
A knowledge-based approach for business process reengineering,

SHAMASH

Ricardo Alera,*, Daniel Borrajoa, David Camachoa, Almudena Sierra Alonsob

aUniversidad Carlos III, Avda. Universidad, 30, 28911 Leganés Madrid Spain
bUniversidad Rey Juan Carlos, Tulipán S/N, 28933 Móstoles Madrid Spain

Received 13 June 2001; accepted 7 January 2002

Abstract

In this paper we present an overview of SHAMASH, a process modelling tool for business process reengineering. The main features that

differentiate it from most current related tools are its ability to define and use organisation standards, and functional structure, and make

automatic model simulation and optimisation of them. SHAMASH is a knowledge based system, and we include a discussion on how

knowledge acquisition did take place. Furthermore, we introduce a high level description of the architecture, the conceptual model, and other

important modules of the system. q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Business process reengineering; Automatic optimisation; Knowledge based tool

1. Introduction

Current organisations need a continuous and dynamic re-

organisation of their processes to allow them to be more

efficient. The principal aim of business process reengineer-

ing (BPR) is to design techniques to allow simulate and

check different sets of processes that could improve its own

organisation [9]. This task can be accomplished manually or

by using modelling tools. Currently there are many

sophisticated modelling tools that help organisations on

making their processes more efficient by allowing to

graphically design process models and simulate them [11,

12,20]. However, although these tools are very sophisti-

cated, current technology can be pushed even further by

automatically optimising and simulating the processes [21]

and allowing to explicitly represent the standards that

constrain processes [19].

Artificial intelligence (AI) has been very successful on

both, representing knowledge, which is needed for defining

and using organisation standards, and optimising models.

There have been already some approaches to apply AI to

BPR such as ontology definitions [7,24,28], planning [13],

multi-agent systems [8]. With respect to representing

organisation standards, there is a lot of related work on

computer systems for legal support, that require to represent

laws using different techniques like case-based reasoning

(CBR) [3], ontologies [23], and also automatically reason

them [5,27].

In this article we present SHAMASH, a tool for

modeling, simulating and optimising business processes.

SHAMASH shares some of its capabilities with other BPR

tools, like offering an interface for process modeling,

simulating these processes, and exporting processes to

workflow process description language (WPDL). But it also

has some characteristics, which are not found in other

existing tools. In particular, SHAMASH is able to

automatically improve an existing model by using AI

optimisation techniques. It also permits to define organis-

ations and process standards, which are used by SHAMASH

to automatically validate user process models. Another

remarkable characteristic of SHAMASH is that it offers a

powerful language to describe rules for the system, and also

a specially built inference engine to manage them. Most of

the knowledge required in the system can be represented by

means of such rules. For instance, the knowledge required

for optimising, for describing the behaviour of activities

during simulation, and to define the standards, can all be

defined by using rules. This makes SHAMASH an

extensible and customisable tool. Finally, the tool allows

to export the graphical representation of processes and

standards into a text version (actually, html code is

0950 7051/02/$ see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 7 05 1 (0 2) 00 0 32 1

1

http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
BECWEB
Rectángulo

BECWEB
Rectángulo

Cita bibliográfica
Revista Knowledge-Based Systems, 2002, vol. 15, n. 8, p. 473-483



produced). In some organisations, processes are delivered in

a mixture of graphical and text representations, resulting in

consistency problems. The text generator allows to maintain

the coherence between the graphical and text versions.

This article has been structured as follows. First, the

general architecture of SHAMASH will be described in

Section 2. One of the central components of SHAMASH

(the inference engine) is explained in Section 3. The rest of

the article will be illustrated by using an example related to

a university maintenance process that is presented in Section

4. SHAMASH has been built by using two methodologies

(IDEAL and UML), which are described in Section 5. Then,

the main SHAMASH subsystems (author, simulation and

optimisation, and text generator) are detailed in Sections 6

8. Finally, Sections 9 and 10 summarise the conclusions and

the future lines of work.

2. SHAMASH architecture

The general architecture of the SHAMASH tool appears

in Fig. (1). It is composed of four subsystems:

Author subsystem. Through a user-friendly interface, the

user can define two types of knowledge to the system:

knowledge on standards, and knowledge on processes.

Standards, or norms, are statements on any organisation that

define how processes should behave, be created, achieve

business rules, or maximise organisation goals. In most

cases, this type of knowledge can be easily translated into

rules formalism, so SHAMASH allows the user to

interactively create these rules in a language that is easy

to understand by the user. We believe that current

information technology users are no longer unaware of

technology, and the concept of a rule is a very close one to

humans. In any case, we contemplate the idea of a

programmer profile to help the process modeling user.

Processes1 are ‘computation’ units within organisations.

They are able to generate an output from an input, using

organisation resources. For SHAMASH purposes, processes

are not constrained to business processes. Therefore, the

tool has to be general enough to allow defining all types of

behaviour to represent all types of processes, from chemical

plant processes to marketing ones. See Section 6 for more

details on this subsystem.

Simulation and optimisation subsystem. The tool allows

to perform simulations with historical or predicted data.

Results are analyzed by the system, and misbehaviours

reported to the user. Also, the tool can automatically

perform an optimisation phase by which new optimised

models are generated. The user can then decide whether to

adopt the new models, or to continue with the old ones.

Section 7 describes in more detail these two components.

Text generation subsystem. In most organisations,

processes are delivered to their end-users (human resources

of the organisation) in plain text. Sometimes, they are

delivered using a graphical representation without the

Fig. 1. Architecture of the SHAMASH tool.

1 We will not diffentiate in this article between the words processes,

procedures, tasks and activities.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483474

2



details that for obvious space restrictions cannot appear in

the graphical representation. And, in some organisations,

processes are delivered in a mixture of graphical and text

representations. A common consistency problem appears

when any one of the representations, or both are updated. In

those cases, the other one has to be changed, and this does

not always happens. In SHAMASH this subsystem is

responsible for maintaining coherence between the graphi-

cal and text versions. When the user performs any change in

the graphical representation of a process, this subsystem

automatically generates a new text version of this process.

Workflow interface subsystem. SHAMASH is not to be

used directly as a workflow engine. Therefore, it needs to

have an interface that automatically translates the defined

process models into the input of a workflow engine. As for

the output language, the goal would be to generate a process

representation complying with the intended standard work-

flow management coalition (WfMC) worflow process

description language (WPDL). However, given that there

is still no general consensus on how this language is, we

have adopted a practical approach generating the output in

the current version of WPDL.

Also, the tool allows the user to create and maintain

knowledge about the organisation that will be used when

defining, simulating, and optimising the processes. Types of

knowledge that can be defined within the system are

knowledge about standards, processes, organisation struc-

tures, resources (human and material), or goals of the

processes. Now, we will describe in more detail these

modules.

3. Inference engine

Given that SHAMASH is a knowledge-based tool using

rules and objects, we had to first devise an inference engine

that would take a representation of classes and instances in

Cþþ , a set of rules, and build an efficient inference engine

based on the RETE algorithm [6]. In order to do so, we

designed a language for describing the rules that is based on

a classical structure of if and then parts. If parts are

composed of conditions that refer to the existence (or not) of

instances of classes with some properties. The structure is

similar to the Frulekit tool, developed in CMU by Peter

Shell and Jaime Carbonell [22]. Apart from the fact that

their tool was built in Common Lisp and ours is on Cþþ ,

and the fact that the languages differ in specific aspects, one

of the main differences relates to the possibility of

SHAMASH users to ask in the if part whether a given

value (either constant or variable value) belongs to a list that

is the value of an attribute.

Suppose, for instance, that there is a class named

signature, which represents the type of activity of

signing a given document. One of the attributes of that class

might be allowed-signatures which refers to

organisation people that can sign the corresponding

document, and is represented by a list of references to

instances of the class person. Then, one might have a rule

as in Fig. (2) which says that if a document can be signed by

two people person1 and person2, and person1 knows more

about the document than person2, then person1 is the one

that should sign the document (organisation agent that

should be the responsible of the activity). Names in italics

correspond to variables.

The general architecture of the RETE module is shown in

Fig. (3). The RETE net is created at the start of SHAMASH

application with the objects and rules that configure base

level SHAMASH. Afterwards, the definition of each rule

triggers the RETE generator component, which creates the

corresponding RETE net structure to that rule. The

definition or modification of any object triggers the

generation of tokens that traverse the RETE structure in

order to generate the next conflict set. Whenever any

SHAMASH subsystem wants to execute the rules, it should

call the rules execution module, which selects one rule from

the conflict set at that moment, executes the actions in the

then part of the rule that usually cause modifications in the

KB. We have also defined several ways in which rules can

be executed depending on the type of ruleset they belong to.

For instance, behaviour of activities will be executed by the

simulator for each activity instance in every simulation

cycle. On the other hand, validation rules will be executed

until no more rules of that ruleset appear in the conflict set.

4. An example

In this section we describe an example of a simplified

organisation that will be used to illustrate each one of the

SHAMASH modules.

In our university there is a maintenance department

which offers services such as fixing furniture, producing

keys, attaching blackboards to walls, etc. The goal is to

represent, analyse and improve the management process

that is followed by this department when a request arrives.

The first step is to determine whether the request can be

managed by the maintenance department. Then, according

to the type of request, the petition is sent to the manager for

signature. Basically, each request has an importance level

and if this level is very important, the manager has to sign it.

Finally, it is decided whether the service will be carried out

Fig. 2. Example of rule in SHAMASH.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483 475

3



by the university staff or it will be performed by external

contractors. This final decision depends on the estimated

cost of the request. If it is too expensive, the service is

contracted. Fig. (4) shows a graphical representation of this

process.

In addition, this department has a manager and an

assistant manager for each of the two university campuses.

The maintenance staff depends directly on each of the

assistant managers.

5. Knowledge acquisition and modeling tasks

SHAMASH combines features of both KBS and OO

systems. So we have decided to integrate both technologies

for its development. From the KBS area we used knowledge

acquisition techniques and knowledge representation form-

alisms, as production rules. From the object oriented area

we have used UML notation and use cases. It has to be

remarked that these methodologies will be used for

requirement analysis, knowledge acquisition and system

design; it is not required that the user knows any of them to

use the tool. Here, we will explain the conceptual model and

how we have used and integrated these technologies to build

the tool. Working through the use cases has been the first

task. We have developed both Use Case diagrams and Class

diagrams from the knowledge acquisition process. The next

task has been the elaboration of the sequence diagrams to

model the interactions in the system. Then, the classes were

fully designed with their methods, extra attributes, a more

detailed set of relationships including aggregation types,

cardinality, and even relationship classes that needed to be

defined. From here, the design process has proceeded as a

standard object-oriented one and completed with state,

activity, components and deployment diagrams from UML.

5.1. Knowledge acquisition process

To build SHAMASH, we needed knowledge about

processes, standards, validation for standards and processes,

and the behaviour of processes for simulation and the

optimisation of models. To address all these matters, expert

Fig. 3. Graphical representation of the RETE module and its connections with the author and knowledge subsystems.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483476

4



knowledge was required. Therefore, an intensive knowledge

acquisition task has been carried out. It has been often stated

that knowledge acquisition is a bottleneck. For this reason, it

is very important to plan this stage. When we began the

knowledge acquisition we wondered about the following

questions:

† What are the knowledge sources?

† Which techniques and methodology we were going to

use to acquire the knowledge to simulate the process

behaviour, optimise the processes and validate processes

vs. standards?

† How to carry out the acquisition meetings?

Sections 5.1.1 and 5.1.2 intends to answer the questions

above in the light of our experience within the project.

5.1.1. The knowledge sources

In the SHAMASH project two types of knowledge

sources were used: semi-public documentation and expert

knowledge. As semi-public knowledge source we used the

standards of Unión Fenosa. We analysed the contents of

these standards and extracted basic concepts to understand

the domain. But the most important knowledge is the expert

knowledge.

We have extracted knowledge from two kinds of experts:

BPR and domain experts. From the former, we obtained

general knowledge about processes, standards, optimis-

ation, etc. From the latter kind of experts, we obtained

knowledge for building libraries for particular domains. For

instance, from purchasing experts, we obtained knowledge

about what processes, standards make up a typical

purchasing domains, how to detect bottlenecks in such

processes, etc.

5.1.2. Acquisition meeting planning

Knowledge acquisition took place in all phases of the

project. In this phase, knowledge acquisition has been split

in two parts: knowledge elicitation to build the conceptual

model and validation of that model. As we said in Section

5.1.1, it is necessary to meet with two different kinds of

experts: BPR and domain specific experts. BPR have been

interviewed for knowledge elicitation and experts in

purchasing processes have been asked for conceptual

model validation.

In order to obtain the basic concepts of the BPR domain,

we have analysed semi-public documentation available

from Union Fenosa, EDP, and WIP. Afterwards, several

meetings took place with the BPR experts taking into

account the extracted knowledge from the documentation

mentioned before. Each of the meetings was focused in each

of SHAMASH subsystems (author, simulation and optim-

isation, text generator and workflow interface). The knowl-

edge acquisition techniques we have used have been: open

interview, structured interview, questionnaires, protocol

analysis, etc. The result of this effort has been the

conceptual model that represents the main concepts of the

domain, the attributes of those concepts, the relationships

among the concepts and the function of each concept in the

solution of the problem. This model was validated by the

purchasing experts of Union Fenosa, EDP, and WIP.

6. Author subsystem

The author subsystem has most of the usual functions in

the process modelling tools. Its main function refers to the

definition of processes, and their related knowledge. Some

of its characteristics are as follows.

Definition of standards. None of the analyzed current

tools allows to define an important type of knowledge of any

organisation: its norms. They constrain how processes

should be defined. A typical example are authorisation

levels for performing certain operations (e.g. signing

documents, or approving purchases). They have different

shapes depending on the organisation, so the interface

allows to easily create their structure, to fill them and to link

them to other types of knowledge, such as the organisation

structure, related standards or processes, or resources to be

used. If the user wants some code to represent the way in

which a constrain of the organisation works with respect to

the processes, the tool allows to define rules to model that

type of knowledge.

Definition of processes. This function is common to all

modelling tools, and allows the user to graphically define

how processes are combined, how they relate to other

processes, or how they can be decomposed or grouped into

others in a hierarchical way. Since SHAMASH is a

Fig. 4. Maintenance service management.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483 477

5



knowledge-based tool, the user can define specific beha-

viour of processes, or define new types of activities,

processes links, or decision steps. This allows to define

more simulation and optimisation knowledge into the

processes than the usual one, that refers to cost or time

associated to processes. In order for the user to design new

processes a domain-independent ontology has been defined.

That is, the ontology is generic for all workflow process

models and each graphical representation of a user model

instantiates this generic ontology.

One application of this type of knowledge could be to

define how individual processes provide more or less quality

according to the resources employed. Another application

could be to use SHAMASH as a tool for performing

competencies management, by defining specific knowledge-

oriented information that is needed to perform a given

process, and selecting resources according to that

information.

Validation of standards and processes. Since standards

define restrictions on how processes should operate, a

validation should be performed on the consistency among

them. The system incorporates a set of generic validation

rules, and the user can define new rules. For instance, when

a standard says that approving any purchase above

1,000,000 pts should be performed by a department head

or by a higher role in the organisation, the validation will

check whether this is so in the user created process.

Connection among organisation processes and stan-

dards. Processes in organisations are not separated from

each other. Therefore, tools modelling processes need first

to allow the user to create processes models independent of

the rest of processes of the organisation (for the sake of

modularity). Then, and very importantly, such tools should

allow the user to connect the related processes, such that

they can be simulated and optimised in an integrated way.

SHAMASH allows to do so by means of defining

interconnections among processes.

Creation of libraries. Given that users are able to define

new activities and processes with a particular behaviour,

this new knowledge-based processes could be re-used in

other related modelling episodes. The tool allows the user to

define libraries of processes to be used in other processes

modelling applications.

Fig. (5) shows our maintenance model, after having been

designed by the user with SHAMASH author subsystem.

7. Simulation and optimisation

The aim of this section is to explain two important

modules of SHAMASH: the simulator and the optimiser.

Both modules work together to optimise a model automati-

cally, so their integration will also be explained in detail.

Once a process model has been either designed anew or

modelled after an already existing company process, the

user is usually interested in detecting problems this model

might have. SHAMASH’s answer to this requirement is

twofold:

† Detecting problems in a static manner: this is achieved

by using validation rules, as it has already been described

in Section 6.

† Spotting problems that can only be detected after the

model has been run: for instance, underused resources or

bottlenecks. Running the model in reality to check for its

faults would be both too slow and too risky. SHAMASH

provides a simulator module to allow an off-line analysis.

The simulator interface allows the user to select the

process to be simulated, and to define the user goals. These

user goals are numeric values that measure how well the

model did after the simulation, according to the organisation

criteria. SHAMASH includes two standard user goals

time and cost but the user can define new ones that take

into account any of the simulation indicators, like queue

lengths, percentage of use of a given resource, quality of the

process, etc. At the end of the simulation, SHAMASH

outputs a trace displaying the user goals, the aforementioned

Fig. 5. Maintenance model.

Fig. 6. Simulation trace.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483478

6



indicators, and other useful information. Part of the

simulation trace can be seen in Fig. (6). Besides detecting

model inefficiencies and errors by watching the user goals

and the indicators, the user can define rules to verify those

problems automatically.

There are many tools that let the user simulate a model.

However, SHAMASH has a feature that is rarely found in

other simulators: the behaviour of activities can be defined

by means of rules too. For instance, the behaviour of the

authorisation activity a decision type activity is defined

by the rule of Fig. (7). Basically, this rule says that if some

conditions are fulfilled, then the petition should go to the yes

branch of the activity. Those conditions are expressed by the

rule grammar, which is common to any rule that can be

defined in SHAMASH. If the decision level (an attribute

from the petition document) is higher than the level defined

in the activity, then the document will travel through the yes

branch. It should be noted that changing the activity level

might influence the model efficiency.

The simulator is an important part of SHAMASH not

only because it allows the user to check the behaviour of

his/her processes, but for allowing automatic optimisation.

Of course, the user can optimise his/her model by simulating

the model, making note where the model seems to be

inefficient, changing and improving the model by hand and

trying again (that is, the user can carry out what is usually

called what-if analysis). However, there is no reason why

this process cannot be automated, and this is where

SHAMASH optimisation module enters the picture as

explained below.

One of SHAMASH’s most important features is its

ability to automatically optimise user process models.

Optimisation is not intended just as an automatisation of

what-if analysis (which is quite useful by itself), but as a first

step towards adaptive workflow systems [13,15]. Adaptive

workflow aims to provide support for quickly adapting to

changes both in company processes and when the process

model is being enacted. Changes in company processes can

occur because of new laws, standards, norms, business

goals, resources, etc. Once those changes have taken place,

workflow experts can redesign company processes to adapt

to them. But even with the help of the simulator, this is a

slow method. Automatic optimisation coupled with other

features of SHAMASH (such as the ability to handle

standards) can help here. All that is required from the user is

to make those changes (standards, resources, etc) to the

model. At this point, the model will be inefficient because

some other modifications should take place in order to take

full advantage of, for instance, more resources, relaxed

standards, etc. The user could perform these modifications

by hand, but obviously automatic optimisation would be

more effective and exhaustive.

Automatic optimisation could also help in the second

point addressed by adaptive workflow systems: adapt to

changes when the process is being run or enacted. Such

changes involve staff coming and going, hardware unex-

pectedly breaking down, activities taking much more time

than expected, etc. Some of these changes could easily be

accommodated by the existing model, but at some point it

might be worthwile to dynamically modify the process

model. Automatic optimisation can also help here, by

automatically adapting the model to the new conditions.

However, optimisation is a computer intensive process and

in quickly changing environments, the optimisation algor-

ithms might not be able to cope.

SHAMASH optimisation is based on a generate and test

approach. The generate part will be achieved by using

expert heuristics for generating new process models from a

given one. Test or evaluation of a newly generated process

model will be taken care of by means of a user supplied

evaluation function. This function evaluates the model by

combining different indicators obtained after simulating the

process model. This basic behaviour of the optimiser can be

seen in Fig. (8).

The underlying paradigm for optimisation in SHAMASH

is search in a process space. Each node of the search space is

a different user process model. This process model includes

the process diagram as well as the organisation structure

associated to it and the inputs to the process. Also, an

evaluation function must be defined. This evaluation

function calls the simulator and measures how well this

particular model does. This is measured by a user goal that

can be any arithmetic expression including simulation

indicators. Finally, there must be a way to move within this

space of possible models. This is provided by the search

operators. A search operator takes a model, transforms it,

and generates a new model. See Fig. (9) for a graphic

visualisation of the search space and the optimisation

process. Optimisation starts with the process model at the

bottom of Fig. (9). Optimisation operators (the arrows that

Fig. 7. Example of authorisation rule: it checks whether the document that

arrives to an authorisation activity is important enough (element level); in

that case, it will be sent to the YES branch.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483 479

7



leave the initial model) propose possible modifications of

the initial model. Those new models are generated and

simulated. The user goal obtained from the simulation is

used as the worth of the model. In Fig. (9), two new models

are proposed. The first one has a worth of 3 and the second

one, of 7. The best model (that with a worth of 7) is selected

and used as the new seed to generate new models. This

process continues until a timelimit or until one of the

generated models has a ‘good enough’ worth (this has been

specified by the user in advance).

In a model, there are many things that could be changed:

increase the number of resources, remove agents, change the

process diagram, increase/decrease decision-making par-

ameters, etc. However, the number of possible models that

can be obtained by performing such changes at random

would be enormous and would make the search process very

time consuming. SHAMASH answer to this problem is to

use knowledge acquisition to elicit from the expert how to

make changes that produce benefit to the model under study.

This knowledge will be formalised later into search

operators. It would seem that acquiring perfect search

operators (that is, those that always generate better models)

would be the best option. However, such perfect operators

need not exist, and in any case, they would be very difficult

to elicit. Therefore, search operators that are likely to

generate better models should suffice, although in some

cases they might degenerate the model. Such operators

would be enough to constrain the search enough to make it

efficient. The evaluation function would be used to focus the

search further, by choosing the best generated alternative

models.

SHAMASH allows to define the search operators by

means of rules too, in the very same language used in other

parts of the tool. The left hand side of the rules will access

the knowledge base and match static features of the model

(model diagram, resources, etc) and dynamic ones (bottle-

necks, idle resources, etc) and determine how the model

should be changed so that it is likely that it will be improved.

A simple search operator is shown in Fig. (10). This rule

changes (increases) the authorisation level of the authoris-

ation activity, which was mentioned in previous paragraphs.

There is another rule to decrease the same attribute.

Therefore, in this simple example, the optimiser can fine-

tune automatically one of the free parameters of the model.

The kind of heuristic search described above fits into

many different search algorithms, such as hill climbing,

simulated annealing, beam search, heuristically augmented

genetic programming, etc. In the current version of the tool,

best first search has been used. This search method always

focuses on the best model (according to the user goal), and

generates all possible modifications of this model, according

to the applicable search operators. In the future, SHAMASH

might use a beam search technique.

Once the optimiser has been run, it returns an explanation

of why the model obtained is better than the old one. More

specifically, SHAMASH returns the sequence of search

Fig. 8. Basic behaviour of the optimiser: new process models are generated from old ones. Then, they are simulated and performance indicators are obtained,

which are subsequently used to guide the generation of new models.

Fig. 9. SHAMASH optimisation problem.

Fig. 10. Optimisation rule: it says that if the model has an Authoris

ation activity and its authorisation level is not already too large (,50),

then a new model can be generated by increasing it.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483480

8



operators that were applied to the initial model to obtain the

better model. It also displays the user goal value for the new

model. This can be seen in Fig. (11).

At this point, the user can either accept the new model

proposed by the optimiser or maintain the initial model.

8. Text generator

In most organisations, processes are delivered to their

end-users (human resources of the organisation) in plain

text. Sometimes, they are delivered using a graphical

representation without the details that for obvious space

restrictions cannot appear in the graphical representation.

And, in some organisations, processes are delivered in a

mixture of graphical and text representations. A common

consistency problem appears when any one of the

representations, or both are updated. In those cases, the

other one has to be changed, and this does not always

happens. In SHAMASH this subsystem is responsible for

maintaining coherence between the graphical and text

versions. When the user performs any change in the

graphical representation of a process, this subsystem will

automatically generate a new text version of this process.

This module produces HTML files that describe the

process diagrams and their relationships with other

components of SHAMASH. The user needs to follow the

following steps to use the TG:

1. If the user wants to build a text version for a process,

(s)he first selects the A/Ps wanted to be translated.

2. Then, the TG method would walk through the set of

related standards and the process diagram (by following

the connections between processes) and will produce the

HTML file.

3. If the user wants to modify an old text version, (s)he

should select the A/Ps to be modified.

4. The textual contents of the process or standard can be

modified using the text editor.

5. SHAMASH has implemented two main functions for the

text generator process: generate and modify.

When the HTML file is obtained, it is possible to browse

related information to the set of related standards and the

process diagram. Fig. (12) shows an example of the

generated HTML text version of the process in Fig. (4).

Since the TG generates HTML files, they can be

modified by the user using any text editor, Netscape

Composer, the text editor given by SHAMASH, etc.

Therefore, the user will have unlimited freedom to enrich

the text version by adding information and statements. Of

course, the user is responsible of ensuring the coherence

between the text and the graphic version, after (s)he

performs any change in the automatically generated

HTML file.

9. Conclusions

In this paper we have presented an overview of a process

modeling tool named SHAMASH. SHAMASH allows users

to define, simulate, and optimise BPR models. There are, in

the market, many other tools that provide functionalities for

modelling processes, but we have identified two areas where

technology could be pushed further:

† Definition of standards. From the user point of view, it is

very interesting that BPR tools allow to define and use

knowledge about organisation standards, as SHAMASH

does.

† Automatic optimisation. Currently, BPR tools simulate

the models and allow the user to change them if (s)he

spots any problem in the simulation results. SHAMASH

Fig. 11. Optimiser result: this window shows the user goal used for

optimisation (top left), the user goal value obtained by the most optimised

model (top right), and the list of operators that were applied to the initial

model to obtain the optimised model (middle left).

Fig. 12. HTML translation of process in Fig. 4.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483 481

9



goes further and automatically suggest changes that

improve the model.

Another important feature of SHAMASH is that some of

the knowledge in the system can be represented inside the

tool by means of rules, which users usually understand

better than other formalisms like computer programs. This

makes SHAMASH a very extensible tool. In SHAMASH,

the behaviour of activities, validation rules, organisation

standards, and optimisation operators, can all be defined by

rules. In order to handle them efficiently, SHAMASH

includes a RETE algorithm that has been completely

integrated with the rest of the tool.

We intend SHAMASH to be an adaptable tool by both

providing basic process libraries and by making its

architecture modular. However, in order to provide the

two important features mentioned before (standards and

optimisation), expert knowledge is required. To acquire this

knowledge, it is necessary to use a knowledge-based

methodology. We have used knowledge acquisition tech-

niques to obtain the expert knowledge and knowledge

representation formalisms, such as production rules. For

instance, they have been used to represent optimisation and

validation rules. Knowledge for this kind of systems comes

from two different sources. The knowledge required for

handling standards and optimisation needs a BPR expert,

whereas the knowledge for building libraries needs an

expert in the specific domain of that library (i.e. the

purchasing domain).

10. Future lines of work

This project provides with many interesting opportu-

nities to apply Artificial Intelligence research results. They

will not be applied in the first version of SHAMASH but we

expect to use the following AI techniques in the future:

† Currently, SHAMASH evaluation function returns just

one value. However, the user might want to optimise

functions including several user goals. This is called

multi-objective optimisation. Multi-objective optimis-

ation can be addressed by using hierarchical evaluation

functions [1], or more rigorously by using Pareto

algorithms like in Refs. [4,17,18,25].

† SHAMASH allows to introduce stochastic effects in

several parts of the model like decision activities, arrival

rates, etc. In that case, the model returned by the

optimiser would depend on the random effects that

happened during the succesive simulations. A quick way

to solve this problem is to simulate each model several

times, to get average results. However, this would make

optimisation too time consuming. Further research might

solve this problem.

† A related problem is that simulation results depend on the

scenario that has been used. A scenario describes the

sequence and rate of arrivals of the inputs to the process.

If a model is optimised according to a single scenario, it

might not be valid for other scenarios. Several simu-

lations per model might be the answer to this, but again

this would be very inefficient.

† Efficient search operators could be learnt by using

machine learning techniques such as [16] macro-

operators.

† Best practices could be used to both build search

operators for optimisation or to carry out case based

planning (improving process models by analogy with

best practices).

† Using planning techniques to obtain process diagrams.

The approach we are currently following consists on the

user defining activities through the author subsystem

interface, translating them into planning operators in

planning description language (PDL), executing a

planner to generate a plan (sequence of instantiated

activities), and translating back into SHAMASH [14].

We are using a nonlinear planner, PRODIGY4.0, to

generate those plans [26]. This scheme allows the user to

focus on the requirements of the process to be generated

and the organisation structure, and let the planning

system build the best model for those requirements.

† Another way of automatically generating those models is

through the optimiser. There is a strong similarity

between how it works and the planning technique called

planning by rewriting as described in Ref. [2]: a plan is

supplied (in SHAMASH case the plan is an activity

diagram) and then domain dependent search operators

are used to rewrite that plan (or other components of the

model, like number of resources) into another more

efficient plan (optimisation).

† Efficient optimisation procedures could be learnt by

using machine learning techniques similar to macro-

operators [16], case based reasoning [10] or search

control knowledge in case we would use a planner [1].

Both issues are currently being discussed in recent

forums such as PLANET (network of excellence in AI

planning), where the authors of this paper collaborate.

Acknowledgments

The authors would like to thank the work of all

components of the UC3M team that allowed to build this

tool: J. David Arias, Nuria Cortijo, Fernando Fernández,

José I. Giráldez, Noyda Matos, Carla Salazar and César

J. Soto. The research reported here was carried out in the

course of the R þ D project funded by the Esprit

Programme of the Commission of the European Commu-

nities as project number 25491, and co-financed by CICYT

TIC98-1847-CE. We thank the partners of this project, who

have originated and contributed to the ideas reported. They

are UF (Unión Fenosa), SAGE (Software AG España),

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483482

10



SEMA GROUP sae, UC3M (Universidad Carlos III de

Madrid), WIP (Wirtschaft und infrastruktur & Co Planungs

KG), and EDP (Electricidade de Portugal).

References

[1] R. Aler, D. Borrajo, P. Isasi, Genetic programming and deductive

inductive learning: a multistrategy approach, in: J. Shavlik (Ed.),

Proceedings of the Fifteenth International Conference on Machine

Learning, ICML’98, 1998, pp. 10 18, Madison, Wisconsin, July.

[2] J.L. Ambite, C.A. Knoblock, Flexible and scalable query planning in

distributed and heterogeneous environments, in: R. Simmons, M.

Veloso, S. Smith (Eds.), Proceedings of the Fourth International

Conference on Artificial Intelligence Planning Systems (AIPS 98),

AAAI Press, 1998, pp. 3 10, Pittsburgh, PA, June.

[3] K.D. Ashley, Case based reasoning and its implications for legal

expert systems, Artificial Intelligence and Law (1992).

[4] T. Blickle, Theory of evolutionary algorithms and application to

system synthesis, PhD thesis, Swiss Federal Institute of Technology,

November 1996.

[5] J.A. Breuker, N. den Haan, Separating world and regulation

knowledge: where is the logic? in: M. Sergot (Ed.), Proceedings of

the Third International Conference on AI and Law, ACM, New York,

1991, pp. 41 51.

[6] C.L. Forgy, Rete: a fast algorithm for the many pattern/many object

pattern matching problem, Artificial Intelligence 19 (1982) 17 37.

[7] M. Gruninger, M.S. Fox, Enterprise modelling, AI Magazine Fall

(1998) 109 121.

[8] T. Gray, E. Prez, D. Pinard, S. Abu hakima, A. Daz, I. Ferguson, A

Multi agent architecture for enterprise applications, in: W. Hamscher

(Ed.), Working Notes of the AAAI 94 Workshop on Artificial

Intelligence in Business Process Reengineering, 1994, August.

[9] M. Hammer, J. Champy, Reengineering the Corporation, Harper

Business Press, New York, 1993.

[10] K.J. Hammond, Case based planning: an integrated theory of

planning, learning and memory. PhD Thesis, Yale University, 1986.

[11] The Thinking Systems Company: HPS, Ithink, www.hps inc.com/

bus olu/ithink/ithink.htm, 2000.

[12] IDS Scheer, ARIS, www.ids scheer.com/aristoolset.htm, 2000.

[13] P. Jarvis, J. Moore, J. Stader, A. Macintosh, A. Casson du Mont,

P. Chung, Exploiting AI technologies to realise adaptive workflow

systems, Agent Based Systems in the Business Context, AAAI’99

Workshop, 1999, submitted for publication, 1999.

[14] P. Kearney, D. Borrajo, An R & D agenda for AI planning applied to

workflow management, in: B. Stanford Smith, P.T. Kidd (Eds.), E

Business: Key Issues, Applications and Technologies, IOS Press,

Ohmsha, 2000, pp. 1072 1078, October.

[15] M. Klein, Workshop Towards Adaptive Workflow System, Proceed

ings of the Conference on Computer Supported Cooperative Work

(1998).

[16] R. Korf, Learning to solve problems by searching for macro operators,

PhD Thesis, Pitman, 1985.

[17] W.B. Langdon, Evolving Data Structures Using Genetic Program

ming, Research Note, RN/95/1, UCL, Gower Street, London, WC1E

6BT, UK, January 1995.

[18] W.B. Langdon, Pareto, population partitioning, price and genetic

programming, research note, RN/95/29, University College London,

Gower Street, London WC1E 6BT, UK, April 1995.

[19] U. Reimer, A. Margelisch, B. Novotny, T. Vetterli, EULE2: a

knowledge based system for supporting office work, 1998.

[20] Rockwell Software, ARENA, www.sm.com, 2000.

[21] W.J. Salter, Organizational designs cannot be optimised, in: W.

Hamscher (Ed.), Working Notes of the AAAI 94 Workshop on

Artificial Intelligence in Business Process Reengineering, 1994,

August.

[22] P. Shell, J.G. Carbonell, FRuleKit: a frame based production system.

User’s manual, Internal paper, 1989.

[23] J.M. Bench Capon Trevor, R.S. Visser Pepijn, Ontologies in legal

information systems; the need for explicit specifications of domain

conceptualisations, Sixth International Conference on Artificial

Intelligence and Law, ACM, New York, 1997, p. 132.

[24] M. Uschold, M. Gruninger, Ontologies: principals, methods and

applications, Knowledge Engineering Review 11 (1996) 2.

[25] D.A. Van Veldhuizen, G.B. Lamont, Evolutionary computation and

convergence to a Pareto front, in: J.R. Koza (Ed.), Late Breaking

Papers at the Genetic Programming Conference, University of

Wisconsin, Stanford University Bookstore, Madison, Wisconsin,

USA, 1998, pp. 22 25, July.

[26] M. Veloso, J. Carbonell, A. Prez, D. Borrajo, E. Fink, J. Blythe,

Integrating planning and learning: the prodigy architecture, Journal of

Experimental and Theoretical AI 7 (1995) 81 120.

[27] R.G.F. Winkels, H. de Bruijn, Making a case for case frames,

Information and Communications Technology Law 7 (2) (1998)

117 133.

[28] E. Yu, J. Mylopoulus, Organization modelling for business processes

reengineering, in: W. Hamscher (Ed.), Working Notes of the AAAI

94 Workshop on Artificial Intelligence in Business Process Reengi

neering, 1994, August.

R. Aler et al. / Knowledge Based Systems 15 (2002) 473 483 483

11

www.hps-inc.com/bus_olu/ithink/ithink.htm
www.hps-inc.com/bus_olu/ithink/ithink.htm
www.hps-inc.com/bus_olu/ithink/ithink.htm
www.hps-inc.com/bus_olu/ithink/ithink.htm
www.ids-scheer.com/aristoolset.htm
www.ids-scheer.com/aristoolset.htm
www.sm.com
www.sm.com



