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Introduction

Executive pay is a topic that has continuously interested media and academia
alike. This is not surprising given its dramatic increase over the last thirty
years. Jensen and Murphy (2004), for example, report a 11-fold rise in the
in�ation-adjusted average total remuneration of CEOs in S&P 500 �rms between
1970 and 2002. The composition of executive compensation has also changed
dramatically during the years. In the 1970s, it almost exclusively consisted of
base salaries and performance bonuses. In 2002, salaries and bonuses had a
combined share of 36 percent, while the main chunk of CEO�s remuneration (47
percent) came from stock options grants.
Recently, Gabaix and Landier (2008) have related the rise in executive pay

to the increase in the size of US �rms. Interestingly, when Clementi and Cooley
(2009) use an alternative measure of compensation de�ned as the annual change
in the CEO�s fortune that is attributable to his/her relationship with the com-
pany, they �nd no time trend in median compensation in the period 1993-2006.
Nevertheless, they report that the median executive wealth has essentially dou-
bled during this period.
Another issue that has been the center of controversy over the last 20 years

is the sensitivity of executive pay to changes in shareholder value. Jensen and
Murphy (1990) estimated that on average CEO wealth changes by only $3.25
for every $1,000 change in shareholder wealth. Later research has documented
higher pay-performance sensitivity [see, for example Hall and Liebman (1998),
Schaefer (1998), Aggarwal and Samwick (1999), Clementi and Cooley (2009)],
but the question remains open especially given the lack of agreement on a proper
theoretical benchmark.
Even the current �nancial crisis did not manage to turn the attention away

from managerial pay. In March this year, Treasury Secretary Tim Geithner and
general public alike were outraged at the plan of the bailed-out AIG to spend
$165 mln of taxpayer money on executive bonuses. As a matter of fact, as
reported by Attorney General Andrew Cuomo, 73 out of 400 executives received
more than $1mln in bonuses with top 10 taking $42 mln in total. While the
AIG CEO Edward Liddy referred to the role of compensation in attracting and
retaining the �best and brightest talent�, the House of Representatives passed
a bill introducing a 90 percent tax on AIG bonuses. Following discussions on
the G20 summit in London related to curbing executive bonuses, Russia took
rather tough stance on CEO pay. The State Duma, the Russian parliament�s
lower house, is currently considering imposing a cap of 4 mln rubles (about
$120,000) on annual executive compensation for all state companies and for
private companies that receive government aid.
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Indeed, since 1990s there has been a big debate about the e¤ectiveness of
the observed compensation schemes in creating the proper incentives while pro-
viding insurance to risk-averse managers. While there are a lot of empirical
recipes and surveys, the most important question remains as to how the opti-
mal contract should actually look like. Ase¤ and Santos (2005) consider a static
setup and show that a simple quasilinear compensation scheme comes close to
inducing high e¤ort. However, given the inability of static models to e¤ectively
capture the role of deferred compensation as an incentive mechanism, the focus
should really fall on dynamic contracting. Moreover, the agency literature has
mainly regarded contracts inducing optimal e¤ort while the participation con-
straints have largely been ignored. Indeed, we do not know what would happen
if the outside options of the manager actually change with the history of observ-
ables. For example, it is unrealistic to treat the reservation utility of a CEO as
�xed regardless of the situation in his/her �rm, industry, or the economy as a
whole. The dependence could come through many channels- externalities, dif-
ferent types of agents, a certain structure of beliefs, but more importantly, it can
signi�cantly in�uence the nature of the relationship and the form of the optimal
contract. Indeed, risk-averse managers would like to be insured against these
�uctuations when signing a contract with a company. How could such an in-
surance be provided? What would be the resulting contract and how successful
would it be in creating managerial incentives? Would executive compensation
and wealth increase in the long run and would the resulting distribution depend
on the initial shock to the reservation utilities. Would both current and deferred
compensation be used for incentive purposes and would the result change if we
consider a simple stock-option scheme? Would there be a signi�cant change if
we consider contract terminations and who will be the most a¤ected?
All these questions fall into the scope of the current dissertation. The the-

sis generalizes the notion of commitment by de�ning the outside options on
the history observed in a dynamic contractual setting. It studies how history
dependence through reservation utilities a¤ects the provision of insurance and
incentives and the dynamics of the contract with a special focus on executive
compensation. Stock options and contract terminations are also analyzed.
The �rst chapter considers a moral hazard problem in an in�nitely repeated

principal-agent interaction where both parties can only commit to a short-term
contract. Unlike previous literature, their outside options are not necessar-
ily �xed across the history of outcomes. More precisely, to keep the model
tractable, the reservation utilities are de�ned on a �nite truncation of the pub-
licly observed history. The framework is as follows. A principal contracts an
agent to implement a sequence of actions where the choice of an action each
period is e¤ectively a choice of an end-of-period probability distribution over
outcomes. Since the exercise of an action brings disutility to the agent, he/she
should be compensated by a monetary transfer from the principal. Everything is
common knowledge except for the particular action implemented which is only
observed by the agent. The contract will, therefore, need to induce the agent
to implement a particular action sequence recommended by the principal. The
incentives, however, are restricted by the inability of the parties to commit to a
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long-term relationship and need to be consistent with their history-dependent
participation constraints.
I prove existence of an optimal self-enforcing, incentive-compatible contract

and obtain the �rst in the literature characterization of such an environment.
The characterization is very general in terms of assumptions and, more impor-
tantly, is fully recursive. Its convergence properties make it perfect for comput-
ing the optimal contract for a general class of dynamic hidden action models.
The idea is to reduce incentive compatibility to Green (1987)�s temporary in-
centive compatibility and treating the expected utility of the agent as a state
variable to construct the optimal contract recursively through a series of single-
period static contracts in the spirit of Spear and Srivastava (1987). Unlike Ase¤
(2004), I do not pre-suppose the optimality of a particular action sequence and,
unlike Wang (1997), I focus on limited commitment which is introduced in the
sense of Phelan (1995), but on both contractual parties. Note, however, that
we need to enlarge the state space in order to obtain stationarity. Indeed, since
reservation utilities are history-dependent, so would be the contract satisfying
any party�s participation constraints. The solution is to expand the state space
by including the relevant truncated histories.
Consider an auxiliary problem where the principal can fully commit to a

long-term contract. The solution to this problem can be recursively character-
ized on a state space of the type discussed above. This state space will indeed
be two-dimensional because of the history-dependence of the agent�s participa-
tion constraints and will contain the state space of the original problem. It
will also be endogenous, but in the spirit of Abreu, Pearce and Stachetti (1990)
I show that it is a �xed point of a set operator and can be obtained by suc-
cessively iterating on this operator until convergence. Once, the state space is
known, the solution to the problem with one-sided commitment can be obtained
by dynamic programming routines. Given the value function of this auxiliary
problem, I resort to a procedure outlined by Rustichini (1998) in order to solve
for the optimal incentive-compatible, two-side participation guaranteed super-
contract. This is achieved by severely punishing the principal for any violation
of his/her participation constraint. The procedure allows of recovering the sub-
space of agent�s expected discounted utilities supportable by a self-enforcing
incentive-compatible contract.
The general framework discussed above is given more structure in the second

chapter. There, I consider a long term contract between a risk-neutral principal
proxying for �rm�s shareholders and a risk-averse CEO, where both parties
are unable to commit in the long run and face history-dependent reservation
utilities. I treat the variable of interest to the principal as pro�t, the monetary
transfer as managerial compensation, the action as an e¤ort level, and assume
that CEO�s period utility is separable in money and e¤ort. Since I am interested
in the long term dynamics of the contract and the resulting wealth distribution,
I focus on long-term self-enforcing schemes that are incentive-compatible. As a
matter of fact, I am the �rst to study how shocks on the reservation utilities
may a¤ect the parties to a dynamic contractual relationship. In particular, I
investigate whether the optimal contract insures the manager against variability
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in the value of his/her outside options. I build up the intuition behind the
possible e¤ect of such an insurance on the manager�s utility in the short and
the long run and relate it to the properties of the limiting distribution.
I start by deriving the state space when reservation utilities are constant.

Then, I consider a single-period history dependence and show that if the man-
ager�s reservation utilities are su¢ ciently dispersed, his/her participation con-
straint does not bind under the worst case scenario, which is also observed when
the manager can essentially commit when his/her outside option is at its lowest
value. In other words, the minimum utility the CEO can be promised for initial
histories characterized by lower reservation utility is generally boosted by higher
reservation utilities for other states. Alternatively put, the optimal contract pro-
vides the CEO with some insurance against �uctuations in the value of his/her
outside options, which ultimately smooths his/her consumption across (initial
history) states. In case of positive correlation between �rm�s pro�ts and man-
ager�s reservation utilities, this translates into the participation constraint of the
manager being non-binding in states characterized by low pro�ts. Computing
the model actually shows that utility promises close to the reservation level are
possible only under the manager�s best-case scenarios when his/her reservation
utility is the highest (i.e., when the highest pro�t has been observed).
In order to compute the dynamically optimal executive pay, I parameterize

the model following the calibration of Ase¤ (2004) and Ase¤ and Santos (2005)
based on the results of Hall and Liebman (1998) and Margiotta and Miller
(2000). I focus on the more interesting case when the value of the outside o¤er
to the manager is positively correlated with current pro�t (di¤erent types of
agents whose ability may be considered positively related to �rm�s performance
by outside potential employers; di¤erent economic environments: harder to �nd
a job in a through than in a boom, etc.). In such a setting, we may expect that
the manager would be motivated to increase the probability of high pro�ts in
the future (by choosing a higher level of e¤ort). At the same time, risk-averse
managers would like to smooth consumption across states, which may require
that their participation constraint does not bind for lower pro�t realizations.
Moreover, it may become increasingly more di¢ cult to motivate richer CEOs,
especially when the shareholders face some borrowing constraints, which may
lead to the suboptimality of inducing high e¤ort for such CEOs.
Regarding the numerical computation, I use an algorithm that is quite gen-

eral and allows for non-convexities of the underlying state space. The main idea
is to discretize the guess for the equilibrium set elementwise, extract small open
balls around the gridpoints unfeasible with respect to the (non-updated) guess
and use the remaining set, i.e., the guess less the extracted intervals, as a new
guess for the equilibrium set. The procedure stops if the representations of two
successive guesses have the same number of closed sets element by element and
the suitably de�ned di¤erence between the representations is less than some
pre-speci�ed tolerance level.
The numerical results suggest that inducing high e¤ort is the predominant

strategy of the principal, but shirking may still be optimal for su¢ ciently rich
(in expected utility terms) managers. The optimal wage scheme and the future
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utility of the manager tend to grow in both his/her current utility and in the
end-of-period pro�t realization. Intuitively, both current and future compen-
sation are used to induce poor and mid-range managers to work hard, while
rich managers prove too di¢ cult to motivate. The latter shirk and while they
may face some �uctuations in their current income stream in case of binding
credit constraints on part of the �rm, their lifetime utility remains relatively
�at. The manager�s utility tends to increase weakly in the long run. This in-
crease is most pronounced for managers with initial utilities below the highest
reservation utility. These managers �rst have their utilities pushed well above
their reservation level based on the insurance e¤ect against �uctuations in the
value of their outside options. Then, the principal motivates them to work
hard by rewarding success through continuation utilities while providing them
with insurance through �atter wages. In this way, the probability of a higher
pro�t and, therefore, higher reservation utility tomorrow increases which rises
the manager�s expected continuation utility. Since wage is increasing in initial
utility, the executive pay has a similar dynamic behavior. Therefore, in the
long run, both consumption (wage) and wealth (utility) are smoother across
initial history states. The result can also be interpreted as a decreasing (wage-
and utility-) inequality (as far as the poorest managers are concerned). More
interestingly, due to the insurance e¤ect of the contract, the �uctuations in the
CEO�s reservation utilities tend to lose importance in the long run. The long
term distribution of manager�s utility is non-degenerate and depends on the
initial utility promise but not directly on the relevant initial history at least as
far as short initial histories are concerned.
The third chapter is motivated by the frequent use of a quasilinear compen-

sation schemes in the real world. While there is a growing body of literature
searching for possible reasons to account for the abundance of such contracts,
very little has been done in terms of computing the optimal stock option con-
tract and comparing it with the optimal contract per se. Clementi, Cooley
and Wang (2006) consider a two-period principal-agent model of hidden action
and show that under severe commitment problems shareholders�value can po-
tentially be improved by including stock options in the agent�s compensation
package. Ase¤ and Santos (2005) analyze the properties of the optimal stock
option contract obtained in a principal-agent framework by restricting the set
of admissible compensation schemes to one consisting of a �xed component and
a grant of stock options with a particular strike price. They calibrate the model
and �nd that the cost of implementing the optimal stock contract vs. the opti-
mal contract is negligible. However, their model is static and therefore fails to
address issues such as smoothing consumption and incentives over time. Indeed,
stock option grants are a purely dynamic phenomenon.
In this chapter I extend and generalize the analysis of Ase¤ and Santos

(2005) in a dynamic framework. The setting is an in�nite-horizon hidden-action
problem marked by two-sided limited commitment and history-dependent reser-
vation utilities. The history dependence of reservation utilities may in fact be
particularly relevant for the case of stock options as indicated in Oyer (2004)
who analyzes the use of a broad stock option plans in a static setting. I demon-
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strate that restricting the space of admissible compensation schemes to canonical
stock options does not a¤ect the theoretical results developed in the �rst chap-
ter. Therefore, the problem of �nding the optimal stock option contract can be
recursively characterized and numerically computed in a three-step procedure.
I analyze the properties of the endogenous state space to obtain results similar
but weaker than the ones derived in the second chapter. Interestingly, the man-
ager is still provided with some insurance against non-negligible �uctuations in
the value of his/her outside options. I follow the calibration of Ase¤ and San-
tos (2005) and compute the optimal stock option contract. Its estimated value
function is very �at for lower utility promises and very steep for higher utility
promises. As under the optimal contract per se, less wealthy managers tend to
work hard, but high e¤ort proves suboptimal for the richest CEOs. There is
a notable di¤erence, however, in the way incentives are provided. Under the
optimal contract both current and deferred compensation are used while under
the stock option contract future utility promise appears to be a more powerful
incentive device. It tends to increase with the initial utility promise and, on
average, grows with the stock price realization. The compensation package, on
the other hand, shows little dynamics and only gains signi�cance for high util-
ity promises where the resulting compensation jumps due to an increased �xed
salary and a big stock option grant with a low strike price.
The fourth chapter extends the analysis to contracts that allow for per-

manent separations. So far, I have considered dynamic contracts which are
self-enforcing, i.e., contracts referring to long-term relationships which, by con-
struction, neither party has an incentive to renege on. Spear and Wang (2005)
focus on contract terminations instead by allowing for replacements of the con-
tracted agent with a new one from a labor market pool and for golden parachutes
at termination. Sleet and Yeltekin (2001) consider a dynamic model of tempo-
rary layo¤s and permanent separations where the period pro�t of the �rm is
subject to publicly observable random shocks.
In my environment, there is no pro�t perturbation, but the outside options

are allowed to vary across the history of observables. In particular, I consider
a potentially repeated hidden-action problem where both the principal and the
agent can only commit to single-period contracts while facing �nite-history-
dependent reservation utilities. Each party can walk out of the relationship if
his/her utility is below the respective reservation level in which case the relation-
ship terminates and the parties receive their outside options. This possibility
explicitly enters the strategy space of the contract signed at some initial period
of contracting. Therefore, the continuation utilities for both parties should be
no less than their respective reservation utilities at all contingencies that are
actually reached.
My main interest is to compare the behavior of this contract in providing

incentives and insurance with the self-enforcing contract analyzed in the �rst
chapter. In particular, I seek to answer the following questions. Does the option
to terminate the relationship have a global e¤ect on incentives, or does it only
a¤ect the poorest managers? In fact, when do separations occur and what
continuation utilities can be supported by the threat of a future separation?
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As before, I characterize the contract recursively on the space of truncated
outcome histories matched with agent�s expected discounted utilities. I parame-
terize and numerically compute the model in view of top executive compensa-
tion. The results show similarities to the optimal self-enforcing contract. High
e¤ort appears optimal for most but the richest (in expected utility terms) man-
agers. Executive compensation and continuation utility tend to increase in both
current utility and �rm�s pro�t. The di¤erences are related to the ability of the
contract to support much lower utility promises, which signi�cantly decreases
their smoothing across initial pro�ts. The most a¤ected are the poorest (in ex-
pected utility terms) managers who are motivated to work hard by much lower
continuation utilities under the threat of a future separation.
For future research, I plan to calibrate the model dynamically to recent

US data by matching Compustat�s ExecuComp with CRSP database on stock
prices. I consider investigating the e¤ects of shocks (to the primitives of the
model) on the optimal provision of insurance and incentives in the short and
the long run, including the resulting dynamics of executive pay and wealth.
In this sense, it is essential to di¤erentiate between idiosyncratic and aggre-
gate shocks. The model can be used for estimating pay-performance sensitivity
whether measured in the tradition of Jensen and Murphy (1990) or as an elastic-
ity following Clementi and Cooley (2009). An extended version of the model can
also be used to address the relative performance evaluation puzzle. The frame-
work can be enriched in two other directions. First, we can allow the manager
to borrow and save and study how this a¤ects the provision of incentives under
the optimal contract. Second, we can endogenize the outside options available
to the parties to the contract and motivate the �uctuations in their reservation
utility values.
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Abstract

This paper considers a moral hazard problem in an in�nite-horizon,
principal-agent framework. In the model, both the principal and the agent
can commit only to short-term (single-period) contracts and their reser-
vation utilities are allowed to depend on some �nite truncation of the
history of observables. After existence is proved, the original problem of
obtaining the optimal incentive-compatible self-enforcing contract is given
an equivalent recursive representation on a properly de�ned state space.
I construct an auxiliary version of the problem where the participation of
the principal is not guaranteed. The endogenous state space of agent�s
expected discounted utilities which on a di¤erent dimension includes the
set of truncated initial histories in order to account for their in�uence on
the reservation utilities is proven to be the largest �xed point of a set
operator. Then, the self-enforcing contract is shown to be recursively ob-
tainable from the solution of the auxiliary problem by severely punishing
any violation of the principal�s participation constraint.
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1 Introduction

During the last years, there has been a revived interest in the theory of dynamic
contracting1 . However, although most of the research incorporates some form
of limited commitment/enforcement, little has been done in terms of extending
the notion of commitment per se. In particular, there is no reason to believe
that (the value of) the outside option is constant across the history of observ-
ables. For example, it is unrealistic to treat the reservation utility of a CEO
as �xed regardless of the situation in his/her �rm, industry, or the economy
as a whole. The dependence could come through many channels- externalities,
di¤erent types of agents, a certain structure of beliefs, but more importantly,
it can signi�cantly in�uence the nature of the relationship and the form of the
optimal contract. It would be interesting to see how the agent is actually com-
pensated for variability in the value of his/her outside options. When would
his/her participation constraint bind? How is the agent�s wealth a¤ected in the
short and the long run? In fact, would there be a limiting distribution and how
would it depend on initial conditions? Such questions can only be analyzed
in a generalized framework allowing for history-dependent reservation utilities.
Moreover, extending the notion of commitment can bring some important in-
sights into various contractual problems. For example, in order to address the
wide use of broad-based stock option plans, Oyer (2004) builds a simple two-
period model where adjusting compensation is costly and employee�s outside
opportunities are correlated with the �rm�s performance.
The current paper generalizes the notion of commitment by de�ning the

outside options on the history observed in a dynamic contractual setting. I
prove existence and obtain the �rst in the literature characterization of such an
environment. The characterization is very general in terms of assumptions and,
more importantly, is fully recursive. Its convergence properties make it perfect
for computing the optimal contract for a general class of dynamic hidden action
models.
I consider a moral hazard problem in an in�nitely repeated principal-agent

interaction while allowing the reservation utilities of both parties to vary across
the history of observables. More precisely, to keep the model tractable, the
reservation utilities are assumed to depend on some �nite truncation of the
publicly observed history. The rest of the model is standard in the sense that
the principal wants to implement some sequence of actions which stochastically
a¤ect a variable of his/her interest, but su¤ers from the fact that the actions
are unobservable. For this purpose, the optimal contract needs to provide the
proper incentives for the agent to exercise the sequence of actions suggested by
the principal. The incentives, however, are restricted by the inability of the
parties to commit to a long-term relationship. It is here where the dynamics of

1See, for example, Fernandes and Phelan (2000), Ligon, Thomas and Worrall (2000), Wang
(2000), Phelan and Stacchetti (2001), Sleet and Yeltekin (2001), Ligon, Thomas and Worrall
(2002), Ray (2002), Thomas and Worrall (2002), Doepke and Townsend (2004), Jarque (2005),
Abraham and Pavoni (2008).
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the reservation utilities enters the relationship by reshaping the set of possible
self-enforcing, incentive-compatible contracts.
In order to be able to characterize the optimal contract in such a setting,

I construct a reduced stationary representation of the model in line with the
dynamic insurance literature. The representation bene�ts from Green (1987)-
the notion of temporary incentive compatibility, Spear and Srivastava (1987)-
the recursive formulation of the problem with the agent�s expected discounted
utility taken as the state variable, and Phelan (1995)- the recursive structure
with limited commitment, but is closest to Wang (1997) as far as the recursive
form is concerned. Unlike Wang (1997), however, I formally introduce limited
commitment on both sides and provide a rigorous treatment of its e¤ect on the
structure of the reduced computable version of the model. A parallel research
by Ase¤ (2004) uses a similar general formulation2 , but via a transformation
due to Grossman and Hart (1983) constructs a dual, cost-minimizing recursive
form closer to Phelan (1995) in order to solve for the optimal contract. Such a
procedure, however, exogenously imposes the optimality of a certain action on
every possible contingency.
After existence is proved, the general form of the model is reduced to a more

tractable, recursive form where the state is given by the agent�s (promised)
expected discounted utility. On a di¤erent dimension, the state space includes
the set of possible truncated histories in order to account for their in�uence3

on the reservation utilities. This recursive formulation does not rely on the
�rst-order approach and is not based on Lagrange multipliers [cf. Marcet and
Marimon, (1998)]. In fact, all I need is continuity of the momentary utilities.
I �rst consider an auxiliary version where the participation of the principal
is not guaranteed. The solution of this problem can be computed through
standard dynamic programming methods once the state space is determined.
Following the approach of Abreu, Pearce and Stacchetti (1990), the state space
is shown to be the �xed point of a set operator and can be obtained through
successive iteration on this operator until convergence. Given the solution of
the auxiliary problem, I resort to a procedure outlined by Rustichini (1998)
in order to solve for the optimal incentive compatible, two-side participation
guaranteed supercontract. This is achieved by severely punishing the principal
for any violation of his/her participation constraint. The procedure allows of
recovering the subspace of agent�s expected discounted utilities supportable by
a self-enforcing incentive-compatible contract.
The rest of the paper is structured as follows. Section 2 presents the dynamic

model. Section 3 derives the reduced recursive formulation. Section 4 concludes.
Appendix 1 contains all the proofs.

2His benchmark model is a full-commitment one, but he considers limited commitment on
part of the agent as an extension.

3The relationship between the history of observables and the reservation utilities is prede-
termined since the reservation utilities are exogenous to the problem.
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2 Dynamic model

The model considers a moral hazard problem in an in�nite horizon principal-
agent framework with limited commitment on both sides. Each period, the
principal needs the agent to implement some action that stochastically a¤ects
a variable of principal�s interest, but su¤ers from the fact that the action is
observable only by the agent. Given that the variable of interest to the principal
is publicly observable, the principal may want to condition the wage of the agent
on the realization of this variable instead. However, the issue of inducing the
proper incentives is further complicated by the lack of commitment to a long-
term relationship. The commitment problem is structured very generally in the
sense that the reservation utilities are allowed to depend on some truncation of
the publicly observed history.
Consider, for example, the interaction between the �rm�s shareholders (the

principal) and its CEO (the agent). The CEO may exert a di¤erent amount of
e¤ort which on its turn randomly a¤ects the success of the corporation illus-
trated by its observed gross pro�t. Both the principal and the agent have some
outside options: the �rm may close, while the agent may quit and start work-
ing for another employer. These options are represented by reservation utilities
which may vary on the history of observables (in this case, the history of �rm�s
realized gross pro�ts).
First, I will introduce some notation. Let Z be the set of integers with

Z++ and Z+ denoting the sets of positive and respectively nonnegative integers.
Time is discrete and indexed by t 2 Z. Let yt denote a particular realization
of the variable of interest to the principal in period t. This outcome is realized
and observed by both the principal and the agent at the end of the period. As
a matter of fact, at the beginning of period t there is a stream of previously
realized outcomes which we denote by yt�1. Given that the end-of-period-t
realization is yt, the history of outcomes at the beginning of period t+1 is simply
yt =

�
yt�1; yt

�
. The set of possible outcomes is assumed a time- and history-

invariant, �nite set of real numbers which is denoted by Y . For concreteness,
we assume that it consists of n > 1 distinct elements.
There is an initial period of contracting which we normalize to 0. At the

beginning of this initial period, an outcome history of length � 2 Z+ is observed.
Therefore, a period-0 contracting problem should be de�ned on n� initial his-
tory nodes.4 Both the principal and the agent can only commit to short term
contracts, therefore it is natural to start with a series of single-period contracts
de�ned on all possible contingencies stemming from some initial node. Each such

4As it will become clear afterwards, history will not matter at the initial period of con-
tracting unless the reservation utility of either the principal or the agent is history dependent.
Since in order to keep the problem tractable, I allow the reservation utilities to vary across a
�nite truncation of the observed history with length � (Assumption 2), it would be natural
to consider the contracting problem as de�ned on n� initial nodes. As for the existence of
an initial period of contracting, note that we can modify the period-0 contracting problem
[PP] so that the principal should provide the agent with a given initial (expected discounted)
utility level resulting from a previous round of long-term contracting.
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contract is history dependent and speci�es an action and a monetary transfer
from the principal to the agent contingent on the particular outcome observed
at the end of the period. The timing is as follows. A short-term contract is
signed at the beginning of the period. Then, the agent implements some action
which is unobserved by the principal and may not be the one speci�ed in the
contract. Nature observes the action and draws a particular element of the set
of possible outcomes according to some probability distribution. The outcome
is observed by both parties and the agent receives the transfer corresponding to
this particular outcome.5 Then, a new period starts, a new short-term contract
is signed, and so on.
Formally, at the beginning of each period t 2 Z+, after a particular his-

tory yt�1 has been publicly observed,6 a single-period contract ct
�
yt�1

�
:=

fat
�
yt�1

�
; wt

�
yt�1; y

�
: y 2 Y g is signed between the principal and the agent.

Hereafter, for the sake of simplicity, I will often denote such a contract by ct
with the clear understanding that it is de�ned on a particular history yt�1. The
contract speci�es an action at to be implemented by the agent. To make the
analysis tractable, the action is assumed one-dimensional and the action space
is taken compact, time- and history-invariant. Formally, at 2 A, where A � R
compact. The contract also speci�es a compensation scheme fwt (:; y) : y 2 Y g
under which the agent will receive a monetary payo¤ wt (:; y) in the end of the
period if the (end-of-period) outcome is y for any y 2 Y . The space of possible
wages,W , is assumed a compact, time- and history-invariant subset of R.7 After
the contract is signed, the agent exercises action a0t 2 A which is not necessarily
the one prescribed by the contract. Then, outcome yt is realized and the agent
receives wt (:; yt). At the beginning of period t+ 1, contract ct+1 (yt) is signed
and so on.
Hereafter, I will refer to any sequence of outcomes, actions, or wages as

admissible if all their elements belong to Y , A, or W , respectively.

5Given the above setup, the principal�s ability to commit to a short-term contract should
be understood as an ability to commit to providing the agent with the promised monetary
transfer. Indeed, the transfer speci�ed in the short-term contract signed at the beginning of
the period occurs at the end of the same period.

6You may note that an outcome history yt�1 consists of � elements corresponding to the
initial history observed at the beginning of period 0 and t elements from period 0 to period
t� 1.

7The compactness assumption can easily be defended by economic considerations. Consider
W = [w;w] � R, where w may either be zero or a higher number that corresponds to the
legally established minimum wage, while w is some �nite number re�ecting the boundedness
of the principal�s total wealth (the discounted sum of maximum possible income �ows). For
example, if we treat y as pro�ts, then w may be taken equal to maxY

1��P
, where �P is the relevant

discount factor, or to a lower number re�ecting restrictions on the principal�s ability to borrow
against future pro�ts. In Morfov (2009a), a minimum wage level is assumed and from there
a theoretical upper bound on the wage is derived in Proposition 1. In the same paper, two
other possibilities are considered. The �rst deals with the case where the principal can borrow
up to maxY � y units of consumption, where y is current gross pro�t. Then, we can take
w = maxY . The second case assumes that the principal is prohibited from borrowing, so
the wage cannot exceed the current gross pro�t realization. Note that we can easily extend
this case to the environment described here, by taking w = maxY and additionally requiring
wt (:; y) � y, 8y 2 Y .
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In order to simplify the analysis, I assume that the probability distribution
of the variable of interest to the principal depends only on the action taken
(earlier) in the same period8 and that each value in the admissible set Y is
reached with a strictly positive probability.

Assumption 1 For any period t 2 Z, any admissible outcome history yt =�
yt�1; yt

�
; and any admissible action sequence at =

�
at�1; at

�
, the probability

that yt is realized given yt�1 has been observed and at has been implemented
equals � (yt; at) where � : Y �A! (0; 1) such that 8a 2 A,

P
y2Y

� (y; a) = 1 and

8y 2 Y , � (y; :) continuous on A.

The continuity of � in its second argument is a regularity condition which
is trivially satis�ed if A is �nite.
The principal�s (end-of-)period-t utility is denoted by u (wt; yt), where u :

W�Y �! R is assumed continuous, decreasing in the agent�s wage, and increas-
ing in the outcome. The principal discounts the future by a factor �P 2 (0; 1).
The agent�s (end-of-)period-t utility is given by � (wt; at) with � :W �A �! R
continuous, increasing in wage, and decreasing in the implemented action.9 The
agent discounts the future by a factor �A 2 (0; 1). Note that given our assump-
tions, the expected discounted utilities of both the agent and the principal are
bounded at any node.
As already mentioned, the agent need not necessarily implement the action

speci�ed in the contract. Indeed, if another action brings the agent strictly
higher utility, he/she will �nd it pro�table to deviate. Therefore, the contract
should provide the proper incentives to the agent in order for him/her to exercise
exactly the action recommended by the principal.
Limited commitment is assumed on both parts in the sense that both the

principal and the agent can commit only to short-term (single-period) contracts.
This assumption is intended to re�ect legal issues on the enforcement of long-
term contracts. However, at the initial period the principal can o¤er a long
term contract (a supercontract) that neither he/she, nor the agent would like
to renege on,10 and that would provide the necessary incentives for the agent

8While the framework can be modi�ed to include some form of �action� persistence [see,
for example, Fernandes and Phelan (2000) and Jarque (2005)], such an extension will be of
little value here since the current paper aims to characterize the e¤ect of a generalized form of
limited commitment on the optimal dynamic contract. Given that the reservation utilities are
allowed to vary across the history of observables, we have another form of persistence which
should be analyzed in isolation from potential long-term e¤ects coming from agent�s action
choice.

9Note that we e¤ectively prohibit the agent from borrowing or saving. While extending
the model in that direction is possible, introducing such a behavior would shift the focus to
incentive-compatibility, while in the current research I seek to analyze the role of the partic-
ipation constraints in the optimal contract. Moreover, without a set of strong assumptions
justifying the �rst-order approach, such an extension would be very hard to deal with on a
practical level given the increase in the dimensionality of the state space of the recursive form.
10That is, a self-enforcing contract extending the de�nition of Phelan (1995) to my gener-

alized notion of limited commitment.
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to exercise the sequence of actions proposed by the principal. We will refer to
this supercontract as a self-enforcing, incentive-compatible contract and would
concentrate on the one maximizing the utility of the principal.
Regarding the issue of commitment, the reservation utilities take values in

R and are allowed to vary across the history of observables. Since it is not
practical to de�ne reservation utilities on in�nite histories, I make the following
assumption.

Assumption 2 The reservation utilities of both the principal and the agent
exogenously depend on the previous � outcomes.

The assumption says that the reservation utilities are �nite-history depen-
dent, but time independent. Note that the history dependence is truncated to
the realizations in the previous � periods. This is no coincidence. Analogously,
we could have started with potentially in�nite histories in period 0, introduced
�nite-history dependence of di¤erent length: �P for the principal and �A for the
agent, and then considered �nite truncations with length � := max f�P ; �Ag of
the in�nite histories observed in period 0.
Let Y � denote the set of possible outcome streams of length � periods, or,

alternatively, the set of possible initial histories observed at the beginning of pe-
riod 0. For concreteness, let us enumerate this set using some bijective function
l : Y � ! L, where L :=

�
1; :::; n�

	
. Hereafter, all functions and correspon-

dences with domain Y � will be considered as vectors or Cartesian products of
sets indexed by L. Moreover, we will often abuse the notation and use l as its
inverse, namely, as the initial history to which the particular index corresponds.
Given this indexing, we will denote the reservation utilities of the principal

and the agent at node yt�1 2 Y t � l as U l and V l respectively, 8t 2 Z+,
8l 2 L. For example, if the history observed in the previous � periods has been
(yt��; :::; yt�1), the principal�s reservation utility in the current period will be
U l , where l = l (yt��; :::; yt�1) is the index of the particular outcome stream.
For any l 2 L, we will de�ne a long-term contract (a supercontract), c :=

(a;w), where a :=
�
at
�
yt�1

�
: yt�1 2 l � Y t

	1
t=0

and w := fwt
�
yt�1; yt

�
:�

yt�1; yt
�
2 l�Y t�Y g1t=0 are the plan of actions and respectively the sequence

of wages de�ned the whole tree of contingencies stemming from an initial history
l.11 The supercontract prescribes a single action at every node, but speci�es the
agent�s compensation as further dependent on the end-of-period outcome, i.e.,
as a function with domain Y , or alternatively, as a vector of n elements.12 Let
V�
�
c; y��1

�
and U�

�
c; y��1

�
be the expected discounted utilities of the agent

and respectively the principal at node y��1 given a supercontract c, i.e.:

11Note that the supercontract depends on the initial history, but to ease up the exposition,
I suppress this dependence notationally.
12Remember that Y is �nite with cardinality n.
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V�
�
c; y��1

�
:=

1P
t=�
�t��A

P
yt2Y

:::
P
y�2Y

� (wt; at)
tY
i=�

�
�
yi; ai

�
yi�1

��
,

U�
�
c; y��1

�
:=

1P
t=�
�t��P

P
yt2Y

:::
P
y�2Y

u (wt; yt)
tY
i=�

�
�
yi; ai

�
yi�1

��
.

At time 0, after a truncated history l has been observed, the principal is
solving the following problem:

[PP]

sup
c
U0 (c; l) s.t.:

a� 2 A, 8nai(l) (1)

w� (:; y) 2W , 8y 2 Y , 8nai(l) (2)

V�
�
a;w; y��1

�
� V�

�
a0; w; y��1

�
, 8(a0 : 8nai(y��1), a0t 2 A), 8nai(l) (3)

V�

�
c; y����1;el� � V el, 8nai(l) (4)

U�

�
c; y����1;el� � Uel, 8nai(l) (5)

where �8nai(l)�should be understood as �for any node after and including l�,
that is 8y��1 2 l � Y � , 8� 2 Z+.
This is a time-0, history-l contracting problem that mimics dynamic con-

tracting from this node on. That is, at l, the principal solves for a sequence of
future strategies on all possible contingencies, so at each node the continuation
strategy needs to be self-enforcing and incentive compatible. As in the standard
model of dynamic contracting, these strategies are history-dependent. Here, we
additionally have that each decision node is characterized by a speci�c pair of
reservation utilities which depend on the history of observables. Nevertheless,
as the next section shows, the problem does possess a recursive representation
in the spirit of Spear and Srivastava (1987).
Constraints (1) and (2) guarantee that the action plan and respectively the

wage scheme are admissible. That is, at any node of the tree stemming from
l, the supercontract prescribes an action from A and speci�es a compensation
scheme that maps Y toW . (3) guarantees that the contract is incentive compat-
ible on any node. For example, at the initial node l, it requires that the action
plan of the principal should make the agent weakly better o¤ in terms of period-
0 expected discounted utility than any other sequence of admissible actions.13

13 In our framework, we actually have that incentive compatibility on any node is equivalent
to initial (time-0) incentive compatibility (see Lemma 1 in the Appendix).
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(4) and (5) are the participation constraints of the agent and respectively the
principal which due to limited commitment should hold at any node. These
constraints guarantee the participation of both parties at each contingency. For

example, at node y��1 =
�
y����1;el�, the expected discounted utility of the

agent should be no less than his/her respective reservation utility at this node,
V el, and the expected discounted utility of the principal should be greater or
equal to Uel.
For future reference, we denote the problem above as [PP] and its supremum

as U��l .
The solution of [PP], if such a solution exists, would be the self-enforcing,

incentive-compatible contract that maximizes the utility of the principal at the
initial period of contracting.
Let �y��1 :=

�
c : (1)� (5) hold after y��1

	
. This is the set of admissible,

incentive-compatible, self enforcing contracts that can be signed at node y��1.
In particular, consider �l, the set of such contracts available at an initial history
l. We shall assume that this set is non-empty for any l 2 L.14

Assumption 3 8l 2 L, �l 6= ;.

3 Recursive Form

In this section, we will prove existence and construct an equivalent recursive
representation of [PP]. We start by establishing the equivalence of incentive
compatibility at all contingencies to Green (1987)�s temporary incentive com-
patibility at all contingencies.

Proposition 1 Let (1) and (2) hold after l 2 L. Then, (3) ,

8nai (l) , V�
�
a;w; y��1

�
� V�

�
a0; w; y��1

�
,

8a0 : a0�
�
y��1

�
2 A, and 8y 2 Y , 8nai

�
y��1; y

�
, a0t (:) = at (:) (6)

14 If the set is empty for some initial history, then there does not exists an incentive-
compatible, self-enforcing supercontract at this node. As our numerical estimates in Morfov
(2009a) demonstrate, this is hardly the case: in fact there is a wide interval of possible utility
promises to the agent that can be supported by a contract of such type for any initial history
node. Also note that for suitably chosen reservation utility values, the incentive compatible
contract will behave as a full-commitment one, so any violation of Assumption 3 will directly
imply the non-existence of the latter. Therefore, it is more a problem of choosing the �proper�
(not too high) reservation utilities than anything else. Nevertheless, Morfov (2009b) considers
an extension that allows for permanent separations and does not require an assumption of
this sort.
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The proposition says that constraint (3) is equivalent to requiring that at
any date � , after any history y��1, there is no pro�table deviation in the current
period which will make the agent strictly better o¤ (in expected utility terms)
given that he/she fully complies to the plan in the future. The proposition
allows us to focus on single-period deviations, which is the �rst step towards a
recursive structure.
Consider two types of supercontracts. The �rst, hereafter referred to as a

2P contract, is an incentive-compatible supercontract which is self-enforcing,
i.e., guarantees the participation of both the agent and the principal. The
second, hereafter referred to as an AP contract, is an incentive-compatible su-
percontract which guarantees the participation of the agent, but not neces-
sarily the one of the principal.15 Note that the set of possible 2P contracts
that can be signed at node y��1 was already denoted by �y��1 . Let �APy��1 be
the set of possible AP contracts that can be signed at node y��1. Formally,
�APy��1 :=

�
c : (1)� (4) hold after y��1

	
. Now, we are going to consider the

sets of agent�s initial utilities that can be guaranteed/supported by a 2P and
respectively an AP contract.
Let l be some initial history node. Take an arbitrary period � and a history

y��1 stemming from l, i.e., y��1 2 l � Y � . Let V 2P�
�
y��1

�
be the set of

admissible values for the expected discounted utility of the agent signing at date
� after a history y��1 a 2P contract with the principal. Formally, V 2P�

�
y��1

�
:=

fV 2 R : 9c 2 �y��1 such that V�
�
c; y��1

�
= V g. Let us also introduce

another set, V AP�

�
y��1

�
, which gives us the possible discounted utilities of the

agent signing at date � after a history y��1 an AP contract with the principal.
Formally, V AP�

�
y��1

�
:= fV 2 R : 9c 2 �APy��1 such that V�

�
c; y��1

�
= V g.

Since every 2P contract is an AP contract, the agent�s utilities supportable
by a 2P contract will be a subset of the agent�s utilities supportable by an
AP contract. Formally, V 2P�

�
y��1

�
� V AP�

�
y��1

�
for any l 2 L, � 2 Z+,

and y��1 2 l � Y � . Now, we are ready to introduce the sets of principal�s
initial utilities that can be supported by a 2P and respectively an AP contract
promising a certain initial utility to the agent.
For any V 2 V 2P�

�
y��1

�
, let U2P�

�
V; y��1

�
be the set of possible values for

the expected discounted utility of the principal signing at node y��1 at time �
a 2P contract that would give the agent an initial expected discounted utility
of V , i.e., U2P�

�
V; y��1

�
:= fU 2 R : 9c 2 �y��1 such that V�

�
c; y��1

�
= V

and U�
�
c; y��1

�
= Ug. For any V 2 V AP�

�
y��1

�
, let UAP�

�
V; y��1

�
be the

corresponding set (de�ned accordingly) in case the principal is signing an AP
contract instead. Then, for any V 2 V 2P�

�
y��1

�
, we have U2P�

�
V; y��1

�
�

UAP�
�
V; y��1

�
, while for V 2 V AP�

�
y��1

�
n V 2P�

�
y��1

�
, U2P�

�
V; y��1

�
is not

de�ned.

15 It may be easier to remember the abbreviations in the following way: AP=�agent partic-
ipates�; 2P= �two [...] participate�, i.e., both the agent and the principal participate.
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Proposition 2 Let l 2 L and i 2 f2P;APg. Then, for any � 2 Z+ and y��1 2
Y � � l : (a) V i�

�
y��1

�
= V i0 (l) compact; (b) 8V 2 V i�

�
y��1

�
, U i�

�
V; y��1

�
=

U i0 (V; l) compact.

Part (a) of the proposition says that the sets of possible expected discounted
utility values for the agent signing a 2P or AP contract are time invariant and
compact. Furthermore, the history dependence of these sets is restricted only
to the previous (as of signing) � realizations. As part (b) indicates, the result
also applies to the set of possible expected discounted utilities of the principal
signing a 2P or AP contract guaranteeing a particular initial utility to the agent.
To ease up the notation, we will hereafter refer to these sets as V 2P (l),

V AP (l), U2P (V; l), and UAP (V; l).
Remember that U��l is the supremum of the principal�s problem [PP]. We

state the following result.

Proposition 3 (Existence of an optimal contract): For any l 2 L, 9cl 2 �l s.t.
U��l = U0 (cl; l).

The proposition establishes the existence of an optimal 2P contract. How-
ever, due to the complexity of the problem, the optimal contract cannot be de-
rived analytically. Nevertheless, I show that it can be characterized and given
a computable representation. In the spirit of Spear and Srivastava (1987), this
is done by constructing a recursive version of [PP] taking the agent�s expected
discounted utility as a state variable. Up to certain quali�cations, this new for-
mulation of the problem can be addressed by dynamic programming routines.
I will �rst establish a useful result which is related to the transformation

of the dynamic principal�s problem to a series of static problems de�ned on an
endogenously obtained state space.
Fix l 2 L. By Proposition 2 (b) for any V 2 V 2P (l), U2P (V; l) is compact

and therefore, we can de�ne U
�
(V; l) := maxU2P (V; l) as the maximum utility

the principal can get by signing a 2P supercontract o¤ering V to the agent.
Furthermore, let U�l := sup

V 2V 2P (l)

U� (V; l).

Proposition 4 8l 2 L, U��l = U�l = max
V 2V 2P (l)

U� (V; l).

This proposition shows that the principal is indi¤erent between directly max-
imizing his/her utility given l, or �rst �nding the maximum utility he/she can
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obtain by guaranteeing the agent a certain initial level of utility and then max-
imizing over the resulting set.16

Let l+ : L � Y ! L give the index of the initial history tomorrow given
the index of the initial history today and the new realization of the variable.
Consider, for example, that we are in period t. At the beginning of t, an initial
history (yt��; :::; yt�1) with index l has been observed. At the end of the period,
an outcome yt�1 is realized. Then, at the beginning of period t+1, the observed
initial history will be (yt��+1; :::; yt) and will have an index l+ (l; yt). We will
often abuse the notation and use l+ instead of l�1 (l+), i.e., replace the initial
history tomorrow by its index.
Consider the state space

�
(V; l) : V 2 V AP (l)

	
l2L that matches initial his-

tories of outcomes with initial utility promises supportable by an AP contract.17

Let cR(V; l) = f(a�(V; l); w+(V; l; y); V+(V; l; y)) : y 2 Y g be a stationary con-
tract de�ned on a point (V; l) of the state space, where a� (:) is the agent�s
action in the beginning of the period, w+ (:; y) is the wage the agent will re-
ceive in the end of the period if the realization of the variable of interest to the
principal is y, 8y 2 Y , and V+ (:; y) is the end-of-period expected discounted
utility of the agent in case of realization y, 8y 2 Y . Since the realization of the
variable in question is not known when this contract is signed, the wage and the
end-of-period utility of the agent are speci�ed for all possible outcomes, Y . Al-
though the stationary contract depends on the initial history and the particular
expected discounted utility of the agent in the beginning of the period, I will
often suppress this dependence notationally and refer to the contract simply as
cR = f(a�; w+ (y) ; V+ (y)) : y 2 Y g. Let USCBl denote the space of bounded
upper semicontinuous (usc) functions from V AP (l) to R endowed with the sup
metric. De�ne V AP :=

�
V AP (l)

	
as the set of possible initial discounted util-

ities of the agent signing an AP contract ordered by initial history. Since L is
�nite, this set inherits the properties of V AP (l) established in Proposition 2 (a).
Then, for any U = fUlg with Ul 2 USCBl, 8l 2 L, de�ne the operator T as
follows. For any V = fVlg 2

�
V AP

	
, T (U)(V ) :=

n
Tl (U)(Vl)

o
, where:

Tl (U)(Vl) := maxcR
f
P
[

y2Y
u (w+ (y) ; y) + �PUl+(l;y) (V+ (y))]� (y; a�)g s.t.:

16Note that the original problem can be set as the principal maximizing expected discounted
utility given an initial truncated history l at period 0, where the maximum is taken over a set
of 2P supercontracts promising the agent an initial expected discounted utility of Vl for any
l 2 L and Vl 2 V 2P (l). The promise should be consistent (in a sense that will soon become
clear; see (9)) and can be considered a leftover from a (remote) previous round of contracting.
Then, the original problem is de�ned on fV 2P (l) : l 2 Lg and the recursive representation will
be equivalent to the one obtained here without the need to maximize U� (:; l) over V 2P (l).
Namely, we would have U�� (:; l) = U� (:; l) over V 2P (l). Since the static form characterizing
both [PP] and the problem described here is the same, I choose to present the former because
of the more involved description and notation of the latter.
17The possible initial histories (of length �) enter the picture because they could potentially

a¤ect the reservation utility values.
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a� 2 A (7)

w+ (y) 2W , 8y 2 Y (8)

X
y2Y

[� (w+ (y) ; a�) + �AV+ (y)]� (y; a�) = Vl (9)

X
y2Y

[�
�
w+ (y) ; a

0
�
�
+ �AV+ (y)]�

�
y; a0�

�
� Vl, 8a0� 2 A (10)

V+ (y) 2 V AP (l+ (l; y)) , 8y 2 Y (11)

Notice that the maximization above is over a set of static contracts at a
particular point (Vl; l) of the state space.18 Also note that if the initial history
today is l and the end-of-the-period realization is y, then the initial history
tomorrow will be l+ which in general will be di¤erent from l. Therefore, it is
important that we keep track of the initial history update and so each Tl is
applied to U , not just to Ul.19 The use of max instead of sup in the de�nition of
T is justi�ed by the fact that we are maximizing an usc function over a compact
set. Constraints (7), (8), and (10) are the stationary versions of (1), (2), and
(6) respectively. In particular, (7) guarantees that the action is admissible (i.e.,
an element of A), (8) guarantees that the compensation scheme is admissible
(i.e., mapping Y toW ), and (10) is temporary incentive compatibility.20 (9) is a
promise keeping constraint21 which guarantees the agent an expected discounted
utility of Vl today. It is a requirement on the static contract that makes the
principal�s initial utility promise to the agent at node l, Vl, consistent with the
future promise given the proposed action and compensation scheme. (11) is
another consistency constraint requiring that the discounted expected utility
that the agent will get next period can be supported by an AP supercontract.
Note that (11) implies that the agent�s continuation utility should not fall below

18This may not show up directly since I have simpli�ed the notation by suppressing the
dependence of cR on the initial history l and the particular initial utility Vl promised to the
agent.
Notice also that f(Vl; l) : Vl 2 V AP (l)g is endogenous to the model, so one may doubt

the usefulness of de�ning the operator T on an unknown state space as well as the practical
bene�t of constraint (11). Further in this section, however, we will demonstrate that V AP

can be recovered from the primitives by a recursive procedure in the spirit of Abreu, Pearce
and Stacchetti (1990).
19Of course, if � = 0, the reservation utilities will be constant at all nodes, so the initial

history will be immaterial for the static contract. The state space will shrink to a single
dimension; namely, the set of expected discounted utilities that can be promised to the agent
will be the same at every node. Then, the history update will prove irrelevant since U will be
de�ned on the one-dimensional V AP .
20Note that we have made use of (9) when stating temporary incentive compatibility as

(10). Namely, given (9) holds, temporary incentive compatibility is equivalent to (10).
21 It is referred to as a re-generation constraint in Spear and Srivastava (1987).
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the reservation level on any respectively updated initial history, i.e., V+ (:; y) �
V l+(l;y), 8y 2 Y . In fact, constraints (9) and (11) guarantee the dynamic
consistency of the series of static contracts generated by iterating on the operator
T .
For any l 2 L and V 2 V AP (l), we have that UAP (V; l) is compact by

Proposition 3 (b). Then, we can de�ne U
AP�

(V; l) := maxUAP (V; l) as the
maximum utility the principal can get by signing an AP supercontract o¤ering

V to the agent. For any V 2 V AP , let UAP�
(V ) =

n
U

AP�
(Vl; l)

o
be the vector

of these maximum utilities indexed by initial history. Next, I will show that
U

AP�
: V AP ! Rn� is the unique �xed point of the operator T and can be

obtained as the limit of successively iterating on T . I start with a proposition
that establishes some useful properties of U

AP�
.

Proposition 5 For any l 2 L, UAP�
(:; l) is usc and bounded on V AP (l).

Note that these properties can directly be translated to U
AP�

, say with the
sup metric over Y �.

Proposition 6 T
�
U

AP�
�
= U

AP�
.

The proposition says that U
AP�

is a �xed point of the operator T .
For the purposes of the next proposition, I introduce some additional nota-

tion. Let ßl denote the space of bounded functions from V AP (l)
to R endowed with the sup metric. For any U 0; U 00 2 fUSCBlg,
de�ne the metric � (U 0; U 00) := sup

l2L

�l (U
0; U 00), where �l (U

0; U 00) :=

sup
Vl2VAP (l)

jU 0l (Vl)� U 00l (Vl)j, 8l 2 L. Note that both suprema in the above de�-

nition are achieved.

Proposition 7 (a) T maps (fUSCBlg ; �) into itself; (b) T is a contraction
mapping with modulus �P in terms of the metric �; (c) Let eU 2 (fßlg ; �) :
T
�eU� = eU . Then, eU = U

AP�
; (d) 8U 2 (fUSCBlg ; �), �

�
Tn (U) ; U

AP�
�

!
n!1

0, where Tn (U) := T (Tn�1(U)) for any n 2 Z++ with T 0 (U) := U .

This proposition shows that the �xed point of T is unique and can be ob-
tained as a limit of successive iterations on T . Consequently, we can use standard
dynamic programming techniques in order to solve for the optimal AP contract.
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However, what we are ultimately interested in is solving for the optimal 2P
contract. For this purpose, I resort again to dynamic programming using a
method outlined by Rustichini (1998).
First, I will introduce some notation. For any l 2 L and Vl 2 V AP (l), let

�R (Vl; U; l) := fcR : (7) � (11) hold at (Vl; l) and Ul+(l;y) (V+ (y)) � U l+(l;y);

8y 2 Y g for some function U : V AP ! (R [ f�1g)n
�

. Additionally, let

�R (Vl; U; l) :=

�
�R (Vl; U; l) if Ul (Vl) � U l
�R (Vl; U; l) := ; otherwise.

Denote by USCBAl the space of usc, bounded from above functions from
V AP (l) to R [ f�1g. Then, for any U = fUlg with Ul 2 USCBAl, 8l 2 L,
de�ne the operator T as follows. For any V 2 V AP , T (U)(V ) :=

n
T l (U)(Vl)

o
,

where

T l (U)(Vl) := max
cR2

�R(Vl;U;l)

f
P
y2Y

[u (w+ (y) ; y) + �PUl+(l;y) (V+ (y))]� (y; a�)g

following the convention that T l (U)(Vl) = �1 if �R (Vl; U; l) = ;.
This operator encompasses the lower bounds on the utility of the principal

in the form of additional constraints. The only di¤erence with T is that in
case U is lower than the reservation utility of the principal today or at any
possible contingency tomorrow, T becomes �1. The idea is that any violation
of the constraints in this stationary framework is punished severely making the
contract in question non-optimal. What remains to be shown is that iterating
on this operator will indeed lead us to the optimal dynamic contract.

Proposition 8 T maps fUSCBAlg into itself.

For any V 2 V AP , letD0 (V ) := UAP
�
(V ) andDi+1 (V ) := T (Di), 8i 2 Z+.

Note that by Proposition 8 and the fact that �R (Vl; U; l) is compact if non-empty
for any Vl 2 V AP (l), U 2 fUSCBAlg, and l 2 L (trivial), Di is well de�ned on
V AP for any i 2 Z+.

Proposition 9 (a) fDig1i=1 is a weakly decreasing sequence and 9D1 2
fUSCBAlg : Di (Vl; l) !

i!1
D1 (Vl; l), 8Vl 2 V AP (l), 8l 2 L; (b) T (D1) =

D1; and (c) if 9D0 2 fUSCBAlg : T (D0) = D0, then D0 � D1.
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This proposition says that if we start iterating on the operator T taking
UAP

�
as an initial guess, we will ultimately converge (pointwise) to D1, the

largest �xed point of T . Next, I establish the relationship between U� and D1.
In the subsequent analysis it will be useful to extend U� on V AP . For any

V 2 V AP , let bU� (V ) := nbU� (Vl; l)o with bU� (Vl; l) := U� (Vl; l) if Vl 2 V 2P (l)
and bU� (Vl; l) := �1 otherwise.

Proposition 10 T
�bU�� = bU�.

This proposition establishes that the extension of U� on V AP is a �xed
point of T . What remains to be shown is how to recover U� from D1. The
next proposition gives the answer.

Proposition 11 For any V 2 V AP , bU� (V ) = D1 (V ).
The proposition provides a straight-forward method of solving for the op-

timal 2P supercontract. After we have found the optimal AP contract we
take it as an initial guess and start iterating on the operator T until con-
vergence is reached. Note that convergence here is pointwise and is meant
to be on R [ f�1g. After we have obtained the limit function D1, we
can recover the set of possible values for the expected discounted utility of
the agent signing a 2P contract by taking the subset of the domain of D1
on which the limit function takes �nite values. More precisely, for any l 2
L we can restrict ourselves only to values of D1 (:; l) above U l. Formally,
V 2P (l) :=

�
V 2 V AP (l) : D1 (V; l) � U��y

	
. Then, for anyV 2 V 2P (l), we

have U� (V ; l) = D1 (V; l).
However, note that the state space of the recursive problem constructed for

computing the optimal AP contract, V AP , is endogenous. Nevertheless, it is
the largest �xed point of a set operator and can be obtained through successive
iterations in a procedure introduced by Abreu, Pearce and Stacchetti (1990).
Choose some bV 2 R : bV � max

l2L

�
maxV AP (l)

	
, where the right-hand side of

the inequality is well de�ned given V AP (l) compact, 8l 2 L and L �nite. Note
that given Assumption 3,

h
V l;

bV i 6= ;; 8l 2 L. Then, for any X = fXlg : Xl 2
R, 8l 2 L let B (X) := fBl (X)g with

Bl (X) := fVl 2
h
V

l
; bV i : 9cR : (7) � (10) and (12) hold at (Vl; l)g,
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where (12) is de�ned as:

V+ (Vl; y) 2 Xl+(l;y)
\
h
V

l+(l;y)
;+1

�
, 8y 2 Y (12)

Note that Bl (X) gives the set of agent�s initial utilities that are not below the

reservation level
�
which follows from Vl 2

h
V

l
; bV i� and that can be supported

by a single-round (stationary) contract at l that is admissible [i.e., (7) and (8)
hold], consistent [i.e., satis�es (9)], temporary incentive-compatible [i.e., satis�es
(10)] and has continuation utilities which are taken from X and are not below
the relevant reservation level [i.e., (12) holds]. In short, B maps continuation
utilities to relevant initial utilities. It is this operator that will help us recover
the endogenous state space of T , V AP .

Proposition 12 (a) B
�
V AP

�
= V AP ; and (b) if 9X � Rn� : B (X) = X,

then X � V AP .

This proposition establishes that the set of agent�s expected discounted util-
ities supportable by an AP supercontract, V AP , is the largest �xed point of
B.

Proposition 13 Let X0 compact : V AP � X0 � Rn
�

and B (X0) � X0. De�ne
Xi+1 := B (Xi), 8i 2 Z+. Then, Xi+1 � Xi, 8i 2 Z+ and X1 := lim

i!1
Xi =

V AP .

The proposition says that if we start iterating on B taking as an initial guess
some compact set X0 that contains both B (X0) and V AP , we will ultimately
converge to the largest �xed point of the operator, V AP . This is su¢ cient for

obtaining V AP since we can always take X0 = fX0;lg :
h
V l;

bV i � X0;l � R with
X0;l compact, 8l 2 L. However, an even more computationally e¢ cient result
exists.
Let us modify the operator B as follows. For any X = fXlg : Xl 2 R, 8l 2 L

let eB (X) := n eBl (X)o with
eBl (X) := fVl 2 Xl : 9cR : (7)-(10) and (13) hold at (Vl; l)g,
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where (13) is de�ned as:

V+ (y) 2 Xl+(l;y)
, 8y 2 Y (13)

Note that the operator eB does not require that the agent should commit to
the contract. Namely, we do not impose a constraint keeping the continuation
values for the utility of the agent above the lower bound given by the reservation
utility. From a computational point of view, we are increasing the e¢ ciency since
we are relaxing the set of constraints.

Proposition 14 (a) Take eX0 := n eX0;lo with eX0;l = h
V l;

bV i, 8l 2 L and leteXi+1 := eB � eXi�, 8i 2 Z+. Then, eXi+1 � eXi, 8i 2 Z+ and eX1 := lim
i!1

eXi =
V AP . (b) eB �V AP � = V AP ; and (c) if 9X : ; 6= X � eX0 and eB (X) = X, then
X � V AP .

This proposition outlines a practical way of obtaining V AP . Namely, we start

with the set
nh
V l;

bV io and iterate on the set operator eB until convergence

in a properly de�ned sense is attained. Note that we can always take bV =
�(maxfWg;minfAg)

1��A
.

4 Conclusion

This paper builds a framework for analyzing dynamic moral hazard problems
characterized by limited commitment and history-dependent reservation util-
ities. This is achieved by constructing an equivalent recursive representation
that is stationary on a properly de�ned state space. The state space which con-
tains the expected discounted utilities of the agent on one dimension and the
initial histories on the other is characterized by a generalized Bellman equation.
Given the state space, the optimal AP contract is recursively characterized by
standard dynamic programming routines on bounded usc functions and in the
same time is used as an initial guess for the optimal 2P in a procedure severely
punishing any violation of the principal�s participation constraint.
This general setting can be used to address multiple dynamic problems in-

cluding but not limited to executive compensation, stock option packages, tenure
decisions, optimal insurance, and investment. It would also be interesting to try
to endogenize the external options in a model directly providing the link between
fundamentals/beliefs and reservation utilities.
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APPENDIX

Lemma 1 Let (1) and (2) hold after l 2 Y �. Then, (3) ,

V0 (a;w; l) � V0 (a0; w; l) ,8(a0 : 8nai (l) , a0t 2 A) (14)

Proof. It is trivial to show (3))(14). Just take � = 0. In the other direction,
let (14) hold, but assume that (3) is not satis�ed, i.e., there is a node y��1

s.t. 9a0 admissible 8nai
�
y��1

�
and V�

�
a0; w; y��1

�
> V�

�
a;w; y��1

�
. Let a00 :

8nai
�
y��1

�
, a00t = a

0
t, with a

00
t = at elsewhere. Given (1) and (2), � is continuous

on a compact set and, therefore bounded. Then, we obtain:

V0 (a
00; w; l) =

��1X
t=0

�tA
X
yt2Y

:::
X
y02Y

�
�
wt
�
yt
�
; a00t

�
yt�1

�� tY
i=0

�
�
yi; a

00
i

�
yi�1

��
+

��A
X

yt�12Y
:::
X
y02Y

V�
�
a00; w; y��1

� t�1Y
i=0

�
�
yi; a

00
i

�
yi�1

��
> V0 (a;w; l) , (A1)

where the inequality follows from the construction of a00 since
V�
�
a0; w; y��1

�
> V�

�
a;w; y��1

�
and � > 0 by Assumption 1. Given that

a00 is admissible after l by construction, (A1) contradicts (14).

This proposition shows that incentive compatibility at an initial node ��y is
equivalent to incentive compatibility at all the nodes following l.

Proof of Proposition 1. It is trivial that (3) implies (6). In the
other direction, assume (6) holds at every node, but 9 an admissible plan
a0 : V0 (a

0; w; l) > V0 (a
0; w; l). We have:

V0 (a
0; w; l) =

TX
t=0

�tA
X
yt2Y

:::
X
y02Y

�
�
wt
�
yt
�
; a0t
�
yt�1

�� tY
i=0

�
�
yi; a

0
i

�
yi�1

��
+

�T+1A

X
yT2Y

:::
X
y02Y

VT+1
�
a0; w; yT

� TY
i=0

�
�
yi; a

0
i

�
yi�1

��
,
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where the second term on the right-hand side can be made arbitrarily
small by choosing T big enough given (1), (2) and the assumptions on �A, �,
A, W . Therefore, 9T 2 Z+ and an admissible plan a00 : a00t

�
yt�1

�
= a0t

�
yt�1

�
,

8yt�1 2 l � Y t, 8t � T , and a00t = at elsewhere, s.t. V0 (a00; w; l) > V0 (a;w; l)
Then, take � 2 Z+ : � � T s.t. 9y��1 : a00�

�
y��1

�
6= a�

�
y��1

�
and @� 0 2

Z++ : � < � 0 � T : a00� 0
�
y�

0�1
�
6= a� 0

�
y�

0�1
�
for some y�

0�1 2 l � Y � 0 . If
we de�ne an admissible plan a000 : a000�

�
y��1

�
= a�

�
y��1

�
;8y��1 2 l � Y � and

a000t = a
00
t elsewhere, by (6) at 8y��1 2 l � Y � , we have that V�

�
a000; w; y��1

�
�

V�
�
a00; w; y��1

�
, from where V0 (a000; w; l) � V0 (a

00; w; l). Proceeding in this
way we can eliminate all the deviations (note that � 2 Z+ : � � T ) to obtain
V0 (a;w; l) � V0 (a00; w; l), i.e., a contradiction. Therefore, we obtain (6))(14),
which by Lemma 1 results in (6))(3).

For any l 2 L, let Cl := fc : (1) and (2) hold after lg.

Proof of Proposition 2. (a) Fix l 2 L. Take � 0; � 00 2 Z+ : � 0 � � 00 and arbi-
trary y�

0�1 2 Y � 0� l and y� 00�1 2 Y � 00� l. Take an arbitrary V 0 2 V 2P� 0
�
y�

0�1
�
.

Then, there exists a contract c0 = (a0; w0) 2 �y�0�1 : V� 0
�
c0; y�

0�1
�
= V 0. De�ne

c00 = (a00; w00) such that for any eyt 2 y� 00�1�Y t�� 00+1 with t � � 00, a00t �eyt�1� :=
a0� 0+t�� 00

�
y�

0�1; ey� 00 ; :::; eyt�1�, w00t (eyt) := w0� 0+t�� 00
�
��y�

0�1; ey� 00 ; :::; eyt�. It is
straight-forward that V� 00

�
c00; y�

00�1
�
= V 0 and c00 2 �y�00�1 . Therefore, we

have that V 0 2 V 2P� 00
�
y�

00�1
�
. The same argument holds in the other direction,

so we have proven that V 2P� 00
�
y�

0�1
�
= V 2P� 00

�
y�

00�1
�
.

Fix l 2 L. V 2P (l) is bounded given (1) and (2). Regarding the com-
pactness of V 2P (l), we should also prove that it is closed. Take an arbitrary
convergent sequence fVig1i=1 : Vi 2 V 2P (l), 8i 2 Z++ with limit V1. We
need to show that V1 2 V 2P (l). By the construction of the sequence, for
any i 2 Z++, 9ci 2 �l such that V0(ci; l) = Vi. Then, for any i 2 Z++,
ci 2 Cl. Let us endow Cl with the product topology. Cl is compact as a
product of compact spaces. Consequently, there exists a convergent subse-
quence fcikg

1
k=1 of fcig

1
i=1 such that c1 := lim

k!1
(cik) 2 Cl, from where c1

satis�es (1) and (2) after l. For any T 2 Z+ : T � � ; let V T� (c; y
��1) :=

TP
t=�
�t��A

P
yt2Y

:::
P
y�2Y

[�
�
wt (y

t) ; at
�
yt�1

��
]
tY
i=�

�
�
yi; ai

�
yi�1

��
. Notice that

V� (c; y
��1) � V T� (c; y��1) = �T+1A

P
yT2Y

:::
P
y�2Y

VT+1
�
c; yT

� TY
i=�

�
�
yi; ai

�
yi�1

��
2

[�T+1A
�(minW;maxA)

1��P
; �T+1A

�(maxW;minA)
1��P

], 8T 2 Z+ : T � � , 8c 2 Cl, 8y��1 2
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l � Y � , 8� 2 Z+. Moreover, V T� (:; y��1) is continuous on Cl. Then, V� (:; y��1)
is continuous on Cl. Analogously, we can show that U� (:; y��1) is continuous on
Cl. As a result, we have that c1 satis�es (4), (5), (6) after l and V0 (c1; l) = V1.
Following the same logic, we can show that V AP�

�
y��1

�
is time invariant

and compact and depends only on the last � observations prior to signing.
(b) Analogous to the proof of (a).

Proof of Proposition 3. Fix l 2 L. We have �l � Cl. Let�s endow Cl with
a metric inducing the product topology. Then, following the argument of the
proof of Proposition 2, we obtain that �l is compact and U0 (:; l) is continuous
on Cl.

Proof of Proposition 4. Fix l 2 L. By Proposition 3, we have that
9c 2 �l and U0 (c; l) = U��l . Let V

�� := V0 (c; l). By Proposition 1, V �� 2
V 2P (l) and U��l 2 U (V ��; l). Therefore, U�l � U��l . Suppose U�l > U��l .
Then, 9V � 2 V 2P (l) : U��l < U� (V �; l) � U�l . Since U

� (V �; l) 2 U (V �; l),
9c� 2 �l, V0 (c�; l) = V � and U0 (c�; l) = U� (V �; l). Then, by the de�nition of
U��l and Proposition 1 we have that U��l � U� (V �; l), i.e., a contradiction is
reached. Consequently, U�l = U

��
l and the supremum in the de�nition of U�l is

achieved.

For any l 2 L and 8V 2 V AP (l), de�ne �APl (V ) :=
fc : (1), (2), (4), (6) hold after l and V0 (c; l) = V g and GAPl (V ) :=�
c 2 �APl (V ) : U0 (c; l) = U

AP�
(V; l)

	
.

Lemma 2 For any l 2 L, �APl (:) is upper hemi-continuous (uhc) on
V AP (l).

Proof. Fix l 2 L and V 2 V AP (l) and note that �APl (V ) is non-empty and
compact. Take a sequence fVig1i=1 s.t. Vi 2 V AP (l) ; 8i 2 Z++ and Vi !

i!1
V .

Let ci 2 �APl (Vi), 8i 2 Z++. Note that �APl (Vi) � Cl, 8i 2 Z++ with Cl
compact . Then, 9 a subsequence

�
cij
	1
j=1

of fcig1i=1 : cij !
j!1

c 2 Cl. Since

V�
�
:;�� y��1

�
is continuous on Cl, c satis�es (4) and (6) after l and V0 (c; l) = V .

Therefore, c 2 �APl (V ).

Proof of Proposition 5. Fix l 2 L and V 2 V AP (l). Take a sequence
fVig1i=1 s.t. Vi 2 V AP (l) ; 8i 2 Z++ and Vi !

i!1
V . Let ci 2 GAPl (Vi),

8i 2 Z++. De�ne UAP�
l := lim

i!1
UAP

�
(Vi; l). 9 a subsequence

�
cij
	1
j=1

of

fcig1i=1 : limj!1
U0
�
cij ; l

�
= UAP

�
l . Since GAPl (:) � �APl (:) and �APl (:) is uhc

from Lemma 2, 9 a subsequence
�
cijn

	1
n=1

of
�
cij
	1
j=1

: cijn !
n!1

c with c 2

�APl (V ). Then, UAP�
l = lim

n!1
U0
�
cijn ; l

�
= U0 (c; l) � UAP

�
(V; l) where the
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�rst equality comes from the fact that
�
cijn

	1
n=1

is a subsequence of
�
cij
	1
j=1

and lim
j!1

U0
�
cij ; l

�
= UAP

�
l , the second follows from the continuity of U0 (:; l)

and the third obtains directly from c 2 �APl (V ) and the de�nition of U
AP�

(V; l).

Therefore, U
AP�

(:; l) is usc on V AP (l).

Regarding the boundedness of U
AP�

(:; l), note that for any V 2 V AP (l),
U

AP�
(V; l) = U0 (cV ; l) for some cV 2 �APl (V ) � Cl with Cl non-empty and

compact. Since U0 (:; l) : Cl ! R is continuous on a compact set, it is also

bounded. Consequently, U
AP�

(:; l) is bounded on V AP (l).

Lemma 3 Fix arbitrary l 2 L and V 2 V AP (l), and let c 2 GAPl (V ). Then,

U�

�
c; :;el�1� = UAP�

�
V�

�
c�; :;el�1� ;el�1�, 8nai(l).

Proof. Note that 8nai( l), V�
�
c; :;el�1� 2 V AP

�el�1� and, therefore,

U
AP�

�
V�

�
c; :;el�1� ;el�1� is well de�ned. Since for � = 0, the result is triv-

ial, take arbitrary � 2 Z++ and y��1 =
�
y����1;el�1� 2 l � Y � , and as-

sume that the lemma does not hold. Then, there exists a supercontract c0 2
�APel�1 �V� �c; y��1�� : U0 �c0;el�1� > U�

�
c; y��1

�
. Let us construct a supercon-

tract c00 after l s.t.
�
a00t
�
yt�1

�
; w00t

�
yt�1; yt

��
= (a0t�� (

el�1; y� ; :::; yt�1);
w0t�� (

el�1; y� ; :::; yt�1; yt)), 8nai
�
y��1

�
, with (a00t

�
yt�1

�
; w00t

�
yt�1; yt

�
) =�

at
�
yt�1

�
; wt

�
yt�1; yt

��
elsewhere. By the de�nition of c and the construc-

tion of c00 we have that c00 satis�es (1), ( 2), ( 4), (6) after l and V0 (c00; l) =
V0 (c; l) = V . Then, U0 (c00; l) 2 U

AP

(V; l). However, since U�
�
c00; y��1

�
> U�

�
c; y��1

�
, we have that U0 (c00; l) > U0 (c; l), which contradicts the fact

that U0 (c; l) = U
AP�

(V; l).

The lemma says that at any contingency, the expected discounted utility of
the principal who has signed the AP supercontract maximizing his/her utility
at period 0 while guaranteeing the agent particular initial expected discounted
utility also gives the maximum initial utility the principal can get by signing a
new AP supercontract guaranteeing the agent an initial utility equal to the util-
ity the agent would receive in that contingency under the previous contract. In
other words, at the optimum the principal can neither lose nor gain by breach-
ing the original contract and signing a new one guaranteeing the same utility
stream to the agent.
For any l 2 L and Vl 2 V AP (l), de�ne �APR (Vl; l) :=

fcR : (7)� (11) hold at (Vl; l)g.

Proof of Proposition 6. Take an arbitrary V = fVlg 2 V AP . Fix l 2 L.
Given the existence of U

AP�
(Vl; l), 9 c 2 �l : V0 (c; l) = Vl and U0 (c; l) =
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U
AP�

(Vl; l). For any y 2 Y , let a� := a0 (l), w+ (y) := w0 (l; y) ; and V+ (y) :=
V1 (c; l; y). Then, we immediately have that (9) holds. Moreover, (1) ) (7),
(2)) (8), (6)) (10). As in the proof of Proposition 2 (a), for any y 2 Y , we can
construct c0y 2 �l+(l;y) : V0

�
c0y; l+ (l; y)

�
= V1 (c; l; y), from where (11) also holds.

By Lemma 3, for any y 2 Y , we have U1 (c; l; y) = U
AP�

(V1 (c; l; y) ; l+ (l; y))

= U
AP�

(V+ (y) ; l+ (l; y)). Consequently, U
AP�

(Vl; l) = U0 (c; l) =P
y2Y

[u (w0 (l; y) ; y) + �PU1 (c; l; y)]� (y; a0 (l)) =
P
y2Y

[u (w+ (y) ; y)+

�PU
AP�

(V+ (y) ; l+ (l; y))]� (y; a�), where U
AP�

is usc and bounded from Propo-

sition 5. Then, by the de�nition of T (:), we have that Tl
�
U

AP�
�
(Vl)

�

U
AP�

(Vl; l). Since V and l were chosen randomly, the result generalizes to

T
�
U

AP�
�
� UAP�

.

Fix arbitrary V = fVlg 2 V AP and l 2 L. We have demonstrated above
that �APR (Vl; l) 6= ;. Then, since �APR (Vl; l) can be shown to be compact

and U
AP�

is usc and bounded, there exists c�R 2 �APR (Vl; l) : Tl

�
U

AP�
�
(Vl)

=P
y2Y

[u
�
w�+ (y) ; y

�
+ �PU

AP� �
V �+ (y) ; l+ (l; y)

�
]�
�
y; a��

�
g. By (11), for any y 2

Y , V �+ (y) 2 V AP (l+ (l; y)), from where there exists c�y 2 �APl+(l;y)
�
V �+ (y)

�
:

U0
�
c�y; l+ (l; y)

�
= U

AP� �
V �+ (y) ; l+ (l; y)

�
. Then, let c�� be a supercontract s.t.:

(a��0 (l) ; w
��
0 (l; y)) =

�
a��; w

�
+ (y)

�
and 8nai(l; y), (a��t (l; y; :) ; w��t (l; y; :)) =

(a�y;t�1(l+ (l; y) ; :); w
�
y;t�1(l+(l; y); :)), 8y 2 Y . It is immediate that c�� sat-

is�es (1), (2), (4), (6) after (l; y), 8y 2 Y . Moreover, (7)) a��0 (l) 2 A,
(8)) w��0 (l; y) 2 W , 8y 2 Y . By construction and (10), we have that (6)
holds at l. By (9), we obtain that V0 (c��; l) = Vl 2 V AP (l), from where (4)

is satis�ed at l. Finally, we have that Tl
�
U

AP�
�
(Vl)

= U0 (c
��; l) 2 UAP (Vl; l),

from where U
AP�

(Vl; l) � Tl
�
U

AP�
�
(Vl)
. As before, this immediately general-

izes to T
�
U

AP�
�
� UAP�

.

Proof of Proposition 7. (a) Analogously to the proof of Lemma 2, we
can show that for any l 2 L, �APR (:; l) is uhc on V AP (l). Then, following an
argument similar to the proof of Proposition 5, we conclude that T (U)(:) is usc
on V AP . It is trivial to show that T (U)(:) is also bounded.
(b) The result follows by the argument of Theorem 3.3 in Stokey and Lucas

(1989) since it is trivial that T satis�es the Blackwell�s su¢ cient conditions.

(c) Assume on the contrary that �
�eU;UAP�

�
> 0. We have that

�
�eU;UAP�

�
= �

�
T
�eU� ; T �UAP�

��
� �P�

�eU;UAP�
�
, where the

equality follows from the fact that both eU and U
AP�

are �xed points of T (the
�rst - by assumption, the second - by Proposition 6) and the inequality obtains
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by (b). However, this contradicts �P 2 (0; 1). Consequently, �
�eU;UAP�

�
= 0.

(d) Since by (a) T maps (fUSCBlg ; �) into itself, the existence of Tn (U) is
guaranteed for any n 2 Z+. Using Proposition 6 and successively applying (b),
we obtain �

�
Tn (U) ; U

AP�
�
� �nP�

�
U;U

AP�
�
. Note that �

�
U;U

AP�
�
< 1

since U is bounded by assumption and U
AP�

is bounded by Proposition 5.
Therefore, given �P 2 (0; 1), the result follows.

Proof of Proposition 8. Take arbitrary U 2 fUSCBAlg, l 2 L, V1 2
V AP (l) and fVig1i=1 s.t. Vi 2 V AP (l), for any i 2 Z++
and Vi !

i!1
V1. If lim

i!1
T l (U)(Vi) = �1, the result is trivial. If

lim
i!1

T l (U)(Vi) > �1, we can always extract a subsequence fVikg
1
k=1 of fVig

1
i=1

s.t. T l (U)(Vik)
> �1, 8k 2 Z++ and lim

k!1
T l (U)(Vik)

=

lim
i!1

T l (U)(Vi). Since �R (Vik ; U; l) 6= ;, 8k 2 Z++, we can apply the argument
used in the proof of Proposition 5 to obtain lim

i!1
T l (U)(Vi) �

T l (U)(V1).

Proof of Proposition 9. (a) Notice that UAP
� 2 fUSCBlg � fUSCBAlg.

Then, directly from the de�nition of T and T , we have T
�
UAP

�� �
T
�
UAP

��
= UAP

�
, where the equality follows from Proposition 6. Since T l

is monotonic for any l 2 L, fDigi2Z+ is a weakly decreasing sequence of
bounded from above usc functions, therefore 9D1 2 fUSCBAlg :Di (Vl; l) !

i!1
D1 (Vl; l), 8Vl 2 V AP (l), 8l 2 L.
(b) First we are going to prove T (D1) � D1. Fix l 2 L and Vl 2 V AP (l).

Let us assume that D1 (Vl; l) > �1 because otherwise the result is triv-
ial. Since D1 (Vl; l) is a limit of a weakly decreasing sequence, we have that
Di (Vl; l) > �1, 8i 2 Z+. Consequently, Di (Vl; l) � U l, 8i 2 Z+ since
Di (Vl; l) < U l ) �R (Vl; Di; l) = ; ) Di+1 (Vl; l) = �1. This immedi-
ately implies that D1 (Vl; l) � U l. Moreover, �R (Vl; Di�1; l) 6= ;, 8i 2 Z++
since if �R (Vl; Di�1; l) = ;, we would have Di (Vl; l) = �1. Then, for any
i 2 Z++, since Di�1 is usc and �R (Vl; Di�1; l) is compact (trivial given Di�1
is usc), there exists a contract cR;i 2 �R (Vl; Di�1; l) such that Di (Vl; l) =P
y2Y

[u (w+;i (y) ; y) + �PDi�1 (V+;i (y) ; l+ (l; y))]� (y; a�;i) � U l. Since for any

i 2 Z++, �R (Vl; Di�1; l) � �APR (Vl; l) and �APR (Vl; l) is compact, 9 a conver-
gent subsequence of fcR;ig1i=1, fcR;ikg

1
k=1, s.t. cR;1 := lim

k!1
cR;ik 2 �APR (Vl; l).

Fix an arbitrary y 2 Y . Then, we have:

D1 (V+;1 (y) ; l+ (l; y)) =

lim
j!1

Dij�1 (V+;1 (y) ; l+ (l; y)) �

lim
j!1

lim
k!1

Dij�1 (V+;ik (y) ; l+ (l; y)) �
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lim
j!1

lim
k!1

Dik�1 (V+;ik (y) ; l+ (l; y)) =

lim
k!1

Dik�1 (V+;ik (y) ; l+ (l; y)) ,

where the �rst equality follows from
�
Dij�1

	1
j=1

being a subsequence of a
sequence converging to D1 by (a), the �rst inequality results from the upper
semicontinuity ofDij�1, the second inequality derives from the fact that fDig

1
i=0

is weakly decreasing, hence Dik�1 (V+;ik (y) ; l+ (l; y)) �
Dij�1 (V+;ik (y) ; l+ (l; y)), 8k � j, and the last equality is trivial. Notice
that Dik�1 (V+;ik (y) ; l+ (l; y)) � U l+(l;y), 8k 2 Z++ since by construction
cR;ik 2 �R (Vl; Dik�1; l) 6= ;. Then, D1 (V+;1 (y) ; l+ (l; y)) � U l+(l;y), from
where cR;1 (Vl) 2 �R (Vl; D1; l). Finally,

T l (D1)(Vl) =

max
cR2

�R(Vl;D1;l)

X
y2Y

[u (w+ (y) ; y) + �PD1 (V+ (y) ; l+ (l; y))]� (y; a�) �

X
y2Y

[u (w+;1 (y) ; y) + �PD1 (V+;1 (y) ; l+ (l; y))]� (y; a�;1) �

lim
k!1

X
y2Y

[u (w+;ik (y) ; y) + �PDik�1 (V+;ik (y) ; l+ (l; y))]� (y; a�;ik) =

lim
k!1

Dik (Vl; l) =

D1 (Vl; l) ,

where the �rst equality follows from the fact that D1 (Vl; l) � U l, D1
is usc, �R (Vl; D1; l) is non-empty and compact, the �rst inequality - from
cR;1 (Vl) 2 �R (Vl; D1; l), the second inequality - by using the result obtained
earlier by developing for D1 (V+;1 (y) ; l+ (l; y)), the following equality - by
construction, and the last equality - by construction and (a).
To conclude the proof, we need to show that T (D1) � D1. Fix l 2

L and Vl 2 V AP (l). If T l (D1)(Vl) = �1, the result is trivial, so assume
T l (D1)(Vl) > �1 ) �R (Vl; D1; l) 6= ;. From (a), we have that for any
i 2 Z+, D1 � Di, from where �R (Vl; D1; l) � �R (Vl; Di; l), 8i 2 Z+. Then,
for any i 2 Z+:

T l (D1)(Vl) =

max
cR2

�R(Vl;D1;l)

X
y2Y

[u (w+ (y) ; y) + �PD1 (V+ (y) ; l+ (l; y))]� (y; a�) �
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max
cR2

�R(Vl;Di;l)

X
y2Y

[u (w+ (y) ; y) + �PDi (V+ (y) ; l+ (l; y))]� (y; a�) =

Di+1 (Vl; l)

Consequently, T l (D1)(Vl) � lim
i!1

Di+1 (Vl; l) = D1 (Vl; l).

(c) Let D0 2 fUSCBAlg : T (D0) = D0. Note that 9D 2
fUSCBlg : D � D0. Consequently, T

�
D
�
� T (D0) � D0, where the �rst in-

equality follows from the monotonicity of T , while the second comes from T � T
and the fact that T (D0) = D0. Repeating the argument, we obtain Tn

�
D
�
� D0

for any n 2 Z+. Then, by Proposition 7 (d) we have that UAP
�
= lim

n!1
TnU
�
D
�
�

D0, where the convergence is in terms of �. Fix l 2 L and Vl 2 V AP (l). By
the monotonicity of T , we have Di = T i

�
UAP

�� � T i (D0) = D0, 8i 2 Z+.
Therefore, D1 � D0.

Lemma 4 T
�bU�� � bU�.

Proof. [Adapted from the �rst part of the proof of Proposition 6] Fix an ar-
bitrary l 2 L. If Vl 2 V AP (l) nV 2P (l), bU� (Vl; l) = �1 and the result is
trivial. Therefore, take Vl 2 V 2P (l). Then, bU� (Vl; l) = U� (Vl; l). Given the
existence of U� (Vl; l), we have that 9c 2 �l : V0 (c; l) = Vl and U0 (c; l) =
U� (Vl; l). For any y 2 Y , let a� := a0 (l), w+ (y) := w0 (l; y) ; V+ (y) :=
V1 (c; (l; y)). Then we immediately have that (9) holds. Moreover, (1) ) (7),
(2) ) (8), (6) ) (10). For any y 2 Y , we can construct c0 2 �l+(l;y) :

V0 (c
0; l+ (l; y)) = V1 (c; l; y), from where we have that V+ (y) 2 V 2P (l+ (l; y)) �

V AP (l+ (l; y)), i.e., (11) holds. From (5), we have U� (Vl; l) � U l. Furthermore,
by slightly modifying the argument of Lemma 3, we have that for any y 2 Y ,
U� (V+ (y) ; l+ (l; y)) = U

� (V1 (c; l; y) ; l+ (l; y)) = U1 (c; l; y). Then, from (5) we
obtain that U� (V+ (y) ; l+ (l; y)) � U l+(l;y), 8y 2 Y . Finally, bU� is usc (by the
argument used in the proof of Proposition 5 given the quali�cations stated in
the proof of Proposition 8) and bounded from above. Then, by the de�nition of

T , we have that T l
�bU��

(Vl)
� bU� (Vl; l).

Lemma 5 T
�bU�� � bU�.

Proof. [Adapted from the second part of the proof of Proposition 6] Take

l 2 L and Vl 2 V AP (l). If T l
�bU��

(Vl)
= �1, the result is trivial; there-

fore, assume that T l
�bU��

(Vl)
> �1. This implies that bU� (Vl; l) � U l , from
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where we immediately have that Vl 2 V 2P (l) and bU� (Vl; l) = U� (Vl; l). Since
we would trivially obtain T l

�bU��
(Vl)

� bU� (Vl; l) if T l �bU��
(Vl)

� U l, assume

T l

�bU��
(Vl)

> U l. Also note that T l
�bU��

(Vl)
= max

cR2
�R(Vl; bU�;l)

P
y2Y

[u (w+ (y) ; y) +

�P bU� (V+ (y) ; l+ (l; y))]� (y; a�) with �R �Vl; bU�; l� 6= ;. Given that bU� is usc
and �R

�
Vl; bU�; l� is compact, there exists a contract c�R such that (7) � (11)

hold at (Vl; l), bU� �V �+ (y) ; l+ (l; y)� � U l+(l;y), 8y 2 Y and T l
�bU��

(Vl)
=P

y2Y
[u
�
w�+ (y) ; y

�
+ �P bU� �V �+ (y) ; l+ (l; y)�]� �y; a���. By (11), V �+ (y) 2

V AP (l+ (l; y)), which together with bU� �V �+ (y) ; l+ (l; y)� � U l+(l;y) implies

V �+ (y) 2 V 2P (l+ (l; y)). Since bU� �V �+ (y) ; l+ (l; y)� = U�
�
V �+ (y) ; l+ (l; y)

�
,

9c�y 2 �l+(l;y) : V0
�
c�y; l+ (l; y)

�
= V �+ (y) and U0

�
c�y; l+ (l; y)

�
=bU� �V �+ (y) ; l+ (l; y)�. Note that this is true for any y 2 Y . Then, let c�� be de-

�ned as follows: (a��0 (l) ; w
��
0 (l; y)) =

�
a��; w

�
+ (y)

�
and (a��t (l; y; :);

w��t (l; y; :)) = (a�y;t�1(l+ (l; y) ; :)); w
�
y;t�1(l+ (l; y) ; :)), 8nai(l; y), 8y 2 Y . It

is immediate that c�� 2 �l;y, 8y 2 Y . Moreover, (7) ) a��0 (l) 2 A, (8) )
w��0 (l; y) 2 W , 8y 2 Y . By construction and (10), we have that (6) holds at
l. By (9), we obtain that V0 (c��; l) = Vl 2 V 2P (l), from where (4) is satis�ed

at l. Furthermore, we have that U0 (c��; l) = Tl

�bU��
(Vl)

> U l. Therefore,

Tl

�bU��
(Vl)

2 U2P (Vl; l), from where bU� (Vl; l) = U� (Vl; l) � Tl �bU��
(Vl)
.

Proof of Proposition 10. From Lemmas 4 and 5.

Proof of Proposition 11. Since bU� 2 fUSCBAlg, by Propositions 9
(c) and 10 we obtain bU� � D1. What remains to be shown is that bU� �
D1. Fix l 2 L and Vl 2 V AP (l)g. If D1 (Vl; l) = �1, the result is triv-
ial; therefore, assume D1 (Vl; l) > �1. Then, D1 (Vl; l) = T l (D1)(Vl) =

max
cR;l(Vl)2

�R(Vl;D1;l)

P
y2Y

[u (w+ (Vl; y) ; y) + �PD1 (V+ (Vl; y) ; l+ (l; y))]� (y; a� (Vl)) with

�R (Vl; D1; l) nonempty and D1 (Vl; l) � U l since otherwise we would have
D1 (Vl; l) = �1. Since D1 is usc and �R (Vl; D1; l) is compact, we have that
9c�R (Vl; l) 2 �R (Vl; D1; l) s.t. T l (D1)(Vl) =

P
y2Y

[u
�
w�+ (Vl; y) ; y

�
+

�PD1
�
V �+ (Vl; y) ; l+ (l; y)

�
]�
�
y; a�� (Vl)

�
. Since D1

�
V �+ (Vl; y) ; l+ (l; y)

�
�

U l+(l;y), 8y 2 Y , we have:

D1
�
V �+ (Vl; y) ; l+ (l; y)

�
= T l+(l;y) (D1)V �

+(Vl;y)
=

max
cR(V �

+(Vl;y);l+(l;y))2
�R(V �+(Vl;y);D1;l+(l;y))

X
y02Y

[u
�
w+

�
V �+ (Vl; y) ; y

0� ; y0�+
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�PD1
�
V+
�
V �+ (Vl; y) ; y

0� ; l+ (l+ (l; y) ; y0)�]� �y0; a� �V �+ (Vl; y)��

with �R
�
V �+ (Vl; y) ; D1; l+ (l; y)

�
nonempty, so the previous analysis ap-

plies. Proceeding in this way, we can construct a supercontract c such that
8nai(l), at

�
yt�1

�
:= a��

�
V � t+

�
Vl; y

t�1� ; yt�1�, wt
�
yt�1; yt

�
:=

w�+
�
V � t+

�
Vl; y

t�1� ; yt�1; yt�, where V � t+ (Vl; l; y0; :::; yt�1) :=
V �+ hyt�1i � ::: � V

�
+ hy0i (Vl; l) for any t 2 Z++ and V � 0+ (Vl; l) := Vl with

V �+ hy� i
�
V; y��1

�
:= V �+

�
V; y��1; y�

�
, 8y� 2 Y , V 2 V AP (l (y���; :::; y��1)),

y��1 2 l � Y � , � 2 Z+. We immediately have (7) ) (1) and (8) ) (2). More-
over, by construction and successively applying (9), we obtain that 8nai(l):

Vt
�
c; yt�1

�
� V � t+

�
Vl; y

t�1� =
lim
T!1

�A
T

X
yt+T�12Y

:::
X
yt2Y

[Vt+T
�
c; yt+T�1

�
�

V � t+T+

�
Vl; y

t+T�1�]t+T�1Y
i=t

�
�
yi; ai

�
yi�1

��

Consequently, 8nai(l), Vt
�
c; yt�1

�
= V � t+

�
Vl; y

t�1� since by (11)
V � t+

�
Vl; y

t�1� 2 V AP (l (y���; :::; y��1)) and is therefore bounded, while
Vt
�
c; yt�1

�
is bounded given (7) and (8). In particular, V0

�
c; y��1

�
= Vl.

Then (10) ) (6). Furthermore, Vt
�
c; yt�1

�
2 V AP (l (y���; :::; y��1)), implies

that (4) holds after l. Since U�
�
c; yt�1

�
is bounded given (7) and (8) and

D1
�
V � t+

�
Vl; y

t�1� ; l (y���; :::; y��1)� is bounded from above by Proposition 9
(a).and from below by min

l2L
U l (well de�ned given L �nite), we also have that

Ut
�
c; yt�1

�
= D1

�
V � t+

�
Vl; y

t�1� ; l (y���; :::; y��1)�, 8nai(l). In particular,
U0 (c; l) = D1 (Vl; l). Then, (5) is satis�ed at any node. Therefore, Vl 2 V 2P (l)
and D1 (Vl; l) 2 U2P (Vl; l). Then, bU� (Vl; l) = U� (Vl; l) � D1 (Vl; l).
Lemma 6 V AP � B

�
V AP

�
.

Proof. Let V 2 V AP and �x an arbitrary l 2 L. From Vl 2 V AP (l) ;

9c 2 �APl (Vl). By construction, Vl 2
h
V

l
; bV i. For any y 2 Y; let a� := a0 (l),

w+ (y) := w0 (l; y), and V+ (y) := V1 (c; l; y). Given these choices, we immedi-
ately have that (9) holds. Moreover, (1) ) (7), (2) ) (8), (6) ) (10). Note

that for any y 2 Y , V AP (l+ (l; y)) \
h
V

l+(l;y)
;+1

�
= V AP (l+ (l; y)). Since

for any y 2 Y we can construct a supercontract c0y 2 �APl+(l;y)(V1 (c; (l; y)), we
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have that (12) is satis�ed. Therefore, Vl 2 Bl
�
V AP

�
. Since l 2 L was chosen

randomly, this generalizes to V 2 B
�
V AP

�
.

The lemma establishes that V AP is self-generating in the terminology of
Abreu, Pearce and Stacchetti (1990).

Lemma 7 Assume X = fXlg : ; 6= Xl � Bl (X), 8l 2 L. Then, B (X) �
V AP .

Proof. Let the condition of the lemma hold and take V 2 B (X). Fix an
arbitrary l 2 L. Since Vl 2 Bl (X), 9cR;l (Vl) : (7)-(10) and (12) hold at l. By
(12) and X

l+(l;y)
� B

l+(l;y)
(X), we obtain that V+;l (Vl; y) 2 Bl+(l;y)

(X). Then,
8y 2 Y , 9cR : (7)-(10) and (12) hold at (V+;l (Vl; y) ; l+ (l; y)). Proceeding
this way, as in the proof of Proposition 11, we can consecutively construct a
supercontract c after l s.t. c 2 �APl (Vl). Here, it deserves noting that while (12)

implies (4) on every node but the �rst, Vl 2 Bl (X) �
h
V l;

bV i, from where (4)

is also satis�ed at l. Therefore, Vl 2 V AP (l), which generalizes to V 2 V AP .

The lemma says that the image of every nonempty, self-generating set is a
subset of V AP .

Proof of Proposition 12. (a) By Assumption 3 and Lemma 6, V AP satis�es
the condition of Lemma 7. Therefore, B

�
V AP

�
� V AP , which together with

Lemma 6 implies the result.
(b) It follows by Lemma 7.

Lemma 8 Assume X 0 = fX 0
lg and X 00 = fX 00

l g : X 0
l � X 00

l � R, 8l 2 L. Then,
Bl (X

0) 6= ; ) Bl (X
0) � Bl (X 00), 8l 2 L.

Proof. Trivial.

Lemma 9 Assume X = fXlg : Xl � R compact, 8l 2 L. Then, Bl (X) 6= ; )
Bl (X) compact, 8l 2 L.

Proof. Let the condition of the lemma hold and assume Bl (X) 6= ; for some
l 2 L. Note that Bl (X) �

h
V l;

bV i � R is bounded by de�nition. We should
also show that it is closed. Take an arbitrary convergent sequence fVig1i=1 : Vi 2
Bl (X), 8i 2 Z++ with Vi !

i!1
V1. We need to prove that V1 2 Bl (X). By

construction, we have that for any i 2 Z++, Vi 2
h
V l;

bV i and 9cR;i :(7)-(10),
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(12) hold at (Vi; l). By Vi 2
h
V l;

bV i ; 8i 2 Z++, we obtain V1 2
h
V l;

bV i. By
(7), (8), (12), Assumption 2, L �nite, and Xl � R compact for any l 2 L, we
have that fcR;ig1i=1 is uniformly bounded, therefore 9 a subsequence fcR;ikg

1
k=1

of fcR;ig1i=1 : cR;ik !
k!1

cR;1. It is immediate that cR;1 satis�es (7)-(10), (12)

at (V1; l).

Proof of Proposition 13. For any l 2 L and i 2 Z+, denote by Xi;l
the element of Xi corresponding to initial history l. By the condition of the
Proposition and Assumption 3, we have that ; 6= V AP (l) � X0;l � R, 8l 2 L.
Since by Proposition 12 (a) Bl

�
V AP

�
= V AP (l), we can apply Lemma 8 to

obtain ; 6= V AP (l) � X1;l � R, 8l 2 L. Using X1 � X0 and repeating the
argument, we reach V AP � Xi+1 � Xi, 8i 2 Z+ Then, fXig1i=0 is a sequence of
non-empty, compact (by Lemma 9 since X0 compact), monotonically decreasing

(nested) sets; therefore it converges to X1 =
1
\
i=0
Xi � V AP with X1 compact.

What remains to be shown is that X1 � V AP . By Lemma 7, it is enough to
show thatX1 � B (X1). Let V 2 X1. This implies that V 2 Xi, 8i 2 Z+. Fix
an arbitrary l 2 L. We have that 9cR;i : (7)-(10), (12) hold at (Vl; l). By (7), (8),
(12), Assumption 2, L �nite, and Xi � X0 � Rn

�

compact, 8i 2 Z+, we have
that fcR;igi2Z+ is uniformly bounded; therefore, 9 a subsequence fcR;ikg

1
k=1

of fcR;ig1i=1 : cR;ik !
k!1

cR;1. It is immediate that cR;1 satis�es (7)-(10) at

(Vl; l). Moreover, V+;1 (y) � V l+(l;y), 8y 2 Y . We also need to show that
for any y 2 Y , V+;1 (y) 2 X1;l+(l;y). Fix an arbitrary y 2 Y and assume,

on the contrary, that V+;1 (y) =2 X1;l+(l;y). Since X1;l+(l;y) =
1
\
i=0
Xi;l+(l;y) =

1
\
k=0
Xik;l+(l;y), we have that 9k0 2 Z+ : V+;1 (y) =2 Xik0 ;l+(l;y). Furthermore,�

Xik0
	1
k=0

was shown to be a monotonically decreasing (nested) sequence, from
where V+;ik (y) 2 Xik;l+(l;y) � Xik0 ;l+(l;y), 8k 2 Z+ : k � k0. Since Xik0 ;l+(l;y)
is closed and V+;ik (y) !

k!1
V+;1 (y), we obtain that V+;1 (y) 2 Xik0 ;l+(l;y),

i.e., a contradiction is reached. This proves V+;1 (y) 2 X1;l+(l;y), 8y 2 Y .

Consequently, (12) holds for cR;1. Finally, note that Vl 2
h
V l;

bV i follows
immediately from Vl 2 X1;l. Therefore, Vl 2 Bl (X1), which generalizes to
V 2 B (X1).

For any X = fXlg : Xl 2 R, 8l 2 L let B0 (X) := fB0l (X)g with

B0l (X) := fVl 2
h
V

l
; bV i : 9cR : (7) � (10) and (13) hold at (Vl; l)g.

Note that the only di¤erence between this operator and operator eB de�ned

in Section 3 is that B0l (X) �
h
V

l
; bV i, while eBl (X) � Xl

.
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Lemma 10 Take X 0
0 :=

n
X 0
0;l

o
with X 0

0;l :=
h
V l;

bV i, 8l 2 L and let X 0
i+1 :=

B0 (X 0
i), 8i 2 Z+. Then, X 0

i+1 � X 0
i, 8i 2 Z+ and X 0

1 := lim
i!1

X 0
i = V

AP .

Proof. We have that X 0
0 is compact and V

AP � X 0
0 � Rn� . Note that for

any X � Rn� : Bl (X) 6= ;, we have Bl (X) � B0l (X). Then, by Lemma
8 and Proposition 12 (a), we obtain V AP � B (X 0

0) � B0 (X 0
0). Using the

same arguments plus the monotonicity of B0 (trivial), we have V AP � X 0
i,

8i 2 Z+. Moreover, by construction B0 (X 0
0) � X 0

0. Then, the condition

B (X 0
0) � X 0

0 is satis�ed. Observe that for any l 2 L, X 0
1;l = fVl 2

h
V l;

bV i : 9cR
s.t. (7) � (10), (13) hold at (Vl; l)g = fVl 2

h
V l;

bV i : 9cR s.t. (7) �
(10), (12) hold at (Vl; l)g = Bl (X

0
0) since, by construction, we have that

X 0
0;l+(l;y)

\
h
V

l+(l;y)
;+1

�
= X 0

0;l+(l;y)
, 8y 2 Y . Furthermore, by X 0

1 � X 0
0

and the monotonicity of B0, we obtain X 0
i+1 � X 0

i, 8i 2 Z+. Then, it is trivial
that X 0

i+1 = B (X
0
i), 8i 2 Z+ Therefore, Proposition 13 applies to fX 0

ig
1
i=1.

Lemma 11 Let fX 0
ig
1
i=1 be de�ned as in Lemma 10. Take eX0 := X 0

0 and leteXi+1 := eB � eXi�, 8i 2 Z+. Then, eXi = X 0
i, 8i 2 Z+.

Proof. Assume eXi�1 = X 0
i�1 for some i 2 Z++. By Lemma 10, ; 6= X 0

i �
X 0
i�1. Fix l 2 L and let V 2 X 0

i;l Then, we have V 2 eXi�1;l, which together
with V 2 B0l

� eXi�1� implies that V 2 eBl � eXi�1�. Since l and V were chosen

randomly, this generalizes to X 0
i � eXi. Then, eXi is non-empty. Note thateXi�1 = X 0

i�1 � X 0
0 by Lemma 10. Consequently, ; 6= eBl � eXi�1� � B0l � eXi�1�,

i.e., eXi � X 0
i.

We have that eX0 = X 0
0 by de�nition and have just shown that eXi�1 = X 0

i�1
would imply eXi = X 0

i; therefore, by induction we obtain that eXi = X 0
i for any

i 2 Z+.

Proof of Proposition 14. (a) From Lemmas 10 and 11.
(b) Similarly to the proof of Lemma 6, we can show that V AP �eB �V AP �. Since eB �V AP � is nonempty, it can easily be obtained thateB �V AP � � V AP .
(c) Since ; 6= X � eX0, we can use the monotonicity of eB and eB (X) = X to

obtain X � eXi, 8i 2 Z+. Then, by (a), we have X � eX1 = V AP .
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1 Introduction

Executive pay is a topic that has continuously interested media and academia
alike. Since Jensen and Murphy (1990)�s seminal paper, there has a big debate
about the e¤ectiveness of the observed compensation schemes in inducing the
proper incentives while providing insurance to risk-averse managers. Empirical
surveys and recipes abound.1 The most important question, however, is how
the optimal compensation scheme should actually look like. Estimating the
top-management pay is not a trivial. task. It relates to the vast literature on
dynamic contracts pioneered by Green (1987) and Spear and Srivastava (1987).
In a dynamic model of adverse selection, Thomas and Worrall (1990) demon-
strated that a legally enforceable contract would have the borrower�s utility
converging to minus in�nity with probability one. Phelan (1995) showed that
in a dynamic insurance setting characterized by one-sided commitment, there
exists a non-degenerate long-run distribution of consumption. While the agency
literature has mainly focused on deriving contracts inducing optimal e¤ort, the
participation constraints have largely been ignored. Some notable exceptions
are Sleet and Yeltekin (2001) and Spear and Wang (2005) who concentrate on
contract terminations and Cao and Wang (2008) who endogenize agent�s reser-
vation utility.
In the current paper, I compute the dynamically optimal executive compen-

sation. Since I am interested in the long term dynamics of the contract and
the resulting wealth distribution, I focus on long-term self-enforcing schemes
that are incentive compatible. The setting is an in�nite-horizon moral hazard
problem characterized by limited commitment and history-dependent reserva-
tion utilities. Each period, the �rm�s shareholders (treated as a risk-neutral
principal) and the CEO (a risk-averse agent) sign a contract which speci�es a
recommended level of e¤ort to be exercised by the agent this period and the
compensation the agent will receive in the end of the period. The e¤ort exerted
by the agent is not observed by the principal and in�uences the �rm�s (gross)
pro�t in a non-deterministic fashion. Therefore, the compensation of the agent
cannot be based on the speci�c level of e¤ort exercised. However, it can be
made contingent on �rm�s realized pro�t. More generally, since the �rm�s pro�t
is publicly observable and no amnesia is introduced in the model, the contract
can be based on the whole history of pro�t realizations and the compensation
can additionally be made contingent on the pro�t to be realized in the end of
the period. Moreover, the contract should provide the proper incentives to the
manager in order for him/her to exert exactly the level of e¤ort recommended
by the �rm�s shareholders. Limited commitment is assumed on both parts in the
sense that both the shareholders and the CEO can commit only to short-term
(single-period) contracts. This assumption is intended to re�ect legal issues
on the enforcement of long-term contracts. However, at the initial period the
shareholders can o¤er a long-term contract (a supercontract) that neither they,

1See Murphy (1999) and Jensen and Murphy (2004) for a review.
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nor the manager would like to renege on, and that would provide the necessary
incentives for the manager to exercise the sequence of e¤ort levels suggested by
the principal.
Wang (1997) and Ase¤ (2004) use a similar framework in order to analyze

the optimal contract. The former, however, does not rigorously analyze the
e¤ects of limited commitment on both parts of the relationship while the latter
restrictively pre-supposes the optimality of high e¤ort and e¤ectively estimates
the optimal compensation scheme that induces it.
Furthermore, in my treatment of limited commitment, I allow for correlation

between the reservation utilities of the agent and the principal and the (�nitely
truncated) history of pro�ts. This extension directly a¤ects the set of possible
endogenous utilities, but also permits the analysis of some interesting dynamic
e¤ects. For example, if the outside o¤er for the manager is positively correlated
with current pro�t (due to, say, a belief on part of the outside employers that the
�rm�s performance reveals information about the quality/type of the manager),
we may expect that he/she would be motivated to increase the probability of
high pro�ts in the future (by choosing a higher level of e¤ort). At the same time,
the risk-averse managers would like to smooth consumption across states, which
may require that their participation constraint does not bind for lower pro�t
realizations. Moreover, it may become increasingly more di¢ cult to motivate
richer CEOs, especially when the shareholders face some borrowing constraints,
which may lead to the suboptimality of inducing high e¤ort for such CEOs.
The current paper is the �rst to look at how shocks on the reservation utilities

may a¤ect the parties to a dynamic contractual relationship. In particular, we
investigate whether the optimal contract insures the manager against variability
in the value of his/her outside options. We build up the intuition behind the
possible e¤ect of such an insurance on the manager�s utility in the short and
the long run and relate it to the properties of the limiting distribution.
The framework falls into the scope of Morfov (2009); therefore, an optimal

contract exists and the problem can be characterized recursively and addressed
by dynamic programming techniques.
The estimation is conducted in three steps. First, the state space of an

auxiliary problem that does not require the participation of the principal but
binds the wage from above is recovered as the limit of a generalized Bellman
equation. Second, the aforementioned auxiliary problem is solved by a standard
recursive procedure. Third, the optimal recursive contract and its state space
are recovered by severely punishing the principal for each violation of his/her
participation constraint.
In order to estimate the model, I parameterize it following the calibration

of Ase¤ (2004) and Ase¤ and Santos (2005) based on the results of Hall and
Liebman (1998) and Margiotta and Miller (2000).
Regarding the numerical computation, one point deserves special attention.

In computing the endogenous state space we are iterating on sets and therefore
need to represent them e¢ ciently. For the class of in�nitely repeated games
with perfect monitoring, Judd, Yeltekin and Conklin (2003) are able to construct
inner and outer convex polytope approximations based on the convexi�cation of
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the equilibrium value set through a public randomization device. The algorithm
I use may be of independent interest since it does not rely on the convexity of
the underlying set. The main idea is to discretize the guess for the equilibrium
set elementwise, extract small open balls around the gridpoints unfeasible with
respect to the (non-updated) guess and use the remaining set, i.e., the guess less
the extracted intervals, as a new guess for the equilibrium set. The procedure
stops if the structure of the representations of two successive guesses coincides2

and the suitably de�ned di¤erence between the representations is less than some
prespeci�ed tolerance level.
I derive the state space under constant reservation utilities. Then, I consider

a single-period history dependence and show theoretically that if the manager�s
reservation utilities are su¢ ciently dispersed, his/her participation constraint
does not bind under the worst case scenario, which is also observed when the
manager can essentially commit when his/her outside option is at its lowest
value. In other words, the minimum utility the CEO can be promised for initial
histories characterized by lower reservation utility is generally boosted by higher
reservation utilities for other states. Alternatively put, the optimal contract pro-
vides the CEO with some insurance against �uctuations in the value of his/her
outside options, which ultimately smooths his/her consumption across (initial
history) states. In case of positive correlation between �rm�s pro�ts and man-
ager�s reservation utilities, this translates into the participation constraint of the
manager being non-binding in states characterized by low pro�ts. Computing
the model actually shows that utility promises close to the reservation level are
possible only under the manager�s best-case scenarios when his/her reservation
utility is the highest (i.e., when the highest pro�t has been observed).
The numerical results suggest that with a loose upper bound on wages, the

optimal contract can support extremely high values for the expected discounted
utility of the CEO when the participation of the principal is not guaranteed.
However, when solving for the self-enforcing contract, these values naturally
disappear since they violate principal�s participation constraint. Exerting e¤ort
appears to be the predominant strategy for the principal, but shirking may
still be optimal when the agent is rich enough. The optimal wage scheme and
the future utility of the manager tend to grow in both current utility and future
pro�t. Intuitively, both current and future compensation are used to induce poor
and mid-range managers to work hard, while rich managers prove too di¢ cult
to motivate. The latter shirk and while they may face some �uctuations in their
current income stream in case of binding credit constraints on part of the �rm,
their lifetime utility remains relatively �at.
Simulations suggest that CEO�s utility weakly increases in the long run. In

particular, agents who start rich tend to keep their utility level while those who
start poor get richer in time. The increase is most pronounced for managers
with initial utilities below the highest reservation utility. These managers �rst
have their utilities pushed well above their reservation level. Then, the principal
motivates them to work hard by rewarding success through continuation utilities

2Namely, if the representations have the same number of closed sets element by element.
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while providing insurance through �atter wages. In this way, the probability of
success and, therefore, of a higher reservation utility tomorrow increases which
rises the manager�s expected continuation utility. The long term distribution of
manager�s utility is non-degenerate and depends on the initial utility promise
but not directly on the relevant initial history at least as far as short initial
histories are concerned.
The rest of the paper is structured as follows. Section 2 presents the model

in a general and recursive form. Section 3 explains the numerical algorithm at
a practical level and discusses the results. Section 4 concludes. Appendix 1
contains all the proofs. Appendix 2 presents the results.

2 Model

The setting describes a dynamic interaction between the shareholders of a cor-
poration and its chief executive o¢ cer (CEO). The shareholders are exclusively
interested in the pro�t realized by the corporation. They need the CEO to run
the company but cannot observe the level of e¤ort he/she exerts on the job. If
o¤ered a �xed compensation, the manager will naturally prefer to shirk rather
than work hard, so such a scheme would have no incentive impact whatsoever.
On the other hand, since the shareholders know the distribution of �rm�s (gross)
pro�ts conditional on executive�s e¤ort, they can o¤er a wage scheme contingent
on the future pro�t realization in order to invoke the manager to adhere to a
certain type of behavior. While the shareholders would prefer the manager to
work hard every period, it may be costly to induce such a behavior. The CEO
who is risk averse in the money he/she receives, would require a higher aver-
age remuneration in order to compensate him/her for the increased volatility
of his/her current income. Since the manager is free to walk out of the rela-
tionship, incentive compatibility may go against individual rationality, namely,
it may become di¢ cult to induce the CEO to work hard and keep him/her in
the company. The situation may further be complicated by the shareholders�
own limited commitment. While it is very interesting to see how the optimal
contractual agreement would look like in terms of incentives, insurance, compen-
sation, induced behavior, and wealth distribution, characterizing it may prove
quite involved given the parties�inability to commit and the realistic possibility
that the manager�s outside job o¤ers/opportunities may vary with �rm�s real-
ized pro�t (di¤erent types of agents whose ability may be considered related to
�rm�s performance by outside potential employers; di¤erent economic environ-
ments: harder to �nd a job in a through than in a boom, etc.)3 . Albeit the
technical di¢ culties, analyzing this problem increases our understanding of the
mechanics of incentive compatibility and self-enforcement in a dynamic setting.

3For example, in order to address the wide use of broad-based stock option plans, Oyer
(2004) builds a simple two-period model where adjusting compensation is costly and em-
ployee�s outside opportunities are correlated with the �rm�s performance.
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Would the manager require some form of insurance against �uctuations in the
value of his/her outside options? How would this a¤ect the CEO�s utility in the
short and the long run? Would shocks to reservation utilities have an impact
on the long term distribution of executive�s wealth? All these questions fall
into the scope of the current paper which brings more structure to the model
presented in Morfov (2009), establishes some interesting properties of the state
space, computes the model numerically and provides intuition for the results.
Let us formally introduce the environment. Time is discrete and the set of

�rm�s possible pro�ts, Y , is a time- and history-invariant set of n > 1 distinct
real numbers. For concreteness, we will index the set of possible pro�ts of length
� � 0, Y �, by L :=

�
1; :::; n�

	
. Hereafter, we will refer to a particular element

of Y � as an initial history and will frequently denote it by its index l 2 L.4
Moreover, all functions and correspondences with domain Y � will be considered
as vectors or Cartesian products of sets indexed by L. At the beginning of
period 0, the �rm�s shareholders and the manager sign an incentive-compatible,
self-enforcing supercontract. The wage received by the CEO has a uniform lower
bound w which can be considered a minimum wage level. The level of e¤ort
exerted by the manager belongs to the compact, time- and history-invariant set
A. Additionally, we make the following assumptions.

Assumption 1 The pro�t realization at any period of time depends only on the
e¤ort exerted by the CEO in the beginning of the same period and is character-
ized by the probability function � (:; a) : Y ! (0; 1), 8a 2 A, where � (y; :) is
continuous on A for any y 2 Y .

Assumption 2 The shareholders of the corporation are proxied by a �princi-
pal� with period utility y � w for any (gross) pro�t realization y and wage w.
They discount the future by a factor �P 2 (0; 1).

Assumption 3 The CEO�s period-utility is speci�ed as � (w)� a for any wage
w and level of e¤ort a, where � (:) is assumed continuous, strictly increasing
and concave.5 He/she discounts the future by a factor �A 2 (0; 1).

4Occasionally, we will treat l as a bijective function mapping Y � to L.
5This speci�cation actually requires that the manager should consume his/her exact wage

at each contingency thus preventing him/her from smoothing his/her consumption stream
through borrowing and/or saving. Ceteris paribus, the principal will �nd it cheaper to moti-
vate the CEO. Note, however, that in our framework problems with commitment are likely to
have an adverse e¤ect on the provision of incentives, so by ignoring possible readjustments in
the manager�s consumption stream, we will be able to study the role of limited commitment
in isolation. On a practical level, without imposing a very strong set of assumptions on the
primitives of the model in order to justify the use of the �rst-order approach, allowing the
agent to save will signi�cantly complicate the numerical estimation of the model.
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Assumption 4 At any time t, the reservation utilities map Y � to R. Given a
particular initial history l observed at the beginning of period t, the reservation
utilities of the principal and the CEO are respectively U land V l (denoted as U
and V if � = 0).

Given a pro�t history yt�1 2 l�Y t observed in the beginning of period t � 0,
and an admissible supercontract c = (a;w) signed at node l at the beginning of
period 0,6 de�ne the expected discounted utility of the principal at node yt�1 as
Ut
�
c; yt�1

�
. Analogously, de�ne Vt

�
c; yt�1

�
as the expected discounted utility

of the manager at that node. The supercontract speci�es a recommended level
of e¤ort and a contingent compensation scheme on all possible contingencies
after signing. The admissibility of the contract refers to the e¤ort belonging to
A and the wage being greater or equal to its minimum level w at any contingency
(after signing).
Then, at period 0 at node l, the principal will be solving the following prob-

lem:

[PPx]

sup
c
U0 (c; l) s.t.:

c admissible (1)

Vt
�
c; yt�1

�
� Vt

�
c0; yt�1

�
, 8c0 = (a0; w) admissible, 8yt�1, 8t (2)

Vt

�
c; :;el� � V el, 8t, 8el 2 L (3)

Ut

�
c; :;el� � Uel, 8t, 8el 2 L (4)

where (1) is an admissibility constraint, (2) requires that the recommended
plan of e¤ort levels is incentive compatible at every node, while (3) and (4) are
participation constraints for the manager and respectively the principal which
are required to hold at any node after (and including) l.7

Having de�ned the problem, we will assume that the set of constraints forms
a non-empty set.8

6Note that the history yt�1 consists of � initial outcomes observed before period 0 and t
pro�t realizations from time 0 to time t� 1.

7 In the current paper, the environment, the principal�s problem and the recursive form are
only presented schematically. For a more detailed and motivated exposition, refer to the more
general framework of Morfov (2009).

8This assumption is the equivalent of Assumption 3 in Morfov (2009) [for details, see the
comments in Footnote 14 in the aforementioned paper].
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Assumption 5 8l 2 L, fc :(1)�(4) hold after lg 6= ;.

Proposition 1 Let (1) and (4) hold after some l. Then at any node after

(and including) l we have wt (:) � w, where w := w + 1
�

�
y�w
1��P

� U
�
with

� := min
(y;a)2Y�A

� (y; a), y := maxY , and U := minel2LU l.

The proposition says that an admissible contract that guarantees the com-
mitment of the principal e¤ectively binds the wage from above. Note that the
upper bound w does not depend on the initial history l. Therefore, for any con-
tract in the constrained set of the problem [PPx], we have that wt (:) 2 W :=
[w;w] which is a compact subset of R. Consequently, all the results of Morfov
(2009) are valid for such a contract. In particular, there exists an equivalent
recursive representation of [PPx] which is stationary upon a properly de�ned
state space. A brief outline of the characterization follows.
Let AP denote an admissible, incentive-compatible supercontract that only

guarantees the participation of the agent, while 2P stays for an admissible,
incentive-compatible supercontract that guarantees the participation of both
parties. Denote by V AP (l) the set of expected discounted utilities for the man-
ager signing an AP contract at l with w imposed as a uniform upper bound
for the wage.9 Let V AP :=

�
V AP (l)

	
be the Cartesian product of such sets

indexed by L. Let V 2P be the corresponding product of sets of expected dis-
counted utilities for the CEO signing a 2P contract. For any 8V = fVlg 2 V AP ,
de�ne U

AP�
(V ) as a vector with a general element U

AP�
(Vl; l) that stays for

the maximum utility the principal can get by signing an AP contract o¤ering
Vl to the manager. Respectively, for any V 2 V 2P , U� (V ) is a vector with a
general element U� (Vl; l) that denotes the maximum utility the principal can
get by signing a 2P supercontract o¤ering Vl to the manager. Let bU� be the
extension of U� on V AP s.t. for any V 2 V AP , bU� (V ) is a vector with a general
element

bU� (Vl; l) = � U� (Vl; l) if Vl 2 V 2P (l)
�1 otherwise

Let l+ : L � Y ! L map today�s initial histories and current pro�t real-
izations to tomorrow�s initial histories. Finally, three important operators are
de�ned.

9Note that the �true� AP contract does not require that wt (:) � w. This condition
comes from the participation constraints of the principal which only hold for the 2P contract.
Therefore, we will actually characterize the AP contract that allows for wages not higher than
w. Imposing this additional condition to the AP contract, however, have no impact on the 2P
contract since by Proposition 1, the original problem [PPx] is equivalent to one where wages
are bounded from above by w. Also note that working with explicit bounds for the wage will
be an advantage in the forthcoming numerical computation.
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For any X = fXlg 2 Rn
�

, eB (X) = n eBl (X)o with eBl (X) := fV 2 Xl : 9
a (single-round) contract cR (V; l) = fa�; w+ (y) ; V+ (y)gy2Y s.t.:

a� 2 A (5)

w+ (y) 2W , 8y 2 Y (6)

X
y2Y

[� (w+ (y))� a0� + �AV+ (y)]�
�
y; a0�

�
� V , 8a0� 2 A (7)

X
y2Y

[� (w+ (y))� a� + �AV+ (y)]� (y; a�) = V (8)

V+ (y) 2 Xl+(l;y), 8y 2 Y (9)

holdg.

For any U = fUlg with Ul : V AP (l) ! R upper semi-continuous (usc) and
bounded with respect to the sup metric, and any V 2 fVlg 2 V AP , T (U)(V ) is
a vector with a general element de�ned as follows:

Tl (U)(Vl) := maxcR

P
[

y2Y
y � w+ (y) + �PUl+(l;y) (V+ (y))]� (y; a�) s.t.:

(5)� (8) hold, and

V+ (y) 2 V AP (l+ (l; y)) ; 8y 2 Y (10)

For any l 2 L and Vl 2 V AP (l), let �R (Vl; U; l) := fcR : (5)�(8), (10) hold
at (Vl; l) and Ul+(l;y) (V+ (y)) � U l+(l;y), 8y 2 Y g for some function U : V

AP !
(R [ f�1g)n

�

. Additionally, let

�R (Vl; U; l) :=

�
�R (Vl; U; l) if Ul (Vl) � U l
; otherwise

For any U = fUlg with Ul : V AP (l) ! R [ f�1g usc and bounded from
above, and any V 2 fVlg 2 V AP , T (U)(V ) is a vector with a general element:

T l (U)(Vl) :=

8<:
�1 if �R (Vl; U; l) = ;
max
cR2

�R(Vl;U;l)

P
y2Y

[y � w+ (y) + �PUl+(l;y) (V+ (y))]� (y; a�) otherwise
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Following the results of Morfov (2009), the optimal 2P contract is recursively
characterized in three steps10 :

Step 1. Start with the set eX0 := nh
V l;

bV io where bV = �(w)�a
1��A

with

a := min fAg and iterate on the set operator eB until convergence. The limit is
V AP .

Step 2. Take a function U = fUlg with Ul : V AP (l)! R usc and bounded
with respect to the sup metric, 8l 2 L. Iterate on T (:) until convergence. The
limit is UAP

�
(:).

Step 3. Take UAP
�
(:) as an initial guess and iterate on T (:) until conver-

gence. The limit is bU� (:). Moreover, V 2P (l) = fV 2 V AP (l) : bU� (V; l) � U lg.
Then, for any V 2 V 2P (l), we have U� (V; l) = bU� (V; l).
Although we cannot solve the model analytically, we have constructed an

equivalent recursive representation that can be addressed by numerical tech-
niques in a three-step procedure as outlined above. Now, we are ready to pa-
rameterize the model and compute the optimal solutions. Before that, I will
provide some intuition for the results to follow.

Proposition 2 If � = 0, we have V AP =
h
max

n
V ; �(w)�a1��A

o
; bV i.

This proposition derives the state space of the optimal AP contract when
manager�s reservation utility is constant across pro�t histories. V AP is an in-
terval and its lower limit is either the CEO�s reservation utility or his/her dis-
counted utility under a supercontract paying the minimum wage and inducing
the lowest level of e¤ort at every single node whichever is bigger. Indeed, when
in the computation, I consider V = �(w)�a

1��A
, where a := maxA, the lowest pos-

sible utility supportable by an AP contract is exactly �(w)�a
1��A

(cf. Table 1 in
Appendix 2, LLL). The other possible values for V are chosen to be greater
than �(w)�a

1��A
, so they immediately become the lower limit of the respective state

spaces (cf. Table 1 in Appendix 2, MMM and HHH). Regarding the upper limit
of the interval, it is given by �(w)�a

1��A
, i.e., the discounted utility of the manager

under a contract that pays him/her the highest possible wage w and induces the
lowest possible e¤ort at every node. Note that w was obtained in Proposition 1
as a theoretical bound on wages under the AP contract that would not a¤ect the
subsequent derivation of the optimal 2P contract. In practice, we can improve
on this bound using economic considerations (see next section). Proposition 2

10Step 1 generalizes on Abreu, Pearce and Stacchetti (1990). Step 2 is standard dynamic
programming over upper semi-continuous, bounded functions. Step 3 is based on Rustichini
(1998).
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will not be a¤ected by any uniform bound on wages. We simply need to re-
de�ne w. One economically interesting case, however, requires that wage does
not exceed the future (gross) pro�t realization re�ecting the inability of �rm�s
shareholders in raising additional funds to support higher compensation values
for the manager. In this case, the upper limit of the state space is, indeed,
a¤ected.
For the purposes of the next proposition, let Ea (:) denote the mathemati-

cal expectation conditional on a current e¤ort level a. For example, Ea (y) =P
y2Y

y� (y; a).

Proposition 3 If � = 0 and wt (:; y) � y, 8y 2 Y , we have that minV AP =
max

n
V ; �(w)�a1��A

o
and maxV AP = maxa2AfEa�(minfy;wg)�ag

1��A
. Moreover, if a 2

argmaxa2A fEa� (min fy; wg)� ag, then V AP is convex.

This proposition establishes that when the shareholders are e¤ectively pro-
hibited from borrowing, the maximum of the state space of the AP contract is
simply the expected discounted utility of the manager under a supercontract
that maximizes his/her period utility across the set of admissible actions and
wages. For example, if A = fa; ag, y � w and Ea� (y)� Ea� (y) < a� a, then
V AP =

h
max

n
V ; �(w)�a1��A

o
;
Ea�(y)�a
1��A

i
(cf. Table 1 in Appendix 2, LLL, MMM,

and HHH).
So far, we have established the limits of the state space V AP for the case

where the reservation utility of the manager remains constant across pro�t re-
alizations. Since the focus of the paper is history dependent participation con-
straints, it would be interesting to see if we can say something about the case
where the outside options vary with the history of observables. In what follows,
I will concentrate on a one-period dependence.

Proposition 4 Let � = 1 and V bl = minl2L V l. Then, maxV AP (l) = bV , 8l 2
L. Moreover, if maxa2A f�AEaV � ag > V bl � � (w), then minV AP

�bl� > V bl;
otherwise, minV AP (l) = V l, 8l 2 L.

Here, EaV is the expected reservation utility of the agent tomorrow condi-
tional on a current e¤ort level a. Formally, EaV =

P
y2Y

V l(y)� (y; a).

Before commenting on the proposition, I will introduce some more structure.
Let us order the elements of Y ascendingly and index them accordingly such
that the lowest element corresponds to an index 1 and the highest to an index n.
We also let the reservation utilities of the manager be positively correlated with
the �rm�s realized pro�t. This last assumption is made solely for the purpose
of illustration; it is not necessary for establishing the result of the proposition.
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Notice that the manager�s reservation utility, the minimum wage, and the
probability distribution of the �rm�s pro�t conditional on manager�s e¤ort are
all exogenous to the model. Therefore, the proposition relates the slackness of
the manager�s participation constraint to the values of the exogenous parame-
ters. Indeed, it is just a restatement of the fact that if the �rm�s pro�t is at its
lowest level today and a temporary incentive-compatible contract providing the
manager with the minimum wage and a continuation utility equal to the reser-
vation value at each contingency tomorrow guarantees him/her today a utility
strictly higher than his/her outside option, then the manager�s participation
constraint under the optimal contract will not bind at initial state y1. Consider,
for example, the case of two possible actions, a < a. If EaV �EaV > a�a

�A
, then

fa;w; V lg
n
l=1 is the temporary incentive-compatible contract that minimizes the

manager�s current level of utility. The worst-case scenario (from the point of
view of the manager) is when the �rm�s pro�t is lowest since then his/her reser-
vation utility is at its minimum level. If, in such a case, inducing high e¤ort
by promising the minimum salary and the respective reservation utility on any
node tomorrow guarantees utility of at most the reservation level today, then
manager�s participation constraint binds under the optimal contract irrespec-
tive of the history of pro�ts. If, however, the manager can only be promised a
current utility higher than his/her reservation one, then his/her participation
constraint will not bind and the shrinking of the set of possible continuation
utilities from below will eventually lead to increasing the lower limit of the

state space for low enough pro�ts. Note that the shrinking of eB1 � eX0� may
lead to shrinking in eBil � eX0�, l = 2; :::; n � 1, i = 2; ::: even if V l > V 1 and

maxa2A f�AEaV � ag > V l � � (w). The reason is that raising min eBi1 � eX0�
increases Eamin eBi � eX0� relative to min eBil � eX0� = V l for any a 2 A.11 If

EaV �EaV < a�a
�A
, then letting the manager shirk by paying him/her the min-

imum wage and promising him/her the reservation utility at any continuation
node is temporary incentive-compatible and minimizes the agent�s current level
of utility. The same analysis as before applies.
Proposition 4 indicates that, ceteris paribus, decreasing (increasing) the vari-

ance of the manager�s reservation utility, his/her patience, utility of e¤ort, or
utility of consuming the legally-established minimum wage level will increase
(decrease) the number of scenarios under which the manager�s participation
constraint would actually be binding. In the extreme case where the man-
ager�s reservation utility, V , is constant across the history of observables (i.e.,
� = 0) and is (reasonably assumed) higher or equal to the lowest utility level
supportable by an admissible incentive-compatible contract ignoring the issue
of manager�s commitment,�(w)�a1��A

, then the result of Proposition 4 reduces to

minV AP = V as also implied by Proposition 2, i.e., the poorest (in initial

11Notice that Eamin eBi � eX0� = P
y2Y

min
� eBi

l(y)

� eX0��� (y; a).
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expected discounted utility terms) manager is guaranteed exactly his/her reser-
vation utility level under the optimal contract. What would happen, however,
if the manager�s reservation utility actually varies across the observed pro�t
histories?

Corollary 1 If � = 1, V bl = minl2L V l �
�(w)�a
1��A

and 9l 2 L : V l > V bl, then
minV AP

�bl� > �(w)�a
1��A

.

The corollary says that if we have a (non-reducible)12 one-period dependence
(i.e., reservation utilities at the beginning of each period do vary only with the
pro�t realized at the end of the previous period) and we consider a manager who
can essentially commit in the worst-case scenario (i.e., V bl � �(w)�a

1��A
), there will

be cases under the optimal contract where the manager would receive utility
strictly higher than the respective value of his/her outside option.
For higher values of V bl, whether participation will bind or not depends

on the speci�c parameter values. Nevertheless, if the manager�s reservation
utilities are not bunched on a very tiny interval, we would expect some gain
above reservation utility levels for the least wealthy of the managers with worse
performance records.13

To summarize, if the manager�s reservation utilities are su¢ ciently dispersed,
his/her participation constraint will not bind under the worst case scenario,
which is also observed if the manager can essentially commit when his/her out-
side option is at its lowest value. In other words, the minimum utility the CEO
can be promised for initial histories characterized by lower reservation utility is
generally boosted by higher reservation utilities for other states. Alternatively
put, the optimal contract provides the CEO with some insurance against �uc-
tuations in the value of his/her outside options. In case of positive correlation
between �rm�s pro�t and manager�s reservation utility, this translates into the
participation constraint of the manager being non-binding in states character-
ized by low pro�ts.
Another point that deserves attention is whether V AP is convex. We have

seen that when the reservation utility of the principal is constant across pro�t
histories, the state space is indeed an interval. This result, however, cannot
be easily generalized for the case of varying reservation utilities. Indeed, if

12Note that assuming � = 1 and V l = V , 8l 2 L, is equivalent (or, alternatively put, is
reducible) to � = 0 with a manager�s reservation utility of V .
13 In the next section, I consider positive correlation between yesterday�s pro�t and man-

ager�s current reservation utility (i.e., a one-period positive dependence). The reservation
utility values generally allow for the more interesting case of non-binding participation con-
straints. The state space V AP is estimated numerically (for di¤erent combinations of reser-
vation utility values and di¤erent borrowing arrangements) and the results are presented in
Table 1 in Appendix 2. They indicate that if maxa2A f�AEaV � ag > V bl � � (w), there is
some utility gain on the lower limit of the state space for all but the best-record managers.
Another observation is that the worse the record, the higher the gain.
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for some i = 1; ::: the set eXi := eBi � eX0� exhibits a hole, then this hole can
potentially persist into V AP . Let us assume that � = 1, A = fa; ag, a < a,
9l 2 L : V l > minl2L V l, i.e., we have a non-reducible one-period dependence

and two possible levels of e¤ort. Consider eB � eX0�. Is it convex given that eX0
is? Let Va and Va be the sets of initial utility values that are supportable by
admissible incentive-compatible contracts guaranteeing continuation utilities ineX0 and inducing low and, respectively, high e¤ort. Note that both these sets
are compact and convex. Then, eB � eX0� is convex if and only if Va \ Va 6=
;. From the proof of Proposition 4, we know that maxVa > maxVa, so the

necessary and su¢ cient condition for the convexity of eB � eX0� is equivalent to
maxVa � minVa. It is not straight-forward, however, to derive this condition
in terms of parameters. We can certainly derive su¢ cient conditions, but they
need not be necessary. For example, let ey 2 argmaxy2Y f� (y; a)� � (y; a)g
and V = maxl2L V l. Take the contract

�
a; � (w) ; V

	
which is clearly incentive-

compatible and guarantees the manager an initial utility of � (w) + �AV � a.
Now, consider the contract recommending high e¤ort while promising wage
w and a continuation utility bV if the pro�t realization is ey and, respectively,
w and V otherwise. This contract would be incentive compatible and would
guarantee the manager an initial utility of at least � (w) + �AV � a if a� a �
minf(� (ey; a)� � (ey; a))�� (w) + �A bV � � (w)� �AV � ; � (ey; a) (� (w)+�A bV )�
� (ey; a) �� (w) + �AV �g. This inequality is basically satis�ed if V is not too high.
Notice, however, that by Proposition 4 V will be higher the next iteration if
maxa2A f�AEaV � ag > V bl�� (w), i.e., if the guess for the state space shrinks.
Also note that while we have constructed a su¢ cient condition for the convexity

of eB � eX0�, this condition is far from necessary.

Given the previous discussion, can we say anything more about the prop-
erties of the value function UAP

�
and its associated policies? We already

know by Proposition 5 in Morfov (2009) that UAP
�
is upper semi-continuous

(usc) and bounded. Is it continuous? For any l 2 L and V 2 V AP (l), de-
�ne �APR (V; l) := fcR : (5)-(8), (10) hold at (V; l)g and GAPR (V; l) := fcR 2
�APR (V; l) : UAP

�
(V; l) = Ea(y � w+ (y) + �PU

AP�

l+(l;y)
(V+(y)))g. Namely,

�APR (V; l) is the set of admissible, incentive-compatible, one-period contracts
guaranteeing the manager an initial utility V at an initial history l, while
GAPR (V; l) is the subset of optimal (from the point of view of the principal)
contracts.

Proposition 5 For any l 2 L, �APR (:; l) is upper hemi-continuous on V AP (l).

To show that the value function UAP
�
is continuous on V AP , we also need

�APR (:; l) to be lower hemi-continuous on V AP . This is where the problem
stems from. For example, consider two possible e¤ort levels a < a and let V APa
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and V APa be the sets of initial utility values that are supportable by admissi-
ble incentive-compatible contracts guaranteeing continuation utilities in V AP

and inducing low and, respectively, high e¤ort. Fix l 2 L. By Proposition 4,
maxV APa (l) > maxV APa (l); therefore, if V AP is convex, �APR (:; l) may violate

lower hemi-continuity at maxV APa (l) and/or max
n
minV APa (l) ;minV APa (l)

o
.

Call these points V1 and V2, respectively. Then, by the theorem of the maxi-
mum14 UAP

�
(:; l) will be continuous andGAPR (:; l) will be upper hemi-continuous

on V AP (l) n fV1; V2g. If � = 0, we know that V AP is convex, so the previous
analysis applies.
Notice that the problems surrounding the potential discontinuities of �APR

may be related to the possible non-convexity of the set of e¤ort levels, A.15

However, in view of the numerical estimation, working with an interval of e¤orts
is unfeasible. Moreover, multiple actions may require ranking conditions and
the calibration of such a model may prove a di¢ cult task. Therefore, in the next
section, I will concentrate on the case of only two possible levels of managerial
e¤ort: high (working hard) and low (shirking).16

3 Computation and Results

The computation of the model starts with solving for V AP , the set of manager�s
expected discounted utilities supportable by an AP contract. While Proposition
14 from Morfov (2009) gives the theoretical background for the estimation of
V AP , some caveats remain. In particular, eB is a set operator and in order to
apply the iterative procedure in practice we need an e¢ cient representation of

the sequence of sets
n eXio

i2Z+
. For the class of in�nitely repeated games with

perfect monitoring, Judd, Yeltekin and Conklin (2003) are able to construct in-
ner and outer convex polytope approximations based on the convexi�cation of
the equilibrium value set through a public randomization device. Here, I follow
a more general approach which does not rely on assuming that V AP is convex
or convexifying it by introducing public randomization.17 The main idea is to
discretize the elements of the initial guess eX0 and start extracting small open
14See, for example, Stokey and Lucas (1989).
15 Indeed, the problem may be attenuated if we assume A convex [cf. Phelan and Townsend

(1991)].
16Note that if we presuppose the optimality of a certain level of e¤ort, say high e¤ort [see,

for example, Ase¤ (2004)], we will have V AP = V APa convex, �APR lower hemi-continuous

and, therefore (given Proposition 5), continuous, so by the theorem of the maximum UAP
�

will be continuous and GAPR will be upper hemi-continuous. Such an assumption, however, is
not as innocuous as it may seem since it appears that shirking (low e¤ort) is optimal for a
wide interval of initial utility values in the upper region of the state space (see Figure 10).
17Such a general approach is particularly useful in addressing extensions as for example

estimating the endogenous state space of agent�s expected discounted utilities supportable
by an AP stock option contract, because of the non-convexities inherent to the stock option
contract.
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intervals, the midpoints of which are unfeasible with respect to eX0. The extrac-
tion is done elementwise without updating the previous elements. In particular,
I start from the discretization of the �rst18 element of eX0, �nd the points that
cannot be supported by a one-period AP contract with a continuation utility
pro�le contained in eX0, i.e., the points of the discretization which are not in
the �rst element of eB � eX0�, and extract small open balls around these points.
Next, I �nd the gridpoints in the second element of eX0 which are unfeasible
with respect to eX0, extract their small open neighborhoods and proceed in a
similar fashion until I cover all the elements of eX0. The remaining set, i.e., eX0
less the extracted intervals, becomes eX1, our new guess for V AP . Given thateX0 is a vector of n� closed intervals in R, each of the n� elements of eX1 will be
a �nite union of closed intervals in R. In order to increase e¢ ciency, intervals
with length less than some prespeci�ed level are reduced to their midpoints. The
procedure stops if for each element of eXi the number of closed intervals repre-
senting it equals the respective number for the same19 element in eXi�1 and, in
addition, the representation of eXi di¤ers from the representation of eXi�1 by less
than some prespeci�ed tolerance level. In order to apply this stopping criterion,
one still needs to construct a measure for the di¤erence between representations.
For this purpose, I �nd the di¤erence in absolute terms between each endpoint
(minimum or maximum point) of each interval of each element of eXi and eXi�1
respectively and take the maximum one to be the di¤erence between the rep-
resentations of eXi and eXi�1. This di¤erence is well de�ned given that the two
representations share the same structure, which is actually the �rst condition
of the stopping criterion.
Once V AP is obtained, it is elementwise discretized and used as a state space

in the dynamic program for obtaining U
AP�

. At each iteration, the guess for
U

AP�
being de�ned only on the discretization needs to be interpolated over the

state space. Interpolation is also required in the subsequent iterative procedure
which uses U

AP�
as an initial guess for bU�, the extension of U� on V AP .

It should be noted that for computational purposes, I do not work with w
directly, but use � := � (w) instead. This simple change of variables makes
the set of constraints linear in a, �, and V+, which signi�cantly improves the
numerical optimization. We can always recover the optimal wage by inverting
the optimal �.
Table 1 in Appendix 2 contains V AP , the state space of the optimal AP

contract. The results are obtained by parameterizing the model in line with the
calibration of Ase¤ and Santos (2005) based on the results of Hall and Liebman
(1998) and Margiotta and Miller (2000). Namely, the set of possible pro�t re-
alizations which are interpreted as stock price returns Y =

�
y(1); y(2); y(3)

	
=

f0.55, 1.125, 1.7g, the space of e¤ort levels A = fa; ag = f0.1253, 0.1469g, the
conditional probabilities �

�
y(1); a

�
= 0.1508, �

�
y(2); a

�
= 0.8121, �

�
y(3); a

�
=

18Note that eX0 is a Cartesian product of n� sets.
19Here, �same� refers to the index of the element, i.e. to the initial history to which it

corresponds.
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0.0371, �
�
y(1); a

�
= 0.1268, �

�
y(2); a

�
= 0.8082, �

�
y(3); a

�
= 0.065.20 I �x w =

0 and equalize the discount factors for the agent and the principal �A = �P =
0.96. The period utility with no e¤ort, � (:) =

p
(:), is as in Ase¤ (2004)21 . The

reservation utility of the principal is assumed constant across initial histories
with a value U = 0. As regards the upper bound of the manager�s compensa-
tion, I consider three di¤erent cases. Case 1 uses Proposition 1 to derive the
uniform upper bound for the wage w given the minimum reservation utility of
the principal U . Cases 2 and 3 still honor the upper bound w, but impose
further restrictions on the manager�s period compensation22 Case 2 bounds the
wage by y at each contingency.23 It implicitly allows the shareholders to borrow
up to y�y every period given a realized pro�t y. Case 3 implicitly prevents the
shareholders from borrowing. At each possible contingency, they can pay the
CEO no more than the realized pro�t. For case 1, I take the upper bound for
the initial guess bV = �(w)�a

1��A
, while for cases 2 and 3, I use bV = �(minfw;yg)�a

1��A
.

I analyze the case of � = 1, which encompasses � = 0 as a subcase. Then, I
have to deal with n� = 3 (initial history) states. I use the natural notation l for
the state with initial history y(l), l 2 f1; 2; 3g. I consider three possible values
for the reservation utility of the CEO: L= �(w)�a

1��A
= -3.6725, M = 0, H = -L.

Then, I analyze the more interesting case of nonnegative correlation between
initial histories and manager�s reservation utilities. This limits the number of
possible combinations of reservation utility values across initial histories to 10.
For example, LMH, which stays for V 1 = L, V 2 = M, V 3 = H, is allowed, while
LHM is not. Note that KKK is equivalent to the case of � = 0 and V =K, where
K2{L,M,H}. Each cell of Table 1, contains V AP for a particular combination of
reservation utility values (table rows) and a particular case (table columns). In
each cell, the left subcolumn corresponds to the intervals�minimum points and
the right - to the maximum points, while each subrow corresponds to a particular
initial history. For example, for LMH, (case) 1, V AP (1) = [0.8275, 843.0178],
V AP (2) = [0.8200, 843.0178], V AP (3) = [3.6725, 843.0178].
The results suggest that for any l 2 f1; 2; 3g, V AP (l) is convex from where

come the single intervals in Table 1. Note that at least for cases 1 and 2 the
upper bound of V AP (:) remains constant across initial histories and reservation
utility combinations. In fact, it equals the theoretical bound given the case:
�(w)�a
1��A

for case 1 and �(y)�a
1��A

for case 2. This means that wages can be high
enough to support high expected discounted utilities for the manager. Note,
however, that V 2P � V AP and we lose high utility values in solving for U�

as Figure 1 in Appendix 2 indicates. The reason is that the value function
is decreasing in the upper region of V AP , which results in violations of the
principal�s participation constraint for high utility values of the manager.

20Ase¤ and Santos (2005) actually consider two conditional distributions over an interval of
possible stock price returns [0.55, 1.7]. In this numerical experiment, I concentrate the mass
of each distribution on 3 points of this interval: the minimum, middle, and maximum point.
21Running the algorithm with v (w) = log (1 + w) as in Ase¤ and Santos (2005) showed no

qualitative changes in the results.
22Cf. Wang (1997).
23Remember that y is the highest possible pro�t realization, i.e. y(3) in our setting.
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Since the results are similar across cases, we concentrate on the economically
motivated cases 2 and 3 with a special focus on case 3.24 Figures 1 and 2 plot U�

and UAP
�
over V AP for cases 2 and 3 respectively. In each graph, the left panel

corresponds to an initial history 1, the middle - to 2, and the right - to 3. Note
that although similar, the value functions are not the same across initial pro�t
histories for both the auxiliary and the original problem. The main di¤erence
comes from the substantial shrinking of the state space from the left when the
initial history is the one characterized by the highest reservation utility (i.e.,
3). Given an initial history 3, the maximum utility the principal can get by
signing an AP or 2P contract with the CEO is less than what he/she can obtain
under 1 or 2 since the contract should guarantee a higher initial utility to the
manager. Note that U� and UAP

�
are almost identical for case 3, while U� does

not cover the uppermost part of the domain of UAP
�
in case 2. The reason

is that very high initial utility promises should be supported with su¢ ciently
high wages, which would eventually decrease the expected discounted utility
of the principal below its reservation value at some node. Therefore, in case
2, the minimum utility the principal can obtain by signing a 2P contract with
the manager is higher than the minimum under an AP contract. This is not
observed (or, in general, less pronounced) for case 3 since then the principal is
essentially prevented from borrowing, so he/she cannot o¤er the manager wages
that are su¢ ciently high to violate his/her own participation constraint under
the 2P contract. The graph also suggests that the value functions are concave
and monotonically decreasing, properties which, however, are not so easy to
generalize.
Regarding the characteristics of the optimal contract, the recommended ef-

fort level is predominantly the high one. However, low e¤ort appears to be
optimal in some utility regions. Since the results are similar across cases, I
only report the relationship for LMH, case 3. As Figure 3) indicates, shirking
is optimal for su¢ ciently high initial utility values. Intuitively, the manager is
so rich (in expected utility terms) that the �rm cannot e¤ectively reward or
punish him/her and, therefore, �nds motivating him/her to exert high e¤ort
suboptimal. The CEO�s utility tomorrow increases in both the end-of-period
pro�t and the initial utility promise as illustrated in Figures 4 and 5 respec-
tively. Let us focus on Figure 4 which plots the relation for each possible initial
utility. While the future utility promise is basically �at for high initial utilities,
for low utility values the increase is driven by the participation constraint of
the agent which is binding tomorrow at a pro�t realization y(3). This is also
re�ected on the left and the middle panel of Figure 5 as the kink of the graph
of V+ (:; y3). Note that this is not the case for initial history 3 which requires
higher future utility promises. In general, the manager�s wage increases in both

24As regards the numerical computation, case 3 is the clearest case followed by case 2. Case
1 is the noisiest case since the state space of the auxiliary problem, V AP , is the largest due
to the higher upper bound of the manager�s utility, bV . This requires a coarser grid and also
introduces numerical mistakes due to the high absolute values of the negative numbers the
guess for (and the actual) UAP

�
takes in the upper regions of the state space, regions which

we in fact lose when estimating U� since they violate principal�s participation.
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the end-of-period pro�t and the initial utility promise. Notice that the compen-
sation scheme is much �atter across pro�t realizations for case 2 than for case
3 (Figures 6 and 7 respectively). This is because current consumption smooth-
ing (across pro�t realizations) which is achieved by a �at wage scheme for the
initially poor (in terms of utility promises) managers, is no longer possible for
richer CEOs because the credit constraint imposed in case 3 starts to bind. This
is particularly relevant for the lowest pro�t realization y(1). The same point can
be illustrated by Figures 8 and 9. Note that wage contingent on a low pro�t
tomorrow is strictly increasing on the whole domain of initial utilities for case
2, while in case 3 it steadily increases until y(1) is reached and then with the
credit constraint binding stays constant at that level.
The results suggests that both current and future compensation are used

to induce poor and mid-range managers to work hard, while rich managers
prove too di¢ cult to motivate. The latter shirk and while they may face some
�uctuations in their current income stream due to binding credit constraints on
part of the �rm, their lifetime utility remains relatively �at.
Since there is a su¢ cient dispersion in agent�s reservation utility values,25

the minimum utility supportable by an AP/2P contract for initial histories char-
acterized by lower reservation utility is boosted by higher reservation utilities
for other states. More speci�cally, in the presence of positive correlation be-
tween pro�ts and reservation utilities, the participation constraint of the agent
does not bind in states characterized by low pro�ts. In other words, the AP/2P
contract provides the manager with some insurance against �uctuations in the
value of his/her outside options, which ultimately smooths his/her consump-
tion across (initial history) states. Interestingly, while the theoretical result of
Proposition 1 only refers to initial history 1, we observe a cascade e¤ect which
leads to a signi�cant rise in the lower limits of the possible utility promises for
both 1 and 2. Finally, note that if the reservation utility remains the same
across some, but not all of the truncated initial histories, V AP (:) is identical for
the initial histories with the same reservation utility. While this seems obvious
for � � 1, longer history dependence will potentially break the relation since the
set of possible tomorrow�s histories will depend on the history today.
Table 2 in Appendix 2 shows the e¤ect of changing the value of the minimum

reservation utility of the principal for LLL, case 1. Theoretically, we have that
increasing U decreases w, which in turn causes bV to fall. Since the analysis
so far suggests that the theoretical upper bounds for agent�s utility can be
supported by an AP contract, the only e¤ect of changing U comes from the
resulting change in the theoretical bound. Moreover, since the 2P contract
cannot support manager�s utilities in the upper region of V AP (:), the optimal
self-enforcing contract is not a¤ected.
I also use Monte Carlo simulations to investigate the dynamic behavior of

the optimal contract. Namely, I construct �typical�time paths of length T for
the manager�s e¤ort, wage, and expected discounted utility, the �rm�s pro�ts,

25The only exception observed is when the reservation utility remains �at across past out-
comes, so in fact we are in the case of � = 0.
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and the principal�s expected discounted utility. Each such path is taken to be
the mean of I independently generated paths which are constructed following
the transition and the policies (and if relevant, the value function) of the 2P
contract. The �typical� path is well de�ned given an initial condition (V0; l),
where V0 2 V 2P (l) and l 2 f1; 2; 3g. Figures 10-17 present the results for LMH,
case 3 where I take T = 50 and I = 450.26

Figure 10 illustrates how the manager�s e¤ort optimally develops in time.
Each curve on the l�th panel of the graph represents a time path conditional on
a particular expected discounted utility being promised to the manager in the
beginning of period 0 given an initial history l 2 f1; 2; 3g. Relating each curve to
its corresponding initial utility indicates that initial e¤ort persists for su¢ ciently
low or su¢ ciently high initial utilities (high e¤ort for low initial utilities, and
low e¤ort for high initial utilities), there is some dynamics in the middle-utility
range, mostly expressed in diminishing e¤ort.
Figures 11 and 14 suggest that manager�s compensation and, respectively,

his/her expected discounted utility grow weakly in the long run where the in-
crease is pronounced for su¢ ciently low initial utilities, while the mid-range
and high initial utility paths tend to be relatively stable at their initial levels.
In other words, CEOs who start rich (in expected utility terms) tend to keep
their utility level while those who start poor get richer in time. Note that the
increase is most pronounced for managers with initial utilities below the highest
reservation utility, i.e., the poorest managers in 1 and 2.27 These managers �rst
have their utilities pushed well above their reservation level based on the insur-
ance e¤ect outlined in Corollary 1. Then, the principal motivates them to work
hard by rewarding success through continuation utilities while providing them
with insurance through �atter wages. In this way, the probability of a higher
pro�t and, therefore, higher reservation utility tomorrow increases, which rises
the manager�s expected continuation utility. Since wage is increasing in initial
utility, the resulting pattern is observed. Therefore, in the long run, both con-
sumption (wage) and wealth (utility) are smoother across initial history states.
The result can also be interpreted as a decreasing (wage- and utility-) inequality
(as far as the poorest managers are concerned).
Figure 12 shows the pro�t �uctuations under the optimal contract. The

average pro�t realization is substantially higher for lower than for higher initial
utilities with some sudden drop at the mid range. This is understandable given
that high e¤ort is optimal for lower utility values while low e¤ort is optimal for
high utility values.
As Figure 13 indicates, the principal�s expected discounted utility tends to

decrease weakly in the long run where the decrease is more pronounced when
lower initial utility is promised to the agent. For higher utility promises, the
principal tends to keep his/her initial utility value. This is easily explained by

26Longer paths were also simulated but the results did not show signi�cant di¤erence from
the ones presented here while memory limitations progressively restricted the precision of the
estimates.
27Remember, that 3 is the manager�s best initial history since it is associated with his/her

highest reservation utility U3 = H.
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the dynamics of the manager�s utility given that the value function is decreasing.
In a setting of dynamic risk sharing, Green (1987) and Thomas and Worrall

(1990) demonstrate that the agent becomes in�nitely poor in the long run.
Phelan (1995) shows that this result does not hold if limited commitment is
introduced on part of the agent, namely that there exists a non-degenerate
limiting distribution of agent�s expected discounted utility and consumption.
In a CARA setup with unobservable actions, Wang (1997) shows numerically
that agent�s wealth and consumption tend to �uctuates over time. Ase¤ (2004)
numerically demonstrates that in a contract that optimally induces high e¤ort,
the agent�s expected discounted utility increases in the long run and has a
non-degenerate limiting distribution. In a more general setup characterized by
limited commitment on both parts and history-dependent reservation utilities,
I obtain a similar result as indicated in Figures 15-17. Each of these graphs
considers an initial state l and plots the empirical distributions of manager�s
expected discounted utility after 50 periods conditional on 12 di¤erent initial
utility promises. Since the lower bound of the set of possible initial utility
promises for 3 is greater than those for the other two initial history states and
I use an equidistant grid of 100 points (V(1),...,V(100)), the i-th point of the
grid for 3 will generally larger than the i-th point of the grids for 1 and 2
respectively. Having this in mind, we see that the limiting distribution does not
vary considerably across initial history states, i.e., in the long run it would not
matter what the initial pro�t was as far as the initial utility promise was the
same (at least for a single-period history dependence). Note however that since
the curves on each panel of Figure 14 generally do not cross, it still matters
where (in terms of utility promise) you start - the poor get rich but it is still
better to start richer.

4 Conclusion

This paper considers the dynamic principal-agent interaction between �rm�s
shareholders and a CEO in a setting characterized by limited commitment and
history-dependent reservation utilities. I analyze the state space of the recur-
sive form of the problem under a short-term history dependence and derive con-
ditions under which the optimal contract o¤ers the manager a utility strictly
higher than the reservation level. The model is parameterized and computed un-
der di¤erent structural arrangements. I �nd evidence that the optimal contract
provides the manager with insurance against (non-negligible) �uctuations in the
value of his/her outside options, which ultimately smooths his/her consumption
across (initial history) states. Exerting e¤ort appears to be the predominant
strategy for the principal, but shirking may still be optimal when the CEO is
rich enough. The optimal wage scheme and the future utility of the manager
tend to grow in both his/her current utility and in the future pro�t realization.
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In the long run, the CEO does not get poorer in utility terms. In particular,
managers who start rich tend to keep their utility level while those who start
poor get richer in time. The manager�s utility tends to increase weakly in the
long run and appears to have a non-degenerate long-term distribution depending
on the initial utility promise.
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APPENDIX 1

Proof of Proposition 1. At any node y��1 after (and including) l, we have
U � U�

�
:; y��1

�
� y�w

1��P
, where the �rst inequality follows from

(3) and Assumption 4, and the second from (1), Assumptions 1, 2, and
the properties of A and Y . If we de�ne y := minY , it is straight-forward

that
1P
t=�
�t��P

P
yt2Y

:::
P
y�2Y

yt

tY
i=�

�
�
yi; ai

�
yi�1

��
2
h

y

1��P
; y
1��P

i
. Consequently,

we have that cW �
c; y��1

�
:=

1P
t=�
�t��P

P
yt2Y

:::
P
y�2Y

wt (y
t)

tY
i=�

�
�
yi; ai

�
yi�1

��
2h

w
1��P

; y
1��P

� U
i
. Let us take some admissible a. Since cW �

a;w; y��1
�
=P

y�2Y
w� (y

� )�
�
y� ; a

�
y��1

��
+ �

P
y�2Y

cW (c; y� )�
�
y� ; a

�
y��1

��
, we obtainP

y�2Y
w� (y

� )�
�
y� ; a

�
y��1

��
2
h
w; y��Pw1��P

� U
i
. Now, consider w�

�
y��1; y

�
for

some y 2 Y . Note that by Assumption 1 and the properties of A and Y , � is
well de�ned and �

�
y; a

�
y��1

��
> � > 0. Then, we have:

w�
�
y��1; y

�
�

1

� (y; a (y��1))

0@y � �Pw
1� �P

� U �
X

y�2Y nfyg

w� (y
� )�

�
y� ; a

�
y��1

��1A �

1

� (y; a (y��1))

0@y � �Pw
1� �P

� U �
X

y�2Y nfyg

w�
�
y� ; a

�
y��1

��1A =

1

� (y; a (y��1))

�
y � w
1� �P

� U
�
+ w �

1

�

�
y � w
1� �P

� U
�
+ w,

where the last inequality follows from
�
y�w
1��P

� U
�
being nonnegative by

Assumption 5. Since
�
y��1; y

�
was taken randomly, we are done.

Proof of Proposition 2. Given that � = 0, the initial guess for V AP in

step 1 will be eX0 := hV ; bV i. Then, max eB � eX0� = minn� (w) + �A bV � a; bV o
= min

nbV ; bV o = bV since bV = �(w)�a
1��A

. Consequently, by Proposition 14 from

Morfov (2009), we have maxV AP = bV .
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The stationary contract fa;w; V g promises the same wage and the same
continuation utility for any pro�t realization. It is temporary incentive compat-
ible and guarantees a current expected discounted utility of � (w)+ �AV � a to
the manager. Can we �nd a contract that guarantees a current utility strictly
lower than that? Assume such a contract exists, i.e., 9 fa�; w+ (y) ; V+ (y)gy2Y
admissible, such that Ea f� (w+) + �AV+g � a < � (w) + �AV � a, where
Ea is the expectation over the pro�t realization y conditional on the cur-
rent action being a. However, this contract will fail to satisfy temporary in-
centive compatibility. Indeed, (7) requires that Ea f� (w+) + �AV+g � a� �
Ea f� (w+) + �AV+g � a � � (w) + �AV � a which contradicts our assumption
that fa�; w+ (y) ; V+ (y)gy2Y guarantees a strictly lower current utility than

fa;w; V g does. Therefore, min eB � eX0� = max f� (w) + �AV � a; V g. Note

that � (w) + �AV � a � V is equivalent to V � �(w)�a
1��A

. Then, by Proposition

14 from Morfov (2009), it is trivial that minV AP = max
n
V ; �(w)�a1��A

o
.

Finally, we will show that V AP is an interval. eX0. Let �+ (:) := � (w+ (:)).
Given that � (:) is strictly increasing by Assumption 3, the inverse function
of � (:) is well de�ned and we have w+ = ��1 (� (w+)). Then, we can ef-
fectively work with �+ instead of w+. Indeed, (6) simply becomes �+ 2
[� (w) ; � (w)]. Now, let us concentrate on stationary contracts of the form

fa�; �+ (y) ; V+ (y)gy2Y . Note that eB � eX0� is a compact set and its lower
and upper limits are utilities supportable by stationary contracts inducing the

lowest possible level of e¤ort. Then, any utility between min
n eB � eX0�o and

max
n eB � eX0�o can be obtained as a linear combination of the respective sta-

tionary contracts that support them. The linear combination will satisfy (5)-(8).
(9) will also hold since eX0 is an interval. In that way, we can show that eXi is
a convex set for any i = 0; 1; ::: Since eXi is a sequence of decreasing (nested),
compact, convex sets, we have that their limit is also convex.

Proof of Proposition 3. The minimum of the state space is obtained
as in the proof of Proposition 2. Note that maxa2A fEa� (min fy; wg)� ag is
well de�ned given that A is compact and � (y; :) is continuous on A for any

y 2 Y by Assumption 1. Let eX0 := h
V ; eV i, where eV = �(minfy;wg)�a

1��A
. Here,eV is chosen so that V AP � eX0. Let bA = argmaxa2A fEa� (min fy; wg)� ag.

Choose ba 2 bA. Then, the stationary contract nba;min fy; wg ; eV o
y2Y

satis�es

(5)-(7), (9) and guarantees a current utility of Eba� (min fy; wg) + �A eV � ba �eV . Assume a contract fa�; w+ (y) ; V+ (y)gy2Y that has w+ (y) � y, 8y 2 Y
and satis�es (5)-(7), (9) can guarantee a strictly higher current utility to the
manager, i.e., Ea�f� (w+)+�AV+g�a� > Eba� (min fy; wg)+�A eV�ba. However,
we have that Eba� (min fy; wg) + �A eV � ba � Ea�� (min fy; wg) + �A eV � a� �
Ea� f� (w+) + �AV+g � a�, so a contradiction is reached. By Proposition 14
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from Morfov (2009), we obtain maxV AP = maxa2AfEa�(minfy;wg)�ag
1��A

. In case

a 2 bA, the convexity of V AP is established as in the proof of Proposition 2.
Proof of Proposition 4. The maximum is obtained as in the proof of

Proposition 2. Let eX0 := nhV l; bV io. Take ba 2 argmaxa2A fEaV � ag. Then,
the stationary contract fba;w; V lg satis�es (5)-(7), (9) and guarantees the man-
ager a current utility of � (w) + �AEbaV � ba. Assume that there exists an-
other contract that satis�es (5)-(7), (9) and guarantees a strictly lower level of
current utility to the agent. Let fa�; w+ (y) ; V+ (y)g be such a contract, i.e.,
Ea� f� (w+) + �AV+g�a� < � (w)+�AEbaV�ba. Then, Ea� f� (w+) + �AV+g�
a� � Eba f� (w+) + �AV+g � ba � � (w) + �AEbaV � ba. where the �rst inequal-
ity follows from incentive compatibility and the second from (6) and (9). A
contradiction is reached, so fba;w; V lg must bring minimum utility to the man-

ager today. If � (w) + �AEbaV � ba � V bl, we have that min eBl � eX0� = V l,

8l 2 L since V bl = minl2L fV lg. If � (w) + �AEbaV � ba > V bl, min eBbl � eX0� =
� (w) + �AEbaV � ba. Since applying eB successively on eX0 leads to a sequence
of decreasing (nested) compact sets that converges to V AP , we obtain that

minV AP
�bl� � min eBbl � eX0� > V bl.

Proof of Corollary 1. From Proposition 4, it is enough to show that
maxa2A f�AEaV � ag > V bl � � (w). We have that maxa2A f�AEaV � ag >
maxa2A

�
�AV bl � a	 = �AV bl � a � V bl � � (w), where the �rst inequality fol-

lows from the de�nition of V bl, the assumption that for at least one l 2 L,
V bl = minl2L fV lg < V l, and � (y; a) > 0 from Assumption 1, the equality is

trivial, and the last inequality results directly from V bl � �(w)�a
1��A

.

Proof of Proposition 5. Analogous to the proof of Lemma 2 in the Appendix
of Morfov (2009).
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APPENDIX 2

Table 1
State Space of the Optimal AP Contract

Case 1 2 3
[ ] [ ] [ ]

LLL -3.1325 843.0178 -3.1325 29.4635 -3.1325 22.4035
y(1) -1.4325 843.0178 -1.4325 29.4635 -1.4325 22.4035

LLM y(2) -1.4325 843.0178 -1.4325 29.4635 -1.4325 22.4035
y(3) 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(1) 0.8075 843.0178 0.8056 29.4635 0.8050 22.4035

LLH y(2) 0.8075 843.0178 0.8056 29.4635 0.8050 22.4035
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.4030
y(1) -0.1425 843.0178 -0.1460 29.4635 -0.1461 22.4035

LMM y(2) 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(3) 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(1) 0.8275 843.0178 0.8182 29.4635 0.8280 22.4035

LMH y(2) 0.8200 843.0178 0.8200 29.4635 0.8200 22.4035
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.4030
y(1) 3.3575 843.0178 3.3635 29.4635 3.3632 22.3724

LHH y(2) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3783
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3783

MMM 0.0000 843.0178 0.0000 29.4635 0.0000 22.4035
y(1) 0.8100 843.0178 0.8100 29.4635 0.8100 22.4035

MMH y(2) 0.8100 843.0178 0.8100 29.4635 0.8100 22.4035
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.4030
y(1) 3.3600 843.0178 3.3594 29.4635 3.3592 22.3623

MHH y(2) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3703
y(3) 3.6725 843.0178 3.6725 29.4635 3.6725 22.3703

HHH 3.6725 843.0178 3.6725 29.4635 3.6725 22.4001

Table 2
E¤ects of Changing the Minimum Reservation Utility of the Principal

(LLL, case 1)

U 0 5 10

w 1145.5526 1010.7817 876.0108bV 843.0178 791.6873 736.8045
V AP [-3.1325, 843.0178] [-3.1325, 791.6873] [-3.1325, 736.8045]
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Figure 1: Value functions for the AP and 2P contracts ordered by initial
history: UAP
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(:; l) ; U� (:; l), l 2 f1; 2; 3g (LMH, case 2)
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history: UAP
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Figure 7: Optimal wage as a function of future pro�t: w�+ (V; l; :): V 2 V 2P (l),
l 2 f1; 2; 3g (LMH, case 3)
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Figure 13: Principal�s utility in time: Ut (V0; l): V0 2 V 2P (l), l 2 f1; 2; 3g,
LMH, case 3
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Figure 14: Manager�s utility in time: Vt (V0; l): V0 2 V 2P (l), l 2 f1; 2; 3g,
LMH, case 3
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Figure 15: Empirical distribution of manager�s utility after 50 periods, V50,
conditional on initial history y0 = y(1) and initial utility promise V0 2

V 2P (y0), LMH, case 3
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Figure 16: Empirical distribution of manager�s utility after 50 periods, V50,
conditional on initial history y0 = y(2) and initial utility promise V0 2

V 2P (y0), LMH, case 3
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Figure 17: Empirical distribution of manager�s utility after 50 periods, V50,
conditional on initial history y0 = y(3) and initial utility promise V0 2

V 2P (y0), LMH, case 3
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The paper uses a dynamic hidden-action framework marked by lim-
ited commitment and history-dependent reservation utilities to charac-
terize the optimal incentive-compatible, self-enforcing contract that o¤ers
the agent a �xed salary and a stock option grant with a particular strike
price. The model is parameterized and estimated in view of top executive
compensation. The optimal stock option contract seems to motivate less
wealthy managers to work hard, but high e¤ort proves suboptimal for
the richest CEOs. The compensation package shows little dynamics and
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grant with a low strike price. The future utility promise appears to be a
more powerful incentive device. It tends to increase in the initial utility
promise and, on average, grows with the stock price realization. The con-
tract also o¤ers some partial insurance against non-negligible �uctuations
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1 Introduction

Recently, there has been a widespread use of stock option contracts with respect
to both �rms� top managers1 and rank-and-�le workers2 . With their simple,
piecewise-linear payo¤ structure, these schemes are di¢ cult to identify as the
optimal incentive schemes predicted by economic theory.3 While there is a
growing body of literature searching for possible reasons4 to account for the
abundance of such contracts, very little has been done in terms of computing
the optimal stock option contract and comparing it with the optimal contract
per se.
Clementi, Cooley and Wang (2006) consider a two-period principal-agent

model of hidden action and show that under severe commitment problems share-
holders� value can potentially be improved by including stock options in the
agent�s compensation package. Ase¤ and Santos (2005) (hereafter, AS) analyze
the properties of the optimal stock option contract obtained in a principal-agent
framework by restricting the set of admissible contracts to canonical stock op-
tion contracts5 . They calibrate the model and �nd that the cost of implementing
the optimal stock contract vs. the optimal contract is negligible. However, their
model is static and therefore fails to address issues such as smoothing consump-
tion and incentives over time. Indeed, stock option grants are a purely dynamic
phenomenon.
The current paper extends and generalizes the analysis of AS in a dy-

namic framework. The set-up is an in�nite-horizon hidden-action problem char-
acterized by two-sided limited commitment (a natural generalization of Phe-
lan (1995)�s one-sided commitment) and history-dependent reservation utilities.
The history dependence of the agent�s outside options can be defended by eco-
nomic considerations and may also be particularly relevant for the case of stock
options as indicated in Oyer (2004). The space of admissible compensation
schemes is exogenously restricted to the family of canonical stock option con-
tracts; i.e., each period, the �rm�s shareholders can o¤er the manager only a
package consisting of a �xed salary component and a stock option grant with a
particular strike price. The framework can be e¤ectively described by a model of
the class analyzed in Morfov (2009a) and so can fully bene�t from the recursive
form constructed there. Namely, we can start from an auxiliary environment
where the principal can commit to a long-term contract and consider him/her
maximizing expected discounted utility over all incentive-compatible contracts
that recommend an admissible plan of actions and o¤er a series of single-round
stock option contracts. The auxiliary problem can be recursively characterized

1See, for example, Jensen and Murphy (2004).
2See, for example, Hall and Murphy (2003).
3See, for example, Stiglitz (1991).
4Reasons proposed include attraction, retention, motivation, sorting (�options-as-

�nance�), accounting and tax advantages [see Hall and Murphy (2003), Oyer and Schaefer
(2005) for a review].

5A canonical stock option contract is fully characterized by a �xed salary, stock option
grant and its strike price.
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on an endogenous state space that matches price histories with utility promises
to the agent. This state space is the largest �xed point of a set operator and is
also the limit of this operator given a su¢ ciently big initial set. With the state
space obtained, we can solve the recursive representation of the auxiliary prob-
lem by dynamic programming. The original problem where neither the principal
nor the agent can commit to a long-term relationship is also recursively char-
acterizable on a subset of the aforementioned state space. Both its state space
and value function are recoverable by a modi�ed dynamic programming routine
using the value function of the auxiliary problem as an initial guess and severely
punishing any violation of the principal�s participation constraint.
I show theoretically that if the manager�s reservation utilities are su¢ ciently

dispersed, his/her participation constraint does not bind under the worst case
scenario, which is also observed when the manager can essentially commit when
his/her outside option is at its lowest value. In other words, the minimum utility
the CEO can be promised for initial histories characterized by lower reservation
utility is generally boosted by higher reservation utilities for other states.
Regarding the numerical computation, one point deserves special attention.

In computing the endogenous state space we are iterating on sets and therefore
need to represent them e¢ ciently. For the class of in�nitely repeated games
with perfect monitoring, Judd, Yeltekin and Conklin (2003) are able to construct
inner and outer convex polytope approximations based on the convexi�cation of
the equilibrium value set through a public randomization device. The algorithm
I use may be of independent interest since it does not rely on the convexity of
the underlying set. The main idea is to discretize the guess for the equilibrium
set elementwise, extract small open balls around the gridpoints unfeasible with
respect to the (non-updated) guess and use the remaining set, i.e. the guess less
the extracted intervals, as a new guess for the equilibrium set. The procedure
stops if the structure of the representations of two successive guesses coincides6

and the suitably de�ned di¤erence between the representations is less than some
prespeci�ed tolerance level.
The model is parameterized in line with the calibration of AS who derive

the stock price distribution conditional on manager�s e¤ort based on the results
of Hall and Liebman (1998) and take the value of low e¤ort from Margiotta and
Miller (2000).
The estimated value function is very �at for lower utility promises and very

steep for higher utility promises. As under the optimal contract per se, the
stock option contract induces less wealthy managers to work hard. High e¤ort,
however, proves suboptimal for the richest CEOs. The stock option package
shows very little dynamics, it only plays a role for high utility promises where
the resulting compensation jumps due to increased �xed salary and a big stock
option grant with a low strike price. The future utility promise appears to be
a more powerful incentive device. Manager�s utility tomorrow tends to increase
with the initial utility promise and, on average, grows with the stock price
realization. The contract also appears to partly insure the manager against

6Namely, if the representations have the same number of closed sets element by element.
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�uctuations in his/her outside options.
The rest of the paper is structured as follows. Section 2 presents the model

in a general and recursive form. Section 3 parameterizes the model, comments
on the numerical algorithm and discusses the results. Section 4 concludes. Ap-
pendix 1 contains the proofs. All the graphs are presented in Appendix 2.

2 Model

Consider the general framework described in Morfov (2009a). Namely, each
period, a principal needs an agent to operate some stochastic technology trans-
forming an action space A to a set of possible outcomes Y . While the particular
realization y 2 Y is observed by both individuals who also know the history of
y�s so far, the particular action a 2 A exercised by the agent is his/her private
knowledge. A � R and Y � R+ are compact, time- and history-invariant and Y
is also assumed �nite, say with n distinct elements. The distribution of outcomes
conditional on a particular action choice is assumed independent and identical
across past actions and outcomes. It is described by a commonly known prob-
ability function � (:; a) : Y ! [�; 1] for any a 2 A with � > 0, where � (y; :)
is continuous on A for every y. The principal is trying to design a long-term
contract to optimally induce the agent to follow some (endogenous) action plan.
The contract consists of a monetary transfer w 2 W � R from the principal to
the agent and a recommended action a on each contingency. Principal�s utility
at every node is state and time independent and is described by u :W �Y ! R
continuous, decreasing in its �rst argument and increasing in the second. At
every node, the agent�s utility is given by � :W �A! R continuous, increasing
in its �rst argument and decreasing in the second. The principal and the agent
discount the future by factors �P and �A respectively, where �P ; �A 2 (0; 1).
The principal and the agent also have some outside opportunities available at
each contingency which are time-independent, but history-dependent. In par-
ticular, I restrict the history dependence to the previous � outcomes, where �
is a non-negative integer. The limited commitment of both parties motivates
the principal to o¤er a self-enforcing contract in the sense of Phelan (1995), i.e.
a contract with continuation utilities that are weakly higher than the relevant
reservation utilities at every node. Note that since actions are unobservable
and non-veri�able, the agent may deviate from the recommended action plan if
that brings him/her strictly higher utility. Therefore, the contract needs to be
incentive-compatible, that is, to induce the proper incentives for the agent to
comply with the suggested plan of actions.
The speci�cs are that at each contingency, the principal wants to use a

monetary transfer consisting of a �xed and a state-contingent component with
the latter having a �xed fraction of the payo¤ of a call option on y. More
precisely, the transfer is described by a triple �t := (!t; bt; pt) 2 
� [0; 1]� Y ,
where !t is the �xed component, pt is the strike price of the call on yt, and bt
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is the fraction of the payo¤ of the call. The the set 
 is assumed a compact
subset of R. The end-of-period transfer would then equal w (�t; yt) = !t +
btmax fyt � pt; 0g if the realization yt is observed.7
Given that history dependence is only relevant through its impact on reser-

vation utilities, we can normalize the initial time of contracting to equal 0 and
concentrate on all the possible histories of length � that could have been previ-
ously observed. Let this set of initial histories Y � be indexed using the bijective
function l : Y � ! L :=

�
1; ::; n�

	
. Hereafter, we will commonly refer to a

particular element of Y � by its index l. Let l+ : L � Y ! L map today�s ini-
tial histories of length � and current outcomes to tomorrow�s initial histories (of
length �). It gives the index corresponding to the stream of � outcomes obtained
from the current initial history by deleting the oldest (most leftward) outcome
and adding the current outcome (by concatenating it to the right of the stream).
Let Ul and Vl denote the reservation utilities of the principal and respectively
the agent on any node yt�1 2 Y t � l, for any l 2 L. A supercontract is de�ned
as c := (a; �) = (a; !; b; p) where each element of c denotes a plan across all con-
tingencies after a particular initial history. For example, at node yt�1, the plan
recommends an action at

�
yt�1

�
and o¤ers a compensation package described

by �t
�
yt�1

�
. While it should be understood that the supercontract is de�ned

on a particular initial history, i.e., we should actually write cl instead of only c,
I usually omit the subscript to ease up the notation. Then, given a long-term
contract c, let V�

�
c; y��1

�
and U�

�
c; y��1

�
be the expected discounted utilities

of the agent and respectively the principal at node y��1. Formally,

V�
�
c; y��1

�
:=

1P
t=�
�t��A

P
yt2Y

:::
P
y�2Y

� (w (�t; yt) ; at)

tY
i=�

�
�
yi; ai

�
yi�1

��
U�
�
c; y��1

�
:=

1P
t=�
�t��P

P
yt2Y

:::
P
y�2Y

u (w (�t; yt) ; yt)

tY
i=�

�
�
yi; ai

�
yi�1

��

We will refer to a supercontract c as admissible if at any contingency yt�1 af-
ter the initial history l observed at the time of signing we have that
(a; !; b; p)

�
yt�1

�
2 A � 
 � [0; 1] � Y . Finally, let 8nai(l) denote �at any

node after and including l�. Now, we are ready to formulate the principal�s
problem.

7Note that we implicitly assume that at the beginning of each period the principal may only
grant European-style options that expire at the end of the same period, which, of course, is
quite simplistic given the vesting arrangements accompanying stock option grants in reality.
As a matter of fact, this eliminates the inter-period retention e¤ect of stock options and
restricts the ability of the principal to substitute them for current cash. Note, however,
that we would also prohibit the agent from borrowing and saving, which would decrease
his/her ability to insure against the variance introduced in his/her income by the principal
for incentive purposes. Although these two e¤ects are far from cancelling each other, they do
work in opposite directions, which increases the applicability of the current analysis. Moreover,
even such a stylized view of stock-option grants does bring some important insights into how
quasilinear compensation schemes may provide incentives and insurance in a dynamic setting.
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At initial node l 2 L the principal is solving:

[PPso]

sup
c
U0 (c; l) s.t.:

c admissible (1)

Vt (c; :) � Vt (c0; :) , 8 (c0 = (a0; �) admissible) , 8nai(l) (2)

Vt

�
c; :;el� � V el, 8nai (l) (3)

Ut

�
c; :;el� � Uel, 8nai (l) (4)

Constraint (1) guarantees that the contract speci�es admissible actions and
transfers at every node. (2) guarantees incentive compatibility at any node.
Constraints (3) and (4) are the participation constraints for the agent and,
respectively, the principal.

Assumption 1 9c : (1) - (4) hold.

This is a standard assumption requiring that the set of constraints is non-
empty.8

Note that the only di¤erence between the above problem (hereafter, referred
to as [PPso]) and the problem [PP] de�ned in Morfov (2009a) is that the for-
mer imposes additional constraints on the contract and more speci�cally on the
monetary transfers. By (1), c (:) 2 A � 
 � [0; 1] � Y which is compact in the
product topology. Moreover, the transfer w (�t; yt) = !t + btmax fyt � pt; 0g
is continuous in �t. Then, the analysis of Morfov (2009a) applies to the case
considered here. Namely, we can show existence and characterize the problem
recursively by three Bellman equations. The �rst characterizes the set of possi-
ble utility promises to the agent (matched with initial histories of length �) that
are supportable by an admissible, temporary incentive-compatible [after Green
(1987)] supercontract that guarantees the participation of the agent, but not
necessarily the one of the principal. This is in fact the state space of a second
Bellman equation which recursively characterizes the optimal contract of the
type described above. The third characterization deals with the optimal tempo-
rary incentive-compatible, self-enforcing contract, i.e., recursively characterizes
the solution of [PPso].

8For a discussion of this assumption and a more detailed description of the environment,
the reader is referred to the more general framework of Morfov (2009a).
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In view of the future estimation of the model, I will give it some more
structure.
Hereafter, I will treat the principal as a proxy for �rm�s shareholders and the

agent as the �rm�s CEO. The stochastic technology operated by the agent will be
considered a black box with manager�s e¤ort as an input and �rm�s stock price
as an output. The monetary transfer from the principal to the agent will be the
manager�s compensation which will take the form of a pre-determined salary !t
and a stock option grant bt with a strike price pt. Assume that the principal is
risk neutral with end-of-period utility yt�w (�t; yt). The manager is risk-averse
in monetary compensation and experiences disutility of e¤ort. His/her end-of-
period utility is given by � (w (�t; yt))�at, where � (:) is continuous, increasing
and concave. Similarly to Morfov (2009b), relax the assumption that !t 2 
,
compact, to !t � !, where ! 2 R can be considered a legal lower bound on
wage (a minimum wage or some subsistence level of income). Then, it is trivial
that w (�t; yt) � ! as well. Now, using the result of Proposition 1 in Morfov
(2009b), we have that if (a; !; b; p) (:) 2 A� [!;1)� [0; 1]�Y and (2)-(4) hold,
then w (�t; yt) � ! := ! + 1

�

�
y�!
1��P

� U
�
with y := maxY , and U := min

l2L
U l.

Consequently, !t � !, and so we can re-de�ne 
 := [!; !]. So, under these
functional forms and a uniform lower bound on the �xed salary, we will have
that the wage is also uniformly bounded from above. Therefore, I will not
di¤erentiate between ! 2 [!; !] and ! 2 [!;1) with the clear understanding
that imposing ! as an upper bound on wages in the problem with one-sided
commitment will result in a di¤erent problem, but the solution to the problem
where nobody can commit will not change.9

Denote by 2Pso an incentive-compatible, self-enforcing supercontract in stock
options, and by APso - an incentive-compatible supercontract under one-sided
commitment in the sense of Phelan (1995) where the total payo¤of the stock op-
tion package is uniformly bounded from above by !.10 Let V APso =

�
V APso (l)

	
where V APso (l) is the set of possible utility promises to a manager supportable
by an APso contract at l. Let V 2Pso be the corresponding Cartesian product of
sets of initial expected discounted utilities of the CEOs signing a 2Pso contract
with the shareholders of the �rm. For every V 2 V APso, de�ne U

APso�
(V )

as the vector of principal�s maximum utilities U
APso�

(Vl; l) achievable through

9 In fact, I will also impose w (�t; yt) � !, 8yt 2 Y as it was originally derived. This does
not a¤ect the optimal self-enforcing contract and proves quite useful in applications.
10Note that we could have alternatively de�ned the APso contract as an incentive-

compatible supercontract guaranteeing the participation of the CEO, but not necessarily the
one of the principal, where the �xed salary component and not the total compensation (which
also includes the realized payo¤ of the stock option grant) is uniformly bounded from above
by !. Note that w (�t; yt) � ! implies !t � !, so given that we are interested in the optimal
2Pso contract, using this alternative de�nition for APso would make no di¤erence. Indeed, we
have derived ! in order to work with an explicit bound on wages without a¤ecting the optimal
solution. In fact, I care to bound the total compensation explicitly as well only since is makes
the framework convenient to deal with some economically motivated extensions imposing ad-
ditional restrictions on managerial compensation. Such restrictions may include w (�; y) � y,
8y 2 Y (restricted borrowing) or w (�; y) � y, 8y 2 Y (no borrowing on part of the �rm�s
shareholders).
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signing an APso contract with an initial utility promise Vl at l. Analogously, for
any V 2 V 2Pso, Uso� (V ) is the vector of the maximum utilities Uso

�
(Vl; l) the

principal can get by signing a 2Pso contract o¤ering Vl to the manager at l. LetbUso� be the extension of Uso� on V APso such that for any V 2 V APso, bUso� (V )
is a vector with a general element bUso� (Vl; l) = Uso

�
(Vl; l) if Vl 2 V 2Pso (l)

and bUso� (Vl; l) := �1 otherwise. Now, we are ready to de�ne three important
operators: eBso, T so, and T so.
For any X � Rn� , eBso (X) is a vector with a general element eBsol (X) :=

fV 2 Xl : 9 a (single-round) stock option contract cR = fa�; ��; V+ (y) : y 2
Y g s.t.:

a� 2 A (5)

�� = (!�; b�; p�) 2 
� [0; 1]� Y (6)

w (��; y) � !, 8y 2 Y (7)

X
y2Y

[� (w (��; y))� a� + �AV+ (y)]� (y; a�) = V (8)

X
y2Y

[� (w (��; y))� a0� + �AV+ (y)]�
�
y; a0�

�
� V , 8a0� 2 A (9)

V+ (y) 2 Xl+(l;y)
(10)

holdg.

For any function U = fUlg with Ul : V APso (l) ! R upper semicontinuous
(usc) and bounded with respect to the sup metric, and any V 2 fVlg 2 V APso,
T so (U)(V ) is a vector with a general element de�ned as follows:

T sol (U)(Vl) := maxcR
f
P
[

y2Y
y � w (��; y) + �PUl+(l;y) (V+ (y))]� (y; a�)g s.t.:

(5)� (9) hold, and

V+ (y) 2 V APso (l+ (l; y)) ; 8y 2 Y (11)

For any l 2 L and V 2 V APso (l), de�ne �R (V;U; l) := fcR : (5)�(9),
(11) hold at (V; l) and Ul+(l;y) (V+ (y)) � U l+(l;y), 8y 2 Y g for some function
U : V APso ! (R [ f�1g)n

�

. Let
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�R (V;U; l) :=

�
�R (V;U; l) if Ul (V ) � U l
; otherwise

For any function U = fUlgwith Ul : V APso (l)! R[f�1g usc and bounded
from above, and any V = fVlg 2 V APso, T so (U)(V ) is a vector with a general
element

T sol (U)(Vl) :=8<:
�1 if �R (Vl; U; l) = ;
max
cR2

�R(Vl;U;l)

P
y2Y

[y � w (��; y) + �PUl+(l;y) (V+ (y))]� (y; a�)g otherwise

Following the results of Morfov (2009a), the optimal 2Pso contract is recur-
sively characterized in three steps11 :

Step 1. Start with the set eX0 := nh
V l;

bV io where bV = �(!)�a
1��A

with

a := minA and iterate on the set operator eBso until convergence. The limit is
V APso.

Step 2. Take a function U = fUlg with Ul : V APso (l)! R usc and bounded
with respect to the sup metric, 8l 2 L. Iterate on T so (:) until convergence. The
limit is UAPso

�
(:).

Step 3. Take UAPso
�
(:) as an initial guess and iterate on T so (:) until

convergence. The limit is bUso� (:). Moreover, V 2Pso (l) = fV 2 V APso (l) :bUso� (V; l) � U lg. Then, for all V 2 V 2Pso (l), we have Uso� (V; l) = bUso� (V; l).
Next, we will brie�y discuss some of the characteristics of the state space of

the optimal APso contract. We start by analyzing the case where the manager�s
reservation utility is not history-dependent.

Proposition 1 If � = 0, we have V APso =
h
max

n
V ; �(!)�a1��A

o
; �(!)�a1��A

i
.

This proposition shows that the result established in Proposition 2 in Mor-
fov (2009b) is not a¤ected by restricting the space of admissible compensation
schemes to canonical stock options. Indeed, abstracting from manager�s partic-
ipation, both the limits of V APso can be achieved by setting the stock option
grant b equal to zero and using only the �xed wage component at any contin-

gency. Moreover, taking as initial guess
h
V ; �(!)�a1��A

i
� V APso, at any iteration

11Step 1 generalizes on Abreu, Pearce and Stacchetti (1990). Step 2 is standard dynamic
programming over upper semi-continuous, bounded functions. Step 3 is based on Rustichini
(1998).
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of eBso we can obtain the minimum and maximum points of the resulting set by
one-period contracts satisfying (5)-(10) and inducing the lowest level of e¤ort
by promising a �xed salary and no stock option grant on any continuation node.
Then, we can support any linear combination of the utility bounds by a linear
combination of these contracts12 , and in the limit we would have a convex state
space.
What would happen if we consider another, potentially tighter, bound on

the compensation? Take, for example, the case when the �rm can pay the man-
ager no more than the discounted present value of its highest possible earnings
stream, i.e. wt (:; yt) � y

1��P
. The above bound is still quite loose, but consider

a �rm that can borrow up to y� y to pay the manager, i.e. wt (:; yt) � y. If the
�rm�s shareholders are e¤ectively prevented from borrowing, then the CEO�s
compensation cannot exceed the stock price realization, i.e. wt (:; yt) � yt. In
case the bound is uniform on Y , the result of Proposition 1 remains valid. We

can simply take !0 = min
n
!; y

1��P

o
or, respectively, !0 = min f!; yg and use

it instead of ! as the upper bound of 
 and on the left-hand side of (7). In
the case of no borrowing, however, the bound varies on Y . Then, the following
result proves useful.

Proposition 2 If � = 0, w (:; y) � y, 8y 2 Y , we have that maxV APso =
maxa2AfEa�(minfy;!g)�ag

1��A
and if �(!)�a1��A

� V , then minV APso = �(!)�a
1��A

.

This proposition is an analog of Proposition 3 of Morfov (2009b). This ver-
sion, however, is quite weaker. The reason is that we may not be able to cover the
interval between two initial utility promises if they are supported by contracts
with a non-zero stock option component. In other words, a linear combination
of the momentary utilities of total compensation resulting from two admissible
stock option contracts is not necessarily attainable as the momentary utility
of the total payo¤ of an admissible stock option contract. Nevertheless, the
proposition shows that the upper bound of the state space, which was observed
under the optimal AP contract can also be attained under the optimal APso
contract.13 Indeed, w (!; b; p; y) = y for any y 2 Y if we take ! = y, b = 1, and
p = y, where y := min fY g. That is, we achieve the compensation bound by
�xing the manager�s salary to the lowest stock price realization and providing
him/her with the maximum stock option grant with a strike price equal to the
�rm�s lowest stock price.

12More precisely, the combination is linear in the modi�ed contracts with components:
e¤ort level, momentary utility of total compensation, and continuation utility. Given that
the boundary contracts do not grant any stock options, the resulting contract will o¤er a
compensation that only consists of a �xed salary which in turn can be easily recovered from
the respective momentary utility.
13An AP contract [cf. Morfov (2009b)] is an incentive-compatible supercontract that guar-

antees the participation of the agent, but not necessarily the one of the principal. In fact, the
APso contract is an AP contract restricting the managerial pay to a canonical stock-option
package.
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The following proposition characterizes the state space of the optimal APso
contract when the CEO�s reservation utilities depend only on the past period�s
outcomes (one-period dependence).

Proposition 3 Let � = 1 and V bl = minl2LfV lg. Then, maxV APso (l) =
�(!)�a
1��A

, 8y 2 Y . Moreover, if maxa2A f�AEaV � ag > V bl � � (!), then

minV APso
�bl� > V bl; otherwise, minV APso (l) = V l, 8l 2 L.

The result establishing when the manager will receive just his/her reservation
utility under the optimal contract remains valid for stock options. Indeed, if we
ignore manager�s participation, the minimum and maximum utilities support-
able by an admissible and temporary incentive compatible single-round contract,
� (!) + maxa2A f�AEaV � ag and � (!) + �A

�(!)�a
1��A

� a, respectively, can be
achieved by setting the �xed wage to ! and !, respectively, and granting no
stock options at all. Therefore, if maxa2A f�AEaV � ag � V bl � � (!), i.e., if
the aforementioned minimum utility does not exceed any possible reservation
utility of the manager, then the CEO�s reservation utility associated to any
past period outcome will be supportable by a contract which e¤ort level and
continuation utilities are a linear combination of the respective values for the
boundary contracts described above, and which �xed wage component gives the
manager a momentary utility equal to the linear combination of the momentary
utilities of consumption in the boundary contracts. Then, CEO�s participation
will bind at the minimum of the state space for any initial history. If, on the
contrary, maxa2A f�AEaV � ag > V bl�� (!), participation will not bind at the
lower bound of the set associated with a past outcome bl and resulting from any

iteration of eBso (given an initial guess nhV l; �(!)�a1��A

io
� V APso), and, there-

fore, will neither bind at the minimum of V APso
�bl�. Which case is observed

depends on the parameter values of the model, but in general, the smaller the
variation of agent�s reservation utilities across past outcomes, the higher the
chance that his/her participation constraint binds under the optimal contract.

Corollary 1 If � = 1, V bl = minl2LfV lg � �(!)�a
1��A

and 9l 2 L : V l > V bl, then
minV APso

�bl� > �(!)�a
1��A

.

This corollary says that if the manager does not have problems committing
for some, but not all past outcomes, then at these natural commitment states
he/she is sure to receive more than the value of his/her outside options.
Establishing the convexity of the state space is even more problematic un-

der canonical stock options than under the optimal contract per se.14 The
14Cf. Morfov (2009b).
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additional complication comes from the non-convexity of total compensation
under a stock option contract. When the reservation utility of the manager is
constant across past outcomes, the problem disappears since both the minimum
and the maximum of the state space can be guaranteed by contracts promising
a �xed wage and no stock option grant in all contingencies. In this particular
case, we can easily span all the intermediate utility values by combining the
boundary contracts. However, if the agent�s reservation utilities do vary across
initial histories, this would generally be impossible. Even if the initial utility
bounds are supportable by contracts recommending the same level of e¤ort, we
may not be able to combine them appropriately if the compensation o¤ered
contains a stock-option grant. We can certainly come up with su¢ cient condi-
tions for convexity, but they would be stricter with stock options than under
the optimal contract per se.
Next, we will de�ne the constraint set of the stationary APso version of

the [PPso] and the associated policy correspondence. For any l 2 L and V 2
V APso (l), let �APsoR (V; l) be the set of stationary APso contracts guarantying
the manager an initial utility of V at an initial history l, i.e. satisfying (5)-
(9) and V+ (y) 2 V APso (l+ (l; y)), 8y 2 Y . Also de�ne GAPsoR (V; l) as the set
of optimal stationary APso contracts, i.e. the subset of �APsoR (V; l) such that
UAPso

�
(V; l) = Ea�(y � w (��; y) + �PUAPso

�

l+(l;y)
(V+ (y))).

Proposition 4 For any l 2 L, �APsoR (:; l) is upper hemi-continuous on
V APso (l).

By Proposition 5 in Morfov (2009a), UAPso
�
is upper semi-continuous (usc)

and bounded.15 If we could prove that �APsoR is also lower hemi-continuous,
then it could be shown that the value function UAPso

�
is continuous on V APso

and that the policy correspondence GAPsoR is upper hemi-continuous on V APso.
However, even establishing su¢ cient conditions for the lower hemi-continuity
of �APsoR proves quite involved. Note that if assume a < a and let V APsoa

and V APsoa be the sets of managerial utilities supportable by stationary APso
contracts that have continuation utilities in V APso and implement low and,
respectively, high e¤ort, we cannot directly continue along the lines of Morfov
(2009b) to establish some su¢ cient conditions for lower hemi-continuity on a
subset of �APsoR . The reason is that a convexity of V APso, will not imply in
general that V APsoa and V APsoa are convex because of possible stock option
grants. Therefore, it should be noted that the discontinuity problem will not
necessarily be attenuated by assuming a convex set A.

15By Propositions 5, 8 and 11 in Morfov (2009a), we also have that the extension of Uso
�
on

V APso , bUso� , is upper semi-continuous and bounded from above.
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3 Computation and Results

The numerical estimation follows the algorithms described in Morfov (2009b).
The computation of the model starts with solving for V APso, the set of man-
ager�s expected discounted utilities supportable by an APso contract. While
Proposition 14 from Morfov (2009a) gives the theoretical background for the
estimation of V APso, some caveats remain. In particular, eBso is a set operator
and in order to apply the iterative procedure in practice we need an e¢ cient

representation of the sequence of sets
n eXio1

i=0
. For the class of in�nitely re-

peated games with perfect monitoring, Judd, Yeltekin and Conklin (2003) are
able to construct inner and outer convex polytope approximations based on the
convexi�cation of the equilibrium value set through a public randomization de-
vice. Here, I follow a more general approach which does not rely on assuming
that V APso is convex or convexifying it by introducing public randomization.
The main idea is to discretize the elements of the initial guess eX0 and start
extracting small open intervals, the midpoints of which are unfeasible with re-
spect to eX0. The extraction is done elementwise without updating the previous
elements. In particular, I start from the discretization of the �rst16 element ofeX0, �nd the points that cannot be supported by a one-period APso contract
with a continuation utility pro�le contained in eX0, i.e. the points of the dis-
cretization which are not in the �rst element of eBso � eX0�, and extract small
open balls around these points. Next, I �nd the gridpoints in the second ele-
ment of eX0 which are unfeasible with respect to eX0, extract their small open
neighborhoods and proceed in a similar fashion until I cover all the elements ofeX0. The remaining set, i.e. eX0 less the extracted intervals, becomes eX1, our
new guess for V APso. Given that eX0 is a vector of n� closed intervals in R, each
of the n� elements of eX1 will be a �nite union of closed intervals in R. In order
to increase e¢ ciency, intervals with length less than some prespeci�ed level are
reduced to their midpoints. The procedure stops if for each element of eXi the
number of closed intervals representing it equals the respective number for the
same17 element in eXi�1 and, in addition, the representation of eXi di¤ers from
the representation of eXi�1 by less than some prespeci�ed tolerance level. In
order to apply this stopping criterion, one still needs to construct a measure for
the di¤erence between representations. For this purpose, I �nd the di¤erence in
absolute terms between each endpoint (minimum or maximum point) of each
interval of each element of eXi and eXi�1 respectively and take the maximum one
to be the di¤erence between the representations of eXi and eXi�1. This di¤er-
ence is well de�ned given that the two representations share the same structure,
which is actually the �rst condition of the stopping criterion.
Once V APso is obtained, it is elementwise discretized and used as a state

16Note that eX0 is a Cartesian product of sets indexed by L.
17Here, �same� refers to the index of the element, i.e. to the initial history to which it

corresponds.
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space in the dynamic program for obtaining U
APso�

as outlined in Proposition 7
in Morfov (2009a). At each iteration, the guess for U

APso�
being de�ned only on

the discretization needs to be interpolated over the state space. Interpolation
is also required in the subsequent iterative procedure which uses U

APso�
as an

initial guess for bUso� , the extension of Uso� on V APso.
Compared to the estimation of the optimal contract per se [cf. Morfov

(2009b)], the procedure for computing the optimal stock option contract proves
much more demanding and computationally intensive. The di¢ culty comes
from the fact that the manager is risk averse and the stock option contract is
characterized by three di¤erent components. Therefore, we cannot use a change
of variables to arrive to a set of linear constraints. Then, at each iteration,
for each initial price history, and each feasible initial utility promise, we should
maximize a non-linear function over a set of non-linear constraints.
The model is parameterized in line with the calibration of AS who obtain the

stock price distribution conditional on high e¤ort from the results of Hall and
Liebman (1998), estimate the stock price distribution conditional on low e¤ort,
derive the value of high e¤ort, and take the value of low e¤ort from Margiotta
and Miller (2000). The exact parameter values I use are shown below. The set of
possible stock prices Y =

�
y(1); y(2); y(3)

	
= f0.55, 1.125, 1.7g, the action space

A = fa; ag = f0.1253, 0.1469g, the conditional probabilities �
�
y(1); a

�
= 0.1891,

�
�
y(2); a

�
= 0.7687, �

�
y(3); a

�
= 0.0421, �

�
y(1); a

�
= 0.1555, �

�
y(2); a

�
=

0.7654, �
�
y(3); a

�
= 0.0791.18 ; 19 I take ! = 0 and consider a common discount

factor for both the manager and the principal �A = �P = 0.96. The period
utility of monetary payo¤w is � (w) = log (1 + w), where w can be considered in
relative terms. Although I investigate the case of shareholders who are e¤ectively
unconstrained in their borrowing (w (:) � !, or similarly, w (:) � y

1��P
) or face

loose borrowing constraints (w (:) � y), I concentrate on the computationally
cleanest20 case where the shareholders are prevented from borrowing (w (:) �
y). The reservation utility of the principal is taken constant across stock price
histories at U = 0. For the no-borrowing case, a loose upper bound for the
initial utility promise is bV = �(!)�a

1��A
. I take � = 1, which may also cover the

case of � = 0. I consider three possible values for the reservation utility of the
agent: L= �(!)�maxA

1��A
= -3.6725, M = 0, H = -L.21 Then, I focus on the case of

18AS consider continuous distributions over an interval of possible stock option prices [0.55,
1.7]. Here, I choose 3 points of this interval: the minimum, middle, and maximum point and
construct discrete probabilities that retain the �rst two moments of each distribution.
19The probabilities conditional on a may seem to add to 0.9999 instead of 1. The reason is

that here I report the numbers at a much lower precision than the one used in the numerical
computation. For example, if we round the probabilities to the �fth digit after the decimal
point rather than to the fourth, the reported numbers would be 0.18915, 0.76871, and 0.04214
respectively.
20Here, the initial guess for the state space is smallest, so the grid is not so coarse as in

the other cases which reduces the numerical mistakes related to working with approximations
and very large absolute values for the second-stage value function in the uppermost region of
its domain, i.e. at high utility promises which will later be impossible to support by an 2Pso
contract.
21Note that L is actually the theoretical lowest bound of manager�s utility.
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nonnegative correlation between initial histories and agent�s reservation utilities.
I use the above letters to describe the manager reservation utility values across
initial histories. For example, LMH stays for V 1 = L, V 2 = M, V 3 = H.
The results suggest that, as was the case for the optimal contract, there

is little di¤erence between the value function of the auxiliary and the original
problem, UAPso

�
and Uso

�
respectively (see Figure 1). A reasonable explanation

is that when shareholders are prohibited from borrowing, they have only a lim-
ited amount to spare for manager�s compensation and so the chance that they
violate their own participation constraint (under an APso contract ) is much
smaller than in the cases where they have easy access to credit. As suggested by
Proposition 3, the insurance across initial history states is still present; namely,
the minimum utility supportable by an APso/2Pso contract for initial histories
characterized by lower reservation utility is boosted by higher reservation utili-
ties for other states. As under the optimal contract, the participation constraint
of the manager does not bind in states characterized by low stock prices (and,
therefore, with lower reservation utilities). In other words, the APso/2Pso con-
tract still allows the risk averse manager to smooth his/her consumption across
(initial history) states. The estimated value function is very �at for lower utility
promises and very steep for higher utility promises.
As under the optimal contract per se, the stock option contract induces

less wealthy managers to work hard, while high e¤ort proves suboptimal for
the richest CEOs (Figure 2). As expected, the wealthiest (in utility terms)
individuals prove the most di¢ cult to reward or punish, but the stock option
contract still manages to motivate a big bulk of CEOs, including the mid-range.
Inspecting the optimal values for the elements of the stock option compensation
package: the �xed wage (Figure 3), the stock option grant (Figure 4), and
the strike price (Figure 5) proves unrewarding. The results seem very noisy
with constant jumps of all the values except for the �xed component ! which
remains at zero for most of the domain and jumps up at its uppermost region
(highest utility promises).One should have in mind, however, that if the stock
option grant is 0, the strike price is without any signi�cance. Also, if the strike
price is set equal to the highest stock price realization, the stock option grant
has no importance whatsoever. Finally, unlike the optimal contract case where
compensation is described by a single variable, here we deal with three22 , so
an inspection of the resulting payo¤ conditional on the stock price realization
makes much more sense. The payo¤ of the stock option package is depicted on
Figure 6 as a function of the initial utility promise and the realized stock price.
The resulting compensation shows very little dynamics: it only has a role for
high utility promises where the resulting compensation jumps (Figure 7) due to

22Still, they are predetermined with respect to the stock price realization and cannot span
the whole space of wages achievable when solving for the optimal contract. Moreover, the
strike prices are restricted to take values only in Y . This is done in order to simplify the
heavy computation algorithm, but one should also have in mind that in reality most stock
options are issued at the money (AS show that the strike price has an intermediate role in
the provision of insurance and incentives and that deviations from its optimal value can be
partially compensated by realigning both the stock option grant and the �xed salary).
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an increased �xed salary and a big stock option grant with a low strike price. For
this uppermost part of the utility domain, the stock option grant is substantial
and the pronounced increase of the payo¤ in the stock price realization (Figure
8) is a natural consequence of the pro�table exercise of stock options. For the
rest of the utility domain, the compensation is constant at zero and all the action
comes from the future utility promise. Figure 9 shows the expected discounted
utility of the manager tomorrow as a function of today�s utility promise and the
stock price realization. Compared to the optimal contract the results are very
noisy. Manager�s utility tomorrow tends to increase in the initial utility promise
(Figure 10) and on average grows with the stock price realization (Figure 11).

4 Conclusion

The paper uses a dynamic hidden-action framework marked by limited com-
mitment and history dependent reservation utilities to characterize the optimal
incentive-compatible, self-enforcing contract that o¤ers the agent a �xed mon-
etary transfer and a fraction of the payo¤ of a call option on an outcome of
interest to the principal. The model is shown to be of the class described in
Morfov (2009a) and is given a recursive representation. Then, some more struc-
ture is added and the attention shifts to executive compensation in the form
of canonical stock option contracts. The model is parameterized and computed
numerically. The results indicate that while the optimal stock option contract
induces most of the managers to exert high e¤ort, shirking may still be opti-
mal for the richest CEOs. In fact, the compensation package shows very little
dynamics, it only has a role for high utility promises where the resulting com-
pensation jumps due to an increased �xed salary and a big stock option grant
with a low strike price. Given the restrictions imposed on the current payo¤, the
future utility promise appears to be a more powerful incentive device: it tends
to grow with current utility and, on average, increases with the stock price. The
contract also o¤ers some partial insurance (in terms of promised initial utility)
against (non-negligible) �uctuations in the manager�s outside options.
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APPENDIX 1

Proof of Proposition 1. Note that min eBso �hV ; �(!)�a1��A

i�
= maxfV ; � (!)+

�AV � ag and max eBso �hV ; �(!)�a1��A

i�
= � (!) + �A

�(!)�a
1��A

� a. Note that an
initial utility of VL = � (!) + �AV � a can be supported by an admissible, tem-
porary incentive-compatible one-period contract fa; !; 0; p; V g for any p 2 Y .
On the other hand,

n
a; !; 0; p; �(!)�a1��A

o
, 8p 2 Y , is a one-period contract satis-

fying (5)-(10) for VH = � (!)+�A
�(!)�a
1��A

� a. Then, we can support any utility
value between VL and VH by taking linear combinations of fa; � (w (!; 0; p)) ; V g
and

n
a; � (w (!; 0; p)) ; �(!)�a1��A

o
. Note that this is possible since the contracts

supporting the bounds have b = 0, so p is immaterial. Then, we have thateBso �hV ; �(!)�a1��A

i�
which is a compact set is in fact a closed interval. Since

V APso �
h
V ; �(!)�a1��A

i
, by Proposition 14 from Morfov (2009a), we have that

V APso is also a closed interval. With the above quali�cations regarding the
admissibility of taking linear combinations, we can apply the argument of the
proof of Proposition 2 in Morfov (2009b) to show that V APso =h
max

n
V ; �(!)�a1��A

o
; �(!)�a1��A

i
.

Proof of Proposition 2. Once we notice that w
�
y; 1; y; y

�
= y, 8y 2 Y ,

the results are obtained along the lines of the proof of Proposition 3 in Morfov
(2009b).

Proof of Proposition 3. Note that for any p 2 Y , w (!; 0; p; :) = ! on Y .
Then, the results follow from the proof of Proposition 4 in Morfov (2009b).

Proof of Corollary 1. Analogous to the proof of Corollary 1 in Morfov
(2009b).

Proof of Proposition 4. Analogous to the proof of Lemma 2 in the Appendix
of Morfov (2009a).
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APPENDIX 2
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Figure 1: Value functions for the APso and 2Pso contracts ordered by initial
stock-price history: UAPso

�
(:; l), Uso

�
(:; l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 2: Optimal e¤ort under the 2Pso contract as a function of initial utility
promise: a�� (:; l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 3: Optimal �xed wage component under the 2Pso contract as a
function of initial utility promise: !�� (:; l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 4: Optimal stock option grant under the 2Pso contract as a function of
initial utility promise: b�� (:; l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 5: Optimal strike price under the 2Pso contract as a function of initial
utility promise: p�� (; l), l 2 f1; 2; 3g (LMH, case 3)
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This paper considers an in�nite-horizon, hidden action model charac-
terized by limited commitment and history-dependent reservation utili-
ties. I focus on the optimal contract allowing for permanent separations
which can be triggered by any party. I prove existence and characterize
the solution recursively. I compute the optimal contract for top executives
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1 Introduction

An important strand of the dynamic agency literature has investigated the long
run properties of optimal contracts. Green (1987), Thomas and Worrall (1990)
and Phelan and Townsend (2001) have shown that legally enforceable contracts
lead to degenerate long-term wealth distributions. Atkenson and Lucas (1995)
demonstrate that if the agent�s expected discounted utility is bounded from be-
low, the model induces a non-degenerate invariant distribution. Phelan (1995)
achieves a similar result by assuming limited commitment on part of the agent.
In such a setting, a self-enforcing contract induces participation at every con-
tingency, so the agent has no incentive to leave the relationship.
The techniques developed by Abreu, Pearce and Stacchetti (1990) prove

useful in characterizing the space of agent�s feasible continuation utilities. The
optimal dynamic contract can then be represented recursively by a series of
static contracts de�ned on this space in line with Spear and Srivastava (1987).
Introducing limited commitment on part of the principal poses a di¤erent prob-
lem related to the fact that the value function of the recursive problem enters
the set of constraints and standard dynamic programming fails since the oper-
ator used is no longer a contraction. Nevertheless, Rustichini (1998) based on
some earlier results by Streufert (1992) shows that a simple modi�cation of the
operator allows a recursive representation of the dynamic problem.
The dynamic contracts of the form described above refer to long-term rela-

tionships which (by construction) neither party has an incentive to renege on.
Spear and Wang (2005) focus on contract terminations instead and achieve sta-
tionary and ergodic dynamics by allowing for replacements of the contracted
agent with a new one from a labor market pool and for golden parachutes at
termination. Sleet and Yeltekin (2001) consider a dynamic model of temporary
layo¤s and permanent separations where their limited commitment case allows
for both the �rm and the employee to dissolve the relationship and pursue a
�xed outside option. They introduce publicly observable shocks on �rm�s period
pro�ts, enlarge the state space of continuation utilities, and use a monotonic
operator to recover it and the respective value function.
In this paper, I consider an environment similar to the one described in Sleet

and Yeltekin (2001) where there is no pro�t perturbation, but the outside op-
tions are allowed to vary across (�nite truncations of) the history of observables.
The model is of the hidden action variety. A principal (�rm) seeks a potentially
in�nite relationship with an agent (CEO) where the agent operates a stochastic
technology transforming actions (e¤ort) into outcomes (�rm�s output, revenues,
(gross) pro�t, or stock price (return)). The outcomes are publicly observable,
but the actions are not, so the contract should induce the proper incentives for
the agent to exercise some desired sequence of actions. Both the principal and
the agent cannot commit to a long term relationship, so the contract should
implicitly o¤er them continuation utilities weakly above the value of their out-
side options at any contingency that is actually reached. The contract may
be optimally terminated at any contingency in which case both parties receive
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their respective reservation utilities. This possibility e¤ectively enters the set of
possible strategies when signing the contract.
My main interest is to compare the behavior of this contract in providing

incentives and insurance with the self-enforcing contract analyzed in Morfov
(2009). Does the option to terminate the relationship have any global e¤ect on
incentives, or does it only a¤ect the insurance of the poorest managers? In fact,
when do separations occur and what continuation utilities can be supported by
the threat of a future separation?
I represent the problem recursively on the space of truncated histories of

outcomes matched with agent�s expected discounted utilities. The state space
which is endogenous is further characterized in line with Abreu, Pearce and
Stacchetti (1990). I parameterize and numerically compute the model in view
of top executive compensation. The results show that the optimal contract es-
timated here is similar to the optimal incentive-compatible contract which is
self-enforcing in the sense of Phelan (1995). The �rm �nds it optimal to induce
high e¤ort for most but the richest (in expected utility terms) managers. Ex-
ecutive compensation and continuation utility increase in both current utility
and �rm�s pro�t. The possibility of separation, however, signi�cantly decreases
the smoothing of the manager�s lower utility bound across initial histories. As
a matter of fact, the contract supports much lower managerial utilities than
the self-enforcing contract. Indeed, the most a¤ected are the poorest (in ex-
pected utility terms) managers who are motivated to work hard by much lower
continuation utilities under the threat of a future separation.
The rest of the paper is structured as follows. Section 2 presents the dy-

namic model. Section 3 recursively characterizes the optimal contract. Section
4 computes the contract numerically and discusses the results. Section 5 con-
cludes. The theory behind the characterization is developed in Appendix 1.
The numerical results are presented in Appendix 2.

2 Dynamic model

The framework is as in Morfov (2009). A principal contracts an agent to imple-
ment a sequence of actions where the choice of an action each period is, in fact, a
choice of an end-of-period probability distribution over outcomes. Since the ex-
ercise of an action brings disutility to the agent, he/she should be compensated
by a monetary transfer from the principal. Everything is common knowledge
but the particular action implemented which is only observed by the agent.
The contract will, therefore, need to be incentive-compatible, i.e., to induce the
agent to implement a particular action (or action sequence) recommended by
the principal. Since both the principal and the agent are unable to commit
to long term relationships, a long-term contract would require their (�nite or
in�nite) participation. Unlike the analysis in Morfov (2009), here either party is
allowed to dissolve a long-term relationship at contingencies where the contract
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fails to provide a continuation utility that is at least as high as this party�s re-
spective reservation utility.1 At such a node, the relationship is terminated and
both the principal and the agent �consume� their outside option, i.e., receive
their reservation utilities. Notice the di¤erence: before, we had the parties sign-
ing a self-enforcing contract which guaranteed their participation at every node,
while here the contract ex-ante allows for termination at any node. As before,
the reservation utilities are allowed to vary across some �nite truncation of the
history of past outcomes.
Time is discrete and there is an initial period of contracting normalized to

0. Let Y , A, and W be the sets of possible outcomes, actions, and monetary
transfers which are all assumed compact subspaces of R. In particular, Y is
assumed �nite with n distinct elements, a minimum element y, and a maximum
element y. Let � : Y � A ! [�; 1] describe the probability distribution of
outcomes conditional on actions, where � 2 (0; 1) and � (y; :) is continuous on
A, 8y 2 Y . Denote by u : W � Y ! R the (end-of-period) utility function of
the principal which is assumed continuous, decreasing in the monetary transfer
and increasing in the outcome. The (end-of-period) utility function of the agent
� :W�A! R is continuous, increasing in the monetary transfer and decreasing
in the action. The principal and the agent discount future utility by discount
factors �P and �A respectively, where �P ; �A 2 (0; 1). The reservation utilities
of both parties depend on the previous � outcomes, where � is a nonnegative
integer. Consider the set of possible sequences of outcomes of length �, Y �. For
concreteness, index this set by the bijective function l : Y � ! L :=

�
1; :::; n�

	
.

Hereafter, we will often denote an element of Y � by its respective index l = l (:).
Given this indexing, the reservation utility of the principal and the agent at any
node yt�1 2 Y t� l are denoted by U l and V l respectively.2 Let a supercontract

1We are going to consider supercontracts signed at some initial period that allow for a
termination at any future contingency. That is, the possibility of a future contract termination
explicitly enters the strategies considered at the period of signing. The supercontracts are
de�ned on all future contingencies (i.e., they may prescribe actions and compensation schemes
even on contingencies that would not be reached; this is convenient since the terminations
are actually decision variables and what happens on nodes that are not reached given the
termination decision plan is immaterial). In our setting, the principal maximizes his/her utility
over the set of such incentive-compatible and individually rational supercontracts. Then, the
prescription of the optimal contract is followed by both parties and if a node is reached where
the contract prescribes termination, a separation occurs and both parties receive their relevant
outside options. So, since the principal proposes the contract to the agent, it is the principal�s
decision how the contract would look like, including whether or when it may terminate. The
agent�s is passive in the sense that he/she in�uences the contract only indirectly by his/her
incentive compatibility and individual rationality constraints. Indeed, he/she may accept or
reject the proposed contract but given rationality, it is in fact the principal that takes this
decision by o¤ering a contract that satis�es or violates agent�s individual rationality. So, when
I say that both parties are allowed to dissolve the relationship, I simply mean that any party
can walk away if optimal, i.e., if the contract o¤ers him/her a expected discounted utility
lower than the reservation value. In other words, individual rationality matters for both the
principal and the agent.

2 In order to have the reservation utilities well de�ned in period 0, we assume that at
the initial period of contracting a history of length � has already been observed. Then, any
particular history of outcomes available at the beginning of period t, yt�1, consists of �
elements referring to the outcomes observed before period 0 and t elements referring to the
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c := (h; a; w) be a plan of termination (or more properly, continuation) decisions,
actions and compensation schemes de�ned on all possible contingencies. For
example, at some history yt�1 observed in the beginning of period t, the contract
terminates if ht

�
yt�1

�
= 0 or proceeds if ht

�
yt�1

�
= 1, recommends an action

at
�
yt�1

�
, and speci�es a monetary transfer wt

�
yt�1; y

�
contingent on an (end-

of-period-t) outcome y, 8y 2 Y . Note that the supercontract is de�ned on
every node of the tree of possible outcome histories, independent of whether
the contract has been terminated before (including at) that node or not.3 We
will refer to the supercontract as admissible if at every node yt�1, we have
ht
�
yt�1

�
2 f0; 1g, at

�
yt�1

�
2 A, and wt

�
yt�1; y

�
2 W , 8y 2 Y . Then, we can

de�ne the expected discounted utility of the principal at some node y��1 given
an admissible supercontract c as

U�
�
c; y��1

�
:=

1P
t=�
�t��P

P
y�2Y

:::
P

yt�12Y
[
�
1� ht

�
yt�1

��
U l(yt��;:::;yt�1)+

ht
�
yt�1

� P
yt2Y

u (wt (y
t) ; yt)�

�
yt; at

�
yt�1

��
]

t�1Y
i=�

hi
�
yi�1

�
�
�
yi; ai

�
yi�1

��
.

Given that everything is bounded, we will have that for any admissible con-
tract c, the following holds:

U� (c; y
��1) = (1� h� (y��1))U l(y���;:::;y��1)+

h� (y
��1)

P
y�2Y

[u(w� (y
� ); y� ) + �PU�+1(c; y

� )]�(y� ; a� (y
��1)).

Analogously, we can de�ne V�
�
c; y��1

�
as the expected discounted utility of

the agent at node y��1 and represent it recursively.
Note that the termination decisions play an explicit role in de�ning ex-

pected discounted utilities. For example, if node y��1 is a terminal node, i.e.,
h�
�
y��1

�
= 0, we would have that the expected utility of the principal at that

node equals his/her reservation value, U�
�
c; y��1

�
= U l(yt��;:::;yt�1) since all

other right-hand side elements will disappear as multiplied by 0.4

outcomes realized from period 0 to period t� 1. That is, yt�1 is of length � + t.
3As already mentioned before, this is done for convenience, i.e., any supercontract is de�ned

on the same tree of contingencies stemming from some initial history node, since the decision
to terminate is endogenous and it does not really matter what the supercontract speci�es at
contingencies following terminal nodes. Moreover, it is easier to apply the theoretical results
of Morfov (2009) to a formulation of this sort.

4Note that since the de�nitions are forward-looking, we will have U�
�
c; y��1

�
well de�ned

even if y��1 is not reached according to the supercontract c. This, however, would be of no
signi�cance since ultimately we are only interested in what happens on nodes that are actually
reached.
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Then, the principal�s problem at some initial node of contracting l (in the
beginning of period 0) is:

[PPa]

sup
c
U0 (c; l) s.t.:

c admissible (1)

V�
�
h; a; w; y��1

�
� V�

�
h; a0; w; y��1

�
,

8a0 admissible, 8 non-terminal nai (l) (2)

V�

�
c; :;el� � V el, 8nai (l) (3)

U�

�
c; :;el� � Uel, 8nai (l) (4)

where �8nai(l)�should be understood as �for any node after and including
l�, that is, 8y��1 2 l � Y � , 8� = 0; 1; ::: Here, we follow the convention that a
function maximized over an empty set takes an arbitrarily low value, but assume
that its multiplication with zero is well de�ned and is, in fact, 0. For example, if
there does not exists a supercontract that satis�es constraints (1)-(4), then the
value function of [PPa] equals U l and the supremum is achieved at h0 (l) = 0,
i.e., the contract is terminated at l. Regarding the constraints, (1) was already
discussed above, (3) and (4) are the individual rationality constraints5 of the
agent and, respectively, the principal guaranteeing them an expected discounted
utility at every node at least as high as their respective reservation utility. Since,
in general not all nodes will be reached, initial incentive compatibility will not
be equivalent to incentive compatibility at all nodes, just at the nodes actually
reached. Therefore, we impose incentive compatibility at all nodes [constraint
(2)] having in mind that what happens on nodes that are not actually reached
is immaterial.
Note that in Morfov (2009), the principal is solving for a self-enforcing con-

tract, i.e., he/she considers only contracts that allow for no terminations.6 Here,
in [PPa], the principal is solving for a contract that guarantees that the continu-
ation utilities of both parties are greater or equal to their respective reservation
values only at nodes that are actually reached and non-terminal. In a dynamic
sense, at every node that is actually reached the parties compare their expected
discounted utility values of continuing the relationship with the value of their
outside options and are free to walk out of the relationship if optimal.

5These constraints are not referred to as participation constraints since they do not guar-
antee participation. Indeed, each party can receive his/her respective reservation utility by
unilaterally terminating the relationship.

6 Indeed, we needed Assumption 3 in order to guarantee that the set of such contracts is
non-empty.
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The constraints of [PPa] may look similar to the constraints of [PP] in Mor-
fov (2009), but one should have in mind that here, the expected discounted
utilities are specially de�ned to account for a possible termination, so in fact
constraints (2)-(4) are trivially satis�ed on terminal nodes. Indeed, on any ter-
minal node y��1 2 Y � � el, V� �h; a; w; y��1� = V�

�
h; a0; w; y��1

�
= V el and

U�
�
h; a; w; y��1

�
= Uel. Note that the constraints are de�ned on all nodes.

This is done for convenience since what happens on nodes that are not actually
reached is immaterial to the problem.7

3 Recursive Form

It is not di¢ cult to prove8 that for any admissible contract, incentive compatibil-
ity at all nodes is equivalent to Green (1987)�s temporary incentive compatibility
at all nodes. A plan is temporary incentive compatible on a node if conditional
on future compliance, there is no deviation from the recommended action at
this node that will make the agent strictly better o¤. Then, we can replace
constraint (2) in [PPa] by:

8 non-terminal nai (l) , V�
�
h; a; w; y��1

�
� V�

�
h; a0; w; y��1

�
,

8a0 : a0�
�
y��1

�
2 A and 8

�
nai

�
y��1; y

�
: y 2 Y

�
, a0t (:) = at (:) (5)

Using the arguments of Morfov (2009), we can show that an optimal contract
exists and it can be characterized recursively.
Since the reservation utilities depend on the previous � outcome realizations,

we will consider n� relevant initial history states each being associated to a
particular outcome stream of length �. Naturally, the initial history states are
indexed by L. Hereafter, all functions and correspondences with domain Y � are
treated as vectors or Cartesian products of sets indexed by L. Let l+ : L�Y ! L
be a function that maps today�s initial histories and current outcomes to future
initial histories. For example, if the outcome stream in the � periods previous
to t has been (yt��; yt��+1;:::; yt�1) with an index l and yt is realized at the end
of t, the index of (yt��+1;:::; yt�1; yt) is given by l+ (l; yt).
Let V APa be the product of sets of possible expected discounted utilities

for the agent signing an admissible incentive-compatible supercontract that is
individually rational for the agent and allows for a termination at every node
(an APa contract). To be more precise, the supporting supercontracts should

7Note that the supercontract c is well de�ned on all nodes.
8Most of the theoretical results mentioned in this section are formally established in Ap-

pendix 1.
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be admissible on the whole tree of possible histories, should satisfy agent�s in-
dividual rationality9 (3) at every node and (temporary) incentive compatibility
(5) at all non-terminal nodes. De�ne V 2Pa as the Cartesian product of sets of
possible expected discounted utilities for the agent signing a supercontract that
triggers termination only at nodes where admissibility, temporary incentive-
compatibility, agent�s participation, or principal�s participation (at least one of
these constraints) is violated (a 2Pa contract).10

For any V 2 V 2Pa, let Ua� (V ) be a vector with a general element Ua� (Vl; l)
de�ned as the maximum utility the principal can get by signing an optimal
supercontract of the second type at l o¤ering Vl to the agent. Let bUa� be
the extension of Ua

�
on V APa s.t. 8V 2 V APa, bUa� (V ) is a vector with

a general element bUa� (Vl; l) = Ua
�
(Vl; l) if Vl 2 V 2Pa (l) and bUa� (Vl; l) :=

�1 otherwise. Now, we de�ne the operators used to characterize the optimal
contract.
Let bV := �(maxfWg;minfAg)

1��A
and note that max

l2L

�
maxV APa (l)

	
� bV . Let

Ba be a set operator such that for any X � Rn� , Ba (X) = fBal (X)g with
Bal (X) := V l [ fV 2 Xl : 9 a (static) contract cR (V; l) = fa�; w+ (y) ; V+ (y) :
y 2 Y g s.t.:

a� 2 A (6)

w+ (y) 2W , 8y 2 Y (7)

X
y2Y

[�
�
w+ (y) ; a

0
�
�
+ �AV+ (y)]�

�
y; a0�

�
� V , 8a0� 2 A (8)

X
y2Y

[� (w+ (y) ; a�) + �AV+ (y)]� (y; a�) = V (9)

V+ (y) 2 Xl+(l;y), 8y 2 Y (10)

holdg.

Note that for each initial history l 2 L and utility level V , the static con-
tract mentioned in the de�nition of the operator above speci�es an action a�,
a contingent transfer w+ (:) from the principal to the agent and a contingent
continuation utility for the agent V+ (:), where the last two elements are de�ned

9 Individual rationality should not be confused with participation. Terminations are prac-
tically allowed at every node.
10 I am keeping some abbreviations from Morfov (2009), but note that here the di¤erence

is substantial. The APa contract does not guarantee the participation of the agent at all.
It simply allows termination at each contingency. The 2Pa contract does not satisfy the
participation constraints of both parties at all nodes. In fact, if any of the constraints (1),
(3), (4), or (5) is violated, it triggers termination. That is, unlike the APa contract, the 2Pa
contract allows termination only when optimal.
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on Y . Then, (6) and (7) are simply admissibility constraints, (8) imposes tem-
porary incentive compatibility, (9) is a promise-keeping constraint. Note that
the operator eBa does not impose individual rationality on part of the agent; it
only requires the principal to provide him/her with a current and future utility
levels from an initially speci�ed set. Constraint (10) merely guarantees the con-
sistency of the principal�s promise. Nevertheless, iterating on eBa will allow us
to recover the equilibrium set of utility promises at a low cost.11 We just need

to choose the proper initial guess, e.g.
nh
V l;

bV io.
Let T a be an operator such that for any function U = fUlg with Ul : V APa !

R upper semicontinuous (usc) and bounded with respect to the sup metric, and
any V 2 V APa, T a (U)(V ) =

n
T al (U)(Vl)

o
where

T al (U)(Vl) := max
h(Vl)2f0;1g

f(1� h (Vl))U l + h (Vl) [maxcR
f
X
y2Y

[u (w+ (y) ; y)+

�PUl+(l;y) (V+ (y))]� (y; a�)gg s.t.:

(6)� (9) hold, and

V+ (y) 2 V APa (l+ (l; y)) ; 8y 2 Y g (11)

Here, constraint (11) is the equivalent of the consistency constraint (10).
Once we have obtained V APa, the operator T a can easily be shown to be

a contraction.12 Then, if we start with some initial guess for the value func-
tion, e.g. U0 = fU lg, and successively apply T a, we will converge to eUa� , the
vector of maximum utilities the principal can derive from a 2P contract that
allows for inconsistent utility promises. How does the inconsistency enter the
picture? Note that for any utility promise to the agent, the principal can (im-
mediately) terminate the relationship if he/she �nds proceeding it suboptimal.
In general, this may happen for utility promises in V APa such that not all their
elements are agent�s reservation utilities. Suppose, for example, that for some
Vl 2 V APa (l)� fV lg, we have eUa� (Vl; l) = U l which is uniquely supported by
h (Vl) = 0. This, however, would not be consistent with the promise to provide
the agent with Vl since the principal actually terminates the relationship and
the agent only gets V l < Vl. Moreover, Vl may be a continuation utility of
a unique single-round contract supporting some other initial utility promise in

11See Appendix 1 for details.
12Note that we cold have alternatively de�ned the operator as follows:
Tal (U)(Vl) := maxfU l;maxcR

f
P
y2Y

[u (w+ (y) ; y) + �PUl+(l;y) (V+ (y))]� (yja�)gg s.t.:

(6) � (9) and (11) hold.
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which case this promise would also prove inconsistent. Therefore, we may in
fact be facing an �inconsistency cascade�.
To deal with this problem, I use a procedure inspired by Rustichini (1998).

For any usc function bounded from above, U : V APa ! Rn� , and any usc
function H : V APa ! f0; 1gn

�

let T a be an operator such that T a (U;H) =n
T al (U;H)(Vl)

o
with

T al (U;H)(Vl) :=

(
(�1; 0) if Vl 2 V APa (l)� fV lg and H (Vl; l) = 0�
T al (U)(Vl) ; h (Vl)

�
otherwise,

where h (Vl) is such that the max in the de�nition of T al (U)(Vl) is achieved.
Using this operator, we can recursively clean the inconsistent promises and

modify the value function accordingly to obtain bUa� . Then, we can recover Ua�
and V 2Pa.

4 Computation and Results

Since the model cannot be solved analytically, I resort to numerical methods.
I focus on CEO compensation (i.e., the principal is a proxy for �rm�s share-
holders, the agent is the company�s top executive, the action is interpreted
as e¤ort, the monetary transfer as the manager�s compensation package, and
the outcomes as the company�s pro�t). I parameterize the model as follows:13

Y =
�
y(1); y(2); y(3)

	
= f0.55, 1.125, 1.7g, A = fa; ag = f0.1253, 0.1469g,

�
�
y(1); a

�
= 0.1891, �

�
y(2); a

�
= 0.7687, �

�
y(3); a

�
= 0.0421, �

�
y(1); a

�
=

0.1555, �
�
y(2); a

�
= 0.7654, �

�
y(3); a

�
= 0.0791, W =

h
0;

y(3)
1��P

i
, �A = �P =

0.96, u (wt; yt) = yt � wt, � (wt; at) = log (1 + wt) � at, � = 1, U (:) = 0,
V (:) 2 fL,M,Hg, where L := �(w)�maxA

1��A
= -3.6725, M := 0, H := -L and as-

sume a positive correlation between V (:) and Y .14 I also consider three cases:
case 1a where the �rm cannot o¤er the manager a compensation that exceeds
its highest possible lifetime pro�t in discounted terms, i.e., wt �

y(3)
1��P

(and

bV = �
� y(3)
1��P

�
�a

1��A
), case 2 where it can compensate the manager up to the high-

est possible pro�t realization, i.e., wt � y(3) (and bV =
�(y(3))�a
1��A

), and case 3

13The parameterization is based on Ase¤ and Santos (2005) who take the value of low e¤ort
from Margiotta and Miller (2000) and use the results of Hall and Liebman (1998) to derive
the stock price distribution conditional on manager�s e¤ort.
14You may notice that the probabilities conditional on a add to 0.9999 instead of 1. The

reason is that here I report the numbers at a much lower precision than the one I actually use
in the numerical computation. For example, if we round the probabilities to the �fth digit
after the decimal point rather than to the fourth, the reported numbers would be 0.18915,
0.76871, and 0.04214 respectively.
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where it is essentially prohibited from borrowing, i.e., wt
�
yt�1; y

�
� y;8y 2 Y

(where, as in case 2, we take bV = �(y(3))�a
1��A

). Since the results are qualitatively
similar, I focus on LMH, case 3, where LMH is the assignment of reservation
values to initial histories, namely V 1 = L, V 2 = M, V 3 = H.
Figure 1 in Appendix 2 plots the value functions for the optimal contract

allowing for permanent separations (the 2Pa contract) and the optimal self-
enforcing contract (the 2P contract in the terminology of Morfov (2009)). For
higher initial utilities, the two value functions practically coincide. For smaller
utility values, most of which lie outside the state space of the self-enforcing
contract, the value function of the contract allowing for permanent separations
is still de�ned but is actually increasing, so these utility promises would be wiped
out by re-negotiation if such were possible. Indeed, most of these initial utilities
are supported by future separations. Note that the fact that much lower utilities
are supported under the 2Pa contract means that the manager�s minimum utility
is much lower than under the 2P contract, so the insurance against �uctuations
in the value of manager�s outside options is less pronounced. More precisely,
the threat of a separation signi�cantly decreases the smoothing of the manager�s
lower utility bound across initial histories. Consider the optimal contract that
allows for permanent separations. It supports the manager�s reservation utility
for both medium and high pro�ts. For low pro�ts, the minimum managerial
utility is about -0.42, which is above the reservation value of -3.67. But let
us compare these results with the situation observed under the optimal self-
enforcing contract. There, the manager�s reservation utility is only supported
for high pro�ts. For both low and medium pro�ts, he/she is guaranteed at least
1.14 given reservation utility values of -3.67 and 0 respectively.
Otherwise, the properties of the optimal contract allowing for separations

(the 2Pa contract) are not much di¤erent from those of the optimal self-enforcing
contract (the 2P contract). Figure 2 shows the optimal level of e¤ort as a func-
tion of initial utility (cf. Figure 3 for the self-enforcing contract). The �rm
�nds it optimal to induce high e¤ort for most but the richest (in expected util-
ity terms) managers. While we have a pool of managers who do not participate
in the optimal self-enforcing contract and are now motivated to work hard, the
cuto¤ point from where on the managers start to shirk does not di¤er signif-
icantly across the two contracts. As before, executive pay increases with the
utility promise (compare Figure 4 with Figure 5; the graph for a future pro�t
y(1) is kinked due to the �rm�s binding borrowing constraint15) and with the
end-of-period pro�t realization (Figure 6 vs. Figure 7). Manager�s continuation
utility tends to increase in both current utility (cf. Figures 8 and 9) and �rm�s
pro�t (cf. Figures 10 and 11). The di¤erence with the optimal self-enforcing
contract is that now much lower continuation utilities are possible. The rea-
son, as for the initial utility promises, is that they can be supported by future

15Note that managerial compensation cannot exceed the current pro�t realization, i.e.,
wt (:; y) � y, 8y 2 Y . So, when the lowest pro�t, y(1), is realized, the �rm�s inability to
borrow adversely a¤ects the incentive scheme by capping executive pay for all but the poorest
(in expected utility terms) managers.
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terminations. Indeed, the prospect of permanent separations mostly a¤ects the
poorest (in utility terms) managers. For these managers, current compensation
does not play any incentive role, they are exclusively motivated by deferred
compensation and are �red in case of (a stream of) low pro�ts.

5 Conclusion

In a dynamic model of hidden action with limited commitment and history-
dependent reservation utilities, I recursively characterize the optimal contract
allowing for permanent separations. I numerically compute the optimal con-
tract for top executives and �nd little di¤erence with the optimal self-enforcing
contract. High e¤ort appears optimal for most but the richest managers. CEO�s
compensation and future utility increase in both current utility and �rm�s fu-
ture pro�t. The contract provides the manager with a lower level of insurance
against �uctuations in the value of his/her outside options than does the re-
spective self-enforcing contract. It o¤ers much lower continuation utility values
which are supported by future terminations.
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APPENDIX 1

The �rst step towards a recursive representation is to establish that an ad-
missible supercontract is incentive compatible on all non-terminal nodes if and
only if it is temporary incentive compatible on all non-terminal nodes.

Proposition 1 For any c admissible, (2),(5).

Proof. It is trivial to show (2))(5). In the other direction, let (5) hold,
but assume that (2) is not satis�ed, i.e. there is a non-terminal node y��1

s.t. 9a0 admissible on the tree with initial node y��1 and V�
�
h; a0; w; y��1

�
>

V�
�
h; a; w; y��1

�
. We have:

V�
�
h; a0; w; y��1

�
=

TX
t=�

�t��A

X
y�2Y

:::
X

yt�12Y
[
�
1� ht

�
yt�1

��
V l(yt��;:::;yt�1)

t�1Y
i=�

hi
�
yi�1

�
�
�
yi; a

0
i

�
yi�1

��
+

TX
t=�

�t��A

X
y�2Y

:::
X
yt2Y

v
�
wt
�
yt
�
; a0t

�
yt�1

�� tY
i=�

hi
�
yi�1

�
�
�
yi; a

0
i

�
yi�1

��
+

�T��+1A VT+1
�
h; a0; w; y��1

� TY
i=�

hi
�
yi�1

�
�
�
yi; a

0
i

�
yi�1

��

where the last term on the right-hand side can be made arbitrarily small
by choosing T big enough. Therefore, 9T 2 Z+ and an admissible action plan
a00 : a00t

�
yt�1

�
= a0t

�
yt�1

�
, 8yt�1 2 y��1�Y t�� , 8t � T , and a00t = at elsewhere,

s.t. V�
�
h; a00; w; y��1

�
> V�

�
h; a; w; y��1

�
Then, take � 0 2 Z+ : � � � 0 � T

s.t. 9y� 0�1 : a00� 0
�
y�

0�1
�
6= a� 0

�
y�

0�1
�
and @� 00 2 Z++ : � 0 < � 00 � T :

a00� 00
�
y�

00�1
�
6= a� 00

�
y�

00�1
�
for some y�

00�1 2 y��1 � Y � 00�� . De�ne an admis-

sible action plan a000 : a000� 0
�
y�

0�1
�
= a� 0

�
y�

0�1
�
;8y� 0�1 2 y��1 � Y � 0�� and

a000t = a
00
t elsewhere. Then, for any y

� 0�1 2 y��Y � 0�� such that h� 0
�
y�

0�1
�
= 0,

we have that V� 0
�
h; a000; w; y�

0�1
�
= V� 0

�
h; a00; w; y�

0�1
�
= V l(y�0��;:::;y�0�1)

,

while
if h� 0

�
y�

0�1
�

= 1, by (5) we obtain that V� 0
�
h; a000; w; y�

0�1
�

�
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V� 0
�
h; a00; w; y�

0�1
�
. Therefore, V�

�
h; a000; w; y��1

�
� V�

�
h; a00; w; y��1

�
. Pro-

ceeding in this way we can eliminate all the deviations (note that � 0 2 Z+ : � 0 �
T ) to obtain V�

�
h; a; w; y��1

�
� V�

�
h; a00; w; y��1

�
, i.e. a contradiction.

For any X 2 Rn� let Ba (X) be a set operator such that Bal (X) := V l[fV 2h
V l;

bV i : 9 a (static) contract cR (V; l) s.t. (6)-(9) are satis�ed and
V+ (V; y) 2 Xl+(l;y)

\
h
V l+(l;y);1

�
(12)

holdsg.

Compare this operator with eBa. Here, V 2 hV l; bV i and constraint (12) com-
bines individual rationality on part of the agent with a consistent continuation
utility promise by the principal. The operator is more robust than eBa regarding
the initial guess for the equilibrium set. However, given a suitably chosen initial
guess, iterating on eBa leads to the same result at a lower computational cost.
For any X = fXlg : Xl 2 R, 8l 2 L let Ba0 (X) :=

fBa0l (X)g with Ba0l (X) := fVl 2
h
V l;

bV i : 9cR (Vl; l) :(6)-(9) and (10) holdg.
Note that the only di¤erence between this operator and operator eBa de�ned in
Section 3 is that Ba0l (X) �

h
V l;

bV i, while eBal (X) � Xl.
Lemma 1 V APa � Ba

�
V APa

�
.

Proof. Let V 2 V APa and �x an arbitrary l 2 L. Since Vl 2 V APa (l), 9c : (1)
holds, (3) 8nai(l), (5) 8 non-terminal nai(l), and V0 (c; l) = Vl. By construc-

tion, Vl 2
h
V l;

bV i. If h (l) = 0, node l is terminal, so Vl = V l, and since V l 2
Bal
�
V APa

�
by de�nition, the result is trivial. Therefore, let us assume h (l) = 1.

For any y 2 Y; let a� := a0 (l), w+ (y) := w0 (l; y), and V+ (y) := V1 (c; l; y).
Given these choices, we immediately have that (9) holds. Moreover, (1) )
(6) \ (7), (5) ) (8). Note that for all y 2 Y , V APa (l+ (l; y)) \

h
V l+(l;y);+1

�
= V APa (l+ (l; y)). Note that for every y 2 Y , the truncation of the origi-
nal supercontract c to the tree with initial node (l; y) satis�es (1) on the tree
with initial node l+ (l; y) and is such that (3) 8nai(l+ (l; y)), (5) 8 non-terminal
nai(l+ (l; y)) and V0 (cy; l+ (l; y)) = V1 (c; l; y), which means that (12) is sat-
is�ed. Therefore, Vl 2 Bal

�
V APa

�
. Since l 2 L was chosen randomly, this

generalizes to V 2 Ba
�
V APa

�
.

The lemma establishes that V APa is self-generating in the terminology of
Abreu, Pearce and Stacchetti (1990).
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Lemma 2 Assume X = fXlg : Xl � Bal (X), 8l 2 L. Then, Ba (X) � V APa.

Proof. Let the condition of the lemma hold and take V 2 Ba (X). Fix an
arbitrary l 2 L. If Vl = V l, it is immediate that Vl 2 V APa (l) since we
can support it by an admissible supercontract with h (:) = 0 on all nai(l). If
Vl 6= V l, then 9cR (Vl; l) : (6)-(12) hold. By (12) and Xl+(l;y) � Bal+(l;y)

(X), we

obtain that V+;l (Vl; y) 2 Bal+(l;y)
(X), 8y 2 Y . Consider y 2 Y . We either have

that V+;l (Vl; y) can be supported by a contract cR; (V+;l (Vl; y) ; (l; y)) : (6)-(12)
hold or V+;l (Vl; y) = V l+(l;y) 2 V

APa (l+ (l; y)) since it can supported by an
admissible supercontract with h (:) = 0 on all nai(l+ (l; y)). Proceeding this
way, we can consecutively construct a supercontract c after l s.t. (1), (3) 8nai
(l), (5) 8non-terminal nai (l) and V0 (c; l) = Vl. Here, it deserves noting that

while (12) implies (3) on every node but the initial one, Vl 2 Bal (X) �
h
V l;

bV i,
from where (3) is also satis�ed at l. Therefore, Vl 2 V APa (l), which generalizes
to V 2 V APa.

The lemma says that the image of every nonempty, self-generating set is a
subset of V APa.

Proposition 2 (a) Ba
�
V APa

�
= V AP ; and (b) if 9X � Rn� : Ba (X) = X,

then X � V APa.

Proof of Proposition 2. (a) From Lemmas 1 and 2.
(b) It follows by Lemma 2.

This proposition establishes that the set of agent�s expected discounted util-
ities supportable by an APa supercontract is the largest �xed point of Ba.

Lemma 3 Assume X 0 = fX 0
lg and X 00 = fX 00

l g : X 0
l � X 00

l � R, 8l 2 L. Then,
Bal (X

0) � Bal (X 00), 8l 2 L.

Proof. Trivial.

Lemma 4 Assume X = fXlg: Xl � R compact, 8l 2 L. Then, Bal (X) com-
pact, 8l 2 L.
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Proof. Let the condition of the lemma hold and assume Bal (X) 6= ; for some
l 2 L. Note that Bal (X) �

h
V l;

bV i � R is bounded by de�nition. We should
also show that it is closed. Take an arbitrary convergent sequence fVig1i=1 :
Vi 2 Bal (X), 8i 2 Z++ with Vi !i!1

V1. We need to prove that V1 2 Bal (X).
If V1 = V l, then the result is trivial since V l 2 Bal (X). Therefore, assume
that V1 6= V l. Then, it should be the case that there exists a subsequence�
Vij
	1
j=1

of fVig1i=1, such that for every positive integer j, Vij 2
h
V l;

bV i and
9cR;ij :(6)-(12) hold at

�
Vij ; l

�
. By Vij 2

h
V l;

bV i ; 8 positive integer j, we
obtain V1 2

h
V l;

bV i. By (6), (7), (12), Y �nite, and Xl � R compact for any
l 2 L, we have that

�
cR;ij

	1
j=1

is uniformly bounded, therefore 9 a subsequencen
cR;ijk

o1
k=1

of
�
cR;ij

	1
j=1

: cR;ijk !
k!1

cR;1. It is immediate that cR;1 satis�es

(6)-(12) at (V1; l).

Proposition 3 Let X0 compact : V APa � X0 � Rn� and
Ba (X0) � X0. De�ne Xi+1 := Ba (Xi), 8i 2 Z+. Then, Xi+1 � Xi, 8i 2 Z+
and X1 := lim

i!1
Xi = V

APa.

Proof of Proposition 3. For every l 2 L and i 2 Z+, denote by Xi;l
the element of Xi corresponding to initial history l. By the condition of the
Proposition, we have V APa (l) � X0;l � R, 8l 2 L. Since by Proposition 2 (a)
Bal
�
V APa

�
= V APa (l), we can apply Lemma 3 to obtain V APa (l) � X1;l �

R, 8l 2 L. Using X1 � X0 and repeating the argument, we reach V AP �
Xi+1 � Xi, 8i 2 Z+ Then, fXig1i=0 is a sequence of non-empty, compact (by
Lemma 4 since X0 compact), monotonically decreasing (nested) sets; therefore

it converges to X1 =
1
\
i=0
Xi � V APa with X1 compact.

What remains to be shown is that X1 � V APa. By Lemma 2, it is enough
to show that X1 � Ba (X1). Let V 2 X1. This implies that V 2 Xi,
8i 2 Z+. Fix an arbitrary l 2 L. If Vl = V l, we immediately have that
Vl 2 Bal (X1),.therefore assume Vl 6= V l.Then, 9cR;i : (6)-(12) hold at (Vl; l).
By (6), (7), (12), Y �nite, and Xi � X0 � Rn� compact, 8i 2 Z+, we have
that fcR;igi2Z+ is uniformly bounded; therefore, 9 a subsequence

�
cR;ij

	1
j=0

of fcR;ig1i=0 : cR;ij !
j!1

cR;1. It is immediate that cR;1 satis�es(6)-(8) at

(Vl; l). Moreover, V+;1 (y) � V l+(l;y), 8y 2 Y . We also need to show that
for every y 2 Y , V+;1 (y) 2 X1;l+(l;y). Fix an arbitrary y 2 Y and assume,

on the contrary, that V+;1 (y) =2 X1;l+(l;y). Since X1;l+(l;y) =
1
\
i=0
Xi;l+(l;y) =

1
\
j=0
Xij ;l+(l;y), we have that 9j0 2 Z+ : V+;1 (y) =2 Xij0 ;l+(l;y). Furthermore,�

Xij
	1
j=0

was shown to be a monotonically decreasing (nested) sequence, from
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where V+;ij (y) 2 Xij ;l+(l;y) � Xij0 ;l+(l;y), 8j 2 Z+ : j � j0. Since Xij0 ;l+(l;y)
is closed and V+;ij (y) !

k!1
V+;1 (y), we obtain that V+;1 (y) 2 Xij0 ;l+(l;y),

i.e. a contradiction is reached. This proves V+;1 (y) 2 X1;l+(l;y), 8y 2 Y .

Consequently, (12) holds for cR;1. Finally, note that Vl 2
h
V l;

bV i follows
immediately from Vl 2 X1;l. Therefore, Vl 2 Bal (X1), which generalizes to
V 2 Ba (X1).

The proposition says that if we start iterating on Ba taking as an initial guess
some compact set X0 that contains both Ba (X0) and V APa, we will ultimately
converge to the largest �xed point of the operator, V APa. This is su¢ cient for

obtaining V APa since we can always take X0 = fXl;0g :
h
V l;

bV i � Xl;0 � R
with Xl;0 compact, 8l 2 L. However, an even more computationally e¢ cient
result exists.

For any X = fXlg : Xl 2 R, 8l 2 L let Ba0 (X) :=

fBa0l (X)g with Ba0l (X) := fVl 2
h
V l;

bV i : 9cR :(6)-(9) and (10) hold at (Vl; l)g.
Note that the only di¤erence between this operator and operator eBa de�ned in
Section 3 is that Ba0l (X) �

h
V l;

bV i, while eBal (X) � Xl.
Lemma 5 Take X 0

0 :=
n
X 0
0;l

o
with X 0

0;l :=
h
V l;

bV i, 8l 2 L and let X 0
i+1 :=

Ba0 (X 0
i), 8i 2 Z+. Then, X 0

i+1 � X 0
i, 8i 2 Z+ and X 0

1 := lim
i!1

X 0
i = V

APa.

Proof. We have that X 0
0 is compact and V

APa � X 0
0 � Rn� . Note that for

every X � Rn� , we have Bal (X) � Ba0l (X). Then, by Lemma 3 and Proposition
2 (a), we obtain V APa � Ba (X 0

0) � Ba0 (X 0
0). Using the same arguments plus

the monotonicity of Ba0 (trivial), we have V APa � Xa0
i , 8i 2 Z+. Moreover,

by construction Ba0 (X 0
0) � X 0

0. Then, the condition B (X
0
0) � X 0

0 is satis�ed.

Observe that for every l 2 L, X 0
1;l = V l \ fVl 2

h
V l;

bV i : 9cR s.t. (6)-(9), (10)
hold at (Vl; l)g = V l \ fVl 2

h
V l;

bV i : 9cR s.t. (6)-(9), (12) hold at (Vl; l)g =
Bal (X

0
0) since, by construction, we have that X

0
0 (l+ (l; y)) \

h
V l+(l;y);+1

�
=

X 0
0;l+(l;y)

, 8y 2 Y . Furthermore, by X 0
1 � X 0

0 and the monotonicity of B
0, we

obtain X 0
i+1 � X 0

i, 8i 2 Z+. Then, it is trivial that X 0
i+1 = B

a (X 0
i), 8i 2 Z+

Therefore, Proposition 3 applies to fX 0
ig
1
i=1.

Lemma 6 Let fX 0
ig
1
i=1 be de�ned as in Lemma 5. Take eX0 := X 0

0 and leteXi+1 := eBa � eXi�, 8i 2 Z+. Then, eXi = X 0
i, 8i 2 Z+.
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Proof. Assume eXi�1 = X 0
i�1 for some i 2 Z++. By Lemma 5, ; 6= X 0

i � X 0
i�1.

Fix l 2 L� and let V 2 X 0
i;l Then, we have V 2 eXi�1;l, which together

with V 2 B0l
� eXi�1� implies that V 2 eBl � eXi�1�. Since l and V were chosen

randomly, this generalizes to X 0
i � eXi. Note that eXi�1 = X 0

i�1 � X 0
0 by Lemma

5. Consequently, eBl � eXi�1� � B0l � eXi�1�, i.e. eXi � X 0
i.

We have that eX0 = X 0
0 by de�nition and have just shown that eXi�1 = X 0

i�1
would imply eXi = X 0

i; therefore, by induction we obtain that eXi = X 0
i, for any

i 2 Z+.

Proposition 4 (a) Take eX0 := n eX0;lo with eX0;l = h
V l;

bV i, 8l 2 L and leteXi+1 := eBa � eXi�, 8i 2 Z+. Then, eXi+1 � eXi, 8i 2 Z+ and eX1 := lim
i!1

eXi =
V APa. (b) eBa �V APa� = V APa; and (c) if 9X � eX0 : eBa (X) = X, then
X � V APa.

Proof of Proposition 4. (a) From Lemmas 5 and 6.
(b) Similarly to the proof of Lemma 1, we can show that V AP �eB �V AP �. It is trivial that eB �V AP � � V AP .
(c) Since X � eX0, we can use the monotonicity of eBa and eBa (X) = X to

obtain X � eXi, 8i 2 Z+. Then, by (a), we have X � eX1 = V APa.

This proposition outlines a practical way of obtaining V APa. Namely, we

start with the set
nh
V l;

bV io and iterate on the set operator eBa until convergence
in a properly de�ned sense is attained.
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APPENDIX 2
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Figure 1: Value functions for the 2Pa (allowing for permanent separations)
contract and the 2P (self-enforcing) contract ordered by initial history:

Ua
�
(:; l), and respecively U� (:; l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 2: Optimal e¤ort under the 2Pa contract as a function of initial utility
promise: a�� (:; l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 3: Optimal e¤ort under the 2P contract as a function of initial utility
promise: a�� (:; l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 4: Optimal wage under the 2Pa contract as a function of initial utility
promise: w�+

�
:; l; y(k)

�
, l; k 2 f1; 2; 3g (LMH, case 3)
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Figure 5: Optimal wage under the 2P contract as a function of initial utility
promise: w�+

�
:; l; y(k)

�
, l; k 2 f1; 2; 3g (LMH, case 3)
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Figure 6: Optimal wage under the 2Pa contract as a function of future pro�t:
w�+ (V; l; :): V 2 V 2Pa (l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 7: Optimal wage under the 2P contract as a function of future pro�t:
w�+ (V; l; :): V 2 V 2P (l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 8: Optimal future utility promise under the 2Pa contract as a function
of initial utility promise: V �+

�
:; l; y(k)

�
, l; k 2 f1; 2; 3g (LMH, case 3)
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Figure 9: Optimal future utility promise under the 2P contract as a function
of initial utility promise: V �+

�
:; l; y(k)

�
, l; k 2 f1; 2; 3g (LMH, case 3)

139



0 1 2
­4

­2

0

2

4

6

8

10

12

14

16

y

V
* +(V

,1
,y

) :
 V

∈
V

2P
a (1

)

0 1 2
­4

­2

0

2

4

6

8

10

12

14

16

y

V
* +(V

,2
,y

) :
 V

∈
V

2P
a (2

)

0 1 2
­4

­2

0

2

4

6

8

10

12

14

16

y
V

* +(V
,3

,y
) :

 V
∈

V
2P

a (3
)

Figure 10: Optimal future utility promise under the 2Pa contract as a function
of future pro�t: V �+ (V; l; :): V 2 V 2Pa (l), l 2 f1; 2; 3g (LMH, case 3)
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Figure 11: Optimal future utility promise under the 2P contract as a function
of future pro�t: V �+ (V; l; :): V 2 V 2P (l), l 2 f1; 2; 3g (LMH, case 3)
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