
VARIABLE SELECTION AND

PREDICTIVE MODELS FOR BIG

DATA ENVIRONMENTS

by

Álvaro Méndez Civieta

A DISSERTATION

submitted in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

(Mathematical Engineering)

Universidad Carlos III de Madrid

Advisors:

Rosa E. Lillo

M. Carmen Aguilera-Morillo

Tutor:

Rosa E. Lillo

January 2022

This thesis is distributed under license “Creative Commons Atributtion - Non

Commercial - Non Derivatives”.

A mi familia

Acknowledgements

First of all, I would like to thank my advisors Professors Rosa E. Lillo and M. Carmen

Aguilera-Morillo for their permanent support, guidance, advice and encouragement.

When I finished my master’s degree, I was determined to go into the business field,

but I enjoyed so much working with them in my Master thesis that I decided to

pursue the Ph.D. studies.

Getting here is by no means a job I have done alone. I am here thanks to the

support of my friends and my family, especially my mother and sister, who always

encouraged me. But also thanks to all the professors who were involved in my

education, especially M. Ángeles Gil and Norberto Corral, who helped me with all

their support (and also with all their letters of recommendation). This thesis belongs

to all of them.

I am also grateful with the Department of Statistics of Universidad Carlos III de

Madrid, for providing the financial support to carry out this thesis.

And I would want to extend my gratitude to professors Jeff Goldsmith and Ying

Wei, for their collaboration and support in the last chapter of this thesis. It has

been a pleasure working with them.

Finally, I want to acknowledge the financial support received by research grants

and projects PIPF UC3M, ECO2015-66593-P (Ministerio de Economı́a y Compet-

itividad, Spain) and PID2020-113961GB-I00 (Agencia Estatal de Investigaciónm

Spain).

Published and submitted content

The materials from the following sources are included in the thesis. Their inclusion

is not indicated by typographical means or references, since they are fully embedded

in each chapter indicated below.

• Méndez-Civieta Álvaro, Aguilera-Morillo M. Carmen and Lillo Rosa E. (2021).

“Adaptive sparse group LASSO in quantile regression”. In: Advances in Data

Analysis and Classification 15(3), 547–573.

– https://doi.org/10.1007/s11634-020-00413-8

– Included in: Chapter 2 (full).

• Méndez-Civieta Álvaro, Aguilera-Morillo M. Carmen and Lillo Rosa E. (2021).

“A quantile based dimension reduction technique”.

– http://hdl.handle.net/10016/33469

– Included in: Chapter 3 (full).

– Under review in Chemometrics and intelligent laboratory systems.

• Méndez-Civieta Álvaro, Aguilera-Morillo M. Carmen and Lillo Rosa E. (2021).

“Asgl: A Python Package for Penalized Linear and Quantile Regression”. arXiv

preprint arXiv:2111.00472

– https://arxiv.org/abs/2111.00472

– Included in: Chapter 5 (full).

ix

https://doi.org/10.1007/s11634-020-00413-8
http://hdl.handle.net/10016/33469
https://arxiv.org/abs/2111.00472

x

Other research merits

Software:

• Python package asgl: adaptive sparse group lasso. Maintainer. https://pypi.

org/project/asgl/.

Research stay:

• Columbia University Mailman School of Public Health. Research tutor: Jeff

Goldsmith.

Research conference talks:

Year 2021.

• Dimension reduction techniques based on quantiles. Invited talk at 14th Inter-

national Conference of the ERCIMWG on Computational and Methodological

Statistics;

• fPQR: A quantile based dimension reduction technique for regression. Invited

talk at New Bridges between Mathematics and Data Science;

• The oracle knows the truth (or a review on penalized regression). Invited talk

at the School of Computer Science and Informatics, Cardiff University;

Year 2020.

• Quantile regression. An adaptive penalization study. Contributed talk at fith

Congreso de jovenes investigadores de la RSME;

Year 2019

xi

https://pypi.org/project/asgl/
https://pypi.org/project/asgl/

• A new approach to penalized quantile regression. Contributed talk at 12th

International Conference of the ERCIM WG on Computational and Method-

ological Statistics;

• Quantile regression: an adaptive penalized estimation. Contributed talk at the

second Spanish Young Statisticians and Operational Researchers meeting;

• Adaptive penalization in quantile regression. A genetics case study. Con-

tributed talk at the XXXVIII Congreso de la Sociedad Española de Estadistica

e Investigación Operativa;

Year 2018

• The sparse group LASSO regularization method in quantile regression mod-

els. Contributed talk at the XXXVII Congreso de la Sociedad Española de

Estadistica e Investigación Operativa.

xii

Abstract

In recent years, the advances in data collection technologies have presented a diffi-

cult challenge by extracting increasingly complex and larger datasets. Traditionally,

statistics methodologies treated with datasets where the number of variables did

not exceed the number of observations, however, dealing with problems where the

number of variables is larger than the number of observations has become more and

more common, and can be seen in areas like economics, genetics, climate data, com-

puter vision etc. This problem has required the development of new methodologies

suitable for a high dimensional framework.

Most of the statistical methodologies are limited to the study of averages. Least

squares regression, principal component analysis, partial least squares... All these

techniques provide mean based estimations, and are built around the key idea that

the data is normally distributed. But this is an assumption that is usually unverified

in real datasets, where skewness and outliers can easily be found. The estimation

of other metrics like the quantiles can help providing a more complete image of the

data distribution.

This thesis is built around these two core ideas. The development of more robust,

quantile based methodologies suitable for high dimensional problems. The thesis is

structured as a compendium of articles, divided into four chapters where each chap-

ter has independent content and structure but is nevertheless encompassed within

the main objective of the thesis.

First, Chapter 1 introduces basic concepts and results, assumed to be known

or referenced in the rest of the thesis. A possible solution when dealing with high

dimensional problems in the field of regression is the usage of variable selection tech-

niques. In this regard, sparse group lasso (SGL) has proven to be a very effective

alternative. However, the mathematical formulation of this estimator introduces

some bias in the model, which means that it is possible that the variables selected

xiii

by the model are not the truly significant ones. Chapter 2 studies the formulation

of an adaptive sparse group lasso for quantile regression, a more flexible formula-

tion that makes use of the adaptive idea, this is, the usage of adaptive weights in

the penalization to help correcting the bias, improving this way variable selection

and prediction accuracy. An alternative solution to the high dimensional problem

is the usage of a dimension reduction technique like partial least squares. Partial

least squares (PLS) is a methodology initially proposed in the field of chemometrics

as an alternative to traditional least squares regression when the data is high di-

mensional or faces colinearity. It works by projecting the independent data matrix

into a subspace of uncorrelated variables that maximize the covariance with the re-

sponse matrix. However, being an iterative process based on least squares makes this

methodology extremely sensitive to the presence of outliers or heteroscedasticity.

Chapter 3 defines the fast partial quantile regression, a technique that performs

a projection into a subspace where a quantile covariance metric is maximized, effec-

tively extending partial least squares to the quantile regression framework. Another

field where it is common to find high dimensional data is in functional data anal-

ysis, where the observations are functions measured along time, instead of scalars.

A key technique in this field is functional principal component analysis (FPCA), a

methodology that provides an orthogonal set of basis functions that best explains

the variability in the data. However, FPCA fails capturing shifts in the scale of the

data affecting the quantiles.

Chapter 4 introduces the functional quantile factor model. A methodology that

extends the concept of FPCA to quantile regression, obtaining a model that can

explain the quantiles of the data conditional on a set of common functions.

In Chapter 5, asgl, a Python package that solves penalized least squares and

quantile regression models in low and high dimensional is introduced frameworks is

introduced, filling a gap in the currently available implementations of these models.

Finally, Chapter 6 presents the final conclusions of this thesis, including possible

lines of research and future work.

xiv

Resumen

En los últimos años, los avances en las tecnoloǵıas de recopilación de datos han plan-

teado un dif́ıcil reto al extraer conjuntos de datos cada vez más complejos y de mayor

tamaño. Tradicionalmente, las metodoloǵıas estad́ısticas trataban con conjuntos de

datos en los que el número de variables no superaba el número de observaciones,

sin embargo, enfrentarse a problemas en los que el número de variables es mayor

que el número de observaciones se ha convertido en algo cada vez más común, y

puede verse en áreas como la economı́a, la genética, los datos relacionados con el

clima, la visión por ordenador, etc. Este problema ha exigido el desarrollo de nuevas

metodoloǵıas adecuadas para un marco de alta dimensión.

La mayoŕıa de las metodoloǵıas estad́ısticas se limitan al estudio de la media.

Regresión por mı́nimos cuadrados, análisis de componentes principales, mı́nimos

cuadrados parciales... Todas estas técnicas proporcionan estimaciones basadas en la

media, y están construidas en torno a la idea clave de que los datos se distribuyen

normalmente. Pero esta es una suposición que no suele verificarse en los conjuntos de

datos reales, en los que es fácil encontrar asimetŕıas y valores at́ıpicos. La estimación

de otras métricas como los cuantiles puede ayudar a proporcionar una imagen más

completa de la distribución de los datos.

Esta tesis se basa en estas dos ideas fundamentales. El desarrollo de metodoloǵıas

más robustas, basadas en cuantiles, adecuadas para problemas de alta dimensión. La

tesis está estructurada como un compendio de art́ıculos, divididos en cuatro caṕıtulos

en los que cada uno de ellos tiene un contenido y una estructura independientes pero

que, sin embargo, se engloban dentro del objetivo principal de la tesis.

En primer lugar, el Caṕıtulo 1 introduce conceptos y resultados básicos, que se

suponen conocidos o a los que se hace referencia en el resto de la tesis. Una po-

sible solución cuando se trata con problemas de alta dimensión en el campo de la

regresión es el uso de técnicas de selección de variables. En este sentido, el sparse

xv

group lasso (SGL) ha demostrado ser una alternativa muy eficaz. Sin embargo, la

formulación matemática de este estimador introduce cierto sesgo en el modelo, lo

que significa que es posible que las variables seleccionadas por el modelo no sean las

verdaderamente significativas. El Caṕıtulo 2 estudia la formulación de un adaptive

sparse group lasso para la regresión cuant́ılica, una formulación más flexible que

hace uso de la idea adaptive, es decir, el uso de pesos adaptativos en la penalización

para ayudar a corregir el sesgo, mejorando aśı la selección de variables y la precisión

de las predicciones. Una solución alternativa al problema de la alta dimensionalidad

es el uso de una técnica de reducción de dimensión como los mı́nimos cuadrados

parciales. Los mı́nimos cuadrados parciales (PLS por sus siglas en inglés) es una

metodoloǵıa definida inicialmente en el campo de la quimiometŕıa como una alter-

nativa a la regresión tradicional por mı́nimos cuadrados cuando los datos son de alta

dimensión o tienen problemas de colinearidad. Funciona proyectando la matriz de

datos independiente en un subespacio de variables no correlacionadas que maximiza

la covarianza con la matriz de respuesta. Sin embargo, al ser un proceso iterativo

basado en mı́nimos cuadrados, esta metodoloǵıa es extremadamente sensible a la

presencia de valores at́ıpicos o heteroscedasticidad.

El Caṕıtulo 3 define el fast partial quantile regression, una técnica que realiza

una proyección en un subespacio en el que se maximiza una métrica de covarianza

cuant́ılica, extendiendo de forma efectiva los mı́nimos cuadrados parciales al marco

de la regresión cuant́ılica. Otro campo en el que es habitual encontrar datos de alta

dimensión es el del análisis de datos funcionales, en el que las observaciones son

funciones medidas a lo largo del tiempo, en lugar de escalares. Una técnica clave

en este campo es el análisis de componentes principales funcionales (FPCA por sus

siglas en inglés), una metodoloǵıa que proporciona una base ortogonal de funciones

que explica la mayor cantidad posible de variabilidad en los datos. Sin embargo, el

FPCA no capta los cambios de escala de los datos que afectan a los cuantiles.

El Caṕıtulo 4 presenta el functional quantile factor model. Una metodoloǵıa que

extiende el concepto de FPCA a la regresión cuant́ılica, obteniendo un modelo que

puede explicar los cuantiles de los datos condicionados a un conjunto de funciones

comunes.

En el caṕıtulo 5 asgl, un paquete para Python que resuelve modelos de mı́nimos

cuadrados y regresión cuant́ılica penalizados en entornos de baja y alta dimensión

es presentado, llenando un vaćıo en las implementaciones actualmente disponibles

de estos modelos. Por último, el Capitulo 6 presenta las conclusiones finales de esta

tesis, incluyendo posibles ĺıneas de investigación y trabajo futuro.

xvi

Contents

1 Introduction 1

1.1 Linear regression . 1

1.2 Variable selection techniques . 4

1.3 Dimension reduction . 7

1.4 Functional data analysis . 10

1.5 Main contributions . 13

2 Adaptive Sparse Group LASSO in Quantile Regression 19

2.1 Introduction . 20

2.2 Penalized quantile regression . 22

2.3 Adaptive sparse group LASSO . 24

2.4 The oracle property . 24

2.5 Adaptive weights calculation . 26

2.6 Simulation study: symmetric errors 30

2.7 Real application . 40

2.8 Computational aspects . 45

2.9 Conclusion . 46

2.10 Supplementary material . 47

3 A quantile based dimension reduction technique 65

xvii

3.1 Introduction . 66

3.2 The PLS model for multivariate response 67

3.3 Fast partial quantile regression . 69

3.4 Numerical simulation . 74

3.5 Real data analysis: Biscuit data . 81

3.6 Computational aspect . 82

3.7 Conclusion . 83

4 Functional Quantile Factor Models 87

4.1 Introduction . 88

4.2 Functional Quantile Factor Analysis 91

4.3 Numerical simulation . 95

4.4 Real data analysis . 104

4.5 Computational aspects . 106

4.6 Conclusion . 106

5 asgl: A Python Package for Penalized Linear and Quantile Regression 111

5.1 Introduction . 112

5.2 Theoretical background . 113

5.3 Python implementation . 118

5.4 Examples . 132

5.5 Computational details . 138

5.6 Conclusions . 138

5.7 Supplementary material . 139

6 Conclusions 143

xviii

List of Figures

1.1 Quantile regression loss check function ρτ(·). 3

1.2 Comparison of least squares and quantile regression. (A) compari-

son in the presence of outliers. (B) comparison in the presence of

heteroscedastic data. 4

1.3 Penalized least squares. (A) lasso penalty. (B) ridge penalty. The

red ellipsoids are the contour lines of the residual sums of squares in

a least squares model. 5

1.4 Overview of multivariate NIPALS algorithm. 9

1.5 Representation of an M spline basis of degree 3. 11

1.6 Regression splines using 5, 15 and 30 knots. 12

2.1 Contour lines for LASSO, group-LASSO and sparse-group-LASSO

penalties in the case of a single 2-dimensional group 24

2.2 Simulation 1. Sparse distribution of 625 variables. Considering a t(3)

error. Box-plots showing the test error of the different models. 36

2.3 Simulation 1. Sparse distribution of 225 variables. Considering a t(3)

error. Box-plots showing the test error of the different models. 36

2.4 Simulation 2. Dense distribution of 625 variables. Considering a t(3)

error. Box-plots showing the test error of the different models. 39

2.5 Simulation 2. Dense distribution of 225 variables. Considering a t(3)

error. Box-plots showing the test error of the different models. 39

2.6 Gene expression data of rat eye disease. Box-plot showing the sizes

of the groups built using PCA. 42

xix

2.7 Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Box-plot showing the test error. 43

2.8 Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Box-plot showing the number of significant genes. . 43

2.9 Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Heatmap showing the probability of being a signifi-

cant gene. Each row represents a model and each column represents

a gene. 44

2.10 Simulation 3. Sparse distribution of 625 variables. Considering a

Cauchy(0, 3) error. Box-plots showing the test error of the different

models. 48

2.11 Simulation 3. Dense distribution of 625 variables. Considering a

Cauchy(0, 3) error. Box-plots showing the test error of the different

models. 48

2.12 Simulation 4. Sparse distribution of 625 variables. Considering a χ(3)
error. Box-plots showing the test error of the different models. 50

2.13 Simulation 4. Dense distribution of 625 variables. Considering a χ(3)
error. Box-plots showing the test error of the different models. 50

2.14 Simulation 5. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of γ1 and γ2 influence. Box-plots showing the test

error of the different models. 53

2.15 Simulation 6. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpca,d influence. Box-plots showing the test error of

the different models. 55

2.16 Simulation 6. Sparse distribution of 625 variables. Considering a

t(3) error. Analysis of αpca,d influence. Box-plots showing the correct

selection rate of the different models. 55

2.17 Simulation 6. Sparse distribution of 100 variables. Considering a t(3)

error. Analysis of αpca,d influence. Box-plots showing the test error of

the different models. 55

2.18 Simulation 6. Sparse distribution of 100 variables. Considering a

t(3) error. Analysis of αpca,d influence. Box-plots showing the correct

selection rate of the different models. 56

2.19 Simulation 7. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpls,d influence. Box-plots showing the test error of

the different models. 57

xx

2.20 Simulation 7. Sparse distribution of 625 variables. Considering a

t(3) error. Analysis of αpls,d influence. Box-plots showing the correct

selection rate of the different models. 58

2.21 Simulation 7. Sparse distribution of 100 variables. Considering a t(3)

error. Analysis of αpls,d influence. Box-plots showing the test error of

the different models. 58

2.22 Simulation 7. Sparse distribution of 100 variables. Considering a

t(3) error. Analysis of αpls,d influence. Box-plots showing the correct

selection rate of the different models. 58

3.1 Simulation 1. Mean squared error of β coefficients. 76

3.2 Simulation 1. Mean squared error of the response variable y. 77

3.3 Simulation 1. Execution time measured in seconds. 77

3.4 Biscuit dataset: NIR spectra of the biscuit dataset. 81

3.5 Biscuit dataset: CV mean squared error on the number of components. 82

4.1 Accelerometer measurements from 420 children. (A) includes two ob-

servations from the dataset, showing a clear difference in the pattern

of physical activity. (B) shows the full dataset, including an estimate

of the mean behavior as a dashed line. 88

4.2 Simulation 1. (A) shows the density function of the asymmetric error

term εi(t). (B) shows a subset of the generated dataset. 96

4.3 Simulation 1. Comparison of the common curves f (t) estimated using

FQFM and QFM at three quantile levels. 98

4.4 Simulation 1. Intercept curve estimation provided by FQFM algo-

rithm at three quantile levels. 98

4.5 Simulation 1. Randomly selected observation from the test set com-

pared against the reconstruction provided by FQFM (A) and QFM

(B) at different quantiles. 99

4.6 Simulation 1. Results from the FPCA algorithm. (A) shows the basis

functions estimation. (B) shows the mean estimation of a randomly

selected observation from the test set. 100

4.7 Simulation 1. plot (A) shows the increasing variance of the εi(t) error
term. plot (B) shows a subset of the generated dataset 100

4.8 Simulation 2. Comparison of the common curves f (t) estimated using

FQFM and QFM at three quantile levels. 102

xxi

4.9 Simulation 2. Intercept curve estimation provided by FQFM algo-

rithm at three quantile levels. 102

4.10 Simulation 2. Randomly selected observation from the test set com-

pared against the reconstruction provided by FQFM (A) and QFM

(B) at different quantiles. 103

4.11 Simulation 2. Results from the FPCA algorithm. (A) shows the basis

functions estimation. (B) shows the mean estimation of a randomly

selected observation from the test set. 103

4.12 Real data analysis. Cross validation results on the number of factors

measuring the quantile error. 104

4.13 Real data. Comparison of the common curves f (t) estimated using

FQFM and QFM at three quantile levels. 105

4.14 Real data. Intercept curve estimation provided by FQFM algorithm

at three quantile levels. 106

4.15 Real data. Randomly selected observation from the test set compared

against the reconstruction provided by FQFM (A) and QFM (B) at

different quantiles. 107

4.16 Real data Results from the FPCA algorithm. (A) shows the basis

functions estimation. (B) shows the mean estimation of a randomly

selected observation from the test set. 107

5.1 Contour lines for lasso, group lasso and sparse group lasso penalties

in the case of a single 2-dimensional group 116

xxii

List of Tables

2.1 Simulation 1. Sparse distribution of variables. Considering a t(3) error. 35

2.2 Simulation 2. Dense distribution of variables. Considering a t(3) error. 38

2.3 Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Results displayed as mean value, with standard

errors in parenthesis. 42

2.4 Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Number of genes above the probability threshold for

different quantile levels. 45

2.5 Simulation 3. Considering 625 variables and a Cauchy(0, 3) error. . . 48

2.6 Simulation 4. Considering 625 variables and a χ2(3) error. 49

2.7 Simulation 5. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of γ1 and γ2 influence. 52

2.8 Simulation 6. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpca,d influence. 54

2.9 Simulation 7. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpls,d influence. 57

3.1 Simulation 1. Sparse high dimensional framework considering a χ2(3)
error. 76

3.2 Simulation 2. Sparse high dimensional framework with multidimen-

sional response, considering a χ2(3) error. 78

3.3 Simulation 3. Euclidean distance of β coefficient estimations under

different error distributions. 79

xxiii

3.4 Simulation 3. Execution time . 80

3.5 Biscuit data: Test mean squared error. 82

4.1 Simulation 1. IMSE and QE of estimators FQFM, FQFM50%, QFM

and PCA for three different quantile levels. 97

4.2 Simulation 1. IMSE and QE of estimators FQFM, FQFM50%, QFM

and PCA for three different quantile levels. 101

4.3 Real data. QE of estimators FQFM, FQFM50%, QFM and PCA for

three different quantile levels. 105

5.1 Overview of availability of penalizations mentioned along Section 5.1

in R, Python and Matlab. 113

xxiv

CHAPTER 1

Introduction

This thesis is centered on the research of two key ideas: the usage of quantile based

methodologies as a robust alternative to traditional mean based models, and the

analysis of high dimensional problems. The resulting work is a compendium of four

independent chapters that study different aspects of high dimensional problems from

a quantile perspective. This first chapter introduces basic concepts and results, as-

sumed to be known or referenced in the rest of the thesis. It is organized as follows.

Section 1.1 introduces a general perspective of least squares linear regression models

and quantile regression models, showing the main benefits of the usage of quan-

tile regression. In Section 1.2, the concept of penalized regression is introduced,

discussing some of the most known penalizations in the literature. This section

sets the basic concepts required for Chapter 2. In Section 1.3 the usage of dimen-

sion reduction techniques based on projections is introduced, emphasizing principal

component analysis and partial least squares, required for a better understanding of

Chapter 3. Section 1.4 introduces a series of basic concept from the functional data

analysis framework that will be used in Chapter 4. Finally, Section 1.5 describes the

structure and main contributions of this thesis, providing a complete perspective of

this work.

1.1 Linear regression

Regression analysis is a statistical field that studies relations between variables. Con-

sider a sample of N observations taken from a random vector Xt = (X1, . . . , Xp) and
stored into a data matrix X ∈ RN×p. The rows of X are denoted as xt

i and the columns

1

are samples drawn from the random variables in X. This data matrix, usually called

the independent data matrix, is assumed to be numeric with the columns coming

from possibly different sources including numeric variables, transformations of nu-

meric variables, dummy encodings of qualitative variables etc. Additionally, consider

another sample of N observations taken from a random vector Y = (Y1, . . . ,Yl) and

stored into a matrix Y ∈ RN×l called the response matrix. Usually l = 1 and then the

response matrix is a univariate response vector denoted as y. Chapters 2 and 5 of

this thesis assume that the response is univariate, while in chapter 3 a multivariate

response is studied.

The objective in regression models is to use the known information about the

variables to try to estimate the relation between X and y. Probably the most

widespread formulation of a regression model is the linear regression model, where

such relation is assumed to be linear and can be expressed as,

Y = Xtβ + ε, (1.1)

where ε is a random variable called the error and β ∈ Rp is a coefficient vector such

that Xtβ best approximates Y. Regression models can be posed as optimization prob-

lems where the coefficient vector minimizes the value of a risk function conditional

on the available information R(β|X, y),

β̂ = arg max
β∈Rp

R(β|X, y). (1.2)

The global minimum in this problem can be obtained as long as R(·) is convex, and
different risk functions define different types of regression models.

1.1.1 Least squares models

Least squares assumes an underlying relation of the form,

E(Y | X) = Xtβ. (1.3)

For this reason, it is often said that least squares regression provides the conditional

mean of the response variable given a set of independent variables. Least squares

seek to obtain the value of β such that it minimizes the sum of the squared error εi,

leading to the following risk function,

R(β) =
1

2N
∥y − Xβ∥22. (1.4)

This function is convex and can be minimized by means of some gradient descent

based algorithm, although it also has an analytical closed form solution that emerges

naturally taking partial derivatives with respect to β and equaling the result to 0,

β̂ = (XtX)−1Xty. (1.5)

If the error term is independent, homoscedastic and normally distributed, require-

ment usually summarized as ε ∼ N(0, σI), then the maximum likelihood estimation

of β produces the same estimation as equation (1.5).

2

Figure 1.1: Quantile regression loss check function ρτ(·).

1.1.2 Quantile regression models

The estimation provided by least squares regression is based on the mean, and this

makes it very sensitive to the presence of outliers. Additionally, when dealing with

skewed or heteroscedastic data, it can be useful to obtain estimations based on

the quantiles, as it can provide a more complete picture of the distribution of the

response than just the mean estimate. Consider a real valued random variable Z
and define its distribution function as,

F(Z) = P(Z ≤ z), (1.6)

then given τ ∈ (0, 1) the τth quantile of Z is defined as,

F−1(τ) = inf{z : F(z) ≥ τ}. (1.7)

A quantile regression model assumes the existence of an underlying relation between

X and the quantiles of Y,
Qτ(Y | X) = Xtβ, (1.8)

where Qτ(Y) denotes the τth quantile of the variable Y. This way, just as least squares
regression provides estimates of the conditional mean of Y, quantile regression can

be understood as a model that provides estimates of the conditional quantiles. To

show how it works, let us define the quantile regression loss check function,

ρτ(z) = z(τ − I(z < 0)). (1.9)

Figure 1.1 shows the graphical representation of function ρτ(·). Then the τth quan-

tile of the random variable Z can be obtained as a result of the following optimization

problem,

α̂ = arg minE ρτ(Z − α). (1.10)

Based on this idea, the quantile regression risk function is defined as,

R(β) =
1

2N

N∑︂
i=1

ρτ(yi − xt
iβ). (1.11)

3

Figure 1.2: Comparison of least squares and quantile regression. (A) comparison in

the presence of outliers. (B) comparison in the presence of heteroscedastic data.

−5

0

5

10

15

−2 −1 0 1
x

y

Legend

Least squares

Quantile regression

Outlier dataset(A)

0

10

20

30

0 5 10
x

y

Legend

Least squares

Median

Other quantiles

Heteroscedastic dataset(B)

Quantile regression, unlike least squares regression, does not require any assump-

tions on the error term ε, and being based on the quantiles, provides estimates that

are robust against the presence of outliers and heteroscedastic data. A complete

review on quantile regression can be seen in [Koenker, 2005]. This thesis makes

important contributions to the quantile regression framework, including high di-

mensional regression models, and quantile based dimension reduction techniques.

Example: This example shows the benefit of quantile regression in the presence

of outliers. Consider the simple linear model Y = Xβ + ε with X ∼ N(0, 1) and

ε ∼ N(0, 0.2). Following this formulation 20 observations are drawn, and an outlier

is introduced by manually changing the value of y5 from 1.8 to 15. Figure 1.2 (A)

shows a comparison of the estimations provided by the least squares regression and

the median regression. It is clear that the least squares estimation is influenced by

the presence of the outlier while the median regression provides a better estimation.

Example: This example shows the benefit of quantile regression in heteroscedastic

data. Consider the simple linear model Y = Xβ + ε with X ∼ χ(3) and εi ∼ N(0, xi).
Following this formulation 100 observations are drawn. Figure 1.2 (B) shows a com-

parison of the estimations provided by the least squares regression and the quantile

regression for quantiles 10%, 25%, 50%, 75% and 90%. The usage of quantile re-

gression here allows to recover a complete picture of the distribution of the response

variable.

1.2 Variable selection techniques

The models introduced in Section 1.1 work very well as long as the independent data

matrix X has full column rank, but start to fail when this does not hold. Usually,

4

Figure 1.3: Penalized least squares. (A) lasso penalty. (B) ridge penalty. The red

ellipsoids are the contour lines of the residual sums of squares in a least squares

model.

X will fail to have full column rank under two circumstances:

• Two or more variables from X are linearly dependent. This problem is called

colinearity,

• The number of variables p is larger than the number of observations N. This

is called high dimensional data.

One of the most popular solutions to face both problems is the usage of a ridge

penalty, defined as,

β̂ = arg min
β∈Rp

{︂
R(β) + λ ∥β∥22

}︂
, (1.12)

where R(β) is a risk function like the ones from Section 1.1 and λ is a hyper parameter

controlling the penalization. The ridge penalty introduces some bias in the model,

but in return reduces the variability. However, it does not perform variable selection

because it bounds the euclidean distance of the parameters to the origin, and thus,

all the parameters are proportionally penalized.

Probably the most known variable selection penalization is lasso [Tibshirani,

1996], where the L2 norm from ridge is exchanged for an L1 norm,

β̂ = arg min
β∈Rp

{︁
R(β) + λ ∥β∥1

}︁
, (1.13)

Figure 1.3 shows a two dimensional example based on least squares regression of

both lasso penalty (A) and ridge penalty (B). The red ellipsoids are the contour

lines of the residual sums of squares, and the blue areas are the penalizations. From

a geometrical perspective, the optimal solution of the penalized models is the point

in which the red ellipsoids touch the blue area. Intuitively, one can see that the

usage of the L1 norm produces vertices where some of the coefficients have value

zero, effectively performing variable selection.

5

There are many situations in which the variables in the model have a natural

grouped structure. For example, one can consider the case of a categorical variable

encoded as a set of dummy variables. In these situations, it may be desirable to

perform variable selection at the group level rather than at the individual level,

including (or excluding) from the model all the variables associated to the same

factor. There are other situations where the data may have a grouped structure,

for example genetic pathways. Yuan and Lin [2006] introduced the group lasso as a

solution to this problem, defined as,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + λ
K∑︂

j=1

√
p j

⃦⃦⃦
β j
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ , (1.14)

where K is the number of groups, β j ∈ Rp j are vectors of components of β from the

j-th group, and p j is the size of the j-th group. Group lasso goes one step ahead

of lasso, enhancing sparsity at the group level by performing a lasso type penalty

between groups, while doing a ridge type penalty within groups. Observe that group

lasso includes lasso as a particular case.

If a group of variables is selected using group lasso, then all the coefficients

in that group will be different than zero. However, there are situations where it

would be interesting to perform variable selection not only between groups, but also

within groups. For example, when dealing with genetical pathways it is interesting

to select the most important important genes from certain groups. Simon et al.

[2013] proposed the sparse group lasso (SGL) as a solution to face this within group

sparsity requirement as,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + αλ ∥β∥1 + (1 − α)λ
K∑︂

j=1

√
p j

⃦⃦⃦
β j
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ , (1.15)

where the parameter α is a hyper parameter that controls the linear combination

between lasso and group lasso. Observe that both penalizations are particular cases

of the sparse group lasso.

All the penalizations described in this section are widely used and perform great

from an experimental point of view. However, they are all based on the concept

of the bias-variance tradeoff. By penalizing the model, we increase the bias of

the estimator and reduce the variance. When dealing with variable selection, this

means that it is possible that the variables selected by the estimators are not the

truly significant variables. This problem was faced by [Zou, 2006], who considered

the usage of adaptive weights in the lasso penalization that could correct this bias

and defined the adaptive lasso as,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + λ
p∑︂

j=1

w j|β j|

⎫⎪⎪⎬⎪⎪⎭ , (1.16)

where w j are the adaptive weights. This thesis makes important contributions to

the sparse group lasso in quantile regression by proposing a new definition based

6

on the adaptive idea that helps correcting the bias, improving this way prediction

accuracy and variable selection.

1.3 Dimension reduction

We can see variable selection as dimension reduction techniques based on using a

penalization that selects the most important variables from the original dataset.

However, when dealing with colinearity or high dimensional data, there is another

alternative that is widely used and which is usually referred to as dimension re-

duction: dimension reduction based on projections. The key idea is to project the

data into a new subspace (usually of lower dimension) that explains most of the

information from the original subspace.

1.3.1 Principal component analysis

Principal component analysis (PCA) is probably the most famous dimension re-

duction technique. Consider a data matrix X ∈ RN×p and assume without loss of

generality that it is centered so that each column variable has mean zero. PCA

seeks to obtain a new group of variables computed as linear combinations of the

original variables in X such that the first one explains the largest possible amount

of variability from X, the second one explains the largest variability subject to the

restriction of being orthogonal to the first one, and so on. The final result is a set

of uncorrelated variables sorted based on the percentage of variability they explain.

Mathematically, we assume a latent relation of the form,

T = XP, (1.17)

where T ∈ RN×d is the scores matrix storing the new set of variables, d ≤ rank(X) is
the number of new variables, and P ∈ Rp×d is an orthogonal change of basis matrix.

One can pose PCA as a variance maximization problem,

piˆ = arg max
pt

i p j=0, ∥pi∥=1
{var(ti)} , (1.18)

where pi and ti refer to the ith column of matrices P and T respectively, and the

condition ∥pi∥ = 1 is included in the formulation to ensure the uniqueness of solu-

tion (otherwise, any random rescaling of P would affect the optimal solution of the

problem). Using the spectral theorem, one can see that,

var(T) = PtΣP = PtUDUt P, (1.19)

where Σ is the covariance matrix of X,U is a matrix of eigenvectors of Σ and D is

a diagonal matrix of the ordered eigenvalues associated to the eigenvectors. This

shows that the optimal solution to equation (1.18) is ui, the ith eigen vector of Σ.

7

1.3.2 Partial least squares

Partial least squares (PLS) is a problem closely related to PCA where, instead

of maximizing the variability from one matrix, the objective is to maximize the

covariance between two data matrices X ∈ RN×p and Y ∈ RN×l. This algorithm

was initially proposed in the field of chemometrics [Wold, 1973] as an alternative to

traditional least squares regression, as it is common in this field to deal with highly

correlated, high dimensional data like NIR spectra or other lab measurements where

least squares was not a feasible option. Without loss of generality, assume that both

matrices X and Y are centered and consider the existence of a latent structure,

X = T Pt + E; Y = T Qt + F, (1.20)

where T ∈ Rn×d is the scores matrix formed by d (usually being d ≪ p) linear

combinations of the original variables, P ∈ Rp×d and Q ∈ Rl×d are loadings matrices

and E ∈ Rn×p and F ∈ Rn×l are random error matrices. The objective of PLS

regression is to regress the response matrix Y onto the d latent variables, stored in

the scores matrix T . There are multiple definitions of PLS in the literature, being

NIPALS Wold [1973] and SIMPLS [de Jong, 1993] the most widespread ones. We

describe here the original version of the multivariate NIPALS algorithm.

To compute the first component, define X0 = X, Y0 = Y and randomly select a

column u1 from matrix Y0.

1. Obtain the weights of X by regressing the columns of X0 onto u1.

2. Normalize the result. Steps 1 and step 2 can be combined into one step as,

w1 =
Xt

0u1

∥Xt
0u1∥

3. Obtain the scores of X by regressing the rows of X0 onto w1.

t1 = Xt
0w1

4. Obtain the weights of Y by regressing the columns of Y0 onto t1.

5. Normalize the result. Steps 4 and 5 can be combined into one step as,

c1 =
Yt

0 t1

∥Yt
0 t1∥

6. Obtain the scores of Y by regressing the rows of Y1 onto c1.

u1 = Y0c1

8

Figure 1.4: Overview of multivariate NIPALS algorithm.

Iterate through steps 1-6 until changes in t1 are small. On convergence, go to step

7.

7. Obtain the loadings of X by regressing the columns of X0 onto t1.

p1 =
Xt

0 t1

tt
1 t1

8. Obtain the loadings of Y by regressing the columns of Y0 onto t1.

q1 =
Yt

0 t1

tt
1 t1

9. Deflat the matrix X0 from the information already explained by scores t1 and

obtain X1 = X0 − t1 pt
1.

10. Deflat the matrix Y0 from the information already explained by scores t1 and

obtain Y1 = Y0 − t1qt
1.

Once the first component is computed, iterate through steps 1-10 to compute

the next ones until all the required components are obtained. Figure 1.4 shows an

overview of the iterative process of steps 1-6 of NIPALS algorithm. Observe that,

with a bit of matrix algebra one can rewrite the weight vector wa,

wa =
Xt

a−1ua

∥Xt
a−1ua∥

=
Xt

a−1Ya−1Yt
a−1Xa−1wa−1

∥Xt
a−1Ya−1Yt

a−1Xa−1wa−1∥
, (1.21)

that can be rewritten as,

(Yt
a−1Xa−1)t(Yt

a−1Xa−1)wa = λwa. (1.22)

Recurring again to the spectral theorem, the computation of wa can then be posed

as a covariance maximization problem,

wa = arg max
∥wa∥=1

{︁
cov(Ya−1, Xa−1w)tcov(Ya−1, Xa−1w)

}︁
. (1.23)

9

Partial least squares is a widely used alternative to least squares regression, as

it can deal with high dimensional or colinear data. However, it is essentially an

iterative process based on least squares, and as such, it faces the same problems as

least squares regarding outliers, skewness, and heteroscedasticity. This thesis makes

contributions to this field by proposing a quantile based alternative to partial least

squares.

1.4 Functional data analysis

A functional variable is characterized by the fact that its observations are functions

that in most of the times represent the change of a scalar variable along time. Ex-

amples of this are observed in environmental variables like temperature or contam-

ination, economic variables like stock market prices, clinical variables like physical

activity, etc. These variables can be analyzed from a traditional multivariate per-

spective by considering each time point as an independent observation, however,

this implies giving up the clear temporal factor in the data. Functional data anal-

ysis is a statistical field centered in the study of functional variables preserving the

time dependence. Let us consider X = {X (t) : t ∈ T }, a second order stochastic pro-

cess whose sample functions belong to the Hilbert space L2 (T) of square integrable

functions with the following scalar product,

⟨ f , g⟩ =
∫︂

T
f (t) g (t) dt, for all f , g ∈ L2 (T) , (1.24)

and define {xi(t) : t ∈ T , i = 1, . . . , n} a sample of functions taken from the functional

variable X. In practice, sample functions are usually measured on a finite set of time

points that can vary between observations
{︁
ti0, ti1, . . . , timi ∈ T

}︁
, and represented as

finite dimensional vectors xi =
(︁
xi0, . . . , ximi

)︁′, where xik represents the value of the

ith observation at time point k. The first step when dealing with functional data

is to reconstruct the functional form of the curves using the discrete observations

available. Let us assume that the sample paths xi(t) belong to a finite dimensional

space generated by a set of basis functions
{︂
ϕ1(t), . . . , ϕp(t)

}︂
and express them in

terms of these basis as,

xi(t) =
p∑︂

j=1

bi jϕ j(t), i = 1, . . . , n, (1.25)

where bi j is the basis coefficient for curve i and basis j.

1.4.1 Spline basis

There are various types of basis that can be considered depending on the characteris-

tics of the data, although in recent years the usage of splines has gained considerable

10

Figure 1.5: Representation of an M spline basis of degree 3.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

M−splines

x

y

importance due, among other factors, to the benefits of its computation and the flex-

ibility they provide. This work considers the usage of M-splines.

A basis of M splines of degree q generates a space of piece wise polynomial curves

(called splines) of the same degree that join smoothly at a set of definition knots

and that has q− 2 continuous derivatives at interior knots. Probably the most used

degree in practice is 3, called cubic splines, because it provides first and second

continuous derivatives. Figure 1.5 shows an example of an M-spline basis of degree

3.

Regarding the estimation of the basis coefficients bi j, there are also different

alternatives depending on the nature of the data. In many applications the data are

smooth functions observed with error,

xik = xi (tik) + εik k = 0, . . . ,mi, i = 1, . . . , n. (1.26)

In this situation, one can consider the usage of a smooth approximation method like

least squares regression,

biˆ =
{︂
arg min ∥xi − Φibi∥

2
2

}︂
, (1.27)

where Φi =
(︂
ϕ j (tik)

)︂
mi×p

. Although other regression formulations like quantile regres-

sion can also be used. Then, the closed form solution to this problem using least

squares is,

biˆ =
(︁
Φ′iΦi
)︁−1
Φ′i xi. (1.28)

The smoothness obtained using regression splines is controlled by the size of the

M-spline basis, which depends on the number of knots and the degree of the spline.

Selecting a large number of knots can produce an overfitted estimation that is not

filtering the noise. But selecting too small a number can produce an underfitted

estimation.

Example: This example shows the effect of the number of knots in regression splines.

Consider the time period T = [0, 2π] and the functional model, xk = x (tk) + εk with

11

Figure 1.6: Regression splines using 5, 15 and 30 knots.

−2

−1

0

1

2

0 2 4 6
x

va
lu

e

name

y

5 knots

15 knots

30 knots

Regression splines

x (tk) = sin(tk) and εk ∼ N(0, 0.7). Figure 1.6 shows a comparison of regression splines

using 5, 15 and 30 knots. One can see that the estimation using the largest number

of knots produces an overfitted model that does not filter the noise.

The smoothing splines defines a solution to the problem of the selection of the

knots in regression splines by including a penalization term on the model formulation

that controls the roughness of the function. This way, one can simply take a large

number of knots and then control the smoothness via the penalization. A natural

way of quantifying the roughness of a curve xi(t) is centered on the usage of it’s

derivatives of some order d, Dd(xi(t)) = xd
i (t), d ≥ 1. [O’Sullivan, 1986] proposed

using the squared of the second derivative, which is called curvature, and defined

the penalization,

PEN2(xi) =
∫︂ [︂

D2xi(t)
]︂2

dt = b′iRbi, (1.29)

where R is the matrix of the cross inner products of the second order derivatives of

basis functions ϕ,

R =
∫︂

D2ϕ(s)D2ϕ(s)′ds. (1.30)

Functions with large variability are expected to have large values of PEN2(x), and
by controlling it, one can obtain smooth estimates and prevent overfitting the data.

The smoothing splines estimator can be posed then as,

biˆ =
{︂
arg min ∥xi − Φibi∥

2
2 + b′iRbi

}︂
, (1.31)

and has the following solution,

b̂i =
(︁
Φ′iΦi + λR

)︁−1
Φ′i xi, (1.32)

where the hyper parameter λ controls the effect of the penalization and can be

optimized using some sort of cross validation process.

12

1.4.2 Functional principal component analysis

Principal component analysis was one of the first techniques to be extended to

the functional framework with the objective to reduce the infinite dimension of

a functional predictor and to explain its variation in terms of a reduced set of

uncorrelated functions. Without loss of generality, let us assume that the observed

curves are centered so that the sample mean 1
n

∑︁n
i=1 xi(t) is zero. The functional

principal components are linear combinations that maximize the variance from the

data subject to the restriction of being orthogonal to other components. The jth
component scores are expressed as,

ξi j =

∫︂
T

xi(t) f j(t)dt, i = 1, . . . , n, (1.33)

where the loading function f j is obtained as a solution to the following optimization

problem, ⎧⎪⎪⎨⎪⎪⎩ f (t)ˆ = arg max
{︂
var
[︂∫︁
T

xi(t) f (t)dt
]︂}︂

s.t. ∥ f ∥2 = 1 and
∫︁

fℓ(t) f (t)dt = 0, ℓ = 1, . . . , j − 1
(1.34)

Equivalently to traditional principal component analysis introduced in Section

1.3.1, it is possible to see that the loading functions are precisely the eigenfunctions

of the covariance operator C defined as,

C
(︂

f j

)︂
(t) =

∫︂
C(t, s) f j(s)ds = λ j f j(t), (1.35)

where C(t, s) = E[(X(t) − µ(t))(X(s) − µ(s))] is the covariance function.

Functional principal component analysis is widely used as a first step in func-

tional data analysis. However, despite its many advantages, it is unable to capture

the variability in the data coming from shifts in the scale that may affect the quan-

tiles. This thesis makes contributions to this field by proposing a quantile based

alternative.

1.5 Main contributions

The contributions of this thesis are built around two core ideas: the development

of quantile based methodologies, suitable for high dimensional frameworks. The

thesis is divided into four independent chapters that nonetheless have a shared main

objective. Chapter 2 studies the usage of variable selection methods for quantile

regression. It starts reviewing the available lasso based penalizations in the literature

of quantile regression, and extends the sparse group lasso (SGL) to the quantile

regression framework, where it was still not defined. A problem with lasso based

penalizations is that they produce biased estimations, and this bias can affect the

13

quality of the variable selection and the prediction accuracy. As a solution to this

problem [Zou et al., 2006] defined the adaptive lasso based on the usage of adaptive

weights that help correcting this bias. In Chapter 2 this adaptive idea is used

to define a new estimator, the adaptive sparse group lasso for quantile regression.

Different alternatives for calculating the adaptive weights based on PCA and PLS

are also proposed and studied through synthetic datasets and a genetic real dataset.

Chapter 3 studies an alternative solution to the high dimensional problem based

on the usage of dimension reduction techniques. A widely used dimension reduction

technique for regression problems is partial least squares (PLS). This methodology is

capable of projecting the data into a subspace of orthogonal variables that maximize

the covariance with the response data, and can be defined in terms of a covariance

maximization problem. However, it provides mean based estimates and is greatly

affected by outliers and skewness. Taking this as a starting point, this chapter studies

different definitions for a quantile covariance metric and based on these metrics

define the fast partial quantile regression (fPQR), an algorithm that enjoys the nice

properties of PLS: it is a dimension reduction technique that obtains uncorrelated

scores maximizing the quantile covariance between predictors and responses. But

additionally, it is also a robust, quantile based methodology suitable for dealing with

outliers, heteroscedastic or heavy tailed datasets. When the center of the response

variable is of interest, the median estimation of fPQR is a robust alternative to PLS,

but fPQR can also provide estimations of different quantile levels, giving a complete

picture of the distribution of the data.

On a parallel study conducted as part of a research stay at the Columbia Uni-

versity Mailman School of Public Health, Chapter 3 defines the functional quantile

factor model. This model is related to the field of functional data analysis (FDA),

in which observations are not treated as multivariate vectors of scalars, but func-

tions that change along time, and it is motivated by a real dataset study measuring

levels of physical activity in children. Understanding the differences in patterns of

physical activity between children can help developing better strategies to promote

activity. This objective is usually achieved using functional principal component

analysis (FPCA), a methodology based on multivariate PCA that provides an esti-

mation of a set of orthogonal basis functions that best explain the variability in the

functional data. However, FPCA is based on the mean, and as such, it is greatly

affected by the same problems as other mean based estimations: outliers, skewness

and heteroscedasticity. Additionally, understanding not just the mean trend, but

the quantile trends of physical activity can provide very useful insights. As a solu-

tion to this problem, this chapter proposes the functional quantile factor model, a

methodology that extends the concept of functional principal component analysis to

the quantile regression framework, being able to obtain an estimate of the quantiles

of the functional data conditional on a set of common functions.

Chapter 5 introduces asgl, a Python package that solves penalized least squares

14

and quantile regression models in low and high dimensional frameworks. It is possible

to find implementations of lasso, group lasso and sparse group lasso penalizations for

least squares and an implementation for lasso in quantile regression in R. However,

none of the adaptive penalizations mentioned in Chapter 2 are available in this

programming language. In Python the situation is worst, as only lasso penalized

least squares is available, and there is no implementation of any penalized quantile

regression model. The asgl package fills this gap, providing implementations of

lasso, group lasso, sparse group lasso, and its adaptive counterparts for least squares

and quantile regression, as well as different alternatives for the computation of the

adaptive weights.

Finally, Chapter 6 summarizes the main results achieved in this thesis and dis-

cusses further lines of research.

15

16

Bibliography

Sijmen de Jong. SIMPLS: An alternative approach to partial least squares regression.

Chemometrics and Intelligent Laboratory Systems, 18(3):251–263, 3 1993. ISSN

0169-7439. doi: 10.1016/0169-7439(93)85002-X.

Roger Koenker. Quantile Regression. Cambridge university Press, 2005. ISBN

0521338255.

Finbarr O’Sullivan. A Statistical Perspective on Ill-posed Inverse Problems. Statis-

tical Science, 1(4):502–527, 1986. ISSN 2168-8745. doi: 10.1214/ss/1177013525.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-

group lasso. Journal of Computational and Graphical Statistics, 22(2):231–245, 4

2013. ISSN 10618600. doi: 10.1080/10618600.2012.681250.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of

the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996. doi:

10.2307/2346178.

H Wold. Nonlinear Iterative Partial Least Squares (NIPALS) Modelling: Some Cur-

rent Developments. In Paruchuri R Krishnaiah, editor, Multivariate Analysis?III,

pages 383–407. Academic Press, 1973. ISBN 978-0-12-426653-7.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society. Series B (Methodological), 68

(1):49–67, 2006.

Hui Zou. The Adaptive Lasso and Its Oracle Properties. Journal of the American

Statistical Association, 101(476):1418–1429, 12 2006. ISSN 0162-1459. doi: 10.

1198/016214506000000735.

17

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse Principal Component Anal-

ysis. Journal of Computational and Graphical Statistics, 15(2):265–286, 2006. doi:

10.1198/106186006X113430.

18

CHAPTER 2

Adaptive Sparse Group LASSO in Quantile Regression

In Advances in Data Analysis and Classification, 15(3), 2021:547-573.

Álvaro Méndez Civieta1,2, M. Carmen Aguilera-Morillo2,3 and Rosa E. Lillo1,2.

1. Department of Statistics, Universidad Carlos III de Madrid.

2. uc3m-Santander Big Data Institute.

3. Department of Applied Statistics and Operational Research, and Quality, Uni-

versitat Politècnica de València.

Abstract

This paper studies the introduction of sparse group LASSO (SGL) to the quantile

regression framework. Additionally, a more flexible version, an adaptive SGL is

proposed based on the adaptive idea, this is, the usage of adaptive weights in the

penalization. Adaptive estimators are usually focused on the study of the oracle

property under asymptotic and double asymptotic frameworks. A key step on the

demonstration of this property is to consider adaptive weights based on a initial
√

n-
consistent estimator. In practice this implies the usage of a non penalized estimator

that limits the adaptive solutions to low dimensional scenarios. In this work, several

solutions, based on dimension reduction techniques PCA and PLS, are studied for

the calculation of these weights in high dimensional frameworks. The benefits of

this proposal are studied both in synthetic and real datasets.

keywords: High-dimension; Penalization; Regularization; Prediction; Weight calcu-

lation.

19

2.1 Introduction

Along years, regression has become a key method in statistics. Least squares (LS)

regression estimates the conditional mean response of a variable as a function of the

covariates. Usually, these models assume the errors to be centered, homoscedastic

and independent. Making this assumptions, it is guaranteed that the LS estimator is

the best linear unbiased estimator, or a BLUE estimator. Additionally, if the errors

are assumed to be Gaussian one can perform finite sample studies. However, these

hypothesis are not always verified in practical applications, and the LS estimator is

known to be extremely sensitive to the presence of outliers or heavy tailed distribu-

tions, making it perform poorly when the errors are non Gaussian. Ever since the

seminal work of Koenker and Bassett [1978], quantile regression (QR) models have

gained importance when dealing with this kind of situations. QR models allow for

a relaxation of the classical first two moment conditions over the model error. In

addition, the errors in QR are not required to be Gausian. This means that QR

offers robust estimators capable of dealing with heteroscedasticity and outliers. QR

models can also estimate different quantile levels of a response variable, giving a

precise insight of the relation between response and covariates at upper and lower

tails. This can provide a much richer point of view than OLS regression. For a full

review on quantile regression, we recommend [Koenker, 2005].

In recent years, high dimensional data in which the number of covariates p is

larger than the number of observations n (p ≫ n), has become increasingly common.

This problem can be found in many different areas like computer vision and pattern

recognition [Wright et al., 2010], climate data over different land regions [Chatterjee

et al., 2011], and prediction of cancer recurrence based on patients genetic informa-

tion [Simon et al., 2013], [Yahya Algamal and Hisyam Lee, 2019]. In these scenarios,

variable selection gains in special importance offering sparse modeling alternatives

that help identifying significant covariates and enhancing prediction accuracy. One

of the first and most popular sparse regularization alternatives is LASSO, which

was proposed by Tibshirani [1996] and adapted to the QR framework by Li and Zhu

[2008], who developed the piece-wise linear solution of this technique. LASSO is a

technique that penalizes each variable individually, enhancing thus individual spar-

sity. However, in many real applications variables are structured into groups, and

group sparsity rather than individual sparsity is desired. One can think for example

of a genetic dataset grouped into gene pathways. This problem was faced by the

group LASSO penalization of Yuan and Lin [2006], and opened the doors to more

complex penalizations like the sparse group LASSO [Friedman et al., 2010], which is

a linear combination of LASSO and group LASSO providing solutions that are both

between and within group sparse. With the same objective in mind, Zhou and Zhu

[2010] proposed a hierarchical LASSO. Other studies have worked on properties for

robust estimators in regression when the number of covariates increase with sample

20

size (see for example Huber and Ronchetti [2009]). In the same line, it is also worth

mentioning the work from Loh [2017], that extends the usage of robust estimators,

like those obtained using Hubert or Tuckey loss functions (among others) to high

dimensional settings, introducing a set of generalized M-estimators capable of deal-

ing with outliers in both the errors and the covariates terms. To the best of our

knowledge, the SGL technique has not been studied in the framework of QR models,

so this gap is addressed first, extending the SGL penalization to quantile regression.

Zou [2006] was the first to propose the usage of adaptive weights for each variable

on the LASSO penalization as a way to increase the model flexibility and correct

the estimator bias. This idea, generally known as the adaptive idea, was then

extended to other penalizations. The weights of the adaptive idea are defined in the

literature based on an initial
√

n-consistent estimator. Typically, this is the result

of a nonpenalized model. This definition is a key step for the demonstration of the

oracle property of the estimators (in the sense of Fan and Li [2001]), but it is also

restrictive, as it limits the usage of adaptive penalizations just to the situations in

which solving a nonpenalized model is a feasible first step. This approach, focused

on the oracle property under asymptotic, or even double asymptotic frameworks is

observed in Nardi and Rinaldo [2008] for the adaptive group LASSO, Ghosh [2011]

for an adaptive elastic net, Ciuperca [2019] for the adaptive group LASSO in QR,

Ciuperca [2017] for the adaptive fused LASSO in QR, Wu and Liu [2009] for the

adaptive LASSO and SCAD penalizations in QR, and Zhao et al. [2014] for an

adaptive hierarchical LASSO in QR among others. It is especially interesting to

remark the work developed by Poignard [2018], in which an adaptive sparse group

LASSO estimator suitable for low dimensional scenarios (with n > p) is proposed,

studying its theoretical properties for a set of general convex loss functions.

The main contribution of this work lies here. An adaptive sparse group LASSO

(ASGL) for quantile regression estimator is defined, working especially on enabling

the usage of the ASGL estimator in high dimensional scenarios (with p ≫ n). In

order to achieve this objective, four alternatives for the weight calculation step are

proposed. It is worth noting that these weight calculation alternatives can be used

not only in the case of the ASGL estimator, but also in the rest of the adaptive-based

estimators available in the literature. The performance of these alternatives is also

studied in the case of low dimensional scenarios, making the proposed work a good

alternative for both high dimensional and low dimensional problems.

The rest of the paper is organized as follows. In Section 2.2 some basic theoret-

ical concepts are introduced, along with the formal definition of the sparse group

LASSO in quantile regression. This definition is extended to the adaptive idea in

Section 2.3, proposing the ASGL estimator. Section 2.4 discusses the main results

regarding asymptotic behavior of adaptive estimators, and Section 2.5 introduces

the weights calculation alternatives for high dimensional scenarios, as well as some

remarks regarding the asymptotic behavior of the proposed alternatives. Simula-

21

tion results are divided into two blocks: Section 2.6 shows the advantages of this

proposal in synthetic datasets in high and low dimensional scenarios considering a

symmetric error distribution while the supplementary material shows a sensitivity

analysis of the proposed methods under skewed distribution errors as well as the

effect of different hyperparameter values. In Section 2.7 the proposed model is used

in a real dataset, a genomic dataset including gene expression data of rat eye disease

first shown in Scheetz et al. [2006]. The computational aspects of the problem are

briefly commented in Section 2.8, and the conclusions are provided in Section 2.9.

2.2 Penalized quantile regression

Consider a sample of n observations structured as D = (yi, xi), i = 1, . . . , n from some

unknown population and define the following linear model,

yi = xt
iβ + εi, i = 1, . . . , n (2.1)

where yi is the i-th observation of the response variable, xi ≡ (xi1, . . . , xip) is the

vector of p covariates for observation i and εi is the error term.

Let us introduce now the quantile regression framework by defining the loss check

function,

ρτ(u) = u(τ − I(u < 0)) (2.2)

where I(·) is the indicator function. In their seminal work Koenker and Bassett

[1978] proved that the τ-th quantile of the response variable can be estimated by

solving the following optimization problem,

β̃ = arg min
β∈Rp

{R(β)} . (2.3)

where R(β) defines the risk function of quantile regression,

R(β) =
1
n

n∑︂
i=1

ρτ(yi − xt
iβ) (2.4)

Quantile regression models allow for a relaxation of the classical first two moment

conditions over the model errors εi defined in equation 2.1. These errors are no

longer required to be centered, homoscedastic or normally distributed, as stated in

Koenker [2005], offering robust estimators capable of dealing with heteroscedasticity

and outliers.

We call high dimensional scenarios to the datasets in which p is much larger than

n (p ≫ n). This problem is becoming more and more common nowadays, and can

be observed in many different fields of research such as computer vision and pattern

recognition [Wright et al., 2010], climate data over different land regions [Chatterjee

et al., 2011] or prediction of cancer recurrence based on patients genetic information

22

[Simon et al., 2013]. An alternative that has been intensively studied in recent

years for dealing with these scenarios is the penalization approach. By penalizing a

regression model it is possible to perform variable selection and improve the accuracy

and interpretability of the models.

One of the best known variable selection penalization methods is the least abso-

lute selection and shrinkage operator, generally known as LASSO, proposed initially

by Tibshirani [1996] which, in the case of the QR framework solves,

β̂ = arg min
β∈Rp

{︁
R(β) + λ ∥β∥1

}︁
, (2.5)

where R(β) is the QR risk function defined in equation (2.4). The LASSO penal-

ization sends many β components to zero, offering sparse solutions and performing

automatic variable selection. In the last years, many LASSO-based algorithms have

been proposed. Yuan and Lin [2006] introduced the group LASSO penalization as

an answer for the need to select variables not individually but at the group level.

This penalization solves the following problem,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + λ
K∑︂

l=1

√
pl

⃦⃦⃦
βl
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ , (2.6)

where K is the number of groups, βl ∈ Rpl are vectors of components of β from the

l-th group, and pl is the size of the l-th group. The group LASSO penalization works

in a similar way to LASSO, but while LASSO enhances sparsity at individual level,

group LASSO enhances sparsity at group level, selecting, or sending to zero whole

groups of variables.

Initially proposed by Friedman et al. [2010], the sparse group LASSO (SGL) is a

linear combination of LASSO and group LASSO penalizations. Well known in linear

regression and other GLM models, to the best of our knowledge SGL has not been

adapted to QR, and as a first step in the paper, this penalization is introduced.

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + αλ ∥β∥1 + (1 − α)λ
K∑︂

l=1

√
pl

⃦⃦⃦
βl
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ . (2.7)

As in LASSO and group LASSO, SGL solutions are, in general, sparse, sending many

of the predictor coefficients to zero. However, while LASSO solutions are sparse at

individual level, and group LASSO solutions are sparse at group level, SGL offers

both between and within group sparsity, outperforming both alternatives.

From an optimization perspective, equation (2.7) defines a sum of convex func-

tions. This convexity ensures that the solution of the minimization problem is a

global minimum. Figure 2.1 shows the constrains defined by LASSO, group LASSO

and SGL in the case of a single 2-dimensional group of predictors.

23

Figure 2.1: Contour lines for LASSO, group-LASSO and sparse-group-LASSO penal-

ties in the case of a single 2-dimensional group

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

lasso

grp-lasso

sgl

2.3 Adaptive sparse group LASSO

From an empirical perspective, sparse group LASSO shows great performance. How-

ever, due to its mathematical formulation, it applies a constant penalization rate that

provides biased estimates for large coefficients. The adaptive idea, initially intro-

duced by Zou [2006] is considered here as a way to correct this limitation. In this

work, a variant of the SGL penalization, the adaptive sparse group LASSO (ASGL)

for quantile regression is defined. The ASGL estimator for QR is the result of the

following minimization process,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + αλ
p∑︂

j=1

w̃ j|β j| + (1 − α)λ
K∑︂

l=1

√
plvl̃

⃦⃦⃦
βl
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ , (2.8)

where w̃ ∈ Rp and ṽ ∈ RK are known weights vectors and R(β) is the risk function

for quantile regression defined in equation 2.4. The intuition behind these weights is

that if a variable (or group of variables) is important, it should have a small weight,

and this way would be lightly penalized. On the other hand, if it is not important,

by setting a large weight it is heavily penalized. This enhances the model flexibility

and improves variable selection and prediction accuracy. It is worth saying that this

formulation defines a convex function and thus, the global minimum can be found.

2.4 The oracle property

An estimator is oracle if it can correctly select the nonzero coefficients in a model

with probability converging to one, and if the nonzero coefficients are asymptotically

normally distributed. These properties were initially defined in Fan and Li [2001],

24

where they proved that the SCAD was an oracle estimator under an asymptotic

framework of fixed dimension p. The oracle property of the SCAD estimator was

then extended in Fan and Peng [2004] to a double asymptotic framework of p de-

pending on n. This is, p → ∞ as n → ∞, but p growing at a lower rate and always

n > p. Zou [2006] proved that the LASSO was not an oracle estimator due to the bias

generated by the constant penalization rate. They proposed the usage of adaptive

weights as a means to correct the bias, showing that the adaptive LASSO was an

oracle estimator under the asymptotic framework of fixed p, as long as the weights

required by the adaptive idea were computed based on a initial
√

n-consistent esti-
mator. Actually, they proposed using the result from a non penalized model for the

computation of the weights w̃,

wi˜ =
1
|βi˜ |γ

, (2.9)

where wi and βi˜ correspond to the i-th element of vectors w̃ and β̃ respectively,

|·| denotes the absolute value function, γ is a non negative constant and β̃ is the

solution vector obtained from the unpenalized model (described, in the case of the

QR framework, in equation (2.3)).

Ever since then, the adaptive idea has been extended to many LASSO-based

formulations in OLS, GLM and QR models among others. One can see for instance

[Ghosh, 2011] where an adaptive elastic net is defined, [Wu and Liu, 2009] that

introduces the adaptive LASSO in QR, [Ciuperca, 2017] where an adaptive fused

LASSO in QR is defined, [Zhao et al., 2014] who proposes an adaptive hierarchical

LASSO in QR or [Poignard, 2018], where an adaptive sparse group LASSO estimator

is defined in a general set of convex functions, among others. All these works are

centered on the demonstration of the oracle property under the asymptotic or double

asymptotic framework, being the usage of an initial
√

n-consistent estimator on the

calculations of the weights a key step in the demonstration. A major drawback of

this approach in our opinion is precisely that the asymptotic or double asymptotic

frameworks are limited to low dimensional scenarios where n > p but do not consider

high dimensional scenarios where p ≫ n. This is remarked by the fact that usually,

the initial
√

n-consistent estimators used in the weight calculations are taken from

non penalized models, only feasible in low dimensional scenarios.

Dealing with the problem of an increasing number of covariates is, however,

challenging. When an OLS model is considered, the third order term of the taylor

expansion on the loss function vanishes, but out of this framework, for example in

GLM or QR models, this term does not vanish, and additional boundaries on the

convergence rates of p (the number of variables) and n (the number of observations)

are required in order to demonstrate the consistency and the oracle property of the

estimators. This is pointed out in detail, for a general framework of convex functions,

in Poignard [2018].

When considering a high dimensional scenario it is possible to find very interest-

25

ing results from recent years. One can see for example [Huang et al., 2008a], who

considers the oracle property of a bridge penalized least squares model under the

p ≫ n framework as long as the bridge parameter is strictly between 0 and 1 (leaving

out of the formulation the LASSO estimator). In order to achieve these results, they

require additional conditions on the design matrix X, namely, they require partial

orthogonality between the set of significant variables and the set of non significant

variables. Similar results can be observed for the adaptive LASSO in least squares

[Huang et al., 2008b] where partial orthogonality conditions are required to demon-

strate the oracle property in high dimensions, for the SCAD penalization in linear

models in Kim et al. [2008] and for the SCAD and MCP penalizations in quantile

regression in Wang et al. [2012]. However, the conditions required on the design

matrix (and therefore on the covariates) to fit the oracle property are difficult to

verify in practice. Thus, the results have an important mathematical relevance that

should be landed in more realistic hypotheses.

2.5 Adaptive weights calculation

The objective of this section is to introduce different alternatives for the calculation

of weights in the adaptive framework. The intuitive idea is to find a way to substitute

β̃, the solution from the unpenalized model, unfeasible in high dimensional scenarios,

in the calculation of the adaptive weights. This problem will be faced making use of

two dimensionality reduction techniques, principal component analysis (PCA) and

partial least squares (PLS). The proposed weight calculation alternatives can be used

both in high dimensional and low dimensional scenarios. It is worth highlighting that

these alternatives can be applied not only to the ASGL algorithm, but also to other

adaptive based algorithms.

2.5.1 Principal components analysis

Given the covariates matrix X ∈ Rn×p defined in equation (2.1), with maximum rank

r = min {n, p}, consider the matrix of principal components Q ∈ Rp×r defined in a

way such that the first principal component has the largest possible variance, and

each succeeding component has the largest possible variance under the constraint

that it is orthogonal to the preceding components. From an algebra perspective,

the principal components in Q define an orthogonal change of basis matrix that

maximize the variance explained from X. Consider Z = XQ ∈ Rn×r the projection

of X into the principal components subspace. Two weight calculation alternatives

based on principal components are proposed.

26

Based on a subset of components

Consider the submatrix Qd = [q1, . . . , qd]t where qi ∈ R
p is the i-th column of the

matrix Q, and d ∈ {1, . . . , r} is the number of components chosen. Let αpca,d ∈ [0, 100]
be the percentage of variability from X that the principal components in Qd are able

to explain. If d = r then the principal components in Qd are able to explain all the

original variability from X, and αpca,d = 100. If d < r then αpca,d < 100. The number

of components chosen in order to explain up to a certain percentage of variability

is fixed by the researcher. Obtain Zd = XQd ∈ R
n×d the projection of X into the

subspace generated by Qd and solve the unpenalized model,

β̃ = arg min
β∈Rd

⎧⎪⎪⎨⎪⎪⎩1
n

n∑︂
i=1

ρτ(yi − zt
iβ)

⎫⎪⎪⎬⎪⎪⎭ . (2.10)

This model defines a low dimensional scenario where β̃ ∈ Rd. Using this solution,

it is possible to obtain an estimation of the high dimensional scenario solution,

β̂ = Qdβ̃ ∈ R
p. Finally, the weights are estimated as,

w j˜ =
1
|β̂ j|

γ1
and vl̃ =

1⃦⃦⃦⃦
β̂

l
⃦⃦⃦⃦γ2

2

, (2.11)

where β̂ j is the j-th component from β̂, β̂
l
is the vector of components of β from the

l-th group, and γ1 and γ2 are non negative constants usually taken in [0, 2].

Based on the first component

A more straightforward approach based on the first principal component is also

proposed. The principal components are no more than linear combinations of the

original variables. Therefore, the first principal component q1 ∈ R
p, which is the

first column of the matrix Q, includes one weight for each of the p original variables.

This proposal consists of calculating the weights as,

w j˜ =
1
|q1 j|

γ1
and vl̃ =

1⃦⃦⃦
ql

1

⃦⃦⃦γ2

2

, (2.12)

where q1 j is the j-th component from q1 and defines the weight associated to the

j-th original variable, ql
1 is the vector of components of q1 from the l-th group and

γ1 and γ2 are non negative constants usually taken in [0, 2].

2.5.2 Partial least squares

The principal components are defined in a way such that they capture the maximum

possible variance from X under the constraint that they are orthogonal to the rest

of the principal components. However, being relevant for describing the variance of

27

X does not necessarily mean that a principal component is relevant for predicting

the value of y. Partial least squares (PLS) is a dimensionality reduction technique

centered on maximizing the covariance between X and y.

Given the covariates matrix X ∈ Rn×p defined in equation (2.1), with maximum

rank r = min {n, p}, consider the matrix of PLS components T ∈ Rp×s and the pro-

jection of X into the subspace generated by T: U = XT ∈ Rn×s. The matrix of PLS

components T defines a nonorthogonal change of basis matrix whose projection U
is computed in a way such that the first projection vector, u1 ∈ R

n has the largest

possible covariance with y, and each succeeding projection vector has the largest

possible covariance with y under the constraint that it is uncorrelated to the rest of

the projection vectors.

Given the submatrix Td = [t1, . . . , td]t where ti ∈ R
p is the i-th column of the

matrix T, and d ∈ {1, . . . , s} is the number of components chosen, let αpls,d ∈ [0, 100]
be the percentage of variability from X that the PLS components in Td are able to

explain. The nonorthogonality of T implies that the total number of PLS compo-

nents available to be computed is smaller than the rank of X, s ≤ r, and that the

maximum possible percentage of variability explained by the PLS components αpls,s

is then lower than 100%.

In the case of principal components analysis, the matrix of principal components

Q defines an orthogonal change of basis matrix that results into an orthogonal pro-

jection matrix Z maximizing the variance of X. On the other hand, PLS defines a

nonnecesarily orthogonal change of basis matrix T that results into an uncorrelated

projection matrix U maximizing the covariance between U and y. In the same way

as for the PCA alternatives proposed, two alternatives of weight calculation using

PLS are considered: based on a subset of PLS components, and based just on the

first PLS component.

2.5.3 Influence of PCA and PLS on the oracle property

As commented in Section 2.4, a key condition in the demonstration of the oracle

property in adaptive estimators is to assume that the initial estimator used in the

weights calculation is
√

n-consistent.

The usage of pcad or plsd weight calculation proposes to consider a subset of

d components in the estimation of the weights. A question that may arise here is

whether these PCA (or PLS) estimator is
√

n-consistent or not. We propose the

following simple low dimensional example in the OLS framework that can help

answering this question.

Example:

Given the random variables X1 ∼ N(0, 0.99) and X2 ∼ N(0, 0.01), consider the

28

random vector : X = (X1, X2), for which

cov(X) =
⎛⎜⎜⎜⎜⎝0.99 0

0 0.01

⎞⎟⎟⎟⎟⎠ .
And thus, the eigenvalues from cov(X) are λ1 = 0.99 and λ2 = 0.01, and the matrix

of eigenvectors is

P =
⎛⎜⎜⎜⎜⎝1 0
0 1

⎞⎟⎟⎟⎟⎠ .
If PCA is applied on this random vector X, the rotation matrix obtained will be P,
yielding to a first principal component that explains 99% of the original variability

and a second principal component that explains the remaining 1%.

Consider now the following linear model,

y = Xβ + ε,

where β = (0, 100)t and ε ∼ N(0, 0). Following the steps described in Section 2.5.1,

consider a subset of components that explain up to a certain percentage of variability,

for example, 99% of the variability. This implies that X will be projected onto the

subspace spanned just by the first principal component P1, Z = XP1 = X1. Solve

now the linear model ỹ = Zβ̃, where

β̃ =
cov(Z, y)
var(Z)

=
cov(X1, y)
var(X1)

= 0.

Then, the projection of the estimator β̃ into the original subspace is given by β̂ =

P1β̃ = (0, 0)t. Now, in order to be
√

n-consistent, an estimator should verify:

(β̂ − β) is Op(n−1/2) if for all ε > 0 ∃K > 0 s.t.

Pn→∞(
√

n|β̂ − β| > K) < ε

Taking into account that β = (0, 100)t, it is clear that the
√

n-consistency property

is not verified by β̂. The problem arises because the variability in variable Y is

explained by X2, which is not selected because it explains only 1% of the total

variability of X.

We would like to point out that this example is meant to be a counterexample

of a situation in which the pcad is not
√

n-consistent. However, in our opinion, it

clarifies the conditions required by the estimator in order to be consistent, as stated

in the following remarks.

Remark 1. Consider an ASGL estimator, where the weights are computed based

on a subset of principal components pcad in the asymptotic or double asymptotic

frameworks. If all the components are selected (this is, if the components explain

100% of the original variability), then the initial estimator used in the weights

29

calculation is
√

n-consistent, and therefore, the ASGL estimator is an oracle

estimator. Observe that by selecting all the components, β̂ = Qβ̃ is equal to the

unpenalized estimator defined in equation (2.3).

Remark 2. As shown in Section 2.4, the proof of the oracle property of an estimator

in high dimensional scenarios is much more complex than in low dimensional

scenarios. We conjecture that in the high dimensional context, the pcad esti-

mator will behave in a similar way as in low dimensional scenarios, requiring to

achieve a 100% of explained variability, but requiring also additional hypothesis

similar to the ones observed in, for example, Wang et al. [2012]. In this paper,

a set of 5 previous conditions is required for the demonstration of the oracle

property in a high dimensional framework in quantile regression while considering

non convex penalizations (such as SCAD). Among other things, the proposed

conditions include restrictions on the design matrix, for example, that given the

design matrix X, S = 1
n X t X should be bounded, and the eigenvalues of S should

be bounded as well. We consider that due to the complexity of the required

results, studying the theoretical aspect of the estimator in high dimensional

scenarios is a topic for further work. However, we study the behavior of this

estimator in high dimensional scenarios both in synthetic and real datasets in

Sections 2.6 and 2.7, and in the supplementary material, obtaining very good results.

Remark 3. The study of the oracle property of the plsd estimator is much more

complex than this of pcad. As commented in section 2.5.2, the maximum percentage

of variability explained by the PLS components can be smaller than 100%, and thus,

we would be facing the same issues described in the example above. This situation

will also be a topic for further work.

2.6 Simulation study: symmetric errors

This section shows the performance of the proposed ASGL estimator under different

synthetic dataset examples focused on symmetric errors as it is usual in OLS models.

The proposed ASGL estimator is studied here under the framework of the following

model,

y = Xβ + ε, ε ∼ t(3),

where the data matrix X is generated from a standard Gaussian distribution.

Variables are organized in groups, considering a within group correlation of 0.5 and

a between group correlation of 0. A quantile level τ = 0.5 is considered. The scheme

used here is an adaptation of other simulation schemes used in Wu and Liu [2009]

and Zhao et al. [2014].

30

Given that the ASGL formulation in equation (2.8) includes a weight penalization

on the group LASSO part based on the group size (the term
√

pl), two model

formulations are considered:

• Adaptive LASSO in sparse group LASSO (AL-SGL), where w̃ ≠ 1 but ṽ = 1,
in which the adaptive idea is only applied to the LASSO part.

• Adaptive sparse group LASSO (ASGL), where w̃ ≠ 1 and ṽ ≠ 1.

Furthermore, the four weight calculation alternatives proposed are studied:

• PCA weights based on regression on a subset of principal components, we

denote this as pcad;

• PCA weights based on the first principal component, we denote this as pca1;

• PLS weights based on regression on a subset of PLS components, we denote

this as plsd;

• PLS weights based on the first PLS component, we denote this as pls1.

The total number of components d used in the weight estimation in plsd and

pcad is chosen such that in both cases the percentage of variability explained from

the original matrix X is αpca,d = 80%, αpls,d = 80%. As commented along Section

2.5, due to the non orthogonality of the PLS components it can happen that the

maximum possible variability explained by the PLS components αpls,s is smaller than

80%. In these cases we consider d such that αpls,d = αpls,s.

The results obtained by the models proposed in this work are compared with

the results from LASSO and SGL formulations. For each dataset D, a partition into

three disjoint subsets, Dtrain, Dval and Dtest is considered. Dtrain is used for training

the models, this is, solving the model equations. Dval is used for validation, this is,

optimizing the model parameters. This optimization is performed based on grid-

search. Finally, Dtest is used for testing the models prediction accuracy. The model

parameters are optimized based on the minimization of the quantile error, defined

as,

Ev =
1

#Dval

∑︂
(yi,xi)∈Dval

ρτ(yi − xt
iβ̂), (2.13)

where ρτ(·) denotes the quantile function defined at (2.2), and # denotes the cardinal

of a set. The final model error is calculated over Dtest as,

Et =
1

#Dtest

∑︂
(yi,xi)∈Dtest

ρτ(yi − xt
iβ̂). (2.14)

Additionally, the following metrics evaluating the performance of the methods are

considered:

31

•
⃦⃦⃦
β̂ − β

⃦⃦⃦
2
the euclidean distance between the estimated vector and the true

vector;

• true positive rate (TPR)= P(βiˆ ≠ 0|βi ≠ 0);

• true negative rate (TNR)= P(βiˆ = 0|βi = 0);

• correct selection rate (CSR)= P(β̂ = β).

We are interested in studying the performance of the proposed models under

different situations. An aspect to be analysed is the effect of an increase on the

number of variables, and regarding this aspect, three cases will be considered:

• high-dimensional case with 625 variables;

• high-dimensional case with 225 variables;

• low dimensional case with 100 variables.

Additionally, another important factor is the spread of the significant variables

among different groups. In order to study this aspect, two cases will be considered:

• sparse distribution of significant variables: significant variables are spread

among many groups, but there is no group fully formed by significant vari-

ables;

• dense distribution of significant variables: significant variables are concen-

trated into a few number of groups, fully formed by significant variables.

Varying the number and the spread of the variables, six cases will be studied:

Case 1: sparse distribution of 625 variables

There are 25 groups of size 25 each, a total number of 625 variables. Among these

groups, 7 groups with 8 significant variables each are defined, a total number of 56
significant variables. For l ∈ {1 . . . , 25}, coefficients inside each group are defined as,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βl = (1, 2, . . . , 8, 0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
17

), l = 1, . . . , 7

βl = (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
25

), l = 8, . . . , 25.

Case 2: dense distribution of 625 variables

There are 25 groups of size 25 each, a total number of 625 variables. Among these

32

groups, 3 groups with 25 significant variables each are defined, a total number of 75
significant variables. For l ∈ {1 . . . , 25}, coefficients inside each group are defined as,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

βl = (1, 2, . . . , 25), l = 1, . . . , 3
βl = (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞

25

), l = 4, . . . , 25.

Case 3: sparse distribution of 225 variables

There are 15 groups of size 15 each, a total number of 225 variables. Among these

groups, 7 groups with 8 significant variables each are defined, a total number of 56
significant variables. For l ∈ {1 . . . , 15}, coefficients inside each group are defined as,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βl = (1, 2, . . . , 8, 0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
7

), l = 1, . . . , 7

βl = (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
15

), l = 8, . . . , 15.

Case 4: dense distribution of 225 variables

There are 15 groups of size 15 each, a total number of 225 variables. Among these

groups, 3 groups with 15 significant variables each are defined, a total number of 45
significant variables. For l ∈ {1 . . . , 15}, coefficients inside each group are defined as,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

βl = (1, 2, . . . , 15), l = 1, . . . , 3
βl = (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞

15

), l = 4, . . . , 15.

Case 5: sparse distribution of 100 variables

There are 10 groups of size 10 each, a total number of 100 variables. Among these

groups, 5 groups with 6 significant variables each are defined, a total number of 30
significant variables. For l ∈ {1 . . . , 10}, coefficients inside each group are defined as,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βl = (1, 2, . . . , 6, 0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
4

), l = 1, . . . , 5

βl = (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
10

), l = 6, . . . , 10.

Case 6: dense distribution of 100 variables

There are 10 groups of size 10 each, a total number of 100 variables. Among these

groups, 3 groups with 10 significant variables each are defined, a total number of 30

33

significant variables. For l ∈ {1 . . . , 10}, coefficients inside each group are defined as,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
βl = (1, 2, . . . , 10), l = 1, . . . , 3
βl = (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞

10

), l = 4, . . . , 10.

We consider that Case 1 is the most representative example in further applica-

tions, and therefore it will be intensively studied here, and also in the simulations

regarding the sensitivity analysis shown in the supplementary material. Each sim-

ulation example has been executed 50 times considering 100/100/5000 observations

in the train / validate / test samples, except in the low dimensional simulations

(Case 5 and 6) where 500/500/5000 observations were considered. The large test

sets formed by 5000 observations help increase the stability of the results, however,

models are built using train and validate sets, making the 625 variables and 225
variables simulations high dimensional (p > n). The results have been summarized

in terms of the mean and standard deviation values (shown in parenthesis), and the

best result from each metric is highlighted.

As it was commented in Section 2.4, the general tendency found in the literature

regarding the weights in adaptive models is to define them based on the results of

the unpenalized model,

wi˜ =
1
|βi˜ |γ

, (2.15)

where wi and βi˜ correspond to the i-th element of vectors w̃ and β̃ respectively,

|·| denotes the absolute value function, γ is a non negative constant and β̃ is the

solution vector obtained from the unpenalized model (described, in the case of the

QR framework, in equation (2.3)). This approach is limited just to low dimensional

scenarios, where the unpenalized model can actually be solved. For this reason, in

the low dimensional cases, the results of the proposed models are compared with

the results from the weights based on the unpenalized model.

2.6.1 Simulation 1: sparse distribution of significant variables.

This simulation shows the results obtained under simulation Case 1, considering 625
variables, Case 3, considering 225 variables and Case 5, considering 100 variables.

In all of them, the variables are sparsely distributed among groups, and a symmetric

error from a t(3) is considered.

Results from this simulation scheme are displayed in Table 2.1, which is divided

into three parts related to the three Cases under study. The first part of the table

analyses Case 1, which considers 625 variables. In this part, the results from LASSO

and SGL are compared against the eight proposed weight calculation alternatives

commented before. Additionally, the performance of sparse variations of PCA and

PLS is studied. These alternatives appear denoted as spcad (from sparse PCA)

34

Table 2.1: Simulation 1. Sparse distribution of variables. Considering a t(3) error.

⃦⃦⃦
β̂ − β

⃦⃦⃦
Et CSR TPR TNR

p = 625 variables

LASSO 23.37 (4.61) 7.85 (1.70) 0.89 (0.01) 0.76 (0.07) 0.90 (0.01)
SGL 19.62 (3.28) 6.29 (1.08) 0.76 (0.10) 0.90 (0.04) 0.75 (0.12)
AL-SGL-pcad 17.97 (3.56) 5.68 (1.13) 0.83 (0.07) 0.88 (0.05) 0.83 (0.08)
AL-SGL-pca1 21.41 (2.78) 6.88 (0.93) 0.70 (0.10) 0.90 (0.04) 0.68 (0.12)
AL-SGL-plsd 17.60 (3.28) 5.78 (1.14) 0.83 (0.06) 0.89 (0.04) 0.83 (0.07)
AL-SGL-pls1 19.40 (2.99) 6.23 (0.99) 0.78 (0.09) 0.90 (0.04) 0.77 (0.10)
ASGL-pcad 15.19 (3.43) 4.65 (1.04) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pca1 21.38 (2.58) 6.80 (0.87) 0.73 (0.10) 0.91 (0.04) 0.71 (0.11)
ASGL-plsd 13.23 (3.35) 4.07 (0.99) 0.85 (0.03) 0.91 (0.04) 0.84 (0.04)
ASGL-pls1 17.56 (3.98) 5.61 (1.33) 0.81 (0.01) 0.91 (0.04) 0.80 (0.07)
ASGL-splsd 14.31 (3.30) 4.36 (0.99) 0.85 (0.03) 0.92(0.04) 0.84 (0.04)
ASGL-spcad 18.05 (3.19) 5.75 (1.06) 0.78 (0.07) 0.91(0.03) 0.77 (0.08)

p = 225 variables

LASSO 8.09 (2.48) 2.66 (0.81) 0.80 (0.02) 0.96 (0.03) 0.75 (0.02)
SGL 6.43 (2.02) 2.12 (0.60) 0.76 (0.06) 0.98 (0.02) 0.69 (0.07)
AL-SGL-pcad 6.66 (2.33) 2.20 (0.76) 0.78 (0.06) 0.97 (0.03) 0.71 (0.08)
AL-SGL-pca1 7.06 (1.98) 2.30 (0.61) 0.73 (0.06) 0.98 (0.02) 0.65 (0.09)
AL-SGL-plsd 6.95 (1.79) 2.28 (0.56) 0.77 (0.06) 0.97 (0.02) 0.70 (0.08)
AL-SGL-pls1 7.27 (2.46) 2.39 (0.78) 0.74 (0.06) 0.98 (0.02) 0.66 (0.08)
ASGL-pcad 5.09 (1.32) 1.70 (0.38) 0.73 (0.09) 0.99 (0.01) 0.65 (0.12)
ASGL-pca1 7.07 (1.98) 2.31 (0.62) 0.75 (0.06) 0.98 (0.02) 0.67 (0.07)
ASGL-plsd 5.05 (1.30) 1.68 (0.37) 0.74 (0.09) 0.99 (0.02) 0.66 (0.12)
ASGL-pls1 6.21 (1.78) 2.04 (0.52) 0.74 (0.05) 0.98 (0.02) 0.66 (0.06)

p = 100 variables

LASSO 0.59 (0.08) 0.59 (0.01) 0.79 (0.09) 1.00 (0.00) 0.69 (0.14)
SGL 0.60 (0.08) 0.59 (0.01) 0.75 (0.11) 1.00 (0.00) 0.64 (0.16)
ASGL-pcad 0.55 (0.08) 0.58 (0.01) 0.81 (0.10) 1.00 (0.00) 0.73 (0.14)
ASGL-plsd 0.45 (0.07) 0.58 (0.06) 0.95 (0.07) 1.00 (0.00) 0.93 (0.09)
ASGL-unpenalized 0.45 (0.07) 0.58 (0.05) 0.96 (0.07) 1.00 (0.00) 0.95 (0.07)

35

Figure 2.2: Simulation 1. Sparse distribution of 625 variables. Considering a t(3)

error. Box-plots showing the test error of the different models.

lasso sgl al_sgl_pca_d al_sgl_pca_1 al_sgl_pls_d al_sgl_pls_1 asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1

2

4

6

8

10

Test error

Figure 2.3: Simulation 1. Sparse distribution of 225 variables. Considering a t(3)

error. Box-plots showing the test error of the different models.

lasso sgl al_sgl_pca_d al_sgl_pca_1 al_sgl_pls_d al_sgl_pls_1 asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1

1

2

3

4

5

6

Test error

36

and splsd (from sparse PLS). Sparse PCA was initially proposed by [Zou et al.,

2006] as a method that computes principal components adding a LASSO based

penalization to standard PCA. This yields to principal components that are sparse

linear combinations of the original variables, though are no longer orthogonal. In

the same sense, Chun and Keleş [2010] proposed an sparse alternative to PLS. Both

alternatives are studied in this simulation.The best results here are obtained by

the ASGL model using plsd weights, closely followed by splsd and pcad weights.

This model outperforms LASSO and SGL both in terms of the distance between

predicted and true β, and in terms of the test error Et. Given that LASSO enhances

individual sparsity, LASSO solutions are more sparse than the solutions obtained

by the proposed models , and this is shown in the TNR values. However, LASSO

offers poor results in terms of the TPR (this is, in terms of the selection of the truly

significant variables). SGL shows the opposite behavior, producing solutions with

large TPR values but low TNR values. Compared to these techniques, the proposed

ASGL formulations achieve good variable selection results both in terms of TNR and

TPR. It is worth highlighting the results achieved using the sparse PCA (spcad) and

sparse PLS (splsd) weights alternatives. As can be seen, the performance of spcad

and splsd is worse than that of plsd. Our guess is that establishing a double-sparsity

framework, namely, sparse components used to estimate prior weights for an adaptive

sparse group LASSO, is not that beneficial, and that simple PLS may be sufficient

for the weight calculation, leaving the achievement of sparse solutions to the effect

of the ASGL estimator. Additionally, using sparse PCA or sparse PLS in the weight

calculation requires to optimize a series of parameters related to these techniques,

and then another series of parameters related to the ASGL estimator. Finding the

optimal solution in such a grid of parameters can be numerically cumbersome and

time-consuming.

A similar behavior is observed in Case 3, that considers 225 variables. As before,

the best results in terms of prediction accuracy are provided by ASGL plsd and pcad

alternatives. Finally, the study performed in the low dimensional Case 5 is centered

on the models achieving the best results among the proposals considered, namely

plsd and pcad weights, that are compared against LASSO and SGL penalizations,

and against the ASGL unpenalized, which is feasible only in this low dimensional

framework and that consists in estimating the weights based on a unpenalized model

(as it is usually done in the literature). It is worth to remark here that the plsd

alternative performs just as well as the unpenalized one, which is a nice finding of

this approach.

Figures 2.2 and 2.3 display box-plots of the test error Et for different models in

the high dimensional frameworks, showing that the spread of Et is much smaller in

the ASGL plsd and pcad than in the LASSO and SGL, indicating that these models

provide more stable solutions in terms of prediction accuracy.

37

Table 2.2: Simulation 2. Dense distribution of variables. Considering a t(3) error.

⃦⃦⃦
β̂ − β

⃦⃦⃦
Et CSR TPR TNR

p = 625 variables

LASSO 21.00 (13.00) 7.13 (4.67) 0.95 (0.01) 0.96 (0.03) 0.95 (0.01)
SGL 6.02 (1.77) 1.99 (0.56) 0.82 (0.09) 1.00 (0.01) 0.80 (0.10)
AL-SGL-pcad 4.32 (0.99) 1.45 (0.28) 0.94 (0.04) 1.00 (0.01) 0.93 (0.05)
AL-SGL-pca1 7.17 (2.47) 2.30 (0.75) 0.72 (0.09) 1.00 (0.01) 0.68 (0.11)
AL-SGL-plsd 4.81 (1.47) 1.60 (0.44) 0.92 (0.06) 1.00 (0.01) 0.90 (0.07)
AL-SGL-pls1 5.38 (1.20) 1.77 (0.57) 0.87 (0.08) 1.00 (0.01) 0.85 (0.09)
ASGL-pcad 3.61 (0.78) 1.23 (0.20) 0.92 (0.10) 1.00 (0.01) 0.90 (0.12)
ASGL-pca1 7.60 (3.20) 2.46 (1.01) 0.74 (0.09) 1.00 (0.01) 0.71 (0.11)
ASGL-plsd 3.85 (0.83) 1.29 (0.21) 0.85 (0.03) 1.00 (0.01) 0.89 (0.13)
ASGL-pls1 4.17 (1.17) 1.40 (0.32) 0.90 (0.11) 1.00 (0.01) 0.87 (0.09)

p = 225 variables

LASSO 4.43 (1.10) 1.57 (0.35) 0.87 (0.03) 0.99 (0.01) 0.83 (0.05)
SGL 3.29 (0.75) 1.21 (0.21) 0.73 (0.13) 0.99 (0.01) 0.64 (0.17)
AL-SGL-pcad 2.88 (0.50) 1.07 (0.14) 0.78 (0.06) 1.00 (0.01) 0.84 (0.11)
AL-SGL-pca1 3.63 (0.73) 1.30 (0.22) 0.61 (0.15) 0.99 (0.01) 0.47 (0.21)
AL-SGL-plsd 2.92 (0.57) 1.09 (0.16) 0.84 (0.12) 1.00 (0.01) 0.78 (0.16)
AL-SGL-pls1 3.14 (0.65) 1.16 (0.18) 0.76 (0.14) 1.00 (0.01) 0.67 (0.20)
ASGL-pcad 2.56 (0.49) 0.98 (0.13) 0.89 (0.12) 1.00 (0.01) 0.85 (0.16)
ASGL-pca1 3.49 (0.79) 1.25 (0.22) 0.62 (0.15) 1.00 (0.01) 0.49 (0.21)
ASGL-plsd 2.59 (0.43) 0.99 (0.10) 0.88 (0.16) 1.00 (0.01) 0.83 (0.21)
ASGL-pls1 2.80 (0.53) 1.05 (0.14) 0.81 (0.12) 1.00 (0.01) 0.74 (0.17)

p = 100 variables

LASSO 0.52 (0.08) 0.58 (0.01) 0.82 (0.10) 1.00 (0.00) 0.75 (0.13)
SGL 0.50 (0.08) 0.58 (0.01) 0.74 (0.17) 1.00 (0.00) 0.63 (0.24)
ASGL-pcad 0.45 (0.07) 0.57 (0.01) 0.92 (0.11) 1.00 (0.00) 0.88 (0.15)
ASGL-plsd 0.44 (0.07) 0.57 (0.01) 0.95 (0.07) 1.00 (0.00) 0.93 (0.10)
ASGL-unpenalized 0.45 (0.07) 0.57 (0.01) 0.92 (0.12) 1.00 (0.00) 0.89 (0.17)

2.6.2 Simulation 2: dense distribution of significant variables.

This simulation shows the results obtained under simulation Case 2, considering 625
variables, Case 4, considering 225 variables and Case 6, considering 100 variables.

In all of them, the variables are densely distributed among groups, and a symmetric

error from a t(3) is considered.

The results from this simulation scheme are displayed in Table 2.2. Similar to the

situation shown in the sparse distribution simulation, the ASGL model using plsd

or pcad weights shows the best results in terms of the distance between predicted

and true β, and the value of Et in the high dimensional cases. These proposals offer

also the best compromise between TPR and TNR. It is worth saying that under a

more “compact”distribution of the significant variables in a small number of groups,

38

Figure 2.4: Simulation 2. Dense distribution of 625 variables. Considering a t(3)

error. Box-plots showing the test error of the different models.

lasso sgl al_sgl_pca_d al_sgl_pca_1 al_sgl_pls_d al_sgl_pls_1 asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1
0

5

10

15

20

Test error

Figure 2.5: Simulation 2. Dense distribution of 225 variables. Considering a t(3)

error. Box-plots showing the test error of the different models.

lasso sgl al_sgl_pca_d al_sgl_pca_1 al_sgl_pls_d al_sgl_pls_1 asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Test error

39

the proposed methods show a great improvement in terms of prediction accuracy

compared to LASSO and SGL. As before, the low dimensional case is studied cen-

tered on the models achieving the best results among the proposals considered, plsd

and pcad weights, that are compared against LASSO, SGL and ASGL unpenalized

penalizations. It can be seen here that plsd is the one achieving the best results in

this framework, closely followed by pcad and unpenalized results.

Figures 2.4 and 2.5 display box-plots of test error value Et in high dimensional

scenarios, showing, as in the previous simulation scheme, that ASGL models with

plsd or pcad weights also provide more stable results in terms of spread. Based on

previous simulations, we conclude that the best performance both in the high di-

mensional and low dimensional frameworks, considering sparse or dense distribution

of significant variables is achieved by ASGL models with plsd or pcad weights.

Additionally to the simulations shown here, a comprehensive sensitivity analysis

that studies the behavior of the proposed methodology under different non sym-

metric error distributions, when varying the powers γ1 and γ2 entering the weights

and when varying the number of PCA and PLS components chosen in the weight

calculation can be found in the supplementary material.

2.7 Real application

The performance of the ASGL estimator is shown here using a genomic dataset

first reported in Scheetz et al. [2006]. The dataset consists of 120 twelve-week-old

male offspring animals chosen for tissue harvesting from the eyes and for micro-

array analysis. The dataset contains expression values from 31042 different probe-

sets (Affymetric GeneChip Rat Genome 230 2.0 Array) on a logarithmic scale. As

described in Huang et al. [2008b] and Wang et al. [2012], a two-steps preprocessing

is performed, selecting, among the 31042 probe-sets, the ones that are sufficiently

expressed, and sufficiently variable. A probe is considered to be sufficiently expressed

if the maximum expression value observed for that probe among the 120 animals

is greater than the 25-th percentile of the entire set of RMA expression values. A

probe is considered to be sufficiently variable if it shows at least 2-fold variation in

the expression value among the 120 rats. There are 18986 probes that meet these

criteria.

We study how expression level of gene TRIM32, corresponding to probe

1389163 at, is related to expression levels at other probes. Chiang et al. [2006]

pointed out that gene TRIM32 was found to cause Bardet-Biedl syndrome, a dis-

ease of multiple organ systems including the retina.[Scheetz et al., 2006, :1] stated:

“Any genetic element that can be shown to alter the expression of a specific gene or

gene family known to be involved in a specific disease is itself an excellent candidate

for involvement in the disease, either primarily or as a genetic modifier.” Here the

40

sample size is 120 (the number of animals selected for micro-array analysis), and the

number of covariates (probes that pass the preprocessing steps) is 18985. The corre-
lation coefficients of the 18985 probes and the probe corresponding to gene TRIM32

is calculated, and the genes in which the absolute value of the correlation exceeds

0.5 are selected. There are 3734 probes meeting this criteria. Finally, this dataset is

standardized. Only a few genes are expected to be related to gene TRIM32, making

this a high dimensional sparse problem.

From a biological perspective it is clear that genes do not work individually. The

problem of grouping genes based on a medical criteria is nowadays under intense

study, and it is possible to find some group structures for human genetic infor-

mation based, for example, in cytogenetic positions [Subramanian et al., 2005]. It

is interesting to remark that groups built based on biological criteria are usually

formed just by a few dozens of genes. For example, in the case of groups based on

cytogenetic positions, groups averaged 30 genes, as stated in Simon et al. [2013].

However, these group structures are not available for all the genetic information,

and to the best of our knowledge there is no genetic grouping alternative for the

dataset under study here.

We address the grouping problem from an statistical perspective, using principal

components analysis to create groups of genes that are similar. It is worth to

remark that in Section 2.5.1 PCA was used for estimating the ASGL weights, while

here it will be used for variable clustering.

Variable clustering using PCA

1. Given a matrix of covariates X ∈ Rn×p as in Section 2.5.1, obtain the matrix of

principal components Q ∈ Rp×r X ∈ Rn×p defined in Section 2.5.1.

2. Consider r possible groups, as many as principal components.

3. Each principal component qi ∈ Q, i ∈ 1, . . . , r, is a linear combination of the

original variables from X. Assign each original variable to the group associated

to the principal component in which that variable had its maximum weight

(in absolute value).

The intuition behind this process is that variables with a large weight in the same

principal component are likely to be related and should be included in the same

group.

In the case of the dataset used in this section, there are 120 observations from

3734 different genes. The maximum rank of X here is 120, for this reason 120 possible

groups are initially considered. Each gene is assigned to the group associated to the

principal component in which that gene had its maximum weight. No gene was

assigned to one of the groups, and therefore 119 groups averaging 32 genes per

41

Figure 2.6: Gene expression data of rat eye disease. Box-plot showing the sizes of

the groups built using PCA.

20

40

60

80

100

Genes per group

Table 2.3: Gene expression data of rat eye disease. 20 random dataset divisions were

considered. Results displayed as mean value, with standard errors in parenthesis.

Et # Variables selected

LASSO 0.34 (0.08) 18.9 (15.4)
SGL 0.31 (0.07) 189.5 (156.6)
ASGL-pcad 0.28 (0.06) 56.35 (70.86)
ASGL-plsd 0.29 (0.06) 101.7 (85.56)

group are created this way. It is worth highlighting that the average group size

obtained based on this proposal is close to the expected group size in terms of the

cytogenetic position. Figure 2.6 shows a box-plot of the group sizes.

The dataset is randomly divided into 80/20/20 train / validate / test observations

and LASSO, SGL, ASGL plsd and ASGL pcad models are solved. For each model,

the test error Et and the significant variables selected are obtained. This process is

repeated 20 times as a way to gain stability.

The results obtained are shown in Table 2.3. The best results in terms of the

test error are obtained by the proposed ASGL models. LASSO offers a test error

approximately 20% greater while SGL test error is 11% greater. Figure 2.7 displays

box-plots of the test error Et, showing that the spread of Et is also smaller in the

proposed ASGL models providing more stable results. Figure 2.8 displays box-plots

of the number of genes each model selected as significant. The LASSO is the one

offering more sparse solutions, using only 19 variables (in mean) per model. SGL

is the one using the largest number of variables, approximately 190, and also the

one with the largest variability in this metric. Both ASGL pcad and ASGL plsd

selected a smaller number of variables than SGL but still larger than LASSO, and

they achieve the best prediction results of the four models.

42

Figure 2.7: Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Box-plot showing the test error.

lasso sgl asgl_pca_d asgl_pls_d
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55 Test error

Figure 2.8: Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Box-plot showing the number of significant genes.

lasso sgl asgl_pca_d asgl_pls_d
0

100

200

300

400

500

600 Variables selected

43

Figure 2.9: Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Heatmap showing the probability of being a significant gene. Each

row represents a model and each column represents a gene.

Given that we have the results obtained from 20 repetitions, it is possible to

count the number of times each gene has been selected as significant by one of the

models in any of the repetitions. Dividing this number by the total number of

repetitions, a sort of “probability of being a significant gene” associated to each gene

for each model considered is obtained. Out of the 3734 genes in the dataset, 1612
genes were selected at least one time by any of the models in any of the repetitions

(the majority being selected by SGL models). Figure 2.9 shows the probability of

being a significant gene for these 1612 variables and for each model. Rows represent

the different models considered and columns represent each gene. Genes are sorted

based on the probabilities obtained in the ASGL model with pcad weights.

Considering a probability threshold of 0.5, only 1 gene in the LASSO models

reach a probability of significance above the threshold, showing no stability on the

gene selection along the 20 repetitions, and anticipating problems with possible fur-

ther biological interpretation of the statistical results. In the case of the SGL model,

35 genes are above the probability threshold, being 0.6 the maximum probability

achieved. On the other hand, the ASGL model with plsd weights includes 17 genes

with probabilities above the threshold with a maximum probability value of 0.75,
and the ASGL model with pcad weights has 9 genes above the probability threshold

with a maximum probability value of 0.9, showing more stability on the selection

along the 20 repetitions and possibly better biological interpretation of the results

than the other models.

Results displayed in Table 2.3 and Figure 2.9 have been obtained using estimators

of the median of the response variable, however, it can be interesting to compare the

genes selected at different quantiles. For this reason, the process described above

44

Table 2.4: Gene expression data of rat eye disease. 20 random dataset divisions were

considered. Number of genes above the probability threshold for different quantile

levels.

Number of genes above the probability threshold

τ = 0.3 τ = 0.5 τ = 0.7 Three quantiles

LASSO 0 1 1 0
SGL 19 35 17 0
ASGL-pcad 23 9 17 7
ASGL-plsd 41 17 37 9

is repeated and LASSO, SGL, ASGL plsd and ASGL pcad models are solved for

quantile levels τ = 0.3 and τ = 0.7, obtaining probabilities of being a significant

gene for each quantile level and each model. Considering a probability threshold of

0.5, Table 2.4 show the number of genes above the probability threshold for each

quantile, and also the number of genes in the same model that have been selected

along the different quantile levels.

The LASSO model shows no stability on the variable selection, having only one

gene above the threshold for τ = 0.5 and τ = 0.7, and no gene with probability of

being significant above 0.5 on the three quantiles simultaneously. The SGL shows

some stability across the 20 repetitions considering each quantile independently,

but when considering all the quantiles simultaneously it has no gene above the

probability threshold. On the other hand, in the case of the ASGL plsd model, 9
genes had a probability of being significant greater than 0.5 in the 3 quantiles, and

in the case of the ASGL pcad models, 7 genes fulfilled this, showing more robust

results than the other estimators.

We conclude that the best results in this real dataset study are provided by the

ASGL model with pcad weights, given that this model is the one with the smallest

prediction error and showing great stability on the gene selection.

2.8 Computational aspects

All the simulations and data analysis commented in Sections 2.6, and 2.7 and in the

supplementary material were run in a cluster node with two Intel (R) Xeon(R) CPU

E5-2630 v3 (2.4GHz, 20MB Smart Cache) processors, with 32Gb of RAM memory

running CentOS 6.5 Final (Rocks 6.1.1 Sand Boa). The computation itself has been

developed in Python 2.7.15 (Anaconda Inc.). All the optimization problems have

been solved using the CVXPY optimization framework for Python [Diamond and

Boyd, 2016] and the open source solver ECOS [Domahidi et al., 2013].

45

2.9 Conclusion

In this paper the definition of the SGL estimator has been extended to the QR

framework. A new estimator for quantile regression based on the usage of adap-

tive weights, the adaptive sparse group LASSO in quantile regression has also been

proposed. As shown in Section 2.4, adaptive penalizations are typically centered on

the study of the oracle property in both asymptotic and double asymptotic frame-

works. A key step on the demonstration of this property is the usage of an initial
√

n-consistent estimator that is usually the result of a nonpenalized model. However,

this definition limits the usage of adaptive estimators to low dimensional scenarios.

As a solution to this problem, four weight calculation alternatives that can be used

in high dimensional scenarios when working with adaptive estimators have been pro-

posed. Section 2.5.3 conjectures about the relation between these alternatives and

the oracle property. Additionally, the performance of the proposed alternatives have

been analyzed in a set of synthetic data scenarios that includes high dimensional and

low dimensional examples and symmetric error distributions (Section 2.6). More-

over, a thorough sensitivity analysis studying the behavior of the estimator under

different error distributions, and under changes in parameter values has been per-

formed in the supplementary material. The performance of the proposed work is

also studied in a real high dimensional dataset including gene expression values of

rat eye disease. Previous synthetic data analysis showed that the ASGL estimator

is a competitive option in both high and low dimensional scenarios, especially when

the adaptive weights are calculated based on subsets of PCA or PLS components.

However, when dealing with the real dataset, the ASGL pcad estimator achieved

better results in terms of prediction error and stability of the variables selected. For

this reason we conclude that the ASGL pcad provides the best results among the

options proposed in this work.

This work has risen some questions that will require further investigation. One

interesting problem is the optimization of the hyper-parameters. In this work we

make use of grid-search, but it is worth commenting that new hyper-parameter

tuning alternatives have appeared in recent years [Laria et al., 2019], and it can be

interesting to investigate the usage of this or other options in the optimization of

the parameters of the models introduced in this work.

Section 2.5.3 has shown some concluding remarks related to the oracle property

of the pcad weight calculation alternative. The plsd alternative based on PLS, how-

ever, is more complex and will require further research. In any case, it is worth

mentioning the interesting work performed by Chun and Keleş [2010], that stud-

ies the consistency of the PLS estimator in the asymptotic and double asymptotic

frameworks, reaching the conclusion (in Theorem 1) that given some previous as-

46

sumptions, if p
n → 0, then ⃦⃦⃦

βPLS − β
⃦⃦⃦

2
→ 0 in probability.

This result would prove the consistency of the estimator, but It would not be enough

for proving the
√

n-consistency, for this reason, we consider that the asymptotic

property of the plsd alternative is a topic for future work.

Finally, simulations from Section 2.6 have studied different model formulations,

including (suggested by a referee) the usage of sparse PCA and sparse PLS in the

weight calculation process. The simulations showed that this alternative did not

yield to better results than the non sparse PCA or PLS alternatives, but it can be

interesting to study other sparse techniques.

2.10 Supplementary material

2.10.1 Simulation study: sensitivity analysis

This supplementary material shows a sensitivity analysis studying the effect of vari-

ations on the error distribution of the model as well as different parameters of the

ASGL estimator proposed in the article.

Variation on the model errors

In order to perform well, OLS estimators need to set certain hypothesis on the model

errors, namely, being centered, homoscedastic and normally distributed, that are no

longer required in quantile regression models. Along this section, the behavior of

the proposed ASGL QR estimator is studied under the framework of different error

distributions that do not fulfill the OLS hypothesis, showing this way the benefits

of the QR formulation.

Simulation 3: Cauchy(0,3) error In this section the proposed ASGL estimator is

studied under the framework of the following model,

y = Xβ + ε, ε ∼ Cauchy(0, 3),

The main characteristic of the Cauchy distribution is that the central moments in

this distribution do not exist, making it an interesting variation on the model error.

This distribution is a good example of heavy tail distributions which often appear

in practical situations. This simulation show the results obtained under simulation

Case 1, considering 625 variables sparsely distributed and Case 2, considering 625
variables densely distributed.

47

Table 2.5: Simulation 3. Considering 625 variables and a Cauchy(0, 3) error.

⃦⃦⃦
β̂ − β

⃦⃦⃦
Et CSR TPR TNR

625 variables. Sparse distribution of variables

LASSO 33.69 (4.62) 21.33 (10.53) 0.87 (0.02) 0.57 (0.08) 0.91 (0.02)
SGL 25.81 (1.92) 18.43 (10.38) 0.67 (0.12) 0.89 (0.07) 0.66 (0.13)
ASGL-pcad 25.24 (2.08) 17.89 (10.34) 0.80 (0.05) 0.87 (0.07) 0.79 (0.06)
ASGL-pca1 25.81 (2.07) 18.40 (10.36) 0.68 (0.14) 0.89 (0.07) 0.69 (0.15)
ASGL-plsd 25.47 (2.14) 18.15 (10.33) 0.74 (0.08) 0.89 (0.06) 0.72 (0.09)
ASGL-pls1 25.57 (2.16) 18.19 (10.31) 0.75 (0.09) 0.87 (0.006 0.73 (0.10)

625 variables. Dense distribution of variables

LASSO 57.52 (16.14) 27.85 (10.71) 0.95 (0.02) 0.86 (0.06) 0.96 (0.01)
SGL 26.13 (5.30) 17.65 (8.76) 0.73 (0.13) 0.99 (0.01) 0.70 (0.15)
ASGL-pcad 22.05 (4.90) 16.25 (8.76) 0.91 (0.11) 0.99 (0.01) 0.90 (0.13)
ASGL-pca1 22.65 (5.36) 17.50 (8.78) 0.75 (0.11) 0.99 (0.01) 0.71 (0.13)
ASGL-plsd 22.13 (5.07) 16.28 (8.84) 0.89 (0.11) 0.99 (0.01) 0.88 (0.13)
ASGL-pls1 22.17 (4.84) 16.28 (8.74) 0.90 (0.09) 0.99 (0.01) 0.89 (0.10)

Figure 2.10: Simulation 3. Sparse distribution of 625 variables. Considering a

Cauchy(0, 3) error. Box-plots showing the test error of the different models.

lasso sgl asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1
10

20

30

40

50

60

70

80

Test error

Figure 2.11: Simulation 3. Dense distribution of 625 variables. Considering a

Cauchy(0, 3) error. Box-plots showing the test error of the different models.

lasso sgl asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1
10

20

30

40

50

60

70

Test error

48

Table 2.6: Simulation 4. Considering 625 variables and a χ2(3) error.

⃦⃦⃦
β̂ − β

⃦⃦⃦
Et CSR TPR TNR

625 variables. Sparse distribution of variables

LASSO 23.36 (4.00) 7.88 (1.54) 0.89 (0.01) 0.75 (0.06) 0.90 (0.01)
SGL 18.97 (2.99) 6.10 (1.00) 0.78 (0.09) 0.88 (0.04) 0.77 (0.10)
ASGL-pcad 14.77 (3.19) 4.62 (0.97) 0.84 (0.04) 0.90 (0.03) 0.83 (0.04)
ASGL-pca1 18.84 (2.97) 6.07 (1.00) 0.78 (0.07) 0.88 (0.03) 0.77 (0.08)
ASGL-plsd 15.09 (3.07) 4.71 (0.90) 0.83 (0.04) 0.91 (0.03) 0.82 (0.04)
ASGL-pls1 15.09 (3.16) 4.75 (0.99) 0.82 (0.04) 0.90 (0.03) 0.82 (0.04)

625 variables. Dense distribution of variables

LASSO 20.06 (11.52) 6.71 (3.88) 0.95 (0.01) 0.96 (0.03) 0.95 (0.01)
SGL 8.89 (2.23) 2.80 (0.69) 0.78 (0.10) 0.99 (0.01) 0.75 (0.12)
ASGL-pcad 5.79 (1.00) 1.96 (0.28) 0.90 (0.13) 0.99 (0.01) 0.88 (0.14)
ASGL-pca1 8.17 (2.30) 2.73 (0.71) 0.80 (0.09) 0.99 (0.01) 0.77 (0.11)
ASGL-plsd 5.75 (1.04) 1.95 (0.29) 0.89 (0.12) 0.99 (0.01) 0.87 (0.13)
ASGL-pls1 5.92 (1.09) 1.99 (0.29) 0.89 (0.08) 0.99 (0.01) 0.88 (0.09)

The results from this simulation scheme are displayed in Table 2.5. Both in

the case of the sparse or the dense distribution of the significant variables, the best

results in terms of the distance between predicted and true β, and the value of Et

are achieved by the proposed ASGL estimator using pcad weights. The difference

in terms of prediction error among models (excepting LASSO, which shows by far

the largest error) is smaller in this simulation than in symmetric error ones shown

in the article, probably due to the large tails of Cauchy distributions and the asso-

ciated outliers. However, even under this framework, it is interesting to see that the

proposed models offer a good variable selection performance both in terms of TPR

and TNR as opposed to lasso (with large TNR but very low TPR) or SGL (with

large TPR but low TNR). Figures 2.10 and 2.11 display box-plots of the test error

value Et, showing clearly the presence of outliers.

Simulation 4: χ2(3) error In this section the proposed ASGL estimator is studied

under the framework of the following model,

y = Xβ + ε, ε ∼ χ2(3),

The χ2 distribution is non symmetric as opposed to previous error distributions

t and Cauchy that were symmetric. This simulation show the results obtained un-

der simulation Case 1, considering 625 variables sparsely distributed and Case 2,
considering 625 variables densely distributed.

The results from this simulation scheme are displayed in Table 2.6. The best

results in terms of the distance between predicted and true β, and in terms of the

test error Et are obtained by the ASGL model using pcad weights in the sparse

49

Figure 2.12: Simulation 4. Sparse distribution of 625 variables. Considering a χ(3)
error. Box-plots showing the test error of the different models.

lasso sgl asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1

4

6

8

10

12 Test error

Figure 2.13: Simulation 4. Dense distribution of 625 variables. Considering a χ(3)
error. Box-plots showing the test error of the different models.

lasso sgl asgl_pca_d asgl_pca_1 asgl_pls_d asgl_pls_1

2

4

6

8

10

12

14

16

Test error

50

Case 1 and plsd weights in the dense Case 2, though both methods provide quite

similar solutions. As in previous simulations, LASSO show a larger TNR value,

being the most sparse solution, but also the worst TPR performance, meaning that

the selection of significant variables is not very accurate. Opposed to this behavior,

SGL show good TPR value but worse TNR, selecting too many non significant

variables. The proposed ASGL estimator provides good results both in terms of

TPR and TNR. Figures 2.12 and 2.13 display box-plots of the test error Et for the

different models, showing that the spread of Et is much smaller in the ASGL plsd

and pcad than in the LASSO and SGL (especially in the dense case), indicating that

these models provide more stable solutions in terms of prediction accuracy.

Simulation 5: influence of γ1 and γ2

Given equations

w j˜ =
1
|β̂ j|

γ1
and vl̃ =

1⃦⃦⃦⃦
β̂

l
⃦⃦⃦⃦γ2

2

, (2.16)

and

w j˜ =
1
|q1 j|

γ1
and vl̃ =

1⃦⃦⃦
ql

1

⃦⃦⃦γ2

2

, (2.17)

for the calculation of the weights, one can see that the formulation includes two

nonnegative parameters, γ1 in the lasso weights part and γ2 in the group lasso

weights part that are the powers entering the weights. Along this section a simulation

studying the influence of the value of these parameters is performed. The simulation

scheme is that of Case 1 : 625 variables sparsely distributed. Additionally, a t(3)

distribution error is considered, and the weights are calculated based on a subset

of PCA components pcad. Two situations are studied: the behavior of the ASGL

estimator while varying the value of γ2 and leaving γ1 = 1 and the behavior of the

ASGL estimator while varying the value of γ1 and leaving γ2 = 1. The results are

compared against the LASSO, SGL and the ASGL estimator optimizing both γ1

and γ2.

The results obtained in this simulation are displayed in Table 2.7 and Figure

2.14. The best results in terms of the distance between predicted and true β, and

the value of Et are provided by the ASGL estimator while optimizing both γ1 and γ2,

highlighting the importance of the selection of this parameters. It is also interesting

to observe how, while fixing γ1, errors decrease as γ2 increase, but while fixing γ2,

the opposite behavior appears, and errors increase as γ1 increase.

Influence of αpca,d and αpls,d

The weight calculation alternatives pcad and plsd are based on selecting a subset

of d either PCA or PLS components that explain up to a certain percentage of

51

Table 2.7: Simulation 5. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of γ1 and γ2 influence.

⃦⃦⃦
β̂ − β

⃦⃦⃦
Et CSR TPR TNR

LASSO 23.88 (4.35) 8.02 (1.60) 0.88 (0.01) 0.75 (0.06) 0.90 (0.01)
SGL 19.40 (2.74) 6.19 (0.88) 0.77 (0.07) 0.89 (0.04) 0.76 (0.08)
ASGL 15.14 (2.97) 4.66 (0.87) 0.83 (0.03) 0.92 (0.03) 0.82 (0.04)

γ1 = 1 fixed. Varying γ2

ASGL-γ2 = 0.0 19.74 (2.94) 6.23 (0.94) 0.81 (0.07) 0.89 (0.05) 0.81 (0.08)
ASGL-γ2 = 0.2 19.42 (2.97) 6.08 (0.92) 0.72 (0.07) 0.89 (0.05) 0.81 (0.08)
ASGL-γ2 = 0.4 19.08 (2.83) 5.95 (0.87) 0.83 (0.05) 0.89 (0.05) 0.82 (0.06)
ASGL-γ2 = 0.6 18.74 (2.79) 5.80 (0.85) 0.83 (0.05) 0.89 (0.04) 0.83 (0.05)
ASGL-γ2 = 0.8 18.65 (2.97) 5.75 (0.88) 0.84 (0.04) 0.90 (0.04) 0.84 (0.05)
ASGL-γ2 = 1.0 18.38 (3.07) 5.66 (0.90) 0.85 (0.04) 0.90 (0.04) 0.85 (0.04)
ASGL-γ2 = 1.2 18.24 (3.19) 5.61 (0.94) 0.86 (0.03) 0.90 (0.04) 0.85 (0.04)
ASGL-γ2 = 1.4 18.08 (3.32) 5.56 (0.97) 0.87 (0.02) 0.90 (0.04) 0.86 (0.03)

γ2 = 1 fixed. Varying γ1

ASGL-γ1 = 0.0 16.23 (2.79) 5.03 (0.80) 0.80 (0.04) 0.91 (0.03) 0.79 (0.05)
ASGL-γ1 = 0.2 16.23 (2.91) 5.03 (0.85) 0.82 (0.04) 0.91 (0.03) 0.81 (0.08)
ASGL-γ1 = 0.4 16.54 (2.93) 5.12 (0.87) 0.84 (0.03) 0.91 (0.03) 0.83 (0.04)
ASGL-γ1 = 0.6 17.07 (2.94) 5.28 (0.88) 0.84 (0.04) 0.90 (0.04) 0.84 (0.04)
ASGL-γ1 = 0.8 17.69 (2.96) 5.46 (0.89) 0.85 (0.03) 0.90 (0.04) 0.84 (0.04)
ASGL-γ1 = 1.0 18.38 (3.07) 5.66 (0.90) 0.85 (0.03) 0.90 (0.04) 0.85 (0.04)
ASGL-γ1 = 1.2 18.90 (3.07) 5.81 (0.89) 0.85 (0.04) 0.90 (0.05) 0.84 (0.05)
ASGL-γ1 = 1.4 19.47 (3.02) 5.96 (0.86) 0.85 (0.04) 0.90 (0.05) 0.85 (0.04)

52

Figure 2.14: Simulation 5. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of γ1 and γ2 influence. Box-plots showing the test error of the

different models.

4 6 8 10 12
lasso

sgl
asgl_pca_d

asgl_pca_d_g1_0.0_g2_1.0
asgl_pca_d_g1_0.2_g2_1.0
asgl_pca_d_g1_0.4_g2_1.0
asgl_pca_d_g1_0.6_g2_1.0
asgl_pca_d_g1_0.8_g2_1.0
asgl_pca_d_g1_1.0_g2_1.0
asgl_pca_d_g1_1.2_g2_1.0
asgl_pca_d_g1_1.4_g2_1.0
asgl_pca_d_g1_1.0_g2_0.0
asgl_pca_d_g1_1.0_g2_0.2
asgl_pca_d_g1_1.0_g2_0.4
asgl_pca_d_g1_1.0_g2_0.6
asgl_pca_d_g1_1.0_g2_0.8
asgl_pca_d_g1_1.0_g2_1.0
asgl_pca_d_g1_1.0_g2_1.2
asgl_pca_d_g1_1.0_g2_1.4

Test error

53

Table 2.8: Simulation 6. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpca,d influence.

⃦⃦⃦
β̂ − β

⃦⃦⃦
Et CSR TPR TNR

625 variables. Sparse distribution of variables.

LASSO 21.85 (4.77) 7.40 (1.77) 0.89 (0.07) 0.77 (0.07) 0.90 (0.08)
SGL 18.14 (3.28) 5.80 (1.07) 0.80 (0.06) 0.89 (0.05) 0.79 (0.10)
ASGL-pca − 10% 17.96 (3.32) 5.76 (1.09) 0.80 (0.08) 0.89 (0.05) 0.79 (0.09)
ASGL-pca − 20% 17.54 (3.47) 5.60 (1.13) 0.81 (0.07) 0.89 (0.05) 0.80 (0.07)
ASGL-pca − 30% 17.54 (3.45) 5.60 (1.12) 0.82 (0.06) 0.90 (0.05) 0.79 (0.09)
ASGL-pca − 40% 16.73 (3.78) 5.33 (1.22) 0.84 (0.04) 0.90 (0.04) 0.80 (0.08)
ASGL-pca − 50% 15.47 (3.78) 4.92 (1.25) 0.84 (0.04) 0.90 (0.04) 0.82 (0.07)
ASGL-pca − 60% 13.35 (3.47) 4.15 (1.16) 0.84 (0.04) 0.92 (0.04) 0.83 (0.05)
ASGL-pca − 70% 12.76 (3.37) 3.92 (1.04) 0.84 (0.04) 0.93 (0.04) 0.83 (0.05)
ASGL-pca − 80% 12.98 (3.36) 4.01 (1.02) 0.84 (0.04) 0.93 (0.04) 0.83 (0.04)
ASGL-pca − 90% 13.04 (3.41) 4.04 (1.03) 0.84 (0.04) 0.92 (0.04) 0.84 (0.04)
ASGL-pca − 100% 14.08 (3.76) 4.34 (0.16) 0.84 (0.03) 0.92 (0.04) 0.84 (0.03)

100 variables. Sparse distribution of variables.

LASSO 0.58 (0.08) 0.59 (0.01) 0.73 (0.01) 1.00 (0.00) 0.66 (0.14)
SGL 0.60 (0.08) 0.59 (0.01) 0.72 (0.12) 1.00 (0.00) 0.57 (0.17)
ASGL-pca − 10% 0.59 (0.07) 0.59 (0.01) 0.83 (0.10) 1.00 (0.00) 0.60 (0.14)
ASGL-pca − 20% 0.60 (0.07) 0.59 (0.01) 0.75 (0.10) 1.00 (0.00) 0.60 (0.17)
ASGL-pca − 30% 0.59 (0.07) 0.59 (0.01) 0.78 (0.10) 1.00 (0.00) 0.61 (0.14)
ASGL-pca − 40% 0.58 (0.07) 0.59 (0.01) 0.79 (0.10) 1.00 (0.00) 0.64 (0.14)
ASGL-pca − 50% 0.56 (0.07) 0.58 (0.01) 0.78 (0.10) 1.00 (0.00) 0.68 (0.13)
ASGL-pca − 60% 0.55 (0.08) 0.58 (0.01) 0.79 (0.10) 1.00 (0.00) 0.70 (0.14)
ASGL-pca − 70% 0.55 (0.07) 0.58 (0.01) 0.78 (0.11) 1.00 (0.00) 0.69 (0.17)
ASGL-pca − 80% 0.54 (0.07) 0.58 (0.01) 0.79 (0.10) 1.00 (0.00) 0.70 (0.16)
ASGL-pca − 90% 0.52 (0.07) 0.58 (0.01) 0.82 (0.11) 1.00 (0.00) 0.74 (0.17)
ASGL-pca − 100% 0.44 (0.05) 0.57 (0.01) 0.94 (0.07) 1.00 (0.00) 0.92 (0.10)

variability, αpca,d or αpls,d respectively, priorly fixed by the researcher. Along this

section, the effect of changes in the percentage of explained variability is studied.

The simulation schemes are these of Case 1 (625 variables sparsely distributed) and

Case 5 (100 variables sparsely distributed). Additionally, a t(3) distribution error

is considered. Finally, two situations will be studied: variations on the percentage

of variability affecting pcad technique and variations on the percentage of variability

affecting plsd technique.

Simulation 6: Influence of αpca,d This simulation is centered on the effect of vari-

ations in the percentage of explained variability using PCA. Since PCA technique

defines an orthogonal change of basis matrix, it is possible to recover all the vari-

ability from the original variables, and thus, different ASGL pcad models are solved

ranging the percentage of explained variability from 10% to 100%.

54

Figure 2.15: Simulation 6. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpca,d influence. Box-plots showing the test error of the different

models.

lasso sgl asgl_pca_d_0.1 asgl_pca_d_0.2 asgl_pca_d_0.3 asgl_pca_d_0.4 asgl_pca_d_0.5 asgl_pca_d_0.6 asgl_pca_d_0.7 asgl_pca_d_0.8 asgl_pca_d_0.9 asgl_pca_d_1

2

4

6

8

10

Test error

Figure 2.16: Simulation 6. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpca,d influence. Box-plots showing the correct selection rate of

the different models.

lasso sgl asgl_pca_d_0.1 asgl_pca_d_0.2 asgl_pca_d_0.3 asgl_pca_d_0.4 asgl_pca_d_0.5 asgl_pca_d_0.6 asgl_pca_d_0.7 asgl_pca_d_0.8 asgl_pca_d_0.9 asgl_pca_d_1

0.5

0.6

0.7

0.8

0.9

Correct selection rate

Figure 2.17: Simulation 6. Sparse distribution of 100 variables. Considering a t(3)

error. Analysis of αpca,d influence. Box-plots showing the test error of the different

models.

lasso sgl asgl_pca_d_0.1 asgl_pca_d_0.2 asgl_pca_d_0.3 asgl_pca_d_0.4 asgl_pca_d_0.5 asgl_pca_d_0.6 asgl_pca_d_0.7 asgl_pca_d_0.8 asgl_pca_d_0.9 asgl_pca_d_1

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

Test error

55

Figure 2.18: Simulation 6. Sparse distribution of 100 variables. Considering a t(3)

error. Analysis of αpca,d influence. Box-plots showing the correct selection rate of

the different models.

lasso sgl asgl_pca_d_0.1 asgl_pca_d_0.2 asgl_pca_d_0.3 asgl_pca_d_0.4 asgl_pca_d_0.5 asgl_pca_d_0.6 asgl_pca_d_0.7 asgl_pca_d_0.8 asgl_pca_d_0.9 asgl_pca_d_1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Correct selection rate

The results obtained are shown in Table 2.8. In the low dimensional framework

considering 100 variables it is possible to see how as the percentage of variability

increases, all the metrics are improved achieving smaller prediction errors and better

variable selection. A similar behavior is observed in the high dimensional framework

for the explained variability ranging between 10% up to, approximately, 80%. How-

ever, when further increasing the percentage of explained variability up to 100%,

the results get worse. Our guess is that in high dimensional frameworks, attaining a

100% of explained variability in PCA requires obtaining as many principal compo-

nents as rows in the data matrix, producing overfitted solutions and adding noise to

the predictions. Figures 2.15 and 2.16 show boxplots of the prediction error Et and

the correct selection rate in the high dimensional framework, while Figures 2.17 and

2.18 show the same boxplots in the low dimensional framework. In these boxplots

the behavior described above can be easily seen.

Simulation 7: Influence of αpls,d This simulation is focused on the effect of vari-

ations in the percentage of explained variability using PLS. PLS defines a non-

necesarily orthogonal change of basis matrix, and therefore, it is not possible to

recover all the variability from the original variables. Actually, in the scheme con-

sidering 100 variables, PLS technique could recover at most 70% of the original

variabiity, while in the simulation scheme considering 625 variables, PLS could re-

cover at most 60%. For this reason, in the low dimensional framework different

ASGL plsd models are solved ranging the percentage of explained variability from

10% to 70%, while in the high dimensional framework the variability ranges from

10% to 60%.

The results obtained in this simulation are shown in Table 2.9. In the low dimen-

sional framework considering 100 variables it is possible to see how as the percentage

of variability increases from 10% up to 30% results improve slightly in terms of pre-

diction accuracy. Further increases up to 70% produce small improvements in the

TNR, but overall, changes in the percentage of explained variability in PLS do not

56

Table 2.9: Simulation 7. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpls,d influence.

⃦⃦⃦
β̂ − β

⃦⃦⃦
Et CSR TPR TNR

625 variables. Sparse distribution of variables.

LASSO 23.66 (4.97) 7.99 (1.82) 0.85 (0.04) 0.76 (0.07) 0.90 (0.01)
SGL 18.63 (3.95) 6.06 (1.35) 0.84 (0.04) 0.90 (0.04) 0.79 (0.08)
ASGL-pls − 10% 13.88 (4.23) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.84 (0.04)
ASGL-pls − 20% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls − 30% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls − 40% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls − 50% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls − 60% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)

100 variables. Sparse distribution of variables.

LASSO 0.60 (0.07) 0.60 (0.01) 0.77 (0.09) 1.00 (0.00) 0.67 (0.13)
SGL 0.60 (0.07) 0.60 (0.01) 0.73 (0.12) 1.00 (0.00) 0.90 (0.12)
ASGL-pls − 10% 0.50 (0.07) 0.58 (0.01) 0.87 (0.09) 1.00 (0.00) 0.92 (0.13)
ASGL-pls − 20% 0.46 (0.06) 0.58 (0.01) 0.93 (0.08) 1.00 (0.00) 0.93 (0.12)
ASGL-pls − 30% 0.45 (0.06) 0.57 (0.01) 0.94 (0.08) 1.00 (0.00) 0.93 (0.11)
ASGL-pls − 40% 0.45 (0.06) 0.57 (0.01) 0.95 (0.07) 1.00 (0.00) 0.93 (0.11)
ASGL-pls − 50% 0.45 (0.06) 0.57 (0.01) 0.95 (0.07) 1.00 (0.00) 0.93 (0.09)
ASGL-pls − 60% 0.45 (0.06) 0.57 (0.01) 0.96 (0.05) 1.00 (0.00) 0.95 (0.07)
ASGL-pls − 70% 0.45 (0.06) 0.57 (0.01) 0.96 (0.05) 1.00 (0.00) 0.95 (0.07)

Figure 2.19: Simulation 7. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpls,d influence. Box-plots showing the test error of the different

models.

lasso sgl asgl_pls_d_0.1 asgl_pls_d_0.2 asgl_pls_d_0.3 asgl_pls_d_0.4 asgl_pls_d_0.5 asgl_pls_d_0.6 asgl_pls_d_0.7 asgl_pls_d_0.8 asgl_pls_d_0.9 asgl_pls_d_1

2

4

6

8

10

12 Test error

57

Figure 2.20: Simulation 7. Sparse distribution of 625 variables. Considering a t(3)

error. Analysis of αpls,d influence. Box-plots showing the correct selection rate of

the different models.

lasso sgl asgl_pls_d_0.1 asgl_pls_d_0.2 asgl_pls_d_0.3 asgl_pls_d_0.4 asgl_pls_d_0.5 asgl_pls_d_0.6 asgl_pls_d_0.7 asgl_pls_d_0.8 asgl_pls_d_0.9 asgl_pls_d_1
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Correct selection rate

Figure 2.21: Simulation 7. Sparse distribution of 100 variables. Considering a t(3)

error. Analysis of αpls,d influence. Box-plots showing the test error of the different

models.

lasso sgl asgl_pls_d_0.1 asgl_pls_d_0.2 asgl_pls_d_0.3 asgl_pls_d_0.4 asgl_pls_d_0.5 asgl_pls_d_0.6 asgl_pls_d_0.7 asgl_pls_d_0.8 asgl_pls_d_0.9 asgl_pls_d_1

0.56

0.57

0.58

0.59

0.60

0.61

0.62

Test error

Figure 2.22: Simulation 7. Sparse distribution of 100 variables. Considering a t(3)

error. Analysis of αpls,d influence. Box-plots showing the correct selection rate of

the different models.

lasso sgl asgl_pls_d_0.1 asgl_pls_d_0.2 asgl_pls_d_0.3 asgl_pls_d_0.4 asgl_pls_d_0.5 asgl_pls_d_0.6 asgl_pls_d_0.7 asgl_pls_d_0.8 asgl_pls_d_0.9 asgl_pls_d_1

0.5

0.6

0.7

0.8

0.9

1.0

Correct selection rate

58

affect heavily the performance of the estimator. This is probabily due to the way the

PLS components are obtained, based on the maximization of the covariance between

the response variable and the covariates. This means that the first PLS components

already hold the information most related to the response variable, providing very

good results. A similar behaviour is observed in the high dimensional fraework,

where the prediction accuracy stabilizes while considering a 20% of explained vari-

ability. Figures 2.19 and 2.20 show boxplots of the prediction error Et and the correct

selection rate in the high dimensional framework, while Figures 2.21 and 2.22 show

the same boxplots in the low dimensional framework. In these boxplots the behavior

described above can be easily seen.

Acknowledgments

We appreciate the work of the referees that has contributed to substantially improve

the scientific contributions of this work. In this research we have made use of Uranus,

a supercomputer cluster located at University Carlos III of Madrid and funded jointly

by EU-FEDER funds and by the Spanish Government via the National Projects

No. UNC313-4E-2361, No. ENE2009-12213- C03-03, No. ENE2012-33219 and No.

ENE2015-68265-P. This research was partially supported by research grants and

Project ECO2015-66593-P from Ministerio de Economı́a, Industria y Competitivi-

dad, Project MTM2017-88708-P from Ministerio de Economı́a y Competitividad,

FEDER funds and Project IJCI-2017-34038 from Agencia Estatal de Investigación,

Ministerio de Ciencia, Innovación y Universidades.

59

60

Bibliography

Soumyadeep Chatterjee, Snigdhanshu Banerjee, Arindam, and Auroop R. Ganguly.

Sparse Group Lasso for Regression on Land Climate Variables. In 2011 IEEE

11th International Conference on Data Mining Workshops, pages 1–8. IEEE, 12

2011. ISBN 978-1-4673-0005-6. doi: 10.1109/ICDMW.2011.155.

A. P. Chiang, J. S. Beck, H.-J. Yen, M. K. Tayeh, T. E. Scheetz, R. E. Swiderski,

D. Y. Nishimura, T. A. Braun, K.-Y. A. Kim, J. Huang, K. Elbedour, R. Carmi,

D. C. Slusarski, T. L. Casavant, E. M. Stone, and V. C. Sheffield. Homozygosity

mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-

Biedl syndrome gene (BBS11). Proceedings of the National Academy of Sciences,

103(16):6287–6292, 4 2006. doi: 10.1073/pnas.0600158103.

Hyonho Chun and Sündüz Keleş. Sparse partial least squares regression for simulta-

neous dimension reduction and variable selection. Journal of the Royal Statistical

Society. Series B: Statistical Methodology, 72(1):3–25, 1 2010. ISSN 13697412.

doi: 10.1111/j.1467-9868.2009.00723.x.

Gabriela Ciuperca. Adaptive fused LASSO in grouped quantile regression. Journal

of Statistical Theory and Practice, 11(1):107–125, 1 2017. ISSN 15598616. doi:

10.1080/15598608.2016.1258601.

Gabriela Ciuperca. Adaptive group LASSO selection in quantile models. Statistical

Papers, 60(1):173–197, 2 2019. ISSN 09325026. doi: 10.1007/s00362-016-0832-1.

Steven Diamond and Stephen Boyd. CVXPY: A Python-Embedded Modeling Lan-

guage for Convex Optimization. arXiv:1603.00943, 3 2016.

Alexander Domahidi, Eric Chu, and Stephen Boyd. ECOS: An SOCP Solver

for Embedded Systems. In European Control Conference (ECC), 2013. ISBN

9783952417348. doi: 10.0/Linux-x86{\ }64.

61

Jianqing Fan and Runze Li. Variable Selection via Nonconcave Penalized Likelihood

and Its Oracle Properties. Journal of the American Statistical Association, 96

(456):1348–1360, 2001. ISSN 0162-1459. doi: 10.2307/3085904.

Jianqing Fan and Heng Peng. Nonconcave penalized likelihood with a diverging

number of parameters. Annals of Statistics, 32(3):928–961, 2004. ISSN 00905364.

doi: 10.1214/009053604000000256.

J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse

group lasso. ArXiv:1001.0736, pages 1–8, 2010. ISSN 15410420. doi: 10.1111/

biom.12292. URL http://arxiv.org/abs/1001.0736.

Samiran Ghosh. On the grouped selection and model complexity of the adap-

tive elastic net. Statistics and computing, 21:451–462, 2011. doi: 10.1007/

s11222-010-9181-4. URL https://link.springer.com/content/pdf/10.1007%

2Fs11222-010-9181-4.pdf.

Jian Huang, Joel L. Horowitz, and Shuangge Ma. Asymptotic properties of bridge

estimators in sparse high-dimensional regression models. The Annals of Statistics,

36(2):587–613, 4 2008a. ISSN 00905364. doi: 10.1214/009053607000000875.

Jian Huang, Shuangge Ma, and Cun-Hui Zhang. Adaptive Lasso for Sparse High-

dimensional Regression. Statistica Sinica, 1(374):1–28, 2008b.

Peter J. Huber and Elvezio M. Ronchetti. Robust Statistics: Second Edition. Wiley

Series in Probability and Statistics. wiley, Hoboken, NJ, USA, 2 2009. ISBN

9780470434697. doi: 10.1002/9780470434697. URL http://doi.wiley.com/10.

1002/9780470434697.

Yongdai Kim, Hosik Choi, and Hee Seok Oh. Smoothly clipped absolute deviation

on high dimensions. Journal of the American Statistical Association, 103(484):

1665–1673, 2008. ISSN 01621459. doi: 10.1198/016214508000001066.

Roger Koenker. Quantile Regression. Cambridge university Press, 2005. ISBN

0521338255.

Roger Koenker and Gilbert Bassett. Regression Quantiles. Econometrica, 46(1):

33–50, 1 1978. ISSN 00129682. doi: 10.2307/1913643.

Juan C. Laria, M. Carmen Aguilera-Morillo, and Rosa E. Lillo. An iterative sparse-

group lasso. Journal of Computational and Graphical Statistics, pages 1–21, 2

2019. doi: 10.1080/10618600.2019.1573687.

Youjuan Li and Ji Zhu. L1- -Norm Quantile Regression. Journal of Computational

and Graphical Statistics, 17(1):1–23, 3 2008. doi: 10.1198/106186008X289155.

62

http://arxiv.org/abs/1001.0736
https://link.springer.com/content/pdf/10.1007%2Fs11222-010-9181-4.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11222-010-9181-4.pdf
http://doi.wiley.com/10.1002/9780470434697
http://doi.wiley.com/10.1002/9780470434697

Po Ling Loh. Statistical consistency and asymptotic normality for high-dimensional

robust m-estimators. Annals of Statistics, 45(2):866–896, 2017. ISSN 00905364.

doi: 10.1214/16-AOS1471.

Yuval Nardi and Alessandro Rinaldo. On the asymptotic properties of the group

lasso estimator for linear models. Electronic Journal of Statistics, 2(0):605–633,

2008. ISSN 19357524. doi: 10.1214/08-EJS200.

Benjamin Poignard. Asymptotic theory of the adaptive Sparse Group Lasso. Annals

of the Institute of Statistical Mathematics, 72:297–328, 2018. ISSN 15729052. doi:

10.1007/s10463-018-0692-7.

T. E. Scheetz, K.-Y. A. Kim, R. E. Swiderski, A. R. Philp, T. A. Braun, K. L.

Knudtson, A. M. Dorrance, G. F. DiBona, J. Huang, T. L. Casavant, V. C.

Sheffield, and E. M. Stone. Regulation of gene expression in the mammalian eye

and its relevance to eye disease. Proceedings of the National Academy of Sciences,

103(39):14429–14434, 9 2006. doi: 10.1073/pnas.0602562103.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-

group lasso. Journal of Computational and Graphical Statistics, 22(2):231–245, 4

2013. ISSN 10618600. doi: 10.1080/10618600.2012.681250.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A.

Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P.

Mesirov. Gene set enrichment analysis: A knowledge-based approach for inter-

preting genome-wide expression profiles. Proceedings of the National Academy of

Sciences, 102(43):15545–15550, 10 2005. doi: 10.1073/pnas.0506580102.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of

the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996. doi:

10.2307/2346178.

Lan Wang, Yichao Wu, and Runze Li. Quantile regression for analyzing heterogene-

ity in ultra-high dimension. Journal of the American Statistical Association, 107

(497):214–222, 2012. ISSN 01621459. doi: 10.1080/01621459.2012.656014.

John Wright, Yi Ma, Julien Mairal, Guillermo Sapiro, Thomas S. Huang, and

Shuicheng Yan. Sparse Representation for Computer Vision and Pattern Recog-

nition. Proceedings of the IEEE, 98(6):1031–1044, 6 2010. ISSN 0018-9219. doi:

10.1109/JPROC.2010.2044470.

Yichao Wu and Yufeng Liu. Variable selection in quantile regression. Statistica

Sinica, 19(2):801–817, 2009.

Zakariya Yahya Algamal and Muhammad Hisyam Lee. A two-stage sparse

logistic regression for optimal gene selection in high-dimensional microarray

63

data classification. Advances in Data Analysis and Classification, 13:753–

771, 2019. doi: 10.1007/s11634-018-0334-1. URL https://doi.org/10.1007/

s11634-018-0334-1.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society. Series B (Methodological), 68

(1):49–67, 2006.

Weihua Zhao, Riquan Zhang, and Jicai Liu. Sparse group variable selection based

on quantile hierarchical Lasso. Journal of Applied Statistics, 41(8):1658–1677, 8

2014. ISSN 0266-4763. doi: 10.1080/02664763.2014.888541.

Nengfeng Zhou and Ji Zhu. Group Variable Selection via a Hierarchical Lasso and

Its Oracle Property. Statistics and Its Interface, 3:557–574, 2010. URL http:

//arxiv.org/abs/1006.2871.

Hui Zou. The Adaptive Lasso and Its Oracle Properties. Journal of the American

Statistical Association, 101(476):1418–1429, 12 2006. ISSN 0162-1459. doi: 10.

1198/016214506000000735.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse Principal Component Anal-

ysis. Journal of Computational and Graphical Statistics, 15(2):265–286, 2006. doi:

10.1198/106186006X113430.

64

https://doi.org/10.1007/s11634-018-0334-1
https://doi.org/10.1007/s11634-018-0334-1
http://arxiv.org/abs/1006.2871
http://arxiv.org/abs/1006.2871

CHAPTER 3

A quantile based dimension reduction technique

In Working paper. Statistics and Econometrics 21-06. Universidad Carlos III de

Madrid. Departamento de Estad́ıstica.

Álvaro Méndez Civieta1,2, M. Carmen Aguilera-Morillo2,3 and Rosa E. Lillo1,2.

1. Department of Statistics, Universidad Carlos III de Madrid.

2. uc3m-Santander Big Data Institute.

3. Department of Applied Statistics and Operational Research, and Quality, Uni-

versitat Politècnica de València

Abstract

Partial least squares (PLS) is a dimensionality reduction technique used as an al-

ternative to ordinary least squares (OLS) in situations where the data is colinear or

high dimensional. Both PLS and OLS provide mean based estimates, which are ex-

tremely sensitive to the presence of outliers or heavy tailed distributions. In contrast,

quantile regression is an alternative to OLS that computes robust quantile based es-

timates. In this work, the multivariate PLS is extended to the quantile regression

framework, obtaining a theoretical formulation of the problem and a robust dimen-

sionality reduction technique that we call fast partial quantile regression (fPQR),

that provides quantile based estimates. An efficient implementation of fPQR is also

derived, and its performance is studied through simulation experiments and the

chemometrics well known biscuit dough dataset, a real high dimensional example.

keywords: Partial-least-squares; Quantile-regression; Dimension-reduction; Out-

liers; Robust.

65

3.1 Introduction

Partial least squares (PLS) [Wold, 1973], [Wold et al., 2001] is a dimensionality re-

duction technique commonly applied to two data blocks (predictors and responses)

that works by projecting the available data into a latent structure. The key idea

behind PLS is that it can summarize the predictors into a small set of uncorrelated

latent variables that have maximal covariance with the responses. PLS has proven

to be a versatile alternative to ordinary least squares (OLS), obtaining parsimo-

nious models even when dealing with ill-posed multicollinear problems, commonly

found in different areas of scientific research such as chemometrics, social science

or medicine. See for example [Nguyen and Rocke, 2002], where it is used in a tu-

mor classification problem. In recent years PLS has also received attention when

dealing with the increasingly common problem of high dimensional data, in which

the number of observations is small and the number of variables is very large. In

this regard, Boulesteix and Strimmer [2006] successfully applied PLS to a genomic

dataset. Partial least squares is based on the cross-covariance matrix between pre-

dictors and response, and on least squares models. Least squares models are known

to behave nicely when the errors are normally distributed, but there is no guaran-

tee that the normality will be satisfied in many experimental data problems, where

heavy tailed distributions, and even outliers are expected to be found. This makes

PLS extremely sensitive to the presence of outliers or non normal data. The solu-

tion to this problem has traditionally been centered in robustifying the least squares

estimator in which PLS is based, see for example [Serneels et al., 2005] where they

make use of a robust M-regression estimator, or [Acitas et al., 2020], where a partial

robust adaptive modified maximum likelihood estimator is proposed, among others.

Quantile regression [Koenker and Bassett, 1978] is an important statistical

methodology that allows to describe the conditional quantiles of a response given

a set of covariates. Fitting the data at a set of quantiles provides a more compre-

hensive picture of the response distribution than does the mean, and as opposed to

least squares, quantile regression is resistant to outliers, and can deal with heavy

tailed distributions and heteroscedasticity, the situation when variances depend on

some covariates. Specifically, when the center of the distribution is of interest, the

least absolute deviation (LAD), also called median regression, a particular case of

quantile regression, provides more robust estimators than least squares regression.

In recent years many papers have been published extending quantile regression to

the high dimensional framework by performing variable selection, see for example

Wu and Liu [2009] where an adaptive lasso for quantile regression is introduced, or

[Mendez-Civieta et al., 2021], where an adaptive sparse group lasso for quantile re-

gression is proposed. However, to the best of our knowledge there is very little work

on quantile based dimension reduction techniques. A well known PLS implementa-

tion is given by the NIPALS algorithm [Wold, 1973]. Dodge and Whittaker [2009]

66

extended the NIPALS algorithm for univariate response problems to the quantile

regression framework. They proposed a quantile covariance metric based on the

quantile regression slope and used this metric to modify the univariate NIPALS,

a modification that they called partial quantile regression (PQR). The work from

Dodge and Whittaker [2009] lays the foundation for an extension of PLS to the quan-

tile regression framework, however we find some shortcomings in the development

of the methodology and the algorithmic implementation that should be addressed.

First, it has no background on what is the optimization problem that their PQR

algorithm is solving. Second, it is centered in univariate response problems, provid-

ing no solution for multivariate response problems commonly found in fields such

as chemometrics. Third, the computation time of their quantile coviariance, key

in the algorithmic implementation, grows linearly with the number of variables,

making solving high dimensional problems computationally expensive. The main

contribution of our work is centered in addressing these problems. We define the

optimization problem that the fPQR algorithm solves and study different quantile

covariance alternatives [Li et al., 2015], [Choi and Shin, 2018]. We provide an ef-

ficient implementation of fPQR, significantly reducing the computation time when

compared with that of [Dodge and Whittaker, 2009] while achieving more accurate

predictions. We also provide an implementation suitable for multivariate response

settings. The result is a methodology that parallels the nice properties of PLS: it

is a dimension reduction technique that obtains uncorrelated scores maximizing the

quantile covariance between predictors and responses. But additionally, it is also a

robust, quantile linked methodology suitable for dealing with outliers, heteroscedas-

tic or heavy tailed datasets. The median estimator of the fPQR algorithm is a robust

alternative to PLS, while other quantile levels can provide additional information

on the tails of the responses.

The rest of the paper is organized as follows. In Section 3.2 a brief introduction

of the PLS algorithm for multivariate response is provided. Section 3.3 introduces

the fPQR algorithm and studies different options for a quantile covariance metric.

Section 3.4 tests the performance of the proposed fPQR algorithm in three synthetic

dataset frameworks studying the quality of the estimated β coefficients and the

prediction error. In Section 3.5, the proposed algorithm is used in a real high

dimensional data example. Some computational aspects are briefly commented in

Section 3.6, and the conclusions are provided in Section 3.7.

3.2 The PLS model for multivariate response

Let X ∈ Rn×m and Y ∈ Rn×l be two data matrices, samples drawn from some unknown

population following the linear model,

yi = xiB + εi, i = 1, . . . , n, (3.1)

67

where yi ≡ (yi1, . . . , yil) is the vector containing the response variables for the i-th
observation, xi ≡ (xi1, . . . , xim) contains the predictive variables, B ∈ Rm×l is the

matrix containing the coefficients from the linear relations, and εi ≡ (εi1, . . . , εil) is

the error term. Without loss of generality, consider that both X and Y are mean

centered. The PLS regression methodology works by assuming the existence of a

latent structure,

X = T Pt + E; Y = T Qt + F, (3.2)

where T ∈ Rn×h is the scores matrix formed by h (usually being h ≪ m) linear

combinations of the original variables, P ∈ Rm×h and Q ∈ Rl×h are loadings matrices

and E ∈ Rn×m and F ∈ Rn×l are random error matrices. The aim of PLS regression is

precisely to regress the response matrix Y onto the h latent variables, stored in the

scores matrix T , defining this way a low-dimensional regression model,

yi = t iΓ + ε
∗
i , i = 1, . . . , n, (3.3)

where Γ is the matrix of regression coefficients. PLS is an iterative algorithm in

which the scores in T are obtained sequantially. There are multiple definitions of the

PLS algorithm available in the literature, being NIPALS [Wold, 1973] and SIMPLS

[de Jong, 1993] the most frequently used ones. Here a version of NIPALS that will

be useful in the implementation of the fPQR algorithm is considered:

1. Define X0 = X and Y0 = Y.

2. Compute S 1 = Xt
0Y0 the sample covariance matrix.

3. Obtain the eigen decomposition of S 1S t
1 and take w1 as the eigenvector asso-

ciated to the largest eigenvalue.

4. Calculate the X score vector as t1 = X0w1.

5. Calculate the X loading vector as p1 =
Xt

0 t1

tt
1 t1

.

6. Calculate the Y loading vector as q1 =
Y t

0 t1

tt
1 t1

.

7. Deflat the matrix X0 from the information already explained by scores t1 and

obtain X1 = X0 − t1 pt
1.

8. Deflat the matrix Y1 from the information already explained by scores t1 and

obtain Y1 = Y0 − t1qt
1.

Iterate through steps 2-8 until all h components are computed. Observe that the

deflation process stated in step 7 ensures that the score matrix T will be orthogonal.

68

Once all the required components have been computed, the parameter estimates Γ̂

from equation (3.3) are obtained solving the low dimensional least squares model,

Γ̂ = arg min
Γ

{︂
∥Y − TΓ∥2

}︂
. (3.4)

Finally, one can project the estimate Γ̂ back into the original sub-space spawned

by X and obtain,

B̂ = W(PtW)−1Γ̂. (3.5)

PLS is essentially a covariance maximization problem where, at each iteration

a + 1, the objective function being solved is defined as,

wa+1 = arg max
w,∥w∥=1

{︁
cov(Xaw,Ya) cov(Xaw,Ya)t}︁ , (3.6)

where X0 = X and Y0 = Y, and the solution is the eigenvector associated to the

largest eigenvalue λ1,

S aS t
awa = λ1wa. (3.7)

Posing PLS as a covariance optimization problem opens the door to the possi-

bility of using alternative covariance definitions. Traditionally, robust versions have

been considered in order to obtain robustified PLS algorithms, see for example [Hu-

bert and Branden, 2003]. In this work we are interested in defining not only a robust

PLS estimator, but an estimator linked to the quantiles of the response matrix, giv-

ing the possibility to study the tails of the response matrix and not just the central

behavior. As a solution to this question, a robust quantile based dimension reduc-

tion technique that we call fast partial quantile regression (fPQR) is introduced in

the next section.

3.3 Fast partial quantile regression

There are two key steps in the definition of the fPQR methodology. First, the usage

of a quantile covariance metric linked to the quantiles, instead of the traditional

covariance, that is linked to the mean. As it will be discussed in Section 3.4, the

metric that we consider to be the best alternative was proposed by Li et al. [2015],

although other alternatives [Dodge and Whittaker, 2009], [Choi and Shin, 2018]

will also be studied along Sections 3.3.3 and 3.4. Second, the estimation of the

Γ coefficients defined in equation (3.3). In the PLS algorithm, these coefficients

are estimated using ordinary least squares, but in the fPQR algorithm a quantile

regression model is used instead, ensuring that the Γ̂ estimates remain linked to the

quantiles of the response matrix Y.

69

3.3.1 A quantile covariance

In a very interesting work, Li et al. [2015] extended the usage of autoregressive

models to the quantile framework by defining a novel measure suitable for examining

the linear relationships between any two random variables for a given quantile τ ∈

(0, 1), a measure that they called quantile correlation. Given two random variables

Z1 and Z2, take Qτ,Z2
as the τ-th quantile of Z2 and Qτ,Z2

(Z1) as the τ-th quantile of Z2

conditional to Z1. Then it is possible to demonstrate that Qτ,Z2
(Z1) is independent

of Z1 if and only if the random variables I(Z2 − Qτ,Z2
> 0) and Z1 are independent,

where I(·) is the indicator function. This fact motivated the definition of the quantile

covariance proposed in their work as,

qcovτ{Z1,Z2} = cov
{︂
I
(︂
Z2 − Qτ,Z2

> 0
)︂
,Z1

}︂
= E
{︂
ψτ
(︂
Z2 − Qτ,Z2

)︂
(Z1 − EZ1)

}︂
,

(3.8)

where ψτ(w) = τ − I(w < 0). Being based on a traditional covariance makes this

quantile covariance easy and fast to compute. Additionally, although this definition

is proposed for random variables, it can be extended to random vectors, making it

possible to adapt to the data matrices found in multidimensional problems. Observe

however that, opposed to the traditional covariance, this quantile covariance does

not enjoy the symmetry property, that is, qcovτ(Z1,Z2) ≠ qcovτ(Z2,Z1). A complete

definition of this metric can be found in [Li et al., 2015] where they study a nice

relation between this metric and the slope from a quantile regression model, and

also the asymptotic properties of the estimator.

3.3.2 The fPQR algorithm

The objective function that the fPQR algorithm solves is obtained by adapting the

objective function from a PLS model as it was defined in equation (3.6) using the

quantile covariance introduced in Section 3.3.1,

wa+1 = arg max
w,∥w∥=1

{︁
qcovτ(Xaw,Ya)t qcovτ(Xaw,Ya)

}︁
= arg max

w,∥w∥=1

{︂
wtXt

aψτ(Ya − Qτ,Ya
)ψτ(Ya − Qτ,Ya

)tXaw
}︂
,

(3.9)

where ψτ(w) = τ−I(w < 0). The solution to this equation is the eigenvector associated

to the largest eigenvalue λ1,

Xt
aψτ(Ya − Qτ,Ya

)ψτ(Ya − Qτ,Ya
)tXawa = λ1wa. (3.10)

Based on this idea, the main steps of the fPQR algorithm are defined below,

1. Take τ ∈ (0, 1) the quantile level of interest.

70

2. Define X0 = X and Y0 = Y.

3. Compute S 1,τ = qcovτ(X0,Y0) the sample quantile covariance matrix.

4. Obtain the eigen decomposition of S 1,τS t
1,τ and take w1 as the eigenvector

associated to the largest eigenvalue.

5. Calculate the X score vector as t1 = X0w1.

6. Calculate the X loading vector as p1 =
Xt

0 t1

tt
1 t1

.

7. Calculate the Y loading vector as q1 =
Y t

0 t1

tt
1 t1

.

8. Deflat the matrix X1 from the information already explained by scores t1 and

obtain X1 = X0 − t1 pt
1.

9. Deflat the matrix Y1 from the information already explained by scores t1 and

obtain Y1 = Y0 − t1qt
1.

Iterate through steps 2-8 until all h components are computed. In order to obtain

the parameter estimates Γ̂ in the PLS algorithm, a least squares model was solved

following equation (3.4), but in the fPQR algorithm this is substituted by a quantile

regression model solving,

Γ̃ = arg min
β

⎧⎪⎪⎨⎪⎪⎩1
n

n∑︂
i=1

ρτ(yi − tt
iΓ)

⎫⎪⎪⎬⎪⎪⎭ , (3.11)

where ρτ(u) = u(τ − I(u < 0)) is the quantile regression loss check function. Using

a quantile regression model here ensures that the Γ̂ estimates remain linked to the

quantile of the response matrix Y. Finally, one can project Γ̂ back into the original

sub-space spawned by X as it was done in the PLS models in equation (3.5). The

fPQR is an algorithm that shares many of the benefits of PLS:

• It is a dimension reduction technique suitable for multicollinear or high dimen-

sional data;

• The new scores obtained by the algorithm are orthogonal;

• It maximizes the quantile covariance between predictor and response.

But it also has some additional properties:

• It is a robust methodology, suitable for dealing with outliers or heteroscedastic

data;

• It can provide an estimation of the central behavior of the response conditional

to the predictors, but additionally can provide an estimation of any other

quantile of the response, conditional to the predictors, obtaining a complete

view of the distribution of the response.

71

3.3.3 Other quantile covariance metrics

In Section 3.3.2, the fPQR algorithm was defined as an optimization problem where

a quantile covariance metric is maximized. Although the metric proposed by Li

et al. [2015] was used in the definition of the algorithm, it is possible to consider

alternative versions of fPQR based on other quantile covariance metrics. Along this

section, two other candidates, defined by [Dodge and Whittaker, 2009] and [Choi

and Shin, 2018] are considered, showing their definition and some properties related

to the fPQR performance.

A quantile covariance from Dodge and Whittaker [2009]

Take two random variables Z1 and Z2 following the linear model,

Z2 = Z1β + ε. (3.12)

The analytical solution of the ordinary least squares estimator for model (3.12)

is,

β̂ = var(Z1)−1 cov(Z1,Z2). (3.13)

Dodge and Whittaker [2009] take advantage of this fact and define a quantile

covariance in terms of the quantile regression estimator, mimicking the relation

between the OLS estimator and the traditional covariance displayed in equation

(3.13). Consider the quantile regression estimator,

β̃ = arg min
β

{E ρτ(Z2 − βZ1)} , (3.14)

where ρτ(u) = u(τ− I(u < 0)) is the quantile regression loss check function. Then the

quantile covariance proposed by Dodge and Whittaker [2009] is obtained as,

qcov∗τ(Z1,Z2) = var(Z1)β̃, (3.15)

where β̃ is the quantile regression estimator defined in equation (3.14). Here the

superscript “∗”differentiates this quantile covariance from the one defined in Section

3.3.1. There are some remarks worth mentioning:

• The extension of this quantile covariance to a multidimensional setting is not as

straightforward as in the traditional covariance or in the quantile covariance

proposed by Li et al. [2015]. This means that given a random vector U ≡
(U1, . . . ,Um),

qcov∗τ(U,Z2) ≠ (qcov∗τ(U1,Z2), . . . , qcov∗τ(Um,Z2)). (3.16)

This implies that, in order to ensure that the quantile covariance (in the sense

of Dodge and Whittaker [2009]) between two random variables remains the

72

same regardless of the computation affecting a random vector or not, it must be

computed univariatedly. This way, the computation of the quantile covariance

between U and Z2 requires to solve m univariate quantile regression models,

where m is the dimension of U, greatly affecting the computation time as the

number of variables increase;

• As happened with the quantile covariance defined by Li et al. [2015], this quan-

tile covariance is not symmetric. This means that qcov∗τ(Z1,Z2) ≠ qcov∗τ(Z2,Z1)

Additionally to the quantile covariance described above, the key contribution of

Dodge and Whittaker [2009] was the adaptation of the univariate NIPALS algorithm

to the quantile regression framework. The main differences between their proposal

(PQR) and the work developed here (fPQR) are listed below:

• In the work developed here, the optimization problem that the fPQR algorithm

solves is clearly defined, and based on this definition, the algorithm is proposed.

Opposed to this, Dodge and Whittaker [2009] simply defined the algorithm as a

modification of the univariate PLS NIPALS, without studying the optimization

problem;

• The fPQR algorithm allows Y to be a multivariate response matrix while the

PQR algorithm is limited to univariate responses;

• As it will be seen in Section 3.4, the covariance considered in the fPQR algo-

rithm allows the algorithm to run significantly faster than the PQR algorithm.

A quantile covariance from Choi and Shin [2018]

Given two random variables Z1 and Z2, the Pearson correlation between the two

variables can be seen as the geometric mean of two OLS slopes, β2.1 of Z1 on Z2 and

β1.2 of Z2 on Z1,

cor(Z1,Z2) = sign(β2.1)
√︁
β2.1β1.2. (3.17)

Based on this idea, Choi and Shin [2018] proposed a quantile correlation coeffi-

cient defined as the geometric mean of two quantile regression slopes,

qcor∗∗τ (Z1,Z2) = sign(β2.1(τ))
√︁
β2.1(τ)β1.2(τ), (3.18)

where the superscript “∗∗” is used to differentiate this metric from the ones from [Li

et al., 2015] and [Dodge and Whittaker, 2009]. A full review of the properties of

this metric can be found in the original paper [Choi and Shin, 2018] but there are

some remarks that are worth mentioning:

73

• As it happened with the quantile covariance defined by Dodge and Whittaker

[2009], given a random vector U ≡ (U1, . . . ,Um),

qcor∗∗τ (U,Z2) ≠ (qcor∗∗τ (U1,Z2), . . . , qcor∗∗τ (Um,Z2)). (3.19)

This implies that in order to ensure consistency of the results when dealing

with random vectors, this metric must also be computed univariatedly. The

computation of qcor∗∗τ (U,Z2) requires thus to solve 2m univariate quantile re-

gression models, where m is the dimension of U, significantly affecting the

computation time;

• Opposed to the other quantile metrics under study, this is the only metric that

is symmetric, meaning that qcor∗∗τ (Z1,Z2) = qcor∗∗τ (Z2,Z1).

Observe that the fPQR algorithm requires a quantile covariance, and not a quan-

tile correlation. Although not defined in the original paper, it is possible to obtain

an estimation of a quantile covariance based on equation (3.18). Observe that,

qcor∗∗τ (Z1,Z2) = sign
(︁
β2,1(τ)

)︁ √︁
β2,1(τ)β1,1(τ)

= sign
(︁
β2,1(τ)

)︁ √︄qcov∗τ(Z1,Z2) qcov∗τ(Z2,Z1)
var(Z1) var(Z2)

,
(3.20)

where qcov∗(·, ·) refers to the quantile covariance introduced in Section 3.3.3. This

way, a symmetric quantile covariance can be defined as,

qcov∗∗τ (Z1,Z2) = sign(β2,1(τ))
√︁

qcov∗τ(Z1,Z2) qcov∗τ(Z2,Z1). (3.21)

3.4 Numerical simulation

This section shows the performance of the proposed fPQR methodology under dif-

ferent synthetic datasets. The three quantile covariances under study, proposed

by [Li et al., 2015], [Dodge and Whittaker, 2009] and [Choi and Shin, 2018] are

compared here. Additionally, the algorithm is compared against PLS, taken as a

benchmark model, and the partial robust adaptive modified maximum likelihood

estimator (PRAMML), proposed by Acitas et al. [2020], which is a robust PLS

alternative for univariate response models. In order to compare the quantile esti-

mation provided by fPQR with the mean estimations from PLS and PRAMML, the

quantile level of the fPQR is fixed at τ = 0.5 (the median estimation). For each

dataset D, a partition into two disjoint subsets, Dtrain and Dtest is considered. Dtrain

is used for training the models, this is, solving the model equations. Dtest is used for

testing the models prediction accuracy. The following metrics are computed, where

“#” denotes the cardinal of a set:

74

• ∥β̂ − β∥2: the euclidean distance between the estimated coefficients and the

true coefficients;

•
1

#Dtest

∑︁
(ŷi − yi)2: the mean squared error between the estimated response and

the true response;

• The execution time of each algorithm measured in seconds.

Remark. These simulations compare the results of the fPQR algorithm with the

results from PLS and PRAMML. For this reason, the quantile level is fixed at

τ = 0.5 and the metric considered is the mean squared error. However, when dealing

with other quantile levels, the mean squared error is not a suitable metric, as it does

not take into account the quantile being computed. In such scenarios the following

quantile error metric can be used instead,

Eτ =
1

#Dtest

∑︂
(yi,xi)∈Dtest

ρτ(yi − xt
iβ̂). (3.22)

3.4.1 Simulation 1

The following simulation scheme is an adaptation taken from Mendez-Civieta et al.

[2021]. The idea behind this scheme is to simulate the behavior found in the in-

creasingly common problem of sparse high dimensional data, where the number of

variables is very large, and not all the variables affect the response, being some of

them just noise. This problem can be found in many different areas of scientific

research such as genetics [Boulesteix and Strimmer, 2006] or climate data [Chat-

terjee et al., 2011], and an interesting solution is the usage of dimension reduction

techniques like PLS or the proposed fPQR algorithm. Take the model,

y = Xβ + ε, (3.23)

where the predictors matrix X is generated from a standard normal distribution

and the error term is generated following a chi squared distribution with 3 degrees

of freedom, a distribution known to be heavy tailed and non symmetric. This will

favor the usage of robust estimators. Since we are interested in the high dimensional

framework, a sample size of n = 100 training observations and m = 100 predictive

variables is considered. Out of the 100 predictive variables, 30 are generated from

a standard uniform distribution and the remaining 70 have value 0, meaning that

these 70 variables do not affect the response variable and are simply noise in the

model. Although in real datasets the number of components in the model should be

found based on some sort of cross-validation process, in this simulation it is fixed,

taken equal to the number of significant variables, h = 30. Additionally, a sample

of 500 observations is generated as test set. Observe that this fact does not affect

75

Table 3.1: Simulation 1. Sparse high dimensional framework considering a χ2(3)
error.

⃦⃦⃦
β̂ − β

⃦⃦⃦ 1
#Dtest

∥ŷ − y∥22 Execution time

fPQR Li 3.88 (0.58) 21.59 (5.13) 0.038 (0.01)
fPQR Dodge 4.05 (0.62) 23.02 (5.98) 38.65 (1.649)
fPQR Choi 4.95 (0.94) 31.48 (11.40) 76.78 (2.716)
PLS 8.03 (2.03) 75.42 (37.21) 0.004 (0.001)
PRAMML 6.64 (1.37) 52.11 (20.66) 0.358 (0.047)

Figure 3.1: Simulation 1. Mean squared error of β coefficients.

fPQR Li fPQR Dodge fPQR Choi PLS PRAMML

4

6

8

10

12

14

Euclidean distance of beta coefficients

the consideration of the simulation being high dimensional, as the algorithms are

trained with a number of observations equal to the number of variables. This data

generation process is repeated 100 times, and the results are summarized in terms of

the mean value and standard deviation value (shown in parenthesis) of each metric

computed.

Results from this simulation scheme are displayed in Table 3.1 and Figures 3.1,

3.2 and 3.3. In terms of the euclidean distance of the β coefficients, the best re-

sults are obtained by the fPQR Li estimator, followed by the other quantile based

alternatives, while PLS obtains the worst results, as expected since the normality

assumptions are not met. Observe also that the standard deviation of this metric

is smallest in the fPQR Li, indicating more stable results. In terms of prediction

accuracy, the best results are obtained also by the fPQR Li algorithm, closely fol-

lowed by the fPQR Dodge and achieving the smallest standard deviation values

again. Finally, regarding the execution time the fastest algorithm was PLS and the

second fastest was fPQR Li, while PRAMML took on average 10 times longer than

fPQR Li. One can also see the large execution times using fPQR Dodge or fPQR

Choi alternatives. This is due to the way these covariances are computed, requiring

to solve, at each iteration of the algorithm, m = 100 univariate quantile regression

models in the case of Dodge metric, and 2m = 200 models in the case of Choi metric,

76

Figure 3.2: Simulation 1. Mean squared error of the response variable y.

fPQR Li fPQR Dodge fPQR Choi PLS PRAMML

50

100

150

200

Test error

Figure 3.3: Simulation 1. Execution time measured in seconds.

fPQR Li fPQR Dodge fPQR Choi PLS PRAMML

0

20

40

60

80

Execution time

77

Table 3.2: Simulation 2. Sparse high dimensional framework with multidimensional

response, considering a χ2(3) error.

⃦⃦⃦
β̂ − β

⃦⃦⃦ 1
#Dtest

∥ŷ − y∥22 Execution time

fPQR Li 5.16 (0.42) 15.14 (1.85) 0.10 (0.013)
fPQR Dodge 6.11 (0.48) 16.37 (2.18) 116.645 (2.139)
fPQR Choi 6.70 (0.51) 21.55 (3.89) 232.64 (7.088)
PLS 8.61 (1.01) 32.01 (6.55) 0.023 (0.004)
PRAMML 12.06 (1.38) 56.03 (11.74) 1.02 (0.063)

as it was discussed in Section 3.3.3.

3.4.2 Simulation 2

A second simulation is considered where we study the problem of having a multi-

variate response variable, very common in the field of chemometrics. Take,

Y = XB + ε, (3.24)

where the predictors matrix X of size n = 100 and m = 100 is generated from a

standard normal distribution, and the matrix of coefficients B has size m = 100 and

l = 3. This defines a problem where the response matrix Y has l = 3 dimensions. Out

of the 100 predictive variables, 30 are generated from a standard uniform distribution

and the remaining 70 have value 0, and finally the error term is generated following

a chi squared distribution with 3 degrees of freedom. In this simulation, the number

of components obtained by the algorithms is taken equal to the number of significant

variables, h = 30. Additionally, a sample of 500 observations is generated as test

set and the simulation is repeated 100 times to ensure the stability of the results.

Algorithms PLS and fPQR can deal directly with multivariate response matrices,

but PRAMML solves only univariate models, for this reason in this simulation the

predictions from PRAMML are obtained by solving l = 3 independent univariate

models.

Results from this simulation scheme are displayed in Table 3.2. The best results,

both in terms of the euclidean distance and prediction error, are achieved by the

fPQR Li algorithm, closely followed by fPQR Dodge. The fPQR Li algorithm also

displays the smallest standard deviations, meaning that the results are stable. The

PRAMML estimator is outperformed here by all the other algorithms including PLS,

probably due to the inability to directly solve multivariate problems, requiring to

solve those in a univariate manner. In terms of execution time, the fastest algorithm

is PLS, while fPQR Li is the second fastest running 10 times faster than PRAMML.

The fPQR Dodge and Choi algorithms are again the slowest.

78

Table 3.3: Simulation 3. Euclidean distance of β coefficient estimations under dif-

ferent error distributions.

N(0, 1) t1 Slash

(n,m, h) = (100, 10, 2)

fPQR Li 0.19 (0.13) 0.25 (0.15 0.37 (0.23)
fPQR Dodge 0.19 (0.13) 0.26 (0.16) 0.38 (0.24)
fPQR Choi 0.49 (1.37) 3.46 (55.95) 1.69 (5.70)
PLS 0.19 (0.10) 6.23 (22.57) 12.00 (58.51)
PRAMML 0.16 (0.10) 0.23 (0.14) 0.31 (0.19)

(n,m, h) = (15, 60, 4)

fPQR Li 0.79 (0.33) 1.61 (1.25) 2.21 (1.45)
fPQR Dodge 0.90 (0.40) 1.84 (1.56) 2.49 (1.70)
fPQR Choi 6.74 (42.19) 18.78 (176.08) 28.25 (231.58)
PLS 1.14 (0.42) 14.94 (68.17) 29.55 (183.84)
PRAMML 0.61 (0.31) 1.02 (0.62) 1.42 (0.98)

3.4.3 Simulation 3

The last simulation considered takes the scheme from [Serneels et al., 2005] and

[Acitas et al., 2020]. Consider the model,

y = Xβ + ε = T Ptβ + ε, (3.25)

where X = T Pt ∈ Rn×m is the predictor matrix, T ∈ Rn×h is a scores matrix and

P ∈ Rm×h is a loadings matrix. T and P are generated based on a N(0, 1) distri-

bution, and β ∈ Rm is the vector of true coefficients, generated based on a normal

distribution with mean 0 and standard deviation 0.001. Three possible error distri-

butions are considered for ε ∈ Rn: a standard normal distribution, a t1 distribution,

which is symmetric as the normal distribution but with heavier tails, and a slash dis-

tribution (defined as a standard normal distribution divided by a standard uniform

distribution), which is heavy tailed and non symmetric. The number of components

in the model is fixed, equal to the dimension of the latent loadings h. This process
is repeated 500 times. Two cases are defined based on changes in the number of

training observations n, variables m and components h,

• A low dimensional example: (n,m, h) = (100, 10, 2);

• A high dimensional example: (n,m, h) = (15, 60, 4).

Results from this simulation are shown in Tables 3.3 and 3.4. In terms of the

euclidean distance of the β coefficients, one can see that PRAMML estimator ob-

tains the best results closely followed by fPQR Li and Dodge algorithms, being both

competitive alternatives. It is worth remarking the fact that fPQR Li and Dodge

79

Table 3.4: Simulation 3. Execution time

fPQR Li fPQR Dodge fPQR Choi PLS PRAMML

(n,m, h) = (100, 10, 2)

0.015 0.27 0.54 0.0006 0.017

(n,m, h) = (15, 60, 4)

0.017 2.99 5.94 0.0007 0.021

outperformed PLS even when considering a normal distribution for the error term,

where PLS is expected to excel. Finally, fPQR Choi consistently provides the worst

results. The execution time is affected by the number of observations n, variables m
and l, and components h, but not by the error distribution, for this reason Table 3.4

shows the execution time regardless of the error distribution. PLS is the fastest al-

gorithm, while fPQR Li is the second fastest, closely followed by PRAMML. Results

regarding prediction accuracy are not included in this simulation scheme because

the error distributions considered generated outliers with very large values, provid-

ing predictions where the mean squared error values were very large and very similar

regardless of the algorithm.

The three simulations displayed in this section remark the fact that, among the

three quantile covariances under study, the best alternative for the fPQR algorithm

is the quantile covariance proposed by Li et al. [2015], as it consistently provides the

smallest prediction errors and the smallest euclidean distance of the β coefficients.

Additionally, it is by far the fastest of the three algorithms, having a computation

based on a traditional covariance rather than in solving univariate quantile regression

models, as is the case with the other quantile covariances considered. Comparing

the fPQR Li algorithm for the median with PLS shows that it outperformed PLS in

all the scenarios considered in terms of prediction accuracy and euclidean distance of

the β coefficients. When comparing it with robust PLS alternatives like PRAMML,

it is worth remarking the fact that fPQR Li can be used to solve multidimensional

response problems while PRAMML requires to face this situation by solving uni-

variate models, as discussed in Section 3.4.2. Additionally, one can see that fPQR Li

is a competitive alternative in terms of prediction accuracy and euclidean distance

of the β coefficients, providing better estimations in two of the three simulations,

and being competitive in the last one. In terms of execution time, fPQR Li also

outperformed PRAMML in all the simulations. But the fPQR algorithm has an

additional advantage when compared with any PLS based methodology: PLS based

methodologies can only obtain estimations for the mean of the response matrix,

while fPQR can obtain estimations for different quantile levels. This allows to study

not only the central behavior of the response variable, but also the behavior at any

other quantile of interest, like the tails of the distribution.

80

Figure 3.4: Biscuit dataset: NIR spectra of the biscuit dataset.

−0.2

−0.1

0.0

0.1

0.2

0.3

0 200 400 600
Wavelength

D
iff

(lo
g(

x)
)

The Biscuit NIR data set.

3.5 Real data analysis: Biscuit data

The biscuit data was first introduced in Osborne et al. [1984]. This dataset con-

tains four response variables, concentration of fat, flour, sucrose and water, of 72
biscuit dough samples, where 40 observations usually define a training set and 32 a

prediction set. In this analysis, and following the steps from [Hubert and Branden,

2003], the variable fat was removed because it showed small correlation coefficients

with the other constituents and a larger variance. The rest of the response variables

show larger correlations and similar variances, and for this, a multivariate analysis

is considered. The objective is to predict the values of the three response variables

based on NIR spectra measurements taken every 2 nm from 1200 up to 2400. The

same preprocessing steps as in [Hubert et al., 2002] and [Hubert and Branden, 2003]

were performed, obtaining a NIR spectra prediction matrix of m = 600 dimensions,

shown in Figure 3.4, and a response matrix of l = 3 dimensions. Though observation

23 is known to be an outlier, it is kept in the dataset.

Using this dataset, a comparison of fPQR Li, PLS and PRAMML estimators

is performed. The quantile level is taken as τ = 0.5 so that quantile based results

can be compared with the mean based results from PRAMML and PLS, and since

the PRAMML estimator solves only univariate models, the predictions from this

estimator are obtained by solving 3 independent univariate models. The first step

is to select the number of components to be computed. This is done by performing

5-fold cross validation on the training set, and the objective is to minimize the mean

squared error of the predictions. Figure 3.5 shows the CV results, concluding that

three is the best number of components for any of the models considered.

The final models are built using the 40 observations from the training set and 3
components, and the mean squared error of the prediction of each model is computed

81

Figure 3.5: Biscuit dataset: CV mean squared error on the number of components.

2.00

2.25

2.50

2.75

3.00

2 3 4 5 6 7
Number of components

C
V

 m
ea

n
sq

ua
re

d
er

ro
r

Algorithm

fPQR Li
PLS
PRAMML

CV mean squared error

Table 3.5: Biscuit data: Test mean squared error.

fPQR Li PLS PRAMML

0.491 0.614 0.527

on the test set. Table 3.5 shows the results. One can see that best result is obtained

by fPQR Li, followed by the PRAMML estimator, and PLS obtains the worst result,

presumably due to the presence of outliers in the dataset. An additional advantage

of fPQR Li is that it can provide estimations for different quantile levels. Take for

example observation 41, which is the first one in the test set. This observation has

values flour= 16.44, sucrose= 47.65 and water= 12.57, and the median prediction

obtained using fPQR Li for τ = 0.5 is flour= 15.68, sucrose= 48.39 and water= 12.82.
But one can also calculate an estimation of any other quantile of interest, obtaining

this way prediction intervals. For example, the prediction for the 10% percentile of

the response is flour= 15.24, sucrose= 47.67 and water= 12.39 for a small biscuit

dough given the associated NIR spectra values, while the 90% percentile for a large

biscuit dough has values flour= 17.22, sucrose= 48.41 and water= 13.10. The fPQR

Li algorithm can thus provide a complete picture of the distribution of the response

matrix.

3.6 Computational aspect

All the simulations and analysis commented in Sections 3.4 and 3.5 were run in a

computer with an Intel Core i7-10750H CPU (2.6GHz) processor with 32GB RAM

memory running the O.S. Windows 10. The computation of the fPQR has been

developed in Python 3.8.5 (Anaconda Inc.). The quantile covariance metrics in-

82

troduced in Section 3.3.3 required solving quantile regression models. Those were

solved using the Python package ASGL, built on top of the CVXPY optimization

framework for Python [Diamond and Boyd, 2016] and Mosek solver [ApS, 2021].

The PRAMML estimator was computed using the R package ‘rpls’ [Filzmoser et al.,

2020], as there was no Python implementation for this methodology.

3.7 Conclusion

In this paper the fast partial quantile regression (fPQR) algorithm has been intro-

duced. This algorithm extends the PLS models to the quantile regression framework.

The result is a dimensionality reduction technique that parallels the nice properties

of PLS models but that is linked to the quantiles of the response matrix, being ro-

bust to the presence of outliers or heteroscedastic data. As discussed in Section 3.3,

the key idea behind fPQR is the definition of the objective function that it max-

imizes in terms of a quantile covariance metric, and in this work different metrics

are considered [Li et al., 2015], [Dodge and Whittaker, 2009], [Choi and Shin, 2018].

Section 3.4 studies the performance of the fPQR algorithm using the different quan-

tile metrics in a set of synthetic datasets, concluding that the best results in terms of

prediction accuracy, euclidean distance of the β coefficients and execution time are

obtained using the quantile covariance defined by Li et al. [2015]. Additionally, the

performance of the fPQR algorithm is compared with PLS and PRAMML [Acitas

et al., 2020] estimators, showing that, if the median estimation is computed, fPQR

is a competitive alternative to other robust PLS algorithms, but additionally, fPQR

can obtain estimates for different quantile levels of the response matrix, providing a

complete picture of its distribution. The performance of the proposed work is also

studied in a real high dimensional dataset containing NIR spectra measurements,

where fPQR Li obtains the best prediction accuracy.

Acknowledgments

This research was partially supported by research grants and projects PID2020-

113961GB-I00 and PID2019-104901RB-I00 from Agencia Estatal de Investigación.

83

84

Bibliography

Sukru Acitas, Peter Filzmoser, and Birdal Senoglu. A new partial robust adaptive

modified maximum likelihood estimator. Chemometrics and Intelligent Laboratory

Systems, 204:104068, 2020. ISSN 18733239. doi: 10.1016/j.chemolab.2020.104068.

URL https://doi.org/10.1016/j.chemolab.2020.104068.

Mosek ApS. MOSEK Optimizer API for Python 9.3.6, 2021. URL https://docs.

mosek.com/9.3/pythonapi/index.html.

Anne-laure Boulesteix and Korbinian Strimmer. Partial least squares : a versatile

tool for the analysis of high-dimensional genomic data. Briefings in Bioinformat-

ics, 8(1):32–44, 2006. doi: 10.1093/bib/bbl016.

Soumyadeep Chatterjee, Snigdhanshu Banerjee, Arindam, and Auroop R. Ganguly.

Sparse Group Lasso for Regression on Land Climate Variables. In 2011 IEEE

11th International Conference on Data Mining Workshops, pages 1–8. IEEE, 12

2011. ISBN 978-1-4673-0005-6. doi: 10.1109/ICDMW.2011.155.

Ji-Eun Choi and Dong Wan Shin. Quantile correlation coefficient: a new tail de-

pendence measure. 2018. ISBN 8223277360. URL http://arxiv.org/abs/1803.

06200.

Sijmen de Jong. SIMPLS: An alternative approach to partial least squares regression.

Chemometrics and Intelligent Laboratory Systems, 18(3):251–263, 3 1993. ISSN

0169-7439. doi: 10.1016/0169-7439(93)85002-X.

Steven Diamond and Stephen Boyd. CVXPY: A Python-Embedded Modeling Lan-

guage for Convex Optimization. arXiv:1603.00943, 3 2016.

Yadolah Dodge and Joe Whittaker. Partial quantile regression. Metrika, 70:35–57,

2009. ISSN 00261335. doi: 10.1007/s00184-008-0177-4.

85

https://doi.org/10.1016/j.chemolab.2020.104068
https://docs.mosek.com/9.3/pythonapi/index.html
https://docs.mosek.com/9.3/pythonapi/index.html
http://arxiv.org/abs/1803.06200
http://arxiv.org/abs/1803.06200

Peter Filzmoser, Sukru Acitas, and Birdal Senoglu. rpls: Robust Partial Least

Squares, 2020. URL https://cran.r-project.org/package=rpls.

M. Hubert and K. Vanden Branden. Robust methods for partial least squares re-

gression. Journal of Chemometrics, 17(10):537–549, 10 2003. ISSN 0886-9383.

doi: 10.1002/cem.822. URL http://doi.wiley.com/10.1002/cem.822.

Mia Hubert, Peter J. Rousseeuw, and Sabine Verboven. A fast method for ro-

bust principal components with applications to chemometrics. Chemometrics

and Intelligent Laboratory Systems, 60(1-2):101–111, 2002. ISSN 01697439. doi:

10.1016/S0169-7439(01)00188-5.

Roger Koenker and Gilbert Bassett. Regression Quantiles. Econometrica, 46(1):

33–50, 1 1978. ISSN 00129682. doi: 10.2307/1913643.

Guodong Li, Yang Li, and Chih Ling Tsai. Quantile Correlations and Quantile

Autoregressive Modeling. Journal of the American Statistical Association, 110

(509):246–261, 2015. ISSN 1537274X. doi: 10.1080/01621459.2014.892007.

Alvaro Mendez-Civieta, M. Carmen Aguilera-Morillo, and Rosa E. Lillo. Adaptive

sparse group LASSO in quantile regression. Advances in Data Analysis and Clas-

sification, 15(3):547–573, 2021. ISSN 18625355. doi: 10.1007/s11634-020-00413-8.

Danh V. Nguyen and David M. Rocke. Tumor classification by partial least squares

using microarray gene expression data. Bioinformatics, 18(1):39–50, 2002. ISSN

13674803. doi: 10.1093/bioinformatics/18.1.39.

Brian G. Osborne, Thomas Fearn, Andrew R. Miller, and Stuart Douglas. Appli-

cation of near infrared reflectance spectroscopy to the compositional analysis of

biscuits and biscuit doughs. Journal of the Science of Food and Agriculture, 35

(1):99–105, 1984. ISSN 10970010. doi: 10.1002/jsfa.2740350116.

Sven Serneels, Christophe Croux, Peter Filzmoser, and Pierre J. Van Espen. Partial

robust M-regression. Chemometrics and Intelligent Laboratory Systems, 79(1-2):

55–64, 2005. ISSN 01697439. doi: 10.1016/j.chemolab.2005.04.007.

H Wold. Nonlinear Iterative Partial Least Squares (NIPALS) Modelling: Some Cur-

rent Developments. In Paruchuri R Krishnaiah, editor, Multivariate Analysis?III,

pages 383–407. Academic Press, 1973. ISBN 978-0-12-426653-7.

Svante Wold, Michael Sjöström, and Lennart Eriksson. PLS-regression: A basic

tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2):

109–130, 2001. ISSN 01697439. doi: 10.1016/S0169-7439(01)00155-1.

Yichao Wu and Yufeng Liu. Variable selection in quantile regression. Statistica

Sinica, 19(2):801–817, 2009.

86

https://cran.r-project.org/package=rpls
http://doi.wiley.com/10.1002/cem.822

CHAPTER 4

Functional Quantile Factor Models

Álvaro Méndez Civieta1,2, Ying Wei3 and Jeff Goldsmith3.

1. Department of Statistics, Universidad Carlos III de Madrid.

2. uc3m-Santander Big Data Institute.

3. Department of Biostatistics, Columbia University, New York, U.S.A.

Abstract

This paper introduces the Functional Quantile Factor Model (FQFM), a dimension-

ality reduction technique that extends the concept of functional principal compo-

nents to the quantile regression framework, obtaining a model that can explain the

quantiles of the data conditional on a set of common functions. The need for such

methodology is exemplified by our motivating example: a study in which the level

of physical activity in 420 children was measured during one week. To the best

of our knowledge, there is currently no work understanding the quantile trends of

physical activity from the functional perspective, but it can certainly provide use-

ful information. FQFM is able to capture shifts on the scale of the data affecting

the quantiles, and is also a robust methodology suitable for dealing with outliers

and heteroscedastic data. The model is estimated using penalized M splines, and

can deal with sparse and irregular time measurements. The proposed methodol-

ogy is evaluated in synthetic data and real data analyses, and is implemented in R

programming language.

keywords: Accelerometer data; Functional data; Quantile regression; Penalized

splines; Dimension reduction.

87

Figure 4.1: Accelerometer measurements from 420 children. (A) includes two ob-

servations from the dataset, showing a clear difference in the pattern of physical

activity. (B) shows the full dataset, including an estimate of the mean behavior as

a dashed line.

Child 1 Child 2

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0
00

:0
0

06
:0

0
12

:0
0

18
:0

0
00

:0
0

0

500

1000

Time

A
cc

el
er

om
et

er

Source

Data

Estimation

A

0

500

1000

1500

2000

00
:0

0
06

:0
0

12
:0

0
18

:0
0

00
:0

0

Time

A
cc

el
er

om
et

er

B

4.1 Introduction

Wearables are a new generation of electronic devices that can be easily worn as ac-

cessories like wrist watches, and that allow to quantify different aspects of a user’s

daily activity, for example heart rate, brainwave, activity counts, etc. This infor-

mation is obtained in an objective and unbiased manner, in minute by minute or

even finer granularity providing almost a continuous stream, and can then be an-

alyzed to improve the understanding of the relation between human behavior and

health. Some examples of the usage of wearables in the field of biomedicine include

the effect of age on physical activity [Varma et al., 2017], the study of circadian

rhythms [Xiao et al., 2015], or a study of activity levels on children [Morris et al.,

2006] among others. Traditionally, analysis of these kinds of data has been centered

on simple summaries such as the average daily activity, however this approach ig-

nores the temporal information provided by the continuous stream. This temporal

factor can be better accounted for using functional data analysis (FDA) [Ramsay

and Silvermann, 1998], where each observation represents a curve of activity usually

recorded over a 24 hours period. FDA is a statistics field that has shown an intense

methodological development in recent years and that can be used in many different

areas of scientific research such as chemometrics, economics, engineering, or any

other field where there is a space or temporal factor.

88

This work is motivated by the study of a wearable dataset. Four hundred and

twenty children participating in a Head Start program from centers in northern

Manhattan, the Bronx, and Brooklyn were recruited. Then, field staff attached

an accelerometer to the child’s non-dominant wrist with a hospital band, measuring

their physical activity during a period of 6 days using 1-minute epochs. Each diurnal

activity profile is regarded as a functional data point, and denoted as Xi(t) for child
i at time point t. The profile is obtained by averaging for each separate t across the
6 days, and additionally data is aggregated into 10-minute epochs. For a previous

analysis of this dataset using functional regression, see [Goldsmith et al., 2016].

A very interesting problem that can be studied here is the difference in physical

activity patterns between children. For example, some environmental factors such

as neighborhoods can affect the development of physical activity during the day but

not at night. Describing and understanding the different profiles of physical activity

can be key in the development of effective programs to increase the overall activity.

Figure 4.1 (A) is formed by two specific observations from the accelerometer dataset

showing different physical activity patterns. It includes the estimations provided by

the proposed FQFM methodology for quantiles 10%, 50% and 90%. (B) shows an

estimation of the mean function as a dashed line that describes a clear trend in the

data with the presence of two peaks around 12PM and 8PM, as well as a decrease of

the activity during the night. But the mean alone does not explain all the variability

in the data. Usually, this problem is faced by making use of dimension reduction

techniques such as functional principal component analysis (FPCA). FPCA provides

a set of orthonormal basis functions that best describe variation across curves. See

[Ramsay and Silvermann, 1998] for an introduction on the topic, or [James et al.,

2000] for a usage example of FPCA on growth dataset.

However, FPCA is known to compute mean based estimates, and does not cap-

ture hidden aspects that may affect the scale, shifting the quantiles. It can be

certainly interesting to study not just the variation in the mean but in the quan-

tiles, providing insight on the behavior at the tails of the distribution. There is

very little work on quantile trends for physical activity. The problem of modeling

quantiles was first studied in the context of multivariate regression by Koenker and

Bassett [1978], and has gained special importance in recent years as an alterna-

tive to least squares regression. Quantile regression can provide robust estimates of

the quantiles of a response variable, suitable for dealing with non normal distribu-

tions, heteroscedasticity and outliers. It can also help to understand the behavior

of the data at different quantile levels, providing a complete picture of its distribu-

tion. Quantile regression was probably first extended to the functional framework

by Cardot et al. [2005], where they considered a scalar on function model based on

smoothing splines. Then [Kato, 2012] studied the same model under a PCA basis

framework, and [Chen and Müller, 2012] considered the estimation of the conditional

quantile function by inverting the corresponding conditional distribution function.

89

The problem of a function on scalar model was studied by Yang et al. [2019], where

they modeled the quantile function of each subject as a function of subject-specific

covariates. All these works are centered in a functional regression setting, but do

not consider the study of a dimension reduction technique like FPCA but based on

quantiles. The objective of our work is to develop new methods that allow dimen-

sion reduction and modeling of within and between subject variation in quantiles

over time. To the best of our knowledge, there is no existing approach for modeling

quantiles in FDA.

There have been some advances in the field of quantile factor analysis for panel

data, especially for economic data. Chen et al. [2021] introduced a quantile factor

model that effectively extended factor analysis to quantile regression. They proposed

an iterative algorithm based on the power method [Hotelling, 1933] (used in PCA

estimation) and the quantile regression loss check function. Their methodology is

able to provide quantile dependent loadings and common factors, as opposed to PCA

where neither loadings nor factors are allowed to vary across distributional charac-

teristics. We take this work as a starting point and introduce our main contribution.

We propose a functional quantile factor model (FQFM) that extends the work by

[Chen et al., 2021] to the FDA framework. Instead of treating the data as single

points and estimating the factor curves independently across time, we consider each

observation as a smooth curve measured on a grid of time points and propose an

algorithm that makes use of M-splines with a roughness penalty for the estimation

of the common factor curves. The main advantages of this approach are: (i) this

approach can deal with irregular and sparse sets of time points which can differ

across individuals, while the algorithm by [Chen et al., 2021] is only suitable for

working on traditional panel data where fine grids are taken at the same time points

for all observations, and (ii) the usage of penalized splines ensure that the common

factors are smooth curves, eliminating sharp changes in direction. Additionally, we

introduce the concept of an intercept quantile curve in the algorithm, and study the

deviations of the common factor curves from this quantile trend. Observe that the

usage of penalized splines reduce the impact of the choice of basis, as well as the

impact of the number and position of the knots. It remains to select the value for

the smoothing parameter, and here we consider a cross validation procedure that

minimizes a quantile error measurement.

The rest of the paper is organized as follows. In Section 4.2 the mathematical

formulation of the quantile dependent latent structure that the FQFM solves is

posed. Section 4.2.1 introduces the conceptual definition of the model and a first

version of the iterative algorithm required to solve this problem. In Section 4.2.2

the model is formulated in terms of a basis expansion, and a roughness penalty is

introduced. Section 4.2.3 proposes the matrix formulation of the iterative algorithm

encompassing the basis expansion and the roughness penalty. Section 4.3 tests the

performance of the proposed FQFM algorithm in two synthetic dataset frameworks,

90

studying the integrated mean squared errors between the true quantile distributions

and the quantiles estimated by the algorithm, as well as a quantile based error metric.

In Section 4.4 the proposed algorithm is used in the motivating accelerometer data

example. Some computational aspects are briefly commented in Section 4.5, and

the conclusions are provided in Section 4.6.

4.2 Functional Quantile Factor Analysis

Let Xi(t), i = 1, . . .N be a set of trajectories assumed to be independent realizations

of a real valued second order stochastic process {X(t) : t ∈ T } defined on a bounded

close interval T . Without loss of generality, consider T = [0, 1]. Let us assume that

the sample paths of X are continuous and consider the existence of a latent structure

modelling the quantiles of observation i,

QXi(t)(τ| f (t, τ)) = f0(t) +
r∑︂

j=1

λi j(τ) f j(t, τ) = f0(t) + λi(τ)′ f (t, τ), (4.1)

where τ is the quantile level, r is the number of latent functional factors (r ≪ N),

λi(τ) = (λi1(τ), . . . , λir(τ))′ is an r × 1 quantile dependent vector of factor scores, f0(t)
is a quantile dependent intercept curve, f (t, τ) = (f1(t, τ), . . . , fr(t, τ))′ is the vector of
quantile dependent common functions evaluated at time t and QXi(t)(τ| f (t, τ)) denotes
the τth quantile of Xi(t) conditional on the common functions. Observe that the first

curve f0(t, τ) estimates the general quantile trend of function X(t), and the rest of the

functions f j(t, τ), j = 1, . . . , r are factor curves measuring deviations from this trend.

This behavior parallels that of FPCA, where the functional principal components

show deviations from the mean trend of the data. Taking λi(τ) = (1, λi1(τ), . . . , λir(τ))′

and f (t, τ) = (f0(t), f1(t, τ), . . . , fr(t, τ))′, equation (4.1) can also be posed as,

Xi(t) = λi(τ)′ f (t, τ) + ui(t, τ), (4.2)

where the quantile dependent idiosyncratic error ui(t, τ) satisfies the condition,

P (ui(t, τ) ≤ 0| f (t, τ)) = τ,∀t (4.3)

Just as it happens with other dimensionality reduction techniques such as PCA

or factor analysis, in order to ensure that the solution to the model posed in equation

(4.1) is unique, it is necessary to include some restrictions on both the scores and the

common functions. Without loss of generality, the following conditions are proposed

here, ∫︂ 1

0
f j(t, τ)2dt = 1 and

∫︂ 1

0
f j(t, τ) fm(t, τ)dt = 0 for m < j,

1
N

N∑︂
i=1

λi(τ)λi(τ)′ is diagonal with non increasing diagonal elements.

(4.4)

91

4.2.1 Conceptual formulation

This section is centered on the conceptual formulation of the strategy to solve the

model proposed in equation 4.1 from a functional perspective, while the actual model

resolution over a finite grid of time points will be studied afterwards in Section

4.2.3. In order to keep the notation clear, the dependence of the scores λ(τ) and the

common functions f (t, τ) on the quantile level τ will be assumed, but removed from

further equations keeping these elements simply as λ and f (t) respectively. Consider
Λ = (λ1, . . . , λN)′ and define,

M(Λ, f (t)) =
1
N

N∑︂
i=1

∫︂ 1

0
ρτ
(︁
Xi(t) − λ′i f (t)

)︁
dt, (4.5)

where ρτ(u) = u(τ−I(u < 0)) is the quantile regression loss check function as proposed

by [Koenker and Bassett, 1978] and I(·) is the indicator function. Then, assuming

a parametric approach on both Λ and f (t), the FQFA estimator is obtained as the

solution to the following optimization problem,

(Λ̂, f (t)ˆ) = arg min M(Λ, f (t)), (4.6)

subject to the restrictions posed in equation (4.4). The minimization of this func-

tion defines a non convex optimization problem with no direct analytical solution.

However, following the steps from Chen et al. [2021], an iterative process capable of

finding the stationary points of the objective function can be defined. The key idea

is centered in dividing the objective function into two sub functions,

Given f (t), define M(λi) =
∫︂ 1

0
ρτ
(︁
Xi(t) − λ′i f (t)

)︁
dt, (4.7)

Given Λ, define M(f (t)) =
1
N

N∑︂
i=1

ρτ
(︁
Xi(t) − λ′i f (t)

)︁
. (4.8)

As it happens, M(λi) is convex in λ for each observation i, and M(f (t)) is convex in

f at any time point t. The following iterative algorithm is then proposed,

1. Take a random initialization for the common curves f (0)(t) = (f (0)
0 (t), . . . , f (0)

r (t)).

2. Given f (l−1)(t) solve,

λ(l−1)
i = arg min M(λi) = arg min

∫︂ 1

0
ρτ
(︂
Xi(t) − λ′i f (t)(l−1)

)︂
dt.

Repeat for i = 1, . . . ,N until matrix Λ(l−1) is obtained.

3. Given Λ(l−1), solve,

f (t)(l) = arg min M(f (t)) = arg min
1
N

N∑︂
i=1

ρτ
(︂
Xi(t) − λ

(l−1)′
i f (t)

)︂
.

Iterate through steps 2-3 until the objective function valueM(Λ, f (t)) has converged.
Finally, perform a normalization process to ensure restrictions from equation (4.4)

are satisfied.

92

4.2.2 Basis expansion

In practice, the functions Xi(t) are usually measured on a finite set of time points and

represented as finite dimensional vectors. From a multivariate setting perspective,

Chen et al. [2021] studied the case of decomposing panel data into a set of quantile

dependent scores and common factors when one has measurements taken on a fine

grid at the same time points for all individuals. However, functions are often mea-

sured at irregular and sparse sets of time points that may differ across individuals.

In this work we are interested in handling this more difficult situation. As it is

common in FDA, the first step in the actual estimation of the common curves f (t)
is the reconstruction of the functional form of the data from discrete observations,

handled using an expansion into a splines basis representation,

f j(t) =
p∑︂

k=1

β jkϕk, j = 1, . . . , r, (4.9)

where β jk is a spline coefficient for curve factor j and basis k, and ϕ(t) = (ϕ1, . . . , ϕp)′

is a p dimensional basis. One drawback of [Chen et al., 2021] is the fact that being a

multivariate approach, the estimation of the common curves is performed indepen-

dently across time and smoothness is not taken into account, often obtaining rough

curve estimations for the factors, with sharp spikes that difficult interpretability. A

main objective in this work is to obtain smooth estimates of the common curves,

ensuring that the quantile curves estimates of Xi(t) will also be smooth. There are

different ways in which this can be achieved. Probably the simplest is by controlling

the number of spline basis functions, however this is a discontinuous process. In

this work, a continuous alternative based on a roughness penalty is considered. A

natural way of measuring the roughness of a function f j(t) is centered on the usage of

it’s derivatives of some order d, Dd(f j(t)) = f d
j (t), d ≥ 1. [O’Sullivan, 1986] proposed

using the squared of the second derivative, which is traditionally called curvature,

and defined the penalization,

PEN2(f j) =
∫︂ [︂

D2 f j(t)
]︂2

dt. (4.10)

Functions with large variability are expected to have large values of PEN2(f), and
by controlling it, one can obtain smooth estimates and prevent overfitting the data.

Taking into account the basis expansion defined in equation (4.9), the roughness

penalty is then given by,

PEN2(f j) =
∫︂ [︂

D2β′j·ϕ(t)
]︂2

dt = β′j·Rβ j·, (4.11)

where β j· ∈ R
p is the vector of spline coefficients associated to curve f j(t) and R is the

matrix of the cross inner products of the second order derivatives of basis functions

ϕ.

93

4.2.3 Matrix computation

Let us go now from the conceptual formulation of the model to the actual resolution

considering a over a finite grid of time points. First, we include the basis expansion

and the roughness penalty into the iterative algorithm implementation proposed in

Section 4.2.1. Given the function Xi(t) measured at time points
{︁
ti1, . . . , timi

}︁
let us take

Xi· ∈ R
Ti as the vector storing the values of the function at the time points where it

was measured and define vec(X) = (X1·, . . . , XN·)′ a vector of dimension Tmax =
∑︁N

i=1 Ti

result of row stacking the observations across time points and individuals. Observe

that different individuals may be measured at different time points. This means that

{ti} ≠
{︂
t j

}︂
for i ≠ j, i, j ∈ {1, . . . ,N}. Take Φi ∈ R

p×Ti the basis matrix associated to the

spline basis functions ϕ(t) measured at the same time points as observation i. Take
B ∈ R(r+1)×p the matrix of spline coefficients and vec(B) = (β0·, . . . , βr·)′ a vector of

dimension rp×1 result of row stacking matrix B. Using the Kronecker product, “⊗”,

define
[︂
λ′i ⊗ Φ

′
i

]︂
the super matrix of dimension (Ti × rp) consisting of sub matrices

λi jΦ
′
i , and [Λ ⊗ Φ′] the matrix of dimension Tmax×rp result of concatenating

[︂
λ′i ⊗ Φ

′
i

]︂
across different observations. Finally, define Rr+1 a block diagonal matrix made of

r + 1 replications of the penalization matrix R defined in equation (4.11). Then, the

objective function of the FQFM estimator is rewritten as,

M(Λ, B) =
1
N

N∑︂
i=1

Ti∑︂
t=1

ρτ
(︁
Xit − λ

′
i BΦi
)︁
, (4.12)

and the iterative algorithm is,

1. Take a random initialization of the matrix of spline coefficients B(0)

2. Given B(l−1) solve,

λ(l−1)
i = arg min

1
Ti

Ti∑︂
t=1

ρτ
(︂
xi· − λ

′
i B

(l−1)Φi

)︂
. (4.13)

Repeat for i = 1, . . . ,N until matrix Λ(l−1) is obtained.

3. Given Λ(l−1), solve,

vec(B) = arg min
1

Tmax

Tmax∑︂
a=1

ρτ
(︂
vec(X)a −

[︂
Λ(l−1) ⊗ Φ′

]︂′
a
vec(B)

)︂
+

+ αvec(B)′Rr+1vec(B).

(4.14)

Iterate through steps 2-3 until the objective function value M(Λ, B) has con-

verged. Finally, perform a normalization process to ensure restrictions from equa-

tion (4.4) are satisfied. Observe that the roughness penalty has been included in the

spline coefficients estimation step (equation (4.14)) controlled by a hyper parameter

α. Larger values of α yield to more smooth, smaller curvature estimations of the

94

common factor functions f (t), while smaller values of α produce more variable so-

lutions. The value of this parameter is selected at the beginning of the algorithm

execution and can be optimized using a cross validation based process. Addition-

ally, observe that, opposed to the algorithm proposed by Chen et al. [2021] where

the common factors are estimated independently across time, the formulation in

equation (4.14) estimates the splines coefficients using all the available time points

simultaneously.

4.3 Numerical simulation

This section shows the performance of the proposed FQFM methodology under dif-

ferent synthetic datasets. The results are studied at three different quantile levels:

10%, 50% and 90%, and the algorithm is compared against the QFM methodology

proposed by [Chen et al., 2021]. Additionally, the median estimations provided by

the FQFM and QFM estimators are compared against the FPCA estimation of the

curves mean. The algorithm proposed by Chen et al. [2021] is unable to solve prob-

lems where the data is measured at irregular time grids that vary across individuals,

for this reason the simulations considered here have equally spaced measurements

taken at the same time points for all individuals. For each dataset D, a partition

into two disjoint subsets, Dtrain and Dtest is considered. Dtrain is used for training the

models, this is, solving the model equations. Dtest is used for testing the models pre-

diction accuracy. Given that the FQFM estimator can handle the situation where

data is measured at irregular time points, a last estimator denoted as FQFM50%

is considered. This estimator is built using only a random selection of 50% of the

data points from the training set, effectively making this estimator work with irreg-

ular time grids across individuals. The following metrics are computed for all the

estimators,

• IMSE= 1
Tmax
∥Q̂Xit

(τ) − QXit(τ)∥2. The integrated mean squared error (IMSE)

between the estimation of the quantiles for function Xi(t) and the true value

of the quantiles.

• QE= 1
Tmax

∑︁Tmax

a=1 ρτ
(︂
vec(Q̂Xit

(τ))a − vec(Xit)a

)︂
. The quantile error (QE) mea-

sured as the value of the quantile regression loss check function.

Observe that the value of the IMSE is only available in synthetic datasets where

the true value of the quantiles of Xi(t) is known, but the QE value can always be

computed and is thus considered as the reference metric when dealing with real data

in which the true quantiles are unknown.

95

Figure 4.2: Simulation 1. (A) shows the density function of the asymmetric error

term εi(t). (B) shows a subset of the generated dataset.

0.00

0.05

0.10

0.15

0.20

0 4 8 12

D
en

si
ty

 fu
nc

tio
n

A

95

100

105

110

Time points

V
al

ue

B

4.3.1 Simulation 1

Consider the following data generation process,

Xi(t) = 100 + λi1 + λi2sin(t) + λi3sin(
1
2

t) + εi(t) (4.15)

where

• λi1 ∼ N(0, 0.5) is the score associated to an additive factor that shifts the

location of the data,

• λi2 ∼ N(0, 1) is the score associated to a multiplicative factor that shifts the

scale of the data,

• λi3 ∼ N(0, 1) is the score associated to another multiplicative factor that shifts

the scale of the data,

• εi(t) is the error term, that follows a skewed normal distribution with location=

0, scale= 3 and α = 3.

A grid of 100 equally spaced time points taken in the interval [0, 2π] is considered.
A training dataset formed by 500 observations and a test set formed by additional

500 observations are generated following this process. Figure 4.2 (A) shows the

asymmetric density function of εi(t), while (B) shows a subset of the dataset. In

this simulation the number of factors is taken equal to the number of true factors,

which is 3, a location shift and two scale shifts. Using this data generation process,

a first dataset is created and used for the tuning of the α parameter controlling the

96

Table 4.1: Simulation 1. IMSE and QE of estimators FQFM, FQFM50%, QFM and

PCA for three different quantile levels.

FQFM FQFM50% QFM FPCA

τ = 0.1

IMSE 0.119 0.120 0.183 −

QE 0.259 0.258 0.261 −

τ = 0.5

IMSE 0.166 0.169 0.226 0.184
QE 0.729 0.729 0.733 0.744

τ = 0.9

IMSE 0.547 0.561 0.738 −

QE 0.370 0.368 0.373 −

roughness penalty of the FQFM estimator. After selecting an optimal value for α,

the data generation process is repeated 100 times, and the results are summarized

in terms of the mean value of each metric.

Results from this simulation are shown in Table 4.1. One can see that the small-

est error in both metrics, regardless of the quantile level, is achieved by the FQFM

estimator. Additionally, the FQFM50% estimator, built using a random 50% of the

data points in the training set including irregular time frames varying across obser-

vations, outperforms both QFM and FPCA. Outperforming FPCA in this scenario

is expected, as FPCA is known to work well under symmetric error distributions,

but the error considered here is non symmetric. However, the QFM estimator fails

to outperform it in terms of the IMSE, probably due to the lack of smoothness.

Figure 4.3 shows a comparison of the 3 common curves estimated by FQFM and

QFM algorithms at the three different quantile levels considered. Observe that the

estimations of FQFM are smooth and easily interpretable: factor 1 recovers the ad-

ditive shift, factor 2 recovers the sin(t) true factor and factor 3 recovers the sin(0.5t)
true factor . However, this smoothness and interpretability is lost when considering

QFM estimations. Additionally, Figure 4.4 shows the estimation of the intercept

curve provided by FQFM at the three quantile levels. Observe that it is correctly

capturing the skewness in εi(t), as the distance between the 90% quantile and the me-

dian is larger than the distance between the 10% quantile and the median. In Figure

4.5, an observation from the test set is randomly selected and represented against

its reconstruction provided by QFM and FQFM for the three different quantiles.

Observe how the curve reconstruction provided by FQFM is a smooth estimation,

closer to the true quantiles than the QFM estimation. Finally, Figure 4.6 (A)

shows the basis functions provided by the FPCA algorithm. Observe that FPCA,

97

Figure 4.3: Simulation 1. Comparison of the common curves f (t) estimated using

FQFM and QFM at three quantile levels.

−1

0

1

ta
u=

0.
1

FQFM

−6

−4

−2

0

0 25 50 75 100

QFM

−1

0

1

ta
u=

0.
5

−2.5

0.0

2.5

5.0

0 25 50 75 100

−1

0

1

Time points

ta
u=

0.
9

−5.0

−2.5

0.0

2.5

Time points

Factor Factor 1 Factor 2 Factor 3

Figure 4.4: Simulation 1. Intercept curve estimation provided by FQFM algorithm

at three quantile levels.

100

101

102

103

104

105

Time

Quantile

tau=0.1

tau=0.5

tau=0.9

98

Figure 4.5: Simulation 1. Randomly selected observation from the test set com-

pared against the reconstruction provided by FQFM (A) and QFM (B) at different

quantiles.

96

98

100

102

104

106

Algorithm

Original data

FQFM

True quantile

Reconstruction using FQFMA

96

98

100

102

104

106

Time points

Algorithm

Original data

QFM

True quantile

Reconstruction using QFMB

as FQFM, correctly recovers the true underlying common curves. In plot (B) the

mean estimation of a randomly selected curve is shown.

4.3.2 Simulation 2

Consider the following data generation process,

Xi(t) = 100 + λi1 + λi2sin(t) + εi(t) (4.16)

where

• λi1 ∼ N(0, 0.5) is the score associated to an additive factor that shifts the

location of the data,

• λi2 ∼ N(0, 1) is the score associated to a multiplicative factor that shifts the

scale of the data,

• εi(t) ∼ N(0, σt) is a symmetric error term whose variance is a piecewise linear,

monotonically increasing function of time.

A grid of 100 equally spaced time points taken in the interval [0, 2π] is considered.
A training dataset formed by 500 observations and a test set formed by additional

500 observations are generated following this process. Figure 4.7 (A) shows how

the variance of εi(t) increases along time, while (B) shows a subset of the dataset.

99

Figure 4.6: Simulation 1. Results from the FPCA algorithm. (A) shows the basis

functions estimation. (B) shows the mean estimation of a randomly selected obser-

vation from the test set.

−2

−1

0

1

Time points

V
al

ue

Factor

Factor 1

Factor 2

Factor 3

A

96

98

100

102

104

106

Time points

Algorithm

Original data

FPCA estimation

True quantile

Reconstruction using FPCAB

Figure 4.7: Simulation 1. plot (A) shows the increasing variance of the εi(t) error

term. plot (B) shows a subset of the generated dataset

−5

0

5

Time points

E
rr

or

A

96

100

104

Time points

V
al

ue

B

100

Table 4.2: Simulation 1. IMSE and QE of estimators FQFM, FQFM50%, QFM and

PCA for three different quantile levels.

FQFM FQFM50% QFM FPCA

τ = 0.1

IMSE 0.026 0.030 0.032 −

QE 0.115 0.116 0.116 −

τ = 0.5

IMSE 0.013 0.014 0.016 0.012
QE 0.265 0.265 0.266 0.267

τ = 0.9

IMSE 0.026 0.030 0.032 −

QE 0.115 0.116 0.116 −

Observe that larger time points effectively show larger variability. As in simulation

4.3.1, the number of factors estimated here will be taken equal to the number of true

factors, which is 2, a location shift and a scale shift. As in the previous simulation,

the roughness penalty is optimized on a first repetition of this dataset, and once

optimized, the data generation process is repeated 100 additional times.

Results from this simulation are shown in Table 4.2. One can see that for quan-

tiles 10% and 90%, the smaller error in both metrics is achieved by the FQFM

estimator, while the FQFM50% estimator outperforms the QFM algorithm. The

best estimation for the median is provided by the FPCA estimator. This is some-

how expected, as the distribution error considered in this simulation is symmetric,

but the FQFM provides a very competitive alternative even in this framework. Fig-

ure 4.8 shows a comparison of the 3 common curves estimated by FQFM and QFM

algorithms at the three different quantile levels considered. Observe that, as in the

previous simulation, the estimations of FQFM are smooth and easily interpretable:

factor 1 recovers the additive shift and factor 2 recovers the sin(t) true factor, while
estimations from QFM offer some interpretability but lack smoothness. Addition-

ally, Figure 4.9 shows the estimation of the intercept curve provided by FQFM at

the three quantile levels. Observe how it is correctly estimating the increasing vari-

ability from the error term εi(t). In Figure 4.10, an observation from the test set

is randomly selected and represented against it’s reconstruction provided by QFM

and FQFM for the three different quantiles. As in the previous simulation, FQFM

offers a smoother reconstruction, closer to the true quantiles, than QFM. Finally,

Figure 4.11 (A) shows the basis functions provided by the FPCA algorithm and (B)

the mean estimation of a randomly selected curve.

101

Figure 4.8: Simulation 2. Comparison of the common curves f (t) estimated using

FQFM and QFM at three quantile levels.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ta
u=

0.
1

FQFM

−1

0

1

0 25 50 75 100

QFM

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ta
u=

0.
5

−1

0

1

0 25 50 75 100

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Time points

ta
u=

0.
9

−1

0

1

Time points

Factor Factor 1 Factor 2

Figure 4.9: Simulation 2. Intercept curve estimation provided by FQFM algorithm

at three quantile levels.

98

99

100

101

102

Time

Quantile

tau=0.1

tau=0.5

tau=0.9

102

Figure 4.10: Simulation 2. Randomly selected observation from the test set com-

pared against the reconstruction provided by FQFM (A) and QFM (B) at different

quantiles.

100

102

104

Algorithm

Original data

FQFM

True quantile

Reconstruction using FQFM

100

102

104

Time points

Algorithm

Original data

QFM

True quantile

Reconstruction using FQFM

Figure 4.11: Simulation 2. Results from the FPCA algorithm. (A) shows the

basis functions estimation. (B) shows the mean estimation of a randomly selected

observation from the test set.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ta
u=

0.
1 Factor

Factor 1

Factor 2

FQFM

100

102

104

Time points

Algorithm

Original data

FPCA estimation

True quantile

Reconstruction using FQFM

103

Figure 4.12: Real data analysis. Cross validation results on the number of factors

measuring the quantile error.

tau=0.1 tau=0.5 tau=0.9

2 4 6 8 2 4 6 8 2 4 6 8

20

40

60

80

Number of factors

Q
ua

nt
ile

 e
rr

or

Algorithm FPCA FQFM QFM

Cross validation error

4.4 Real data analysis

In this section we undertake the analysis of the child’s accelerometer dataset intro-

duced in Section 4.1. This dataset includes measurements on a grid of 144 time

points (a measurement every ten minutes for a period of 24 hours) taken in 420
children. Using this dataset, a comparison of FQFM, FQFM50%, QFM and FPCA

is performed. The selection of the number of factors is performed using 3-fold cross

validation. Like in PCA, including more factors tend to reduce the overall error,

but after a certain point, the reduction of the error produced by adding a factor to

the model is not worth the increase in the model complexity. Figure 4.12 shows the

results for FQFM, QFM and FPCA in terms of the quantile error as the number of

factors increase. One can see a very large decrease when the models go from one

factor to two factors, but after that the decrease stabilizes. For this reason we select

2 as the number of factors for the models.

Once the number of factor is selected, we divide the dataset into a train set

formed by 300 observations and a test set formed by 120 observations, and run the

proposed methodologies for quantiles 10%, 50% and 90%. The quantile errors ob-

tained are displayed in Table 4.3. The FQFM provides the smaller quantile error for

all the quantiles, outperforming even FPCA when comparing it against the median

estimator. It is also worth remarking the very good performance achieved by the

FQFM50% even though it was built with only half the data points from the dataset.

This shows great robustness in the algorithm when dealing with missing data.

Figure 4.13 shows a comparison of the 2 common curves estimated by FQFM

and QFM algorithms at the three different quantile levels considered. Observe how

FQFM achieves smoother curve estimates again. The first factor curve seems to

capture the afternoon activity trend, while the second factor seems to capture the

contrast between morning and evening activity.

104

Table 4.3: Real data. QE of estimators FQFM, FQFM50%, QFM and PCA for three

different quantile levels.

FQFM FQFM50% QFM FPCA

τ = 0.1

QE 26.13 26.51 26.17 −

τ = 0.5

QE 65.33 65.54 66.09 66.23

τ = 0.9

QE 28.89 28.92 29.26 −

Figure 4.13: Real data. Comparison of the common curves f (t) estimated using

FQFM and QFM at three quantile levels.

−1

0

1

2

ta
u=

0.
1

FQFM

−2

−1

0

1

2

0 50 100 150

QFM

−2

−1

0

1

ta
u=

0.
5

−2

−1

0

1

2

0 50 100 150

−2

−1

0

1

Time points

ta
u=

0.
9

−2

−1

0

1

2

Time points

Factor Factor 1 Factor 2

105

Figure 4.14: Real data. Intercept curve estimation provided by FQFM algorithm at

three quantile levels.

0

250

500

750

1000

Time

A
cc

el
er

om
et

er Quantile

tau=0.1

tau=0.5

tau=0.9

Additionally, Figure 4.14 shows the estimation of the intercept curve provided by

FQFM at the three quantile levels. In Figure 4.15, an observation from the test set

is randomly selected and represented against its reconstruction provided by QFM

and FQFM for the three different quantiles. As in the previous simulation, FQFM

offers a smoother reconstruction than QFM. Finally, Figure 4.16 (A) shows the

basis functions provided by the FPCA algorithm and (B) the mean estimation of a

randomly selected curve.

4.5 Computational aspects

All the simulations and analysis commented in Sections 4.3 and 4.4 were run in a

computer with an Intel Core i7-10750H CPU (2.6GHz) processor with 32GB RAM

memory running the O.S. Windows 10. The programming of the FQFM algorithm

has been developed in R [R Core Team, 2021]. The splines penalization step de-

scribed in Section 4.2.2 required solving a penalized quantile regression model. This

was programmed using the R package CVXR [Fu et al., 2020], a framework for con-

vex optimization in R, and Mosek solver [ApS, 2021]. Mosek is a very fast solver

with a freely available academic license, but the FQFM algorithm cal also be exe-

cuted using the (slightly slower) open source solver SCS [Brendan et al., 2016], or

any other solver that can be integrated into CVXR.

4.6 Conclusion

This work introduces the functional quantile factor model (FQFM). This algorithm

extends the concept of functional principal components to the quantile regression

framework. The result is a dimensionality reduction technique capable of estimating

the different quantiles of the data conditional on a set of common functions. Being

based on the quantiles, this estimator is robust to the presence of outliers and can

deal with heteroscedastic data. Also, understanding the quantile trends found in

106

Figure 4.15: Real data. Randomly selected observation from the test set compared

against the reconstruction provided by FQFM (A) and QFM (B) at different quan-

tiles.

0

400

800

1200

Algorithm

Original data

FQFM

Reconstruction using FQFM

0

500

1000

Algorithm

Original data

QFM

Reconstruction using QFM

Figure 4.16: Real data Results from the FPCA algorithm. (A) shows the basis func-

tions estimation. (B) shows the mean estimation of a randomly selected observation

from the test set.

−1

0

1

2

V
al

ue

Factor

Factor 1

Factor 2

0

400

800

1200

Time points

Algorithm

Original data

FPCA estimation

Time points

Reconstruction using FPCA

107

the data can provide useful insight. Section 4.3 studies the performance of the

FQFM algorithm in a skewed dataset and a scenario where the error variability is

a function of time, while in Section 4.4 its performance is studied in a real dataset

measuring levels of physical activity in childrens during the day. When comparing it

against the QFM method proposed by [Chen et al., 2021] one can see the advantages

of our proposal, as it provides smaller error measurements, and smoother, more

interpretable results. Additionally, the algorithm can be executed even under the

situation when observations are measured at irregular time points that vary across

individuals, and shows great robustness in the results achieved even under this more

difficult scenario. If the median estimation is computed, one can see the FQFM

estimation as a robust alternative of FPCA, showing an advantage in asymmetric

scenarios and obtaining competitive results in symmetric scenarios.

Acknowledgments

This research was partially supported by research grant PID2019-104901RB-I00 from

Agencia Estatal de Investigación, as well as the National Institute of Neurological

Disorders and Stroke Award R01NS097423-01 from the National Institutes of Health.

108

Bibliography

Mosek ApS. MOSEK Optimizer API for Python 9.3.6, 2021. URL https://docs.

mosek.com/9.3/pythonapi/index.html.

O’Donoghue Brendan, Chu Eric, Parikh Neal, and Boyd Stephen. Operator Split-

ting for Conic Optimization via Homogeneous Self-Dual Embedding. Journal of

Optimization Theory and Applications, 169(3):1042–1068, 6 2016. doi: 10.1007/

s10957-016-0892-3. URL https://doi.org/10.1007/s10957-016-0892-3.

Hervé Cardot, Christophe Crambes, and Pascal Sarda. Quantile regression when

the covariates are functions. Journal of Nonparametric Statistics, 17(7):841–856,

2005. ISSN 10485252. doi: 10.1080/10485250500303015.

Kehui Chen and Hans Georg Müller. Conditional quantile analysis when covariates

are functions, with application to growth data. Journal of the Royal Statistical

Society. Series B: Statistical Methodology, 74(1):67–89, 2012. ISSN 13697412. doi:

10.1111/j.1467-9868.2011.01008.x.

Liang Chen, Juan J. Dolado, and Jesús Gonzalo. Quantile Factor Models. Econo-

metrica, 89(2):875–910, 2021. ISSN 0012-9682. doi: 10.3982/ecta15746.

Anqi Fu, Balasubramanian Narasimhan, and Stephen Boyd. CVXR: An R Package

for Disciplined Convex Optimization. Journal of Statistical Software, 94(14):1–34,

2020. doi: 10.18637/jss.v094.i14.

Jeff Goldsmith, Xinyue Liu, Judith Jacobson, and Andrew Rundle. New Insights

into Activity Patterns in Children, Found Using Functional Data Analyses. Med

Sci Sports Exerc, 48(9):1723–1729, 2016. doi: 10.1249/MSS.0000000000000968.

Harold Hotelling. Analysis of a complex of statistical variables into Principal Com-

ponents. The Journal of Educational Psychology, 24:417–441, 1933.

109

https://docs.mosek.com/9.3/pythonapi/index.html
https://docs.mosek.com/9.3/pythonapi/index.html
https://doi.org/10.1007/s10957-016-0892-3

Gareth M. James, Trevor J. Hastie, and Catherine A. Sugar. Principal compo-

nent models for sparse functional data. Biometrika, 87(3):587–602, 2000. ISSN

00063444. doi: 10.1093/biomet/87.3.587.

Kengo Kato. Estimation in functional linear quantile regression. Annals of Statistics,

40(6):3108–3136, 2012. ISSN 00905364. doi: 10.1214/12-AOS1066.

Roger Koenker and Gilbert Bassett. Regression Quantiles. Econometrica, 46(1):

33–50, 1 1978. ISSN 00129682. doi: 10.2307/1913643.

Jeffrey S. Morris, Cassandra Arroyo, Brent A. Coull, Louise M. Ryan, Richard Her-

rick, and Steven L. Gortmaker. Using Wavelet-Based Functional Mixed Models to

Characterize Population Heterogeneity in Accelerometer Profiles: A Case Study.

Journal of the American Statistical Association, 101(576):1352–1364, 2006. doi:

10.1198/016214506000000465.

Finbarr O’Sullivan. A Statistical Perspective on Ill-posed Inverse Problems. Statis-

tical Science, 1(4):502–527, 1986. ISSN 2168-8745. doi: 10.1214/ss/1177013525.

R Core Team. R: A Language and Environment for Statistical Computing, 2021.

URL https://www.r-project.org/.

J.O. Ramsay and B.W. Silvermann. Functional Data Analysis. Springer Series in

Statistics. Springer, 1998. ISBN 9780387400808. doi: 10.1007/b98888.

Vijay R. Varma, Debangan Dey, Andrew Leroux, Junrui Di, Jacek Urbanek, Luo

Xiao, and Vadim Zipunnikov. Re-evaluating the effect of age on physical activity

over the lifespan. Physiology & behavior, 101:102–108, 2017. doi: 10.1016/j.

ypmed.2017.05.030.

Luo Xiao, Lei Huang, Jennifer A. Schrack, Luigi Ferrucci, Vadim Zipunnikov, and

Ciprian M. Crainiceanu. Quantifying the lifetime circadian rhythm of physical

activity: A covariate-dependent functional approach. Biostatistics, 16(2):352–367,

2015. ISSN 14684357. doi: 10.1093/biostatistics/kxu045.

Hojin Yang, Veerabhadran Baladandayuthapani, Arvind U.K. Rao, and Jeffrey S.

Morris. Quantile Function on Scalar Regression Analysis for Distributional

Data. Journal of the American Statistical Association, 0(0):1–39, 2019. ISSN

1537274X. doi: 10.1080/01621459.2019.1609969. URL https://doi.org/10.

1080/01621459.2019.1609969.

110

https://www.r-project.org/
https://doi.org/10.1080/01621459.2019.1609969
https://doi.org/10.1080/01621459.2019.1609969

CHAPTER 5

asgl: A Python Package for Penalized Linear and Quantile

Regression

In arXiv preprint arXiv:2111.00472, (2021).

Álvaro Méndez Civieta1,2, M. Carmen Aguilera-Morillo2,3 and Rosa E. Lillo1,2.

1. Department of Statistics, Universidad Carlos III de Madrid.

2. uc3m-Santander Big Data Institute.

3. Department of Applied Statistics and Operational Research, and Quality, Uni-

versitat Politècnica de València

Abstract

asgl is a Python package that solves penalized linear regression and quantile regres-

sion models for simultaneous variable selection and prediction, for both high and

low dimensional frameworks. It makes very easy to set up and solve different types

of lasso based penalizations among which the asgl (adaptive sparse group lasso, that

gives name to the package) is remarked. This package is built on top of cvxpy, a

Python-embedded modeling language for convex optimization problems and makes

extensive use of multiprocessing, a Python module for parallel computing that sig-

nificantly reduces computation times of asgl.

keywords: Regression, Variable-selection, High-dimension, Python.

111

5.1 Introduction

In this paper, asgl, an open source Python [van Rossum and Drake, 2009] package

for solving penalized linear regression and quantile regression models is introduced.

While linear regression is very well known and need no introduction, quantile re-

gression is less known. Quantile regression provides an estimation of the conditional

quantile of a response variable as a function of the covariates, it is robust against

outliers and can deal with heteroscedastic datasets (as opposed to linear regression).

Ever since the seminal work from Koenker and Bassett [1978] it has become more

and more used in practical applications thanks to these properties.

Penalized regression is a field under intense research nowadays due to the in-

creasing number of problems where high dimensional data (in which the number of

variables p is larger than the number of observations n) can be seen. It is not un-

common to find this scenario in problems from fields such as genetics [Simon et al.,

2013], finances [Rapach et al., 2013] or pattern recognition [Wright et al., 2010]

among many others. One of the best known automatic prediction and variable se-

lection alternatives for high dimensional data is lasso (least absolute shrinkage and

selection operator) [Tibshirani, 1996], which makes use of an ℓ1 norm to provide

sparse estimations of the coefficients of the model. After Yuan and Lin [2006] pro-

posed the group lasso penalization, a considerable literature was generated about the

selection of variables both at group and within-group levels, among which the sparse

group lasso, proposed by Friedman et al. [2010] is worth to remark. This penaliza-

tion generalizes lasso and group lasso providing solutions that are both between and

within group sparse.

The penalizations mentioned above achieve good prediction results, but face the

same underlying theoretical problem. They all provide biased solutions due to the

usage of constant penalization rates, fact that can affect the quality of variable

selection and prediction accuracy. This problem was addressed by Zou [2006] who

proposed using what is known as the adaptive idea, which consists of adding some

weights previously defined by the researcher to the penalization term. Traditionally,

these weights are computed based on non penalized models, a fact that limited the

usage of adaptive formulations to low dimensional frameworks where non penalized

models could be solved. However, Mendez-Civieta et al. [2021] defined an asgl

(adaptive sparse group lasso) estimator and proposed a series of weight calculation

alternatives based on dimensionality reduction techniques pca (principal component

analysis) and pls (partial least squares), that provide very good results in both high

dimensional and low dimensional frameworks.

It is possible to find implementations of many of the penalization alternatives

discussed above in different programming languages. One can find lasso, group lasso

and sparse group lasso penalized linear regression models in R (for example, using the

112

Table 5.1: Overview of availability of penalizations mentioned along Section 5.1 in

R, Python and Matlab.

R Python Matlab

Linear regression Lasso Lasso Lasso

Group lasso Group lasso

Sparse group lasso

Quantile regression Lasso

sgl package), lasso and group lasso linear models in Python (in sklearn and group-

lasso respectively) and lasso models in Matlab. Regarding quantile regression, it is

possible to find lasso penalized models in the quantreg package for R, but no quantile

regression penalization alternatives are available in Python or Matlab. Additionally,

to the best of our knowledge, there is no statistical software currently implementing

the usage of adaptive penalizations, which are known to provide much better results

than the non-adaptive counterparts. An overview of this situation is shown in Table

5.1.

The asgl package solves this problem. It provides an easy to use framework where

lasso, group lasso, sparse group lasso, and adaptive versions of all these penalizations

can be solved for both linear models and quantile regression models. It also imple-

ments the main weight calculation alternatives proposed in Mendez-Civieta et al.

[2021] for adaptive formulations as well as a grid search based system for optimizing

the parameter values using cross validation.

The rest of the paper is organized as follows. In Section 5.2, the linear regression

and quantile regression models are specified, along with lasso, group lasso, sparse

group lasso, and adaptive penalizations. In Section 5.3 the main asgl classes are

described in detail. Section 5.4 then illustrates the usage of this package to a variety

of examples. Section 5.6 concludes.

5.2 Theoretical background

Given a sample of n observations structured as D = (yi, xi), i = 1, . . . , n from some

unknown population, define a linear model,

yi = xt
iβ + εi, i = 1, . . . , n, (5.1)

where yi is the i-th observation of the response variable, xi ≡ (xi1, . . . , xip) is the

vector of p covariates for observation i and εi is the error term.

113

5.2.1 Least squares and quantile regression

Least squares regression

Least squares regression, usually known simply as linear regression, provides an

estimation of the conditional mean of the response variable as a function of the

covariates. The solution of this type of models is obtained by minimizing the risk

function,

R(β) =
1
n

n∑︂
i=1

(yi − xt
iβ)2. (5.2)

Quantile regression

Quantile regression, initially proposed by Koenker and Bassett [1978] provides an

estimation of the conditional quantile of the response variable as a function of the

covariates. Opposed to least squares regression, quantile regression offers robust

estimators when dealing with heteroscedasticity and outliers, fact that has made it

increasingly popular on recent years. For a full review on quantile regression we

recommend Koenker [2005]. The solution of quantile regression models is obtained

from the minimization of the risk function,

R(β) =
1
n

n∑︂
i=1

ρτ(yi − xt
iβ), (5.3)

where ρτ(u) is the loss check function defined as ρτ(u) = u(τ − I(u < 0)).

5.2.2 Penalized regression

We call high dimensional to a framework in which the number of covariates p is larger

than the number of observations n (n < p). This situation is becoming more and

more common, and can be found in problems from different fields such as genetics

(Yahya Algamal and Hisyam Lee [2019]), finance (Rapach et al. [2013]) or climate

data (Chatterjee et al. [2011]) among others.

Lasso

Regression models including a penalization constraint have become very popular in

high dimensional problems, and one of the best known penalization alternatives is

lasso. Lasso, initially proposed by Tibshirani [1996] solves the problem,

β̂ = arg min
β∈Rp

{︁
R(β) + λ ∥β∥1

}︁
, (5.4)

114

where R(β) can be either the linear regression or the quantile regression risk function

defined in equations 5.2 and 5.3 respectively, and λ is a parameter controlling the

weight given to the penalization. Lasso sends part of the beta coefficients to zero,

yielding solutions that are sparse and performing automatic prediction and variable

selection.

Group lasso

There are situations in which data has a natural grouped structure, and group

sparsity rather than individual sparsity is desired. One can think, for example, in

groups of genetical pathways in the field of genetics or groups of technical indicators

in finances. The problem of selecting the most important groups, rather than the

most important variables was faced by Yuan and Lin [2006] who proposed the usage

of a group lasso estimator,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + λ
K∑︂

l=1

√
pl

⃦⃦⃦
βl
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ , (5.5)

where K is the number of groups, βl ∈ Rpl are vectors of components of β from the

l-th group, and pl is the size of the l-th group. Group lasso works in a similar way

to lasso, but while lasso provides individual sparse solutions, group lasso provides

group sparse solutions, selecting or sending to zero whole groups of variables.

Sparse group lasso

Sparse group lasso, initially proposed by Friedman et al. [2010], is defined as a

linear combination between lasso and group lasso that generalizes both penalizations

providing solutions that are between and within group sparse. This penalization

solves the problem,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + αλ ∥β∥1 + (1 − α)λ
K∑︂

l=1

√
pl

⃦⃦⃦
βl
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ , (5.6)

where α controls the balance between lasso and group lasso.

Adaptive penalizations

All the penalizations defined above face the same problem: they apply a constant

penalization rate that provides biased estimates, fact that can affect the quality of

the variable selection increasing prediction error. As a solution to this problem,

Zou [2006] proposed using what is now known as the adaptive idea, and defined an

adaptive lasso. This idea consists of adding some weights previously defined by the

115

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

lasso

grp-lasso

sgl

Figure 5.1: Contour lines for lasso, group lasso and sparse group lasso penalties in

the case of a single 2-dimensional group

researcher to the penalization. Using the adaptive idea, Mendez-Civieta et al. [2021]

defined the adaptive sparse group lasso as,

β̂ = arg min
β∈Rp

⎧⎪⎪⎨⎪⎪⎩R(β) + αλ
p∑︂

j=1

w̃ j|β j| + (1 − α)λ
K∑︂

l=1

√
plvl̃

⃦⃦⃦
βl
⃦⃦⃦

2

⎫⎪⎪⎬⎪⎪⎭ , (5.7)

where w̃ ∈ Rp and ṽ ∈ RK are known weights vectors. Intuitively, if a variable (or

group of variables) is important, it should have a small weight, and this way would be

lightly penalized. On the other hand, if it is not important, by setting a large weight

it is heavily penalized. The adaptive idea enhances model flexibility, improving

variable selection and prediction. Observe that adaptive lasso and adaptive group

lasso can be defined just in the same way by adding weights to lasso and group lasso

respectively.

5.2.3 Weight calculation

The usage of adaptive penalizations opens the door to a question on how to estimate

the adaptive weights w̃ ∈ Rp and ṽ ∈ RK. These weights need to be specified by

the researcher prior of solving the optimization problem, and in low dimensional

frameworks (where n > p), they can be computed as,

wi˜ =
1
|βi˜ |γ

, (5.8)

where wi˜ and βi˜ correspond to the i-th element of vectors w̃ and β̃ respectively and β̃

is the solution vector obtained from the unpenalized (linear or quantile) regression

116

model, |·| denotes the absolute value function and γ is a non negative constant. A

small β coefficient results into a large weight, which is heavily penalized and more

likely left outside the final model. On the opposite hand, large β coefficients result

into small weights that are likely to remain in the final model. However, when

dealing with a high dimensional framework solving an unpenalized model is not

feasible, rendering impossible the usage of adaptive formulations. As a solution to

this problem, Mendez-Civieta et al. [2021] proposed a series of weight calculation

alternatives based on dimensionality reduction techniques pca (principal component

analysis) and pls (partial least squares).

pca based on a subset of components

Given the covariates matrix X ∈ Rn×p with maximum rank r = min {n, p}, the matrix

of pca loadings Q ∈ Rp×r and the matrix of pca scores Z = XQ ∈ Rn×r, this proposal

takes advantage of the fact that the pca scores define a low dimensional framework.

Consider the submatrix Qd = [q1, . . . , qd]t where qi ∈ R
p is the i-th column of the

matrix Q, and d ∈ {1, . . . , r} is the number of components chosen in order to explain

up to a certain percentage of variability, which is fixed by the researcher. Obtain

Zd = XQd ∈ R
n×d the projection of X into the subspace generated by Qd and solve

the unpenalized model,

β̃ = arg min
β∈Rd

⎧⎪⎪⎨⎪⎪⎩1
n

n∑︂
i=1

ρτ(yi − zt
iβ)

⎫⎪⎪⎬⎪⎪⎭ . (5.9)

Using this solution, it is possible to obtain an estimation of the high dimensional

scenario solution, β̂ = Qdβ̃ ∈ R
p and compute the weights as,

w j˜ =
1
|β̂ j|

γ1
and vl̃ =

1⃦⃦⃦⃦
β̂

l
⃦⃦⃦⃦γ2

2

, (5.10)

where β̂ j is the j-th component from β̂, β̂
l
is the vector of components of β from

the l-th group, and γ1 and γ2 are non negative constants usually taken in [0, 2]. An
in-depth explanation of this process can be read in the original paper.

pca based on the first component

Each pca score is built as a linear combination of the original variables. This means

that another alternative for estimating the weights can be defined as simply using

the weights from the first pca loading as weights for the adaptive sparse group lasso

model,

w j˜ =
1
|q1 j|

γ1
and vl̃ =

1⃦⃦⃦
ql

1

⃦⃦⃦γ2

2

, (5.11)

117

where q1 j is the j-th component from q1 and defines the weight associated to the

j-th original variable, ql
1 is the vector of components of q1 from the l-th group and

γ1 and γ2 are non negative constants usually taken in [0, 2].

pls based alternatives

In the same way as for the pca proposal, two alternatives of weight calculation

using pls are considered: based on a subset of pls components, and based just on

the first pls component. It is worth to remark that due to the way in which the

pls components are obtained, this method cannot recover all the original variability

from matrix X as opposed to what happens in pca, where this is ensured by the

orthogonal loadings.

sparse pca

Sparse pca was initially proposed by [Zou et al., 2006] as a method that computes

principal components adding a lasso based penalization to standard pca. This yields

to principal components that are sparse linear combinations of the original variables,

though are no longer orthogonal. Using the SparsePCA from sklearn package, the

asgl package incorporates a weight calculation alternative based on a subset of sparse

pca components.

lasso

In addition to the weight calculation alternatives proposed above, the asgl package

implements the usage of a lasso penalized model, that can be directly solved in

high dimensional frameworks, as a first step for the calculation of adaptive based

formulations.

5.3 Python implementation

The asgl package is built around four main class objects: ASGL, WEIGHTS, CV and

TVT, that will be described in detail along this section.

5.3.1 ASGL class

The ASGL class is the central part of the package. It includes all the necessary code

in order to define and solve penalized regression models. The default parameters

from the ASGL class are,

118

model = asgl.ASGL(model, penalization, intercept=True, tol=1e-5,

lambda1=1, alpha=0.5, tau=0.5, lasso_weights=None,

gl_weights=None, parallel=False, num_cores=None, solver=None,

max_iters=500)

where the meaning of the arguments is,

• model: A string specifying the model to be solved. Valid alternatives are:

– "lm" for solving linear regression models ,

– "qr" for solving quantile regression models,

• penalization: A string specifying the type of penalization to be applied.

Valid alternatives are:

– "lasso" for using a lasso penalization,

– "gl" for using a group lasso penalization,

– "sgl" for using an sparse group lasso penalization,

– "alasso" for using an adaptive sparse group lasso penalization,

– "agl" for using an adaptive group lasso penalization,

– "asgl" for using an adaptive sparse group lasso penalization,

– "asgl_lasso" for using an sparse group lasso with adaptive weights in

the lasso part,

– "asgl_gl" for using an sparse group lasso with adaptive weights in the

group lasso part,

• intercept: Boolean indicating True if the intercept should be fitted or False

otherwise,

• tol: A floating point number, tolerance for a coefficient in the model to be

considered as 0,

• lambda1: A number, Python list of numbers or 1D numpy.array of numbers.

Parameter λ from the penalization definitions in Section 5.2.2. It controls the

level of shrinkage applied on penalizations. If more than one value is provided,

the program solves one model for each possible parameter combination found,

• alpha: A floating point number, list of numbers or 1D numpy.array of

numbers. Parameter α from the penalization definitions in Section 5.2.2 used

in "sgl", "asgl", "asgl_lasso" and "asgl_gl" penalizations. It must be

always bounded between 0 and 1. If more than one number is provided, the

program solves one model for each possible parameter combination found,

119

• tau: A floating point number between 0 and 1. Parameter τ indicating the

quantile level in quantile regression models. Value 0.5 solves the median re-

gression. Value 0.25 solves the first quartile regression. If the model is set to

"lm", then tau has no effect,

• lasso_weights: A list of numbers, 1D numpy.array of numbers, or a list

made of list of numbers or 1D numpy.array of numbers. Parameter w from

Section 5.2.3 used only in penalizations including the adaptive lasso weights

("alasso", "asgl" and "asgl_lasso"), it includes the values of the adaptive

lasso weights, so each inner list or numpy.arraymust have length equal to the

number of predictors in the dataset. Example: given X ∈ R100×10 a predictor

matrix with 10 covariates, lasso_weights can be equal to a list of length

10, an 1D numpy.array of length 10, or it can be a list (of any length) made

of lists of length 10. In the latter case, each list will be used in order to fit

different adaptive models,

• gl_weights: A list of numbers, 1D numpy.array of numbers, or a listmade

of list of numbers or 1D numpy.array of numbers. Parameter v from Section

5.2.3 used only in penalizations including the adaptive group lasso weights

("agl", "asgl" and "asgl_gl"), it includes the values of the adaptive group

lasso weights, so each inner list or numpy.array must have length equal to

the number of groups in the dataset. Example: given X ∈ R100×10 a predictor

matrix with 10 covariates divided in three groups, gl_weights can be equal

to a list of length 3, an 1D numpy.array of length 3, or it can be a list (of

any length) made of lists of length 3. In the latter case, each list will be

used in order to fit different adaptive models,

• parallel: Boolean that takes the value False if it is required that the solver

run sequentially (using only one core) or True if it is required to run in parallel

(using more than one core),

• num_cores: An integer number indicating the number of cores to be used if

parallel is set to True. By default, the program will detect the number of

cores in the machine and execute the code in the number of cores minus 1. If
parallel is False, num_cores has no effect,

• solver: A string indicating the solver to be used by cvxpy package. It is

recommended to leave this parameter with the default value, as the program

will automatically select the best solver among the available options,

• max_iters: An integer number indicating the number of iterations to be per-

formed by the cvxpy solver. It is recommended to leave this parameter with

the default value,

120

The main methods included in this class object are fit, predict and

retrieve_parameters_value.

fit function

fit(x, y, group_index) is the main function in this class. Once an ASGL class

object is created, a call to the fit function solves the model defined there. The

parameters in this function are,

• x: A 2-dimensional numpy.ndarray matrix of predictors where the rows define

the observations in the dataset and the columns define the variables.

• y: A 1-dimensional numpy.ndarray array. The response vector in the problem

to solve,

• group_index: A 1-dimensional numpy.ndarray array of length equal to the

number of variables. An index indicating to which group each variable belongs.

Example: group_index=numpy.array([1,2,2,3]) would mean that there are

4 variables, the first belongs to group 1, second and third belong to group 2
and the fourth to group 3. Observe that this parameter is only required when

using group based penalizations "gl", "agl", "sgl", "asgl", "asgl_gl".

As stated in the parameter class ASGL definition, the parameters lambda1 and

alpha can be defined as either a single number or as a list or numpy.ndarray of

values, and lasso_weights and gl_weights can be defined as lists of values or as

lists containing those lists of values. The reason for this is that the fit function

is programmed in a way that, if lists of values are provided for the parameters, it will

solve all the models yielding from all possible combinations of the different values.

In other words, it creates a grid of possible parameter value combinations and solves

all the models in the proposed grid, computing the β coefficients from each case.

These results are stored as a list in the ASGL class object. Usage example:

>>> import asgl

>>> import numpy as np

>>> from sklearn.datasets import load_boston

>>> boston = load_boston()

>>> x = boston.data

>>> y = boston.target

121

>>> group_index = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4,

4, 5])

>>> model = asgl.ASGL(model="lm", penalization="sgl",

lambda1=[0.001, 0.01, 0.1],

alpha=[0.2, 0.5, 0.7])

>>> model.fit(x, y, group_index)

>>> coefficients = model.coef_

>>> len(coefficients)

9

Firs, the asgl package is imported. Then, the BostonHousing dataset, a well known

regression dataset, is imported from sklearn package. This dataset will be used

in this and the following examples. The dataset is not known to have a natural

grouped structure but observe that here a fake group_index is provided for the

sake of the example. Finally, an ASGL class object is created, and the fit function is

called, solving a model for each possible combination of parameter values lambda1

(3 values) and alpha (3 values), yielding to 9 solutions. If parallel=True these 9
models would be solved in parallel, otherwise, they would be solved sequentially.

predict function

predict(x_new) function computes predictions based on the coefficients provided

after executing the fit function. The only parameter in this function is,

• x_new: A 2-dimensional numpy.ndarray with the number of columns equal to

the number of columns in the original matrix x. x_new is the matrix to be

used for computing the predictions.

>>> predictions = model.predict(x_new=x)

>>> len(predictions)

9

From model (the ASGL class object created in the example above), the predict

function is called. In this example, x_new is simply taken as the original matrix x,

122

although in a real analysis, x_new would be the test set, or any new set from which

a prediction would be required. predictions is a list where each element of the list

stores the predictions computed using each possible solution from coefficients.

retrieve parameters value function

retrieve_parameters_value(param_index) function returns a Python

dictionary storing the value of the parameters associated to a solution in-

dex from the array of solutions coefficients. The only parameter in this function

is,

• param_index: An integer number no larger than the length of the

model.coef_ list.

>>> model.retrieve_parameters_value(5)

{"lambda1": 0.01, "alpha": 0.7, "lasso_weights": None,

"gl_weights": None}

This Python dictionary is formed by 4 elements, one for each possible parameter

in the model. If the model solved did not use any of the parameters, the function

will retrieve the value None for such parameter. For example, in this case an sparse

group lasso model was solved, penalization that does not use adaptive weights. For

this reason lasso_weights and gl_weights are None. This function is used mostly

along with the cross_validation function that will be introduced in section 5.3.3.

5.3.2 WEIGHTS class

The WEIGHTS class includes all the weight calculation methods discussed in Section

5.2.3. The default parameters from the WEIGHTS class are,

weights = asgl.WEIGHTS(model="lm", penalization="asgl", tau=0.5,

weight_technique="pca_pct", weight_tol=1e-4,

lasso_power_weight=1, gl_power_weight=1, variability_pct=0.9,

lambda1_weights=1e-1, spca_alpha=1e-5, spca_ridge_alpha=1e-2)

where the meaning of the arguments is,

• model: A string specifying the model to be used when solving non penalized

models required in the weights computation . Valid alternatives are:

– "lm" for solving linear regression models ,

123

– "qr" for solving quantile regression models,

The model specified here must be the same as in the ASGL class,

• penalization: A string specifying the type of penalization to be applied.

Valid alternatives are adaptive based ones:

– "alasso" for using an adaptive sparse group lasso penalization,

– "agl" for using an adaptive group lasso penalization,

– "asgl" for using an adaptive sparse group lasso penalization,

– "asgl_lasso" for using an sparse group lasso with adaptive weights in

the lasso part,

– "asgl_gl" for using an sparse group lasso with adaptive weights in the

group lasso part.

The penalization specified here must be the same as in the ASGL class,

• tau: A floating point number between 0 and 1. Parameter τ indicating the

quantile level in quantile regression models. Value 0.5 solves the median re-

gression. Value 0.25 solves the first quartile regression. If the model is set to

"lm", then tau has no effect. The tau specified here must be the same as in

the ASGL class,

• weight_technique: A string indicating the weight technique to use for fitting

the adaptive weights. Valid values are:

– "pca_pct": It computes the weights based on pca using a subset of com-

ponents,

– "pca_1": It computes the weights based on pca using the first component,

– "pls_pct": It computes the weights based on pls using a subset of com-

ponents,

– "pls_1": It computes the weights based on pls using the first component,

– "unpenalized": It computes the weights using a non penalized model.

This alternative is only suitable for low dimensional scenarios where the

number of observations is larger than the number of variables,

– "lasso": It computes the weights using a lasso penalized model.

– "spca": It computes the weights based on sparse pca using a subset of

components

• weight_tol: A floating point number, tolerance for a coefficient to be consid-

ered as 0,

124

• lasso_power_weight: A positive floating point number or a list of floating

point numbers. It is the parameter γ1 from the penalizations described in

Section 5.2.2, the power at which the lasso weights w are risen,

• gl_power_weight: A positive floating point number or a list of floating point

numbers. It is the parameter γ2 from the penalizations described in Section

5.2.2, the power at which the group lasso weights v are risen,

• variability_pct: A floating point number between 0 and 1. Percentage of

variability explained by pca or pls components used in "pca_pct", "pls_pct"

and "spca". Default value is 0.9 meaning that enough coefficients in order

to explain up to 90% of the variability are computed. This parameter only

affects the weight techniques mentioned here, but has no effect on the rest of

the alternatives,

• lambda1_weights: A floating point number. The value of the parameter λ to

be used when computing the weights based on "lasso" weight_technique.

• spca_alpha: A floating point number. The value of the alpha parameter in

the sparsePCA formulation when using the "spca" weight_technique. The

name of the parameter is inherited from the original source in the sklearn

package,

• spca_ridge_alpha: A floating point number. The value of the

ridge_alpha parameter in the sparsePCA formulation when using the "spca"

weight_technique. The name of the parameter is inherited from the original

source in the sklearn package.

The main function in the WEIGHTS class is fit

fit function

fit(x, y, group_index) function computes the weights for adaptive based penal-

izations using the information in the WEIGHTS class object. The parameters from

this function are the same as for the fit function from ASGL class. Since this func-

tion computes adaptive weights, the usual usage of this function (if one is interested

on using an adaptive penalization) would require to create a WEIGHTS class object,

run the WEIGHTS.fit function, obtain the adaptive weights and pass this adaptive

weights as parameters to the lasso_weights and gl_weights parameters from the

ASGL class. For example:

>>> weights = asgl.WEIGHTS(

model="qr", penalization="asgl", tau=0.5,

lasso_power_weight=[1, 1.2],

125

gl_power_weight=[0.7, 0.9, 1.1, 1.3, 1.7])

>>> lasso_weights, gl_weights = weights.fit(x, y, group_index)

>>> model = asgl.ASGL(model="qr", penalization="asgl", tau=0.5,

lambda1=[0.001, 0.01, 0.1],

alpha=[0.2, 0.5, 0.7, 0.9],

lasso_weights=lasso_weights,

gl_weights=gl_weights)

>>> model.fit(x, y, group_index)

>>> coefficients = model.coef_

>>> len(coefficients)

120

Here the weights object, from the WEIGHTS class is created. Since the penalization

specified is "asgl", by running the weights.fit function, the lasso_weights and

gl_weights are computed. Then, an object from the class ASGL is created, and

the weights computed above are passed as arguments to this object. By calling the

function model.fit, the quantile regression models with adaptive sparse group lasso

penalizations are solved. The penalization parameters are:

• lambda1: 3 possible values

• alpha: 4 possible values

• lasso_power_weight: 2 possible values

• gl_power_weight: 5 possible values

Thus, a grid formed of 3 × 4 × 2 × 5 = 120 values is formed, and 120 models are

solved, the results stored in model.coef_.

5.3.3 CV class

The CV class inherits all the methods from ASGL and WEIGHTS class and provides

methods for performing cross validation in order to find the optimal parameter

values. The default parameters from the CV class are,

126

cv = asgl.CV(model, penalization, intercept=True, tol=1e-5,

lambda1=1, alpha=0.5, tau=0.5, lasso_weights=None,

gl_weights=None, parallel=False, num_cores=None, solver=None,

max_iters=500,weight_technique="pca_pct", weight_tol=1e-4,

lasso_power_weight=1, gl_power_weight=1, variability_pct=0.9,

lambda1_weights=1e-1, spca_alpha=1e-5, spca_ridge_alpha=1e-2,

error_type="MSE", random_state=None, nfolds=5)

where all the arguments have been already explained in Sections 5.3.1 and 5.3.2

except for the last three, directly related with the cross validation process,

• error_type: A string indicating the error metric to consider. Valid values

are:

– "MSE": mean squared error,

– "MAE": mean absolute error,

– "MDAE": median absolute error,

– "QRE": quantile regression error,

• random_state: An integer number. Seed for the pseudo-random number gen-

eration. If a value is provided, it ensures reproducibility of results,

• nfolds: An integer number. Number of folds to be used in cross validation.

The main function in the CV class is cross_validation

cross validation function

corss_validation(x, y, group_index) function performs a cross validation pro-

cess based on the parameters defined in the CV class object. The parameters in this

function are the same as in functions fit from ASGL and WEIGHTS classes: x, y and

group_index. The function returns an error matrix of shape (number of models,

nfolds). Usage example:

>>> cv_class = asgl.CV(model="qr", penalization="sgl",

lambda1=[0.01, 0.1, 1, 10],

alpha=[0.1, 0.5, 0.9], parallel=True,

tau=0.1, nfolds=10, error_type="QRE",

random_state=3)

>>> error = cv_class.cross_validation(x, y, group_index)

>>> error.shape

127

(12, 10)

First, an object from class CV is created. It stores information for an sparse group

lasso quantile regression model to be solved, and considers a grid of 4 possible

lambda1 values and 3 possible alpha values, a total number of 12 models. A 10
folds cross validation process is executed, and the result of this process is an error

matrix of shape E ∈ R12×10, where Ei, j stores the error value from model i in fold

j. Additionally, since the random_state has been set to 3, future executions of the

same dataset specifying the same random state would return same results, ensuring

reproducibility.

5.3.4 TVT class

The TVT class inherits all the methods from ASGL and WEIGHTS class and provides

methods for performing train /validate / test analysis. The default parameters from

the CV class are,

tvt_class = asgl.TVT(model, penalization, intercept=True, tol=1e-5,

lambda1=1, alpha=0.5, tau=0.5, lasso_weights=None,

gl_weights=None, parallel=False, num_cores=None, solver=None,

max_iters=500,weight_technique="pca_pct", weight_tol=1e-4,

lasso_power_weight=1, gl_power_weight=1, variability_pct=0.9,

lambda1_weights=1e-1, spca_alpha=1e-5, spca_ridge_alpha=1e-2,

error_type="MSE", random_state=None, train_pct=0.05,

validate_pct=0.05, train_size=None, validate_size=None)

where all the arguments have been already explained in Sections 5.3.1 and 5.3.2

except for the last six, directly related with the train /validate / test process,

• error_type: A string indicating the error metric to consider. Valid values

are:

– "MSE": mean squared error,

– "MAE": mean absolute error,

– "MDAE": median absolute error,

– "QRE": quantile regression error,

• random_state: An integer number. Seed for the pseudo-random number gen-

eration. If a value is provided, it ensures reproducibility of results,

• train_pct: A floating point number between 0 and 1. Percentage of the

dataset to be used for training the model,

128

• validate_pct: A floating point number between 0 and 1. Percentage of the

dataset to be used for validation the model,

• train_size: An integer number indicating the number of rows from the

dataset to be used for training the model. This parameter takes preference

over the train_pct parameter,

• validate_size: An integer number indicating the number of rows from the

dataset to be used for validating the model. This parameter takes preference

over the validate_pct parameter.

The main function in this class is train_validate_test

train validate test function

train_validate_test(x, y, group_index) function performs a train / validate /

test process based on the parameters defined in the TVT class object. The parameters

from this function are the same as in functions fit from ASGL and WEIGHTS classes.

The function returns a Python dictionary containing:

• optimal_betas: A 1-dimensional numpy.ndarray. The value of the β coeffi-

cients that minimized the test error,

• optimal_parameters: A Python dictionary containing the value of the pa-

rameters with which the optimal solution was achieved,

• test_error: A positive floating point number. The value of the test error

obtained with the optimal solution.

Usage example:

>>> tvt_class = asgl.TVT(model="qr", penalization="asgl", tau=0.5,

lambda1=[0.01, 0.1, 1, 10],

alpha=[0.1, 0.5, 0.9],

lasso_power_weight=[0.8, 1, 1.2],

gl_power_weight=[0.8, 1, 1.2],

parallel=True, error_type="QRE",

random_state=99, train_size=300,

validate_size=200)

>>> tvt_class.train_validate_test(x, y, group_index)

{"optimal_betas":

array([2.65930767e+01, 0.00000000e+00, 0.00000000e+00,

129

0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, -5.32798841e-02, 0.00000000e+00,

0.00000000e+00, -1.52427363e-02, 0.00000000e+00,

9.51042157e-03, 0.00000000e+00]),

"optimal_parameters": {"lambda1": 0.01, "alpha": 0.9,

"lasso_weights":

array([316.50255799, 247.98156613, 336.68766214,

7756.72189464, 4777.64968308, 2853.7114713,

140.44162671, 1015.40062999, 235.2278634,

20.949954, 1144.91563613, 44.53821725,

361.15079837]),

"gl_weights":

array([189.48216987, 2754.77796665, 127.62155584,

19.8070448, 361.15079837])},

"test_error": 3.387824170724728}

First, an object of class TVT is created containing information for solving a

quantile regression model with an adaptive sparse group lasso penalization. A

train_size=300 is indicated, meaning that 300 rows from the dataset will be used in

the training process of the models. A validate_size=200 is indicated. This means

that the validation process will be performed using 200 rows from the dataset, and

the remaining rows in the dataset (n − 300 − 200) will be used in the test process.

The result obtained is a dictionary as described above, containing the value of the

optimal β solution, the optimal parameter values, and the test error obtained with

this solution.

5.3.5 Extra functions

In addition to the class objects and functions described along this section, the

asgl package includes 2 extra functions worth mentioning: error_calculator and

train_test_split.

error calculator function

error_calculator(y_true, prediction_list, error_type="MSE", tau=None)

is a function that allows to compute the error obtained from a prediction or list of

predictions. The parameters of this function are,

• y_true: A 1-dimensional numpy.ndarray containing the true values of the

response variable,

• prediction_list: A list of predictions, output from the ASGL.predict

function described in Section 5.3.1

130

• error_type: A string indicating the error metric to consider. Valid values

are:

– "MSE": mean squared error,

– "MAE": mean absolute error,

– "MDAE": median absolute error,

– "QRE": quantile regression error,

• tau: A floating point number between 0 and 1. Parameter τ indicating the

quantile level in quantile regression models. This parameter is only used if a

quantile regression model was solved.

Usage example:

>>> model = asgl.ASGL(model="lm", penalization="sgl",

lambda1=[0.001, 0.01, 0.1],

alpha=[0.2, 0.5, 0.7])

>>> model.fit(x, y, group_index)

>>> coefficients = model.coef_

>>> predictions = model.predict(x_new=x)

>>> error = asgl.error_calculator(y_true=y,

prediction_list=predictions)

>>> error

[21.895037097213336, 21.894987951816283, 21.894959521292872,

21.915054953611918, 21.910333713620282, 21.907558654585653,

22.6425078760837, 22.66227036349894, 22.685544907299743]

The result is a list of error values of the same length as the prediction_list.

train test split function

train_test_split(nrows, train_size=None, train_pct=0.7,

random_state=None) function randomly generates a train index and a test

index to be used on a train / test split. The parameters in this function are:

• nrows: An integer number. The number of rows in the dataset,

131

• train_size: An integer number indicating the number of rows in the dataset

that should define the train set,

• train_pct: A floating point number between 0 and 1 indicating the percentage

of the dataset that should be used for training. The parameter train_size

takes preference over this one,

• random_state: An integer number. Seed for the pseudo-random number gen-

eration. If a value is provided, it ensures reproducibility of results.

Usage example:

>>> train_idx, test_idx = asgl.train_test_split(

nrows=10, train_size=7, random_state=5)

>>> train_idx

array([9, 5, 2, 4, 7, 1, 0])

In this example a fake train_idx of size 7 and a test_idx of size 3 are generated

for a dataset containing 10 rows.

5.4 Examples

5.4.1 Non penalized models

Solving a non penalized linear regression or quantile regression model using the

asgl package is very simple. In this section, the BostonHousing regression dataset,

available in the sklearn package will be used, so the first step is to import the dataset,

>>> import numpy as np

>>> from sklearn.datasets import load_boston

>>> boston = load_boston()

>>> x = boston.data

>>> y = boston.target

After that, the asgl package is imported and the dataset is divided into a 70% train

set and a 30% test set. Then an object of the class ASGL is created containing the

132

information about the model to be solved. In this case, it is only necesary to provide

the information for parameters model and penalization, the latter, in the case of

a non penalized model, shoud be left as None.

>>> import asgl

>>> train_idx, test_idx = asgl.train_test_split(

nrows=x.shape[0], train_pct=0.7, random_state=1)

>>> unpenalized_model = asgl.ASGL(model="lm", penalization=None)

>>> unpenalized_model.fit(x=x[train_idx,], y=y[train_idx])

>>> unpenalized_model.coef_

[array([3.42867793e+01, -1.20183515e-01, 3.60204868e-02,

-1.44737040e-02, 3.11649925e+00, -1.83800932e+01,

4.33076482e+00, -1.45478637e-02, -1.58421918e+00,

2.99294537e-01, -1.32561898e-02, -9.49536207e-01,

9.87429820e-03, -4.29662800e-01])]

Once the coefficients have been obtained, one can compute the predictions and

obtain the prediction error easily by calling the unpenalized_model.predict and

error_calculator functions:

>>> predictions = unpenalized_model.predict(x_new=x[test_idx,])

>>> error = asgl.error_calculator(

y_true=y[test_idx], prediction_list=predictions,

error_type="MSE")

>>> error

[29.450990335365578]

5.4.2 Sparse group lasso model using cross validation

In this example a high dimensional synthetic dataset generated using the freely

available data-generation package will be used. This package can easily be installed

from the Python Package Index repository.

>>> import numpy as np

133

>>> import data_generation as dgen

>>> data_class = dgen.EqualGroupSize(

n_obs=1000, group_size=10, num_groups=10, non_zero_groups=5,

non_zero_coef=6, random_state=1)

>>> x, y, beta, group_index = data_class.data_generation().values()

The dataset generated here contains 1000 observations and 100 variables that are

divided into 10 groups of size 10 each. Among these groups, 30 variables are signifi-

cant (have been used in the calculation of the response variable), and the remaining

70 variables are noise. Using this dataset a quantile regression model with an sparse

group lasso penalization will be solved using cross validation.

>>> import asgl

>>> train_idx, test_idx = asgl.train_test_split(

nrows=x.shape[0], train_pct=0.7, random_state=1)

>>> lambda1 = (10.0 ** np.arange(-3, 1.51, 0.2))

>>> alpha = np.arange(0, 1, 0.05)

>>> cv_class = asgl.CV(model="qr", penalization="sgl",

lambda1=lambda1, alpha=alpha,

nfolds=5, error_type="QRE",

parallel=True, random_state=1)

>>> error = cv_class.cross_validation(x=x[train_idx,],

y=y[train_idx], group_index=group_index)

>>> error.shape

(460, 5)

The synthetic dataset is divided into a train set, in which the cross validation process

is executed, and a test set, used for computing the final prediction error. A grid of

23 possible lambda1 values and 20 alpha values is defined, yielding a total number

of 460 possible parameter combinations to be solved. parallel is set to True,

which means that the cross validation process will be executed in parallel using as

many cores as the maximum number available in the machine being used minus 1. A
random_state value of 1 is set in order to ensure the reproducibility of this example.

134

>>> error = np.mean(error, axis=1)

>>> minimum_error_idx = np.argmin(error)

>>> optimal_parameters = \

cv_class.retrieve_parameters_value(minimum_error_idx)

>>> optimal_lambda = optimal_parameters.get("lambda1")

>>> optimal_alpha = optimal_parameters.get("alpha")

Once the cross validation process is finished, the error obtained in the different

models and across different folds is stored in error. The mean error across different

folds is computed and then the index of the model providing the minimum error

value is obtained and stored in minimum_error_idx. With this index, the func-

tion retrieve_parameters_value is used and the value of the parameters mini-

mizing the cross validation error is recovered and stored in optimal_lambda and

optimal_alpha. Now, the final model using just the optimal values obtained above

can be computed in order to obtain the test error of this model.

>>> sgl_model = asgl.ASGL(

model="qr", penalization="sgl", lambda1=optimal_lambda,

alpha=optimal_alpha)

>>> sgl_model.fit(

x=x[train_idx, :], y=y[train_idx], group_index=group_index)

>>> final_beta_solution = sgl_model.coef_[0]

>>> final_prediction = sgl_model.predict(x_new=x[test_idx, :])

>>> final_error = asgl.error_calculator(

y_true=y[test_idx], prediction_list=final_prediction,

error_type="QRE", tau=0.5)

>>> final_error

[0.6156290699941908]

Additionally, given that it is a synthetic dataset, it is possible to compute the true

positive rate, a measure of the accuracy of the variable selection comparing the true

beta with the predicted final_beta_solution. First, we remove the intercept from

the final_beta_solution,

135

>>> predicted_beta = final_beta_solution[1:]

>>> true_positive = np.sum(

np.logical_and(np.abs(beta) > 1e-4,

np.abs(predicted_beta) > 1e-4))

>>> real_positive = np.sum(np.abs(beta) > 1e-4)

>>> true_positive_rate = true_positive / real_positive

>>> true_positive_rate

1.0

A true_positive_rate equal to 1 means that 100% of the significant variables were

correctly detected as significant.

5.4.3 Adaptive lasso using train / validate / test

For this example, a synthetic dataset will be generated using the make_regression

function from the sklearn package.

>>> import numpy as np

>>> import asgl

>>> import sklearn.datasets

>>> x, y, beta = sklearn.datasets.make_regression(

n_samples=100, n_features=200,

n_informative=10, n_targets=1,

bias=10.0, noise=1.0, shuffle=True,

coef=True, random_state=1)

The above code generates a synthetic dataset formed by 100 observations and 200
variables (a truly high dimensional framework) where only 10 of the variables are

significant (used in the computation of the response variable) and the remaining 190
are noise. Using a train / validate / test split, an adaptive lasso model is computed.

Additionally, a simple lasso model is computed to act as benchmark of the benefits

of adaptive models.

>>> lambda1 = 10.0 ** np.arange(-3, 1.51, 0.1)

136

>>> tvt_lasso = asgl.TVT(

model="lm", penalization="lasso", lambda1=lambda1,

parallel=True, error_type="MSE", random_state=1,

train_size=50, validate_size=25)

>>> lasso_result = tvt_lasso.train_validate_test(x=x, y=y)

>>> lasso_prediction_error = lasso_result["test_error"]

>>> lasso_betas = lasso_result["optimal_betas"][1:]

>>> lasso_prediction_error

11.779487290509907

The above code performs a train / validate / test optimization of a lasso model using

50 observations in the training process, 25 observations in the validation process

and 25 observations in the test process. The optimal betas obtained are stored in

lasso_betas and the prediction error is stored in lasso_prediction_error. Now

an adaptive lasso model is solved using a lasso model in the weight computation.

>>> tvt_alasso = asgl.TVT(

model="lm", penalization="alasso", lambda1=lambda1,

parallel=True, weight_technique="lasso", error_type="MSE",

random_state=1, train_size=50, validate_size=25)

>>> alasso_result = tvt_alasso.train_validate_test(x=x, y=y)

>>> alasso_prediction_error = alasso_result["test_error"]

>>> alasso_betas = alasso_result["optimal_betas"][1:]

>>> alasso_prediction_error

1.472196185408593

While the solution achieved by the lasso model had a prediction error of 11.77, the
solution achieved by the adaptive lasso is 1.47, 8 times smaller. Additionally, it is

possible to compute the correct selection rate of both alternatives

>>> def correct_selection_rate(predicted_beta, true_beta):

true_positive = np.sum(np.logical_and(

137

np.abs(true_beta) > 1e-4,

np.abs(predicted_beta) > 1e-4))

true_negative = np.sum(np.logical_and(

np.abs(true_beta) <= 1e-4,

np.abs(predicted_beta) <= 1e-4))

correct_selection_rate = \

(true_positive + true_negative) / len(true_beta)

return correct_selection_rate

>>> lasso_csr = correct_selection_rate(

predicted_beta=lasso_betas, true_beta=beta)

>>> alasso_csr = correct_selection_rate(

predicted_beta=alasso_betas, true_beta=beta)

>>> print(f"Lasso correct selection rate: {lasso_csr}"

f"\nAdaptive lasso correct selection rate: {alasso_csr}")

Lasso correct selection rate: 0.13

Adaptive lasso correct selection rate: 1.0

While the lasso only selected correctly 13% of the variables, the adaptive lasso

was able to correctly select all the variables. Taking as non significant all the non

significant variables and taking as significant all the significant variables.

5.5 Computational details

The results in this paper were obtained using Python 3.8.3 version . All the packages

used in this paper are available from the Python Package Index (Pypi) at https:

//pypi.org/.

5.6 Conclusions

In this paper, a Python package called asgl has been introduced. asgl is a power-

ful package capable of solving linear and quantile regression models using different

types of penalizations that, to the best of our knowledge, were not available in any

other package or programming language so far. The usage of asgl has been shown

throughout three examples detailed in Section 5.4.

138

https://pypi.org/
https://pypi.org/

5.7 Supplementary material

5.7.1 Installation and requirements

The asgl package is freely available at the Python Package Index (Pypi), one of the

best known Python repositories, and can be easily installed by running the command,

pip install asgl

Alternatively, it is possible to directly pull the repository from GitHub and run

the setup.py file,

git clone https://github.com/alvaromc317/asgl.git

cd asgl

Python setup.py

The package requires:

• Python (≥ 3.5) programming language version [van Rossum and Drake, 2009],

• scikit-learn (≥ 0.23.1) [Pedregosa et al., 2011], an open source machine learning

Python library,

• numpy (≥ 1.15) [Van Der Walt et al., 2011] a package for efficient manipulation

of multidimensional arrays,

• cvxpy (≥ 1.1.0) [Diamond and Boyd, 2016], a Python-embedded modeling lan-

guage for convex optimization problems.

• Additionally, the package makes use of the multiprocessing package, which is

not required to be installed, since it is included in the base program.

The package has been mainly tested in Microsoft Windows machines running

Windows 10 and Windows 8 versions, as well as in Red Hat Linux machines.

Acknowledgments

This research was partially supported by research grants and Project PID2019-

104901RB-I00 from Ministerio de Ciencia e innovación, Project MTM2017-88708-P

from Ministerio de Economı́a y Competitividad, FEDER funds and Project IJCI-

2017-34038 from Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación

y Universidades.

139

140

Bibliography

Soumyadeep Chatterjee, Snigdhanshu Banerjee, Arindam, and Auroop R. Ganguly.

Sparse Group Lasso for Regression on Land Climate Variables. In 2011 IEEE

11th International Conference on Data Mining Workshops, pages 1–8. IEEE, 12

2011. ISBN 978-1-4673-0005-6. doi: 10.1109/ICDMW.2011.155.

Steven Diamond and Stephen Boyd. CVXPY: A Python-Embedded Modeling Lan-

guage for Convex Optimization. arXiv:1603.00943, 3 2016.

J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse

group lasso. ArXiv:1001.0736, pages 1–8, 2010. ISSN 15410420. doi: 10.1111/

biom.12292. URL http://arxiv.org/abs/1001.0736.

Roger Koenker. Quantile Regression. Cambridge university Press, 2005. ISBN

0521338255.

Roger Koenker and Gilbert Bassett. Regression Quantiles. Econometrica, 46(1):

33–50, 1 1978. ISSN 00129682. doi: 10.2307/1913643.

Alvaro Mendez-Civieta, M. Carmen Aguilera-Morillo, and Rosa E. Lillo. Adaptive

sparse group LASSO in quantile regression. Advances in Data Analysis and Clas-

sification, 15(3):547–573, 2021. ISSN 18625355. doi: 10.1007/s11634-020-00413-8.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, , B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, , R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, ,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

David E Rapach, Jack K Strauss, and Guofu Zhou. International Stock Return

Predictability : What Is the Role of the United States ? The Journal of Finance,

68(4):1633–1662, 2013. doi: 10.1111/jofi.12041.

141

http://arxiv.org/abs/1001.0736

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-

group lasso. Journal of Computational and Graphical Statistics, 22(2):231–245, 4

2013. ISSN 10618600. doi: 10.1080/10618600.2012.681250.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of

the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996. doi:

10.2307/2346178.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a

structure for efficient numerical computation. Computing in Science & Engineer-

ing, 13:22, 2011.

G. van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, 2009.

ISBN 1441412697.

John Wright, Yi Ma, Julien Mairal, Guillermo Sapiro, Thomas S. Huang, and

Shuicheng Yan. Sparse Representation for Computer Vision and Pattern Recog-

nition. Proceedings of the IEEE, 98(6):1031–1044, 6 2010. ISSN 0018-9219. doi:

10.1109/JPROC.2010.2044470.

Zakariya Yahya Algamal and Muhammad Hisyam Lee. A two-stage sparse

logistic regression for optimal gene selection in high-dimensional microarray

data classification. Advances in Data Analysis and Classification, 13:753–

771, 2019. doi: 10.1007/s11634-018-0334-1. URL https://doi.org/10.1007/

s11634-018-0334-1.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society. Series B (Methodological), 68

(1):49–67, 2006.

Hui Zou. The Adaptive Lasso and Its Oracle Properties. Journal of the American

Statistical Association, 101(476):1418–1429, 12 2006. ISSN 0162-1459. doi: 10.

1198/016214506000000735.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse Principal Component Anal-

ysis. Journal of Computational and Graphical Statistics, 15(2):265–286, 2006. doi:

10.1198/106186006X113430.

142

https://doi.org/10.1007/s11634-018-0334-1
https://doi.org/10.1007/s11634-018-0334-1

CHAPTER 6

Conclusions

This thesis has filled important gaps in the literature, proposing a series of quantile

based methodologies that address different perspectives of high dimensional prob-

lems. In Chapter 2, the usage of variable selection techniques in quantile regression

was studied. Although widely used, lasso based penalizations face the problem of

being biased. To address this issue, an adaptive sparse group lasso for quantile

regression was proposed in the chapter, and different alternatives for the adaptive

weight computation based on PCA and PLS were proposed and studied through a

series of synthetic and real genetic dataset studies showing the advantages of the

proposed estimator over the non adaptive counterparts.

Chapter 3 treated the high dimensional problem from another perspective, study-

ing the usage of dimension reduction techniques. Partial least squares (PLS) is a

widely used methodology in the field of chemometrics, and in general, in any field

treating with high dimensional or colinear regression problems. However, PLS is a

mean based estimator very sensitive to the presence of outliers, heteroscedasticity

or skewness. This opened the door for the second contribution of this thesis: the

fast partial quantile regression, an algorithm that makes use of a quantile covariance

metric to extend the partial least squares methodology to quantile regression, ob-

taining a robust alternative that can provide not only an estimation of the central

trend of the response matrix, but also estimations of other quantiles, giving a com-

plete picture of the distribution. The effectiveness of the fPQR methodology was

compared against PLS and against the partial robust adaptive modified maximum

likelihood estimator (PRAMML) proposed by Acitas et al. [2020], which is a robust

PLS alternative for univariate response models, in a series of synthetic datasets and

a real dataset containing NIR spectra measurements, obtaining very good results.

143

Chapter 4 considered the field of functional data analysis, in which observations

are not treated as multivariate vectors, but functions. This work was motivated by a

real dataset containing measurements of physical activity in children. Understand-

ing the differences in the patterns of activity can provide very useful information.

This is usually done based on functional principal component analysis. However,

this technique shows some disadvantages: being based on the mean, it is unable to

capture shifts in the scale of the data that may affect the quantiles. Additionally, it is

not robust against skewness or the presence of outliers. As a solution to these prob-

lems, this chapter proposed the definition of the functional quantile factor model,

a methodology that can provide estimations of the quantile levels of the functional

data, effectively extending FPCA to quantile regression. The methodology was com-

pared in a series of synthetic datasets and in the motivating accelerometer dataset

against FPCA and against the quantile factor models proposed by [Chen et al.,

2021], a multivariate approach to this problem, and obtained very good results.

Finally, Chapter 5 described the implementation of a series of lasso based adap-

tive penalizations in Python, including different alternatives for the computation of

the adaptive weights as well as a framework for optimizing the hyper parameters of

the penalizations using cross validation.

Besides its main contributions, this thesis has identified areas for further research,

which can be summarized as follows.

1. To extend the adaptive based penalizations proposed in Chapter 2 to the case

where the response is a multivariate matrix, rather than a vector. This is a

typical situation in fields like economics or chemometrics.

2. To study the
√

n-consistency of the PLS estimator. A key requirement in the

demonstration of the oracle property of an adaptive estimator is the fact that

the adaptive weights are based on an initial
√

n-consistent estimator. Studying

whether PLS verifies this property would sustain from a theoretical perspective

the effectiveness showed in the numerical simulations of Chapter 2.

3. To study additional alternatives for the weight calculation process described

in Chapter 2. On this regard, a master thesis was recently developed under

the supervision of my tutor Rosa E. Lillo and mine where a series of weight

calculation alternatives based on sparse group lasso, sparse PCA, sparse PLS,

support vector machines, and the machine learning algorithm XGBoost were

considered, obtaining promising results.

4. To consider the extension of fPQR to a sparse setting. The new components

of fPQR are built as linear combinations of all the original variables. In high

dimensional problems this affects the interpretability of the results. Following

the steps of [Chun and Keleş, 2010], it can be interesting to consider the usage

of a variable selection penalization embedded in the fPQR algorithm, obtaining

144

solutions where the new components are sparse combinations of the original

variables and enhancing the interpretability of the results.

5. To study different alternatives for the hyper parameter tuning of the adaptive

sparse group lasso estimator. The cross validation process considered in Chap-

ter 5 is known to provide very good results, but can also be time consuming.

Other alternatives like random search or bayesian optimization could be the

solution.

6. To extend the implementation of the asgl package to different risk functions,

including generalized linear models like logistic regression for classification.

This thesis started with the idea to develop new methodologies for high dimen-

sional problems that could benefit from a quantile based perspective, and achieved

this primary objective. It has extended the quantile regression framework in several

ways, providing robust alternatives to well established mean based methodologies in

regression, dimension reduction and functional scenarios, and has opened the door

for future research, which is already underway.

145

146

Bibliography

Sukru Acitas, Peter Filzmoser, and Birdal Senoglu. A new partial robust adaptive

modified maximum likelihood estimator. Chemometrics and Intelligent Laboratory

Systems, 204:104068, 2020. ISSN 18733239. doi: 10.1016/j.chemolab.2020.104068.

URL https://doi.org/10.1016/j.chemolab.2020.104068.

Liang Chen, Juan J. Dolado, and Jesús Gonzalo. Quantile Factor Models. Econo-

metrica, 89(2):875–910, 2021. ISSN 0012-9682. doi: 10.3982/ecta15746.

Hyonho Chun and Sündüz Keleş. Sparse partial least squares regression for simulta-

neous dimension reduction and variable selection. Journal of the Royal Statistical

Society. Series B: Statistical Methodology, 72(1):3–25, 1 2010. ISSN 13697412.

doi: 10.1111/j.1467-9868.2009.00723.x.

147

https://doi.org/10.1016/j.chemolab.2020.104068

	Introduction
	Linear regression
	Variable selection techniques
	Dimension reduction
	Functional data analysis
	Main contributions

	Adaptive Sparse Group LASSO in Quantile Regression
	Introduction
	Penalized quantile regression
	Adaptive sparse group LASSO
	The oracle property
	Adaptive weights calculation
	Simulation study: symmetric errors
	Real application
	Computational aspects
	Conclusion
	Supplementary material

	A quantile based dimension reduction technique
	Introduction
	The PLS model for multivariate response
	Fast partial quantile regression
	Numerical simulation
	Real data analysis: Biscuit data
	Computational aspect
	Conclusion

	Functional Quantile Factor Models
	Introduction
	Functional Quantile Factor Analysis
	Numerical simulation
	Real data analysis
	Computational aspects
	Conclusion

	asgl: A Python Package for Penalized Linear and Quantile Regression
	Introduction
	Theoretical background
	Python implementation
	Examples
	Computational details
	Conclusions
	Supplementary material

	Conclusions

