z3,C
′
t)
′, ρ(G(R3,C

′
s)
′, Γ̃)) : ρ(G(X3,C

′
t)
′, ρ(G(R4,C

′
s)
′, Γ̃)) :

ρ(G(Z3,C
′
t)
′, ρ(G(R4,C

′
s)
′, Γ̃))]

with Γ̃ defined above.

As we seen before, the GLAM methods have overheads of rearrangement and redimensioning,

but these are efficient operations in comparison to the Kronecker product. Table 1 gives some

comparatives on timing for the computation of the matrix products CΓX and CΓZ, with and

without using GLAM methods. These computations were performed using hypothetical matrices

C, Γ, X, and Z, of dimension 40 × 165160, 165160 × 165160, 165160 × 8, and 165160 × 839,

respectively. In both cases the use of GLAM methods improve the computational burden.

Matrix product Times (s) without GLAM Times (s) with GLAM Ratio

CΓX 1.95 0.08 24 : 1

CΓZ 183.09 8.74 21 : 1

Table 1: User CPU times to calculate CΓX and CΓZ.

2.2.3 Smoothing parameters estimation

Conditioning on the estimators given in Eq. (12) and Eq. (13), we can obtain estimates for λ1, λ2,

and λ3 by numerically maximizing the approximate restricted maximum log-likelihood (REML,

Patterson and Thompson, 1971) given in Eq. (19). To avoid the use of any numerical optimization

method, we adapt the SAP algorithm of Rodŕıguez-Álvarez et al. (2015) to the CLMM setting.

This algorithm is a generalization of the work by Schall (1991) that deals with non-standard

structures of the covariance matrix of the random effects, where the smoothing parameters are

seen as ratios of variance components, i.e., λd = φ
τ2
d

, for d = 1, 2, 3. Since we are working under

a Poisson framework, φ = 1. Thus, the problem is reduced to obtain estimates for the variance

components τ21 , τ22 , and τ23 .

Following the proposal of Rodŕıguez-Álvarez et al. (2015), we can derive closed-form expressions

for the REML estimates of the variance components τ2d (for d = 1, 2, 3). These estimates are given

by:

τ̂2d =
α̂′Λdα̂

edd
, (16)

9
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where

edd = trace

(
Z̆′NZ̆G

Λd

τ2d
G

)
, (17)

with N defined as in Eq. (15), and

Λ1 = blockdiag
(
0q1q2(c3−q3),0q1q3(c2−q2),F1u,0q1(c2−q2)(c3−q3),F12,F11,F1t

)
,

Λ2 = blockdiag
(
0q1q2(c3−q3),F2u,0q2q3(c1−q1),F22,0q2(c1−q1)(c3−q3),F21,F2t

)
,

Λ3 = blockdiag
(
F3u,0q1q3(c2−q2),0q2q3(c1−q1),F32,F31,0q3(c1−q1)(c2−q2),F3t

)
.

The proof of this result is provided in Appendix B. Notice that the matrix G−1 defined in Eq. (8)

can be decomposed as G−1 = 1
τ2
1
Λ1 + 1

τ2
2
Λ2 + 1

τ2
3
Λ3, where the capital lambdas are defined above.

An algorithm for the CLMM estimation (which is an adaptation of the algorithm provided in

Rodŕıguez-Álvarez et al., 2015, p. 945) is provided in Appendix C.

The computation of the trace given in Eq. (17) can be efficiently obtained by taking into account

that GΛdG is a diagonal matrix. Thus, we only need to compute the diagonal of Z̆′NZ̆ in order

to obtain this trace. From Harville (1977, Eq. (5.3)) we have that:

Z̆′N = [0(c1c2c3−q1q2q3)×q1q2q3 |I(c1c2c3−q1q2q3)]M
−1[X̆|Z̆]W,

where:

M =

[
X̆′WX̆ X̆′WZ̆G

Z̆′WX̆ I + Z̆′WZ̆G

]
.

Therefore, the diagonal elements of the matrix Z̆′NZ̆ are obtained by the column-wise addition of

(
0(c1c2c3−q1q2q3)×q1q2q3 |I(c1c2c3−q1q2q3)]M

−1)′ � [ X̆′WZ̆

Z̆′WZ̆

]
,

where � represents the Hadamard product. Notice that X̆′WZ̆, Z̆′WZ̆, and the submatrices of

M have been already computed for the estimation of the fixed and random coefficients. To speed

up the computational time even more, we can derive an explicit formulation of the inverse of M,

following the ideas given in Harville (1997, p. 99).

2.3 Effective dimension and approximate standard errors

The effective dimension (ED) of the model given in Eq. (6) can be obtained as:

ED =

3∑
d=1

edd + q1q2q3, (18)

where the edd expressions are computed from Eq. (17). The first term in the right-hand side of

Eq. (18) corresponds to the dimension of the penalized part (see Appendix B), whereas the second

to the unpenalized part.
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Once the model parameter estimates at convergence are obtained, we can derive standard errors

for η̂ = Xβ̂ + Zα̂ by using the Bayesian approximation of the covariance matrix for (β̂, α̂)′ (Lin

and Zhang, 1999):

Cov((β̂, α̂)′) =

[
X̆′WX̆ X̆′WZ̆

Z̆′WX̆ Z̆′WZ̆ + G−1

]−1
.

Thus, we can obtain approximate standard errors for η̂ by taking the square root of Var(η̂), which

is obtained as:

Var(η̂) = diag([X : Z]Cov((β̂, α̂)′)[X : Z]′).

3 Real data application: Q fever outbreak in the Nether-

lands

In this section we illustrate our proposal using data related with Q fever outbreaks in the Nether-

lands. First we briefly describe these data, and then we analyse them using the CLMM approach

described in Section 2.

3.1 Q fever data

Q fever is a widespread zoonotic disease caused by the bacterium Coxiella burnetii. The trans-

mission to humans of C. burnetii is primary associated with ruminants like cattle, sheep, and goats.

During parturition or abortion of infected animals, high numbers of C. burnetii are shed within

the amniotic fluids and the placenta. These organisms end up in the environment where they

may survive for long periods of time due by their resistant to heat, drying, and many common

disinfectants. Humans are often very susceptible to the disease, and very few organisms may be

required to cause infection. More information about this infectious disease is provided in Maurin

and Raoult (1999).

The south of the Netherlands faced large outbreaks of human Q fever from 2007 to 2010. In

this country, local municipal health services (MHSs) are responsible for recording every confirmed

diagnosis of acute Q fever. The information collected is then entered into the electronic national in-

fectious diseases surveillance database. Due to confidentiality, these data are not publicly available

and, in some cases, may be provided in an aggregated form.

Figure 1 shows the temporal distribution of Q fever cases (in months) from January 2007 to

July 2010. A total of 3807 acute Q fever cases were registered in this period: 192 in 2007, 980 in

2008, 2309 in 2009, and 325 in 2010. The epidemic peaks of each year are observed every spring,

specifically during May. This coincides with small ruminants (sheep and goats) birth period —

a fact that was pointed out in several studies about this exceptionally large Q fever outbreaks in

11



UC3M Working Paper Ayma et al.

the Netherlands (see, for example, van der Hoek et al., 2010; Roest et al., 2011). Since the largest

outbreak was observed during 2009, we will study the distribution of Q fever incidence in this year.
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Figure 1: Human Q fever cases in the Netherlands grouped per months, from January 2007 to July 2010.

Figure 2a shows the geographical distribution of the residential addresses of human Q fever

cases (red points) in 2009. If we select a 60 × 60 km area in the south of the Netherlands (see

black square in Figure 2a), 72 municipalities overlap with this study area. The total number of Q

fever cases reported in these municipalities is 1798. Aggregating these cases per municipality, and

taking into account the number of inhabitants of each municipality, we can calculate the Q fever

incidence (per 100000 inhabitants). Figure 2b shows the spatial distribution of the resulting Q

fever incidence, where higher incidence values are observed around the municipalities of Landerd

(1439.676), Lith (562.546), and Heusden (295.006).

3.2 Detailed smooth incidence maps

Figure 2b shows the choropleth map of raw Q fever incidences at municipality level. However,

it would be desirable to estimate latent incidence maps at detailed periods of time, in order to

obtain a better insight of the evolution of the incidence. The CLMM approach, developed in

Section 2, allows to visualize the Q fever incidence at a finer spatio-temporal resolution, and also

to incorporate population information at fine scale into the estimation of the latent process. Here,

we illustrate the application of our methodology using Q fever data collected over municipalities

and months in 2009. Our goal is to obtain Q fever incidence estimates at a fine spatial grid over

the study area, and at each week of 2009, from data collected over municipalities and months (i.e.,

we want to simultaneously disaggregate in space and time).
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Figure 2: Map of human Q fever cases in the Netherlands, 2009. Left: the red points indicate the

residential addresses of human cases (2309 in total). Right: study area in the south of the Netherlands

showing (crude) incidence (per 100000 inhabitants) of Q fever by municipality in 2009.

Figure 3a shows a fine grid composed of 4871 regular cells of size 1000×1000 m. The blue

dots represent the spatial coordinates of the centroids of these cells, and Figure 3b shows the

spatial distribution of the population on this fine grid (obtained from CBS - Statistics Netherlands,

https://www.cbs.nl/nl-nl.), which is heterogeneous across municipalities. To provide a more

detailed impression of the Q fever incidence in 2009, we apply the CLMM approach on data recorded

over municipalities and months. We choose the fine grid displayed in Figure 3a as the spatial

refinement, and the weeks of 2009 as the temporal fine scale. To set up the CLMM formulation,

we use the spatial coordinates of the grid points as spatial covariates at fine resolution, i.e., x1

and x2, x3 = (1, ..., 53)′ (since 53 weeks are observed in 2009), second order penalties, 12 equally-

spaced knots for the marginal cubic B-spline bases B1 and B2, and 8 equally-spaced knots for the

marginal cubic B-spline basis B3. We assume here that the population at the fine grid is constant

over the time period; thus ef in Eq. (6) is considered as a vector obtained by repeating the fine-scale

population fifty three times. The spatial composition matrix is obtained as is described in Eq. (5),

whereas the temporal composition matrix for this case has the following form:

Ct =



1 1 1 1 1
1 1 1 1

1 1 1 1 3
7
4
7 1 1 1 5

7
2
7 1 1 1 1 1

7
6
7 1 1 1 3

7
4
7 1 1 1 6

7
1
7 1 1 1 1 2

7
5
7 1 1 1 4

7
3
7 1 1 1 1

1 1 1 1 2
7
5
7 1 1 1 1


,

where Sunday is considered as the first day of the week. As opposed to the spatial composition

matrix, matrix Ct has some entries that are fractions. This is because some months share parts

of a specific week (for example, some days of week 14 belong to March and other to April).
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a) Fine grid (cells of size
1000x1000 m)

b) Population on grid

q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q q q

[7500,9000]
[5000,7500)
[2500,5000)
[500,2500)
[100,500)
[50,100)
[20,50)
[10,20)
[0,10)

Figure 3: The left map shows the fine grid of cell sizes 1000×1000 m in the study area showed in Figure 2b.

The right map shows the spatial distribution of the population on this fine grid.

The dynamic map in Figure 4a shows the resulting CLMM incidence (per 100000 inhabitants)

for Q fever disease at the desire spatio-temporal resolution. These incidences are obtained as

înc = 100000 × exp(Xβ̂ + Zα̂). The evolution of the incidence vary across municipalities and

weeks, where higher incidences are mostly observed between weeks 13 and 28. Most of these weeks

belong to the months of April, May, and June, which have the largest observed number of Q fever

outbreaks in 2009 (see Figure 1). Notice also that most of the higher incidences in these weeks

are spatially concentrated around the area that involves points A and C in Figure 4a, which are

located in the municipalities of Landerd and Heusden, respectively (see Figure 2b). The dynamic

map in Figure 4b shows the approximate standard error maps associated with Figure 4a. Higher

errors are located at the boundary of the study area and at the beginning and the end of the time

period. This is because we have less information in these parts, and thus the CLMM estimates are

more variable there.

From the previous CLMM estimates, we can also visualize the temporal evolution of the Q fever

disease at a specific spatial coordinate of the fine grid. Figure 5a shows the smoothed temporal

incidence (per week) at three random locations A, B, and C, of the study area. We observe the

temporal evolution of the incidence in point B is constant and almost zero, whereas, in points A

and C, the temporal smoothed incidence present a unimodal behaviour, where the peak is reached

around week 19 (of the month of May). Figure 5b shows the spatial trend of the Q fever incidence

in this week.

4 Simulation study

In this section we perform a simulation study in order to examine the prediction performance of

the CLMM approach described in Section 2. For that we use a detailed dataset, where the full

postal code of the home address and the date of onset of illness of the patients suffering from acute

Q fever in 2009 are available. This dataset is publicly restricted due to confidentiality reasons, and
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Figure 4: The left dynamic map shows the smoothed Q fever incidence at a detailed spatio-temporal

scale, resulting from the CLMM approach. The right dynamic map shows the approximate standard errors

associated with the left dynamic map (at log scale).

it is used here to asses how well the CLMM approach recovers the latent Q fever incidence, when

data are available at a specific coarse scale.

Using the full postal code of home address of patients, we can determine the number of cases

occurred per weeks and in each cell of the fine grid depicted in Figure 3a. Thus, using the

population on the fine grid depicted in Figure 3b, we can obtain smoothed incidence estimates

at this fine scale using the PGLMM approach (not showed here), where the spatial coordinates

of the fine grid in Figure 3a are used as spatial covariates, and the number of weeks is used as

temporal covariate. These smoothed incidences are considered here as estimates for the true latent

incidence trend at the fine resolution, which are denoted as inc(uj), where uj , j = 1, ..., J , with

J = 4371×53 = 258163, represents the spatio-temporal coordinates at fine resolution. To study the

prediction performance of the CLMM approach, we artificially aggregate these Q fever incidence

trends in several coarse periods of time.

The simulation study was conducted as follows:

1. The fine-scale smoothed incidences and the population on the fine grid were used to compute

the Q fever incidence for each municipality vi, i = 1, ..., 72 (which are depicted in Figure 2b),

and in different coarse temporal resolutions: 1) fortnights (two weeks); 2) months; and 3)

bimesters (two months). Thus we have three types of spatio-temporal aggregation: g =

15
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a) Smoothed temporal incidence 
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Figure 5: The right figure shows the temporal evolution of Q fever incidence in three specific points (A,

B, and C), spatially depicted on the map at the left.

1 where data are summarized over municipalities and fortnights, g = 2 where data are

summarized over municipalities and months, and g = 3 where data are summarized over

municipalities and bimesters.

2. 100 realizations of the number of cases recorded over each municipality and each coarse

temporal resolution were generated by random drawing of a Poisson distribution whose mean

parameter is calculated as the corresponding aggregated incidence (obtained in the previous

step) times the population recorded at the appropriate coarse resolution.

3. For each realization, we apply the CLMM approach using the population on the fine grid

(repeated 53 times) as the vector ef of exposures at the fine resolution.

For all l = 1, ..., 100 realizations, the predicted incidence inc
(l)
Pg

(uj) obtained from the CLMM

approach of each type of aggregation g, with g = 1, 2, 3, were compared to the smoothed incidences

inc(uj), j = 1, ..., J , using the following criteria:

• Mean absolute error (MAE):

MAE(l)
g =

1

J

J∑
j=1

∣∣∣inc(l)Pg
(uj)− inc(uj)

∣∣∣
• Root mean squared error (RMSE):

RMSE(l)
g =

√√√√ 1

J

J∑
j=1

(
inc

(l)
Pg

(uj)− inc(uj)
)2

Figure 6 shows these resulting errors via box-plots for the different types of aggregations, and

Table 2 gives the averages and the standard deviations of the resulting errors (for each criterion)
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derived from the simulation study. As we could expect we have found the CLMMs estimates that

were obtained from the most coarser spatio-temporal aggregation (type of aggregation 3) are less

similar to the true incidences. Notice that these are overall results and the spatial support remains

the same in all type of aggregations (municipalities). Similar performances as in Figure 6 are

obtained if the errors are analysed by weeks. Since no methodologies exists for the simultaneous

disaggregation of health data in space and time, we cannot compare the prediction performance of

our approach with other techniques.
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Figure 6: Performance comparison of the CLMM approach under three different types of aggregation

(1: municipalities and fortnights; 2: municipalities and months; 3: municipalities and bimesters), using

different criteria: mean absolute errors (left) and root mean squared errors (right).

Type of MAE RMSE

aggregation avg std avg std

g = 1: fortnights 0.3856 0.0321 1.3413 0.2774

g = 2: months 0.3935 0.0276 1.3933 0.2327

g = 3: bimesters 0.4142 0.0326 1.4625 0.2469

Table 2: Performance comparison of the CLMM approach under three different types of aggregation

(1: municipalities and fortnights; 2: municipalities and months; 3: municipalities and bimesters), using

different criteria: mean absolute errors (MAE) and root mean squared errors (RMSE). These errors are

summarized in terms of the average (avg) and standard deviation (std).
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5 Discussion

We presented and applied the composite link mixed model approach to the disaggregation of

grouped data both in space and time. The model allows to obtain detailed trends of disease in-

cidence, mortality risks, or any other vital rates at a desirable fine resolution. Thus the resulting

CLMM outcomes can be displayed as a dynamic map. Also it allows to include population in-

formation at a fine resolution into the estimation. Here we illustrate the case when this fine-scale

population is available at a fine regular grid. Our proposal can also with situations when popu-

lation information is recorded over small geographical units that are nested in coarser units (for

example, from municipalities to census tracts). In that case the centroids of the small units can

be used as covariates at the fine scale. It is possible to incorporate other covariates (such as,

socio-economic, demographic, and environmental factors) into the CLMM formulation in order to

improve the estimation of the latent trend. We performed a simulation study to see the prediction

accuracy of the CLMM using Q fever data recorded at different temporal resolutions (keeping fixed

the spatial support). As it was expected, our approach is able to properly capture the underlying

trend when the original spatio-temporal resolution is not so coarse.

It is important to acknowledge the use of GLAM methods (whose usage is described in Sec-

tion 2.2.2), together with SAP algorithm, to avoid storage problems and to speed up computations.

However, we are aware that the disaggregation of grouped data into a very detailed resolution could

lead to the incrementation of the computational burden and storage problems. The sparsity of the

marginal composition matrices can be exploited to deal with these issues (see, for example, Bates

and Maechler, 2016).

In the CLMM formulation we assume the geographical unit boundaries remain fixed through

time. But it can occur that some of these boundaries change during the years. This issue is known

in the statistical literature as the spatio-temporal misalignment problem, where some works were

proposed to solve it (see, for example, Zhu et al., 2000; Zhu and Carlin, 2000; Hund et al., 2012).

As future work we plan to extend the CLMM approach in order to handle this problem, where the

marginal composition matrices will play an important role.

The implementation of our proposal and all data analyses were carried out using the statistical

software R (R Core Team, 2016).
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Appendices

Appendix A Definitions used within GLAM methods

In this section we include some definitions and notations related with GLAM methods, which are

used in Section 2.2.2.

Definition 1 (Row tensor of two matrices) The row tensor of the matrices X1 and X2, of

dimensions n× c1 and n× c2, respectively, is defined as:

G(X1,X2) = (X1 ⊗ 1′c2)� (1′c1 ⊗X2),

where 1k denotes a vector of ones of length k and � represents the Hadamard product.

Definition 2 (H-transform) The H-transform of the d-dimensional array A of size c1 × c2 ×
· · · × cd by the matrix X of dimension r × c1, denoted as H(X,A), is defined as follows. Let A∗

be the matrix of dimension c1× c2c3 · · · cd that is obtained by flattening dimensions 2-d of A; form

the matrix product XA∗ of dimension r × c2c3 · · · cd; then H(X,A) is the d-dimensional array of

size r × c2 × · · · × cd that is obtained from XA∗ by reinstating dimensions 2-d of A.

If A is a vector, i.e., A = a, then we have that H(X,A) = Xa, whereas if A is a matrix,

H(X,A) = XA. Thus, the H-transform generalizes premultiplication of vector and matrices by a

matrix. The following definition generalizes the transpose of a matrix.

Definition 3 (Array rotation) The rotation of the d-dimensional array A of size c1×c2×· · ·×cd
is the d-dimensional array R(A) of size c2 × c3 × · · · × cd × c1 that is obtained by permuting the

indices of A.

Combining the last two definitions, we obtain:

Definition 4 (Rotated H-transform) The rotated H-transform of the array A by the matrix

X is given by:

ρ(X,A) = R(H(X,A)).
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Appendix B Proof for closed-form expressions of the vari-

ance components

In this section we provide the proof for the closed-form expressions of the variance components

given in Eq. (16). We should note that the following proof is similar to that given in Rodŕıguez-

Álvarez et al. (2015), but now the ‘working’ mixed model matrices X̆ and Z̆ (as well as related

matrices like V and N) appear. Here the formulation of the matrix G−1 in Eq. (8) with λd = 1
τ2
d

(d = 1, 2, 3) is used.

Consider the approximate restricted maximum log-likelihood (REML) version of Patterson and

Thompson (1971):

l∗ = −1

2
log |V|︸ ︷︷ ︸
Part I

−1

2
log |X̆′V−1X̆|︸ ︷︷ ︸

Part II

−1

2
(z − X̆β̂)′V−1(z − X̆β̂)︸ ︷︷ ︸

Part III

, (19)

in which the dependence of the matrix of weights W on τ2d (d = 1, 2, 3) is ignored. To obtain the

REML estimates of the variance components τ2d , we first differentiate each part of Eq. (19) with

respect to them. Using the fact that ∂V
∂τ2

d
= Z̆ ∂G

∂τ2
d
Z̆′, with V defined in Eq. (14), we obtain:

Part I: Here we use property (8.6) given in Harville, 1997, p.305:

∂ log |V|
∂τ2d

= trace

(
V−1

∂V

∂τ2d

)
= trace

(
V−1Z̆

∂G

∂τ2d
Z̆′
)

Part II: Here we use properties (8.6) and (8.18) given in Harville, 1997, pp. 305, 308:

∂ log |X̆′V−1X̆|
∂τ2d

= trace

(
(X̆′V−1X̆)−1

∂(X̆′V−1X̆)

∂τ2d

)

= −trace

(
(X̆′V−1X̆)−1X̆′V−1

∂V

∂τ2d
V−1X̆

)
= −trace

(
V−1X̆(X̆′V−1X̆)−1X̆′V−1

∂V

∂τ2d

)
= −trace

(
V−1X̆(X̆′V−1X̆)−1X̆′V−1Z̆

∂G

∂τ2d
Z̆′
)

Part III: Here we use property (8.6) given in Harville, 1997, p. 308:

∂(z − X̆β̂)′V−1(z − X̆β̂)

∂τ2d
= −(z − X̆β̂)′V−1

∂V

∂τ2d
V−1(z − X̆β̂)

= −(z − X̆β̂)′V−1Z̆
∂G

∂τ2d
Z̆′V−1(z − X̆β̂)

= −b ∂G

∂τ2d
b

= −α′G−1 ∂G

∂τ2d
G−1α
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Adding the derivatives obtained from Part I and Part II, we obtain:

∂ log |V|
∂τ2d

+
∂ log |X̆′V−1X̆|

∂τ2d
= trace

(
(V−1 −V−1X̆(X̆′V−1X̆)−1X̆′V−1)Z̆

∂G

∂τ2d
Z̆′
)

= trace

(
NZ̆

∂G

∂τ2d
Z̆′
)

= trace

(
Z̆′NZ̆

∂G

∂τ2d

)
,

It follows that:
∂l∗

∂τ2d
= −1

2
trace

(
Z̆′NZ̆

∂G

∂τ2d

)
+

1

2
α′G−1

∂G

∂τ2d
G−1α, (20)

where:
∂G

∂τ2d
= −G

∂G−1

∂τ2d
G = −G

(
− 1

τ4d
Λd

)
G =

1

τ4d
GΛdG, (21)

for d = 1, 2, 3.

By replacing Eq. (21) in Eq. (20), we obtain:

∂l∗

∂τ2d
= − 1

2τ2d
trace

(
Z̆′NZ̆G

Λd

τ2d
G

)
+

1

2τ4d
α′Λdα.

Therefore, the REML estimates of the variance components τ2d are found by equating the expression

above by zero. These estimates are given by:

τ̂2d =
α′Λdα

trace
(
Z̆′NZ̆GΛd

τ2
d

G
) , for d = 1, 2, 3.

Notice that if we add the denominators of the previous expressions, we obtain:

3∑
d=1

trace

(
Z̆′NZ̆G

Λd

τ2d
G

)
= trace

(
3∑
d=1

Z̆′NZ̆G
Λd

τ2d
G

)
= trace

(
Z̆′NZ̆G

)
= trace

(
Z̆GZ̆′N

)
,

where Z̆GZ̆′N is the ‘hat matrix’ (Hastie and Tibshirani, 1990) of the unpenalized (or random)

part of the fitted CLMM (see Eq. (13)).

Appendix C SAP Algorithm for CLMM’s parameters es-

timation
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Algorithm 1 SAP Algorithm for CLMM’s parameters estimation

Require: Convergence tolerances ν1 and ν2 (e.g., 1× 10−6), and maximum number of iterations

maxit1 and maxit2 (e.g., 100).

1: Set initial values for the mixed model coefficients β and α, and the variance components τ21 ,

τ22 , and τ23 (for example, β̂
(0)

= 0 with length q1q2q3, α̂(0) = 0 with length (c1c2c3 − q1q2q3),

and τ̂
2(0)
1 = τ̂

2(0)
2 = τ̂

2(0)
3 = 1). Set k = 0

2: for 1 to maxit1 do

3: Given the current mixed model coefficients’ estimates, construct the matrix of weights W

and the working vector z as follows:

Γ = diag(γ̂(k)) , with γ̂(k) = ef ∗ exp(Xβ̂
(k)

+ Zα̂(k));

W = diag(µ̂(k)) , with µ̂(k) = Cγ̂(k);

z = X̆β̂
(k)

+ Z̆α̂(k) + W−1(y − µ̂(k)) = W−1CΓη̂(k) + W−1(y − µ̂(k)),

with η̂(k) = Xβ̂
(k)

+ Zα̂(k).

4: for 1 to maxit2 do

5: Given the current estimates for the variance components, obtain new estimates for β and

α by solving the linear system given in Eq. (11). The resulting estimates are denoted as β̂
(k+1)

and α̂(k+1), respectively.

6: Obtain new estimates for the variance components from Eq. (16). The resulting estimates

are denoted as τ̂
2(k+1)
d , for d = 1, 2, 3.

7: Compare new variance components’ estimates with the previous ones, using the following

convergence criterion: ∑3
d=1 |τ̂

2(k+1)
d − τ̂2(k)d |

3
≤ ν1.

8: If the convergence tolerance is achieved, break, otherwise set τ̂
2(k)
d = τ̂

2(k+1)
d and repeat

steps 5, 6, and 7 until convergence.

9: end for

10: Compute new estimates for the vector of smooth trends at fine scale using the model’s fixed

and random effects estimates obtained in the last iteration of step 5. The resulting vector

is denoted as η̂(k+1). Compare new estimates with the previous ones, using the following

convergence criterion:

‖η̂(k+1) − η̂(k)‖2

‖η̂(k+1)‖2
≤ ν2,

11: If the convergence tolerance is achieved, break, otherwise set k = k + 1 and repeat the

previous steps until convergence.

12: end for
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