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It is well known that certain features of a quantum theory cannot be described in the 
standard picture on a Hilbert space. In particular, this happens when we try to formally 
frame a quantum field theory, or a thermodynamic system with finite density. This 
forces us to introduce different types of algebras, more general than the ones we usually 
encounter in a standard course of quantum mechanics. We show how these algebras 
naturally arise in the Schwinger description of the quantum mechanics of an infinite 
spin chain. In particular, we use the machinery of Dirac-Feynman-Schwinger (DFS) states 
developed in recent works to introduce a dynamics based on the modular theory by 
Tomita-Takesaki, and consequently we apply this approach to describe the Ising model.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In his formulation of quantum theory, Schwinger introduced an approach based on the concept of transition [1]. He 
identified the main feature that characterizes quantum mechanics in the transition between different results caused by a 
measurement. Subsequent measurements of non compatible observables can modify the results of an experiment, unlike 
classical theories where all the observables can –in principle– be measured at the same time, and no transitions occur. 
From Schwinger’s point of view, such description of quantum mechanics would need a “new symbolic language” more 
suitable to microscopic phenomenology. The fundamental cell of this language is the concept of selective measurement, i.e., 
“a device that selects the system (in a given ensemble) with well defined values ‘a’ for the observable A, and returns it 
with well defined values ‘b’ for the observable B”. These symbols, as abstract entities, satisfy a set of axioms among which 
a composition law. Therefore, in a series of papers [2–4], some of the authors proposed that a proper abstract frame for 
Schwinger’s approach is the composition law of a groupoid. Then, using representation theory [5], it is possible to get the 
Dirac picture of standard quantum mechanics on Hilbert spaces [3], whereas, by introducing the idea of groupoid algebras, 
it is also possible to obtain the algebraic picture of quantum mechanics [4].
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In order to clarify these ideas, consider the following simple example, which is a standard situation in quantum me-
chanics. Suppose that the spin along the z axis is measured for a particle with spin S = 1/2, and suppose that no transition 
between the |↑〉 and |↓〉 states is allowed. Let the state of the system be a coherent superposition ψ = α |↑〉 + β |↓〉, with 
|α|2 + |β|2 = 1. By measuring the spin along z axis, we can only measure the probabilities |α|2 and |β|2, which do not 
characterize the state ψ at all. In particular, this state will behave like a classical mixture

ρ = |α|2 |↑〉〈↑| + |β|2 |↓〉〈↓| , (1)

with no quantum coherence between the operational (incoherent) basis {|↑〉 , |↓〉}. It is clear that the state can be fully char-
acterized only with other observables (the spin along x or y axes), which in terms of Schwinger’s picture means transitions 
in the form |↑〉〈↓| and |↓〉〈↑|. A similar description, where a computational basis is fixed, is at the basis of quantum resource 
theory of coherence, where the resource is identified in the coherent superposition of the incoherent basis [7,8]. Clearly, 
the choice of the basis can be ambiguous, and it is usually singled out from the interaction with the environment [9]. Such 
ambiguity generates an uncertainty in the definition of entropy for a quantum state [10–12].

Finite groupoids have been largely studied in previous works, and one can show that the general situation in this case 
can be summarized as a mixing between a quantum theory (transitions) and a classical one (superselection rules) [3,4]. 
In particular, from the algebraic perspective, one obtains standard quantum mechanics with a finite number of degrees of 
freedom described by the direct sum of complete algebras of bounded operators (type I algebras).

In this paper, we are going to study from the point of view of Schwinger’s picture of quantum mechanics a possible way 
to obtain families of more general algebras than type I . These algebras were introduced in [13–16] as nontrivial examples 
of independent quantum mechanical systems, and to extend the boolean algebra to the non-commutative case. As we will 
see later, they are classified as type I I and type I I I algebras, depending on the finiteness of their projections. Introduced 
as abstract mathematical entities, it has been proved that they also play a central role in the algebraic description of 
quantum field theories [17–20]. From a mathematical point of view, it has been already shown that the algebras associated 
to special types of groupoids can be of type I I or I I I [21]. Here, we will exploit these considerations to investigate possible 
implications from the point of view of Schwinger’s picture of quantum mechanics.

In particular, we will consider a groupoid with a space of objects �∞ made of infinite sequences x = {
xi | xi = 0,1 ∀i ∈N

}
and transitions given by the action of a group � ⊂ �∞ whose elements are sequences which differ from zero only for a 
finite number of elements xi . From a physical point of view, since the groupoid of pairs of set with two objects is related 
to the qubit, the groupoid studied here could describe an infinite chain of qubits, where only the transitions that can flip a 
finite number of them are allowed. We will show that the algebra associated with such a system can be of either type II or 
III, depending on a certain probability λ, reproducing in this framework a well known result in the theory of von Neumann 
algebras [22–24].

One of the ingredients that has been introduced in previous works on the groupoid approach to quantum mechanics 
is the concept of Dirac-Feynman-Schwinger (DFS) states, which are defined from functions that transform according to the 
underlying composition law of the groupoid, see section 5. In this paper we will investigate the structure of the family of 
the DFS states associated with the above-mentioned groupoid of sequences, and show their connection with cohomology 
of groups. In a previous work it has been put in evidence the dynamical role of these DFS states when considering the 
groupoid of paths associated with a kinematical groupoid [25,26]. In that case, the exponent of the DFS function associated 
with the DFS state is interpreted as an action functional. In this work we are presenting a different way according to which 
DFS functions can define a dynamics. Indeed, the same exponent can be used to define a positive-valued homomorphism of 
the groupoid. Then, by properly choosing a measure on the groupoid, this homomorphism determines a modular function 
whose associated modular automorphism determines a canonical evolution of the groupoid-algebra. As a final consideration 
we will investigate a concrete example of a DFS function which would reproduce the dynamics of an Ising chain in terms 
of the Tomita-Takesaki modular theory. In this sense, this work is an attempt to investigate more directly the dynamical 
content of the DFS states in a non-trivial example, towards a deeper understanding of the Schwinger’s quantum action 
principle.

Let us briefly outline the content of the paper. In Section 2 we summarize some basic facts on C∗-algebras, von Neu-
mannn algebras and left-Hilbert algebras which will be used in the core of the paper. In Section 3, we will briefly present 
the construction of the (reduced) groupoid von Neumann algebra, whereas in Section 4 we will apply this construction to a 
specific groupoid. This groupoid is built out of the action of a countable group acting freely, ergodically and non-transitively 
on a measurable space of sequences. By using well-known results in the theory of von Neumann algebras, we show that 
the groupoid algebra associated with this groupoid can be of type I I1 or type I I Iλ depending on the choice of the measure 
on the space of sequences. In Section 5, finally, we provide an algorithmic construction for the DFS functions and their 
relations to cohomology of groups. We conclude the Section with an explicit construction of a measure on the groupoid 
under investigation whose modular function can be interpreted as the dynamics of an infinite Ising chain.

2. Algebraic description

Quantum mechanics has different (in general nonequivalent) descriptions. The standard one, associated with the names 
of Schrödinger, Dirac and Von Neumann, is based on the choice of a Hilbert space, whose rays represent the states of the 
system [27]. Observables enter this picture as bounded self-adjoint operators on the chosen Hilbert space.
2
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A different description of quantum mechanics, which has roots in Heisenberg’s approach to quantum mechanics and later 
developed by Araki, Haag, Kastler in order to axiomatically introduce the notion of quantum fields, is obtained in terms of 
algebras [28–30]. Here, observables are the building blocks of the theory, as the self-adjoint elements of a given algebra, 
while states are the positive functionals over this algebra. Once a state is chosen, a Hilbert space can be built via the GNS-
construction and the algebra is represented in terms of bounded self-adjoint operators, providing a connection with the 
previous approach.

Different types of algebras can be chosen, depending on the theory under analysis. In this chapter, we will give a concise 
introduction on C∗-algebras, W ∗-algebras and left-Hilbert algebras, concepts which will be widely employed in the following 
sections. See, for example [29–33] for a more detailed analysis. All of them are involutive algebras (or ∗-algebras) over the 
complex field C, which means, a vector space A over C, equipped with a multiplication law which associates the element 
AB to every pair A, B of elements of A. The product is assumed to be associative (A(BC) = (AB)C , ∀A, B, C ∈ A), and 
distributive (A(B + C) = AB + AC , αβ(AB) = (αA)(βB), ∀A, B, C ∈ A and ∀α, β ∈C). In addition this algebra is endowed 
with a map, called involution, ∗ :A →A satisfying

i. (AB)∗ = B∗A∗ ,
ii. A∗∗ = A,
iii. (A + λB)∗ = A∗ + λB∗ ,

with A, B in A, and λ in C.
The differences among these types of algebras are mainly due to the way we introduce a topology on these spaces. We 

will point them out in the rest of this section.

2.1. C∗-algebras and W ∗-algebras

The concept of C∗-algebra was formalized by Segal [34], following the work of Gelfand and Naimark [35,36]. It is defined 
as a complex involutive algebra A on which a norm ‖·‖ is defined, which satisfies

i. ‖AB‖� ‖A‖‖B‖,
ii. ‖A∗A‖ = ‖A‖2,

and A is complete with respect to this norm. An immediate consequence of the previous properties is that ‖A∗‖ = ‖A‖. 
This implies that all the operations characterizing the algebra are continuous with respect to the topology induced by this 
norm, making A a Banach ∗-algebra. As we shall see, the difference between C∗-algebras and von Neumann algebras lies in 
the topology used to close the algebra. According to Segal, this uniform topology is more natural in physics. In particular, 
this structure allows us to extend some notions of operator analysis (such as spectral analysis or decomposition theory) to 
the algebraic framework [30].

In the algebraic description, states enter the theory as positive normalized functionals over A. Explicitly, they are defined 
as linear maps

ω :A→C (2)

satisfying

vi. ω(A∗A) � 0 A ∈A,
vii. ‖ω‖ = 1.

When the algebra has a unit I, ‖ω‖ = 1 is equivalent to the condition ω(I) = 1. One can prove that, see [29,30], any such 
functional is continuous in the uniform topology and satisfies a Cauchy-Schwarz type inequality. In the algebraic approach to 
quantum mechanics, states are the crucial ingredient for the statistical interpretation of the theory, since for a self-adjoint 
element, A = A∗ in A, ω(A) is interpreted as the expectation value of the measurement A. Their relation with states of 
a Hilbert space can be obtained from representation theory, namely, algebra homomorphisms π from A into the set of 
bounded operators over a Hilbert space B(H).

In particular, given a state ω over a C∗-algebra A, there exists a unique (up to a unitary transformation) representation 
(Hω, πω), with a vector state �ω ∈Hω being a representative of ω:

〈�ω|πω(A)�ω〉 =ω(A), ∀A ∈A. (3)

Moreover, �ω is cyclic, namely, {πω(A)�ω|A ∈ A} is dense Hω . This representation is usually called cyclic or GNS-
representation [34,36]. We will indicate it with the triplet

(Hω,πω,�ω). (4)
3
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Using this representation and equation (3), we see that a state can always be thought as a vector state in a proper repre-
sentation.

Von Neumann algebras, or W ∗-algebras, originally introduced as rings of operators, are C∗-algebra which are the dual 
of a Banach space, i.e., for every W ∗-algebra M there exists a Banach space M∗ such that M =M∗∗ . It was Sakai [33] who 
provided an abstract approach for these algebras detached from the introduction of a Hilbert space. Indeed, in the original 
formulation by von Neumann, they are defined starting from a Hilbert space H: they are subalgebras of the algebra of 
bounded operators B(H). Adding some flesh, given a set of operators M ⊂ B(H), we call its commutant the set M′ of the 
operators in B(H) which commute with every element in M:

M′ = {A ∈ B(H)|AB = B A, ∀B ∈M}. (5)

Instead, the bicommutant of M is the commutant of M′:

M′′ = (M′)′ ⊃M. (6)

A von Neumann algebra M on a Hilbert space H is a ∗-algebra of bounded operators for which M =M′′ . It is easy to 
see that a von Neumann algebra is also a C∗-algebra, as it is closed under the uniform topology. One can see that a von 
Neumann algebra is also closed under the weak topology.

By definition, given a sequence {An}n∈N ⊂ B(H) of bounded operators, we say that it converges weakly to A ∈ B(H) if

An
w−→ A ⇐⇒ ∀ϕ,ψ ∈H : 〈ϕ|Anψ〉→ 〈ϕ|Aψ〉 . (7)

Von Neumann algebras are closed with respect to the topology induced by this notion of convergence.
One of the fundamental results regarding von Neumann algebras is the bicommutant theorem [30,37]:

Theorem 1 (Bicommutant theorem). A nondegenerate algebra M ⊂ B(H) is a von Neumann algebra if and only if it is closed in the 
weak topology.

Other topologies on B(H) could have been considered (σ -weak, strong, σ -strong, strong∗ and σ - strong∗), and for all of 
them Theorem 1 works, see [30].

Given a ∗-algebra of operators, it is always possible to obtain a von Neumann algebra by considering its bicommutant, 
and it would be exactly the weak closure of the algebra itself. In a seminal paper [13], Murray and von Neumann introduced 
a classification of von Neumann algebras. The main motivation of this work was characterizing all possible algebras satisfying 
the condition

M∩M′ =CI . (8)

In a quantum mechanics framework, M and M′ can be interpreted as algebras of independent systems. An algebra satisfying 
condition (8) is called a factor. For example, given a tensor product of Hilbert spaces

H=H1 ⊗H2, (9)

the algebras B(H1) ⊗ I2 and I1 ⊗ B(H2) are examples of factors. Von Neumann’s original problem consisted in finding 
factors which do not appear in this simple form.

In [13], factors were sorted into three different types via a dimension function D. This characterization can be extended 
and generalized to all von Neumann algebras. We here summarize this characterization, see [31] for details. Before doing 
this, we need to define an equivalence relation between projections.

Definition 2. Let M ⊂ B(H) be a von Neumann algebra, and let p, q be projections in M. We say that p is similar to q, and 
we write p ∼ q, if there exists a linear partial isometry U ∈M such that p = U ∗U and q = UU∗ .

Note that, under the previous assumption, U is an isometry between the support of p and the support of q.

Definition 3. Let M be a von Neumann algebra, and call its center Z =M ∩M′ . Then

1. M is of Type I if every non-zero central projection z ∈ Z has an abelian sub-projection p � z in M. By definition, this 
means that the sub-algebra pMp is an abelian W ∗-algebra on pH.

2. M is of Type I I if it does not have any abelian projection. Moreover, every non-zero central projection z ∈ Z majorizes 
a nonzero-finite projection p � z in M. Here, a projection p is finite if there are no proper sub-projections q < p similar 
to p.

3. M is of Type I I I if it does not have any finite projection.
4
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Note that the notion of finiteness in 2. is standard in set theory.
In general, every von Neumann algebra can be uniquely decomposed as the direct sum of type I , I I and I I I algebras [31]. 

Type I algebras are the ones used in standard quantum mechanics. If they are factors, they turn out to be isomorphic to 
complete algebras of operators over a Hilbert space B(H). In the general case, they are just the direct sum (or integral) of 
such complete algebras.

Type I I algebras can be subdivided into two kinds. In particular, they are type I I1 if the identity is finite, and I I∞ if 
there are no finite central projection z ∈ Z . Murray and von Neumann proved that all algebras of type I I1 also possess a 
unique finite trace. In this sense, they can be interpreted as the continuum extensions of finite matrix algebras. Moreover, 
they proved that there exists a unique hyperfinite type I I1 factor, up to isomorphism.

Type I I I algebras, which were introduced in an abstract and mathematical framework, have found several applications 
in the algebraic approach to quantum field theory [19]. In this framework, type I I I algebras appear as local algebras of 
observables for a suitable class of field theories [17,18,38]. In his seminal work [24], Powers for the first time constructed 
a continuum family of nonequivalent type I I I factors, proving that there is an uncountable family of algebras of this type. 
In particular, his work was then generalized in [39], considering more general families of matrix algebras than 2 × 2 (see 
below). Later on, Krieger [40,41] and then Connes et al.[42,43] characterized a broader family of algebras, which is the family 
of amenable algebras.

Let us also anticipate that the same construction from Powers, which depends on a parameter λ, can also be used 
in order to get the hyperfinite type I I1 factor. In the final part of this section, we will give a quick summary of this 
construction. It will be relevant, as we are going to show how it is equivalent to the algebra of observables of a properly 
defined groupoid.

Consider the C∗-algebra A obtained by induction from the tensor products of 2 × 2 matrix algebras. Explicitly, take the 
increasing sequence

An = M2n =
n⊗

k=1

M2 (10)

with the embedding A ∈An �→ A ⊗ I2 ∈An+1. Call A0 =⋃
nAn the union of the finite dimensional algebras An , and A the 

C∗-algebra generated by this union:

A=
⋃
n∈N

An =A0. (11)

In particular, this C∗-algebra is defined as the closure of A0 in the norm inherited from the uniform norm of An . Consider 
a sequence of density matrices (ρn)n∈N in M2, and define the corresponding tensor product state on A:

φ =
⊗
n∈N

ρn. (12)

To be more precise, we can define φ on each An as a finite tensor product

φ(A)= Tr
(
(⊗n

k=1ρk)A
)
, A ∈An. (13)

This will define φ on A0. Being φ norm continuous, it will extend uniquely to a state on A. In particular, Powers 
considered the special case where all ρn are equal to a certain ρλ , which is given by

ρλ =
(

λ 0
0 1− λ

)
(14)

and 0 � λ � 1/2. Then, he considered the GNS-representation corresponding to this state, which we will indicate as 
(Hλ, πλ, �λ), and the von Neumann algebra πλ(A)′′ generated by πλ(A).

It turns out that for every value of λ the corresponding von Neumann algebra Mλ is a factor. In particular, type I I I
factors are obtained for 0 < λ < 1/2, whereas for λ = 1/2, one gets the hyperfinite factor I I1. Eventually, he proved that 
different values of λ generate non-isomorphic factors, showing that there is a continuous family of non-equivalent type I I I
factors.

Interestingly, it is possible to obtain this cyclic representation by introducing infinite tensor product, which is the way in 
which von Neumann originally worked [44]. Unfortunately, he could not frame it as a GNS-representation, the latter being 
introduced afterwords.

Finally, observe that the approach from Araki-Woods [39] generalizes the previous discussion by assuming the algebra A
to be defined from matrix algebras of different dimension, and assuming different ρn in equation (12).
5
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2.2. Left-Hilbert algebras

Left-Hilbert algebras have been introduced by Tomita [45], as the natural framework for modular theory, and then they 
were revisited by Takesaki [32,46]. They have an important role in thermodynamics, as they clarify the connection between 
dynamics and equilibrium states [30,47–49]. In particular, they can be employed in the characterization of the asymptotic 
dynamics of an open quantum system, see [50] for the continuum time case, and [51,52] for the discrete one. Clearly, 
they also play an important role in the classification of factors [43,53]. In the Schwinger’s picture of quantum mechanics, 
they take a central role since the algebra of observables is constructed as the von Neumann algebra generated by a certain 
left-Hilbert algebra [54,55].

Definition 4 (Left Hilbert algebras). A left-Hilbert algebra is a complex algebra C together with an inner product 〈·|·〉 , · (under 
which it is not complete) and an involution x → x# with the following properties:

(i) For all ξ ∈ C, the map π�(ξ) : C → C, η �→ ξη is bounded;
(ii) For all ξ, η and ζ in C, one has 〈ζ |ξη〉 = 〈

ξ#ζ
∣∣η〉, or equivalently π�(ξ)† = π�(ξ

#);
(iii) The involution # is closable in H, H being the closure of C under the inner product topology;
(iv) C2 = {ξη, ξ,η ∈ C} is dense in H.

A simple example is the cyclic representation (Hω, πω, �ω) of a C∗-algebra A associated with a state ω. Suppose that 
the state �ω is separating for πω(A), namely

A�ω = B�ω =⇒ A = B, (15)

with A, B in πω(A). Then, a left-Hilbert algebra is obtained by considering

C= {πω(A)�ω|A ∈A} ⊂Hω (16)

with a product and an involution respectively given by

(πω(A)�ω)(πω(B)�ω)= πω(AB)�ω, (17)

(πω(A)�ω)# = πω(A)∗�ω = πω(A∗)�ω. (18)

Similarly to a left-Hilbert algebra, it is possible to define a right-Hilbert algebra. In this case, π� in (i) is replaced by the 
operator πr(η)(ξ) = ξη, which must be bounded, and the involution, indicated as η �→ η� , must satisfy 〈ζ |ξη〉 = 〈ζη�|ξ 〉
instead of (ii).

It is possible to obtain a right-Hilbert algebra from a left-Hilbert algebra. In particular, one has to define a right bounded 
product and an involution �. The involution � is obtained as the adjoint of the involution #. To be more precise, call

S :D# ⊂H→D# (19)

the closure of #, and F its adjoint

F :D� ⊂H→D�, (20)

satisfying, for all ξ ∈D# and η ∈D�

〈η|Sξ〉 = 〈ξ |Fη〉 . (21)

Note that F and S are antilinear operators. In particular, one can define the modular operator � = F S , and obtain the polar 
decomposition of S:

S = J�1/2, (22)

with the antiunitary operator J called modular conjugation. As we shall see, the modular operator determines a dynamic 
on the algebra which can be considered intrinsic to the system.

The right product is obtained by considering all the elements η in H for which the product π�(ξ)η is bounded in ξ . Call 
B′ the set of all such η, and set πr(η)ξ = π�(ξ)η. Then, one can prove that the set

C′ =B′ ∩D� (23)

is actually a right-Hilbert algebra. Here, a right product and an involution are clearly defined. The relation between left-
Hilbert algebra and right-Hilbert algebra is very similar to the relation between a von Neumann algebra and its commutant. 
In particular, if we call R�(C) the von Neumann algebra generated by π�(C), and Rr(C

′) the one generated by πr(C
′), one 

has
6
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Rr(C
′)=Rr(C)′. (24)

Repeating a similar argument for C′ , one can obtain another left-Hilbert algebra C′′ ⊃ C, and so on:

C⊂ C′′ = Civ . . . , (25)

C′ = C′′′ = Cv . . . . (26)

A left-Hilbert algebra is said to be full whenever C = C′′ .
The main result regarding left-Hilbert algebras and modular theory is connected with the automorphism of the algebra 

naturally arising from it.

Theorem 5 (Tomita-Takesaki theorem). Let C be a left-Hilbert algebra, with modular operator � and modular conjugation J . Call 
R�(C) the von Neumann algebra generated by C. The following relations hold:

JR�(C) J =R�(C)′, (27)

JR�(C)′ J =R�(C), (28)

�itR�(C)�−it =R�(C), (29)

�itR�(C)′�−it =R�(C)′. (30)

The first two relations connect the von Neumann algebra R�(C) with its commutant via the operator J . The second ones 
represent a unitary dynamics (with respect to the inner product) for the algebra, generated by the Hamiltonian H = log�.

3. Groupoids and groupoid algebras

In this section, we are going to summarize the main definitions of groupoid, and the algebra of observables associated 
with it. For details, see [3–5,54–58].

A groupoid generalizes the concept of group as not all of its elements can be composed. With the terminology from 
Category theory, a groupoid is a set G , which we will call the set of transitions, together with a set of objects �, the so-
called base. Here, two maps t (target) and s (source) from G onto � exist, which characterize the product (or composition) 
α ◦ β between two elements α, β of the groupoid G in the following way.

Let α, β and γ be in G , and let x ∈�.

(i) α ◦ β is defined if and only if s(α) = t(β), in which case s(α ◦ β) = s(β) and t(α ◦ β) = t(α).
(ii) There is an identity Ix ∈ G for each x ∈�, with s(Ix) = t(Ix) = x, and such that α ◦ Ix = α and Ix ◦ β = β , for all α, β

satisfying x = s(α) = t(β).
(iii) Associativity: (α ◦ β) ◦ γ = α ◦ (β ◦ γ ) whenever one of the two sides is well defined.
(iv) Any α ∈ G has a two-side inverse α−1, namely α−1 ◦ α = Is(α) and α ◦ α−1 = It(α) .

Using the category theory formalism, we write

α : x→ y, (31)

to indicate that α ∈ G has s(α) = x and t(α) = y. Inspired by Schwinger’s approach to quantum mechanics, we interpret 
the base � as the set of outcomes of a measurement. In this way, an α in G can be interpreted as a transition from the 
outcome x to the outcome y.

Analogously to the way one introduces the group-algebra of a group, we will now describe how to define a groupoid-
algebra. This will be interpreted as the algebra of physical observables, connecting the groupoid picture with the algebraic 
picture of quantum mechanics. To better understand these notions, we start with the finite case.

Example 6 (Example: finite groupoids). Consider a finite groupoid G = {γk|k = 1, . . . , N}, with base � = {xa|a = 1, . . . , n}, n �
N . We can define the groupoid algebra C[G], in the following way

C[G] = span(G)=
{

N∑
k=1

A= Akγk|Ak ∈C

}
(32)

and the product between two elements is given by

A � B=
N∑

AkBlγk ◦ γ j. (33)

k, j=1

7
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The involution of an element in the algebra A=∑N
k=1 Akγk is defined as

A† =
N∑

k=1

Akγ
−1
k (34)

Note that this algebra is noncommutative as the composition law of the groupoid is not. The groupoid algebra corre-
sponds to the algebra of observables in the algebraic description of quantum mechanics, and its self-adjoint elements are 
the observables. By considering the product (33) as an operator A� acting on B ∈C[G], we get a natural representation of 
the algebra, which is called the regular representation. When we switch to infinite groupoids, this will became a left-Hilbert 
algebra.

Another representation is obtained by considering the Hilbert space

H� =
{
ϕ =

n∑
a=1

ϕa |xa〉 |ϕa ∈C

}
. (35)

Essentially, the elements (outcomes) of � define a basis for the Hilbert space H� . Then, we can define a representation π
of C[G] on H� by assigning to each element in the groupoid γ : x �→ y the operator

γ ∈ G �→ |y〉〈x| ∈ B(H�). (36)

This is called the fundamental representation of the groupoid algebra. One obtains the standard interpretation of the ele-
ments of groupoids as rank-one operators between vectors associated with the outcomes of a measurement. Every transition 
in an isotropy group (the set denoted Gx

x of transitions γ ∈ G such that s(γ ) = t(γ ) = x is a group and we call it the isotropy 
group at x) is represented as a rank-one projector |x〉〈x|.

Example 7 (Example: groupoid of pairs). Consider a finite groupoid G =� ×� which is just the direct product of the base set 
� with itself:

G =�×�. (37)

We set, for (x, y) ∈ G , the source and target functions to be

t(x, y)= x, s(x, y)= y. (38)

The composition of (x, y) and (w, z) is possible iff y = w , in which case (x, y) ◦ (y, z) = (x, z). Then, the groupoid algebra 
becomes

C[�×�] =
{
c=

∑
xy

cxy(x, y)|x, y ∈�, cxy ∈C

}
. (39)

Using the fundamental representation, this is nothing but the complete algebra of matrices over C[�]. Identifying (x, y) ↔
|x〉〈y|, the � product of two elements c=∑

xy cxy |x〉〈y| and d=∑
xy dxy |x〉〈y| is

c � d=
∑
xyz

cxydyz |x〉〈z| , (40)

which is just the matrix multiplication between the matrices [cxy] and [dxy]. We get standard quantum mechanics, with the 
algebra of observables given by all the operators on C[�]:

ν[�×�] = B(H�)= Mn (41)

A couple of comments are in order. First of all, for generic groupoids the fundamental representation is not faithful, since 
the isotropy groups are trivially represented as the same element, see the last line of Example 6. Therefore, the fundamental 
representation of the groupoid of pairs of a set � corresponds to the standard case of a Hilbert space in which one has 
selected a complete family of compatible observables and no gauge degrees of freedom are considered. Generic groupoids 
having non-trivial isotropy groups allow some gauge degrees of freedom to enter the description. These redundant degrees 
of freedom, however, disappear in the fundamental representation. We will see that a faithful representation can be obtained 
in a different way, via the regular representation.
8
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Lα Gt(α)Gs(α)

s(α) t(α)

G

�

Fig. 1. The left action Lα of an element of the groupoid α will map the subset Gs(α) of elements which can be composed with α, to Gt(α) , whose elements 
can be composed with α−1. A Haar measure μs(α) will transform accordingly.

3.1. Groupoid algebras

In this subsection we present the construction of the groupoid-algebra and its regular representation for measure 
groupoids, i.e., groupoids together with their Borel algebras of measurable subsets and a special equivalence class of 
measures. The reason for the choice of a measure is the need of replacing the sum in (32) with an integral, whenever 
non-discrete groupoids are involved. Similarly to the group case [59, p. 120], this measure will need to be a generalized 
left-invariant Haar measure. Using such measure, it is possible to obtain a continuous regular representation of the theory. 
Here, we will just summarize the main results, without dwelling too much on the formalism. For details, see [54,55].

Consider the pair (G, [μ]) consisting of a measurable analytic groupoid G and an equivalence class of measures [μ], and 
suppose that a probability λ belongs to this class of measures. Since λ is a probability measure, the induced measure

λ̃= t∗λ= λ ◦ t−1 , (42)

is well defined. Let μ be a measure on G , which is equivalent to λ. Using the disintegration theorem with respect to the 
target map t : G → �, it can be decomposed with respect to λ̃ as

μ=
∫
�

μxdλ̃(x), (43)

where μx(G \ t−1({x})) = 0 for all x ∈� [54,60,61]. In particular, this decomposition is unique and the family of measures 
{μx}x∈� is uniquely determined up to a zero-measure set on �, which implies that this decomposition is actually associated 
with the whole equivalence class of measures.

Given μ, the family {μx}x∈� is said to be a system of left-invariant Haar measures if it is invariant under the left 
composition

(Lα)∗μs(α) =μs(α) ◦ L−1
α =μt(α), (44)

where

Lα : Gs(α) → Gt(α)

β �→ α ◦ β. (45)

Here, Gx = {α ∈ G|t(α) = x}. In a nutshell, the family of measures {μx}x∈� is not modified by composition on the left, 
as shown in Fig. 1. In [54] it is proved that any measure groupoid (G, λ), with λ a probability invariant with respect to 
inversion (see below), admits a family of left-invariant Haar measures, obtained by decomposing a measure μ equivalent to 
λ.

Using a family of Haar measures, it is possible to construct an involutive algebra, which allows to represent the groupoid 
as a family of operators, and extend the concept of groupoid algebra (32) to the continuous case. This algebra will play the 
role of the algebra of observables in the Schwinger picture.

Let (G, λ) be a measure groupoid, and consider a measure μ absolutely continuous with respect to λ, and σ -finite. Write 
this measure as

μ=
∫

μxdλ̃(x), (46)
�

9
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where λ̃ is defined as (42), and suppose that the family {μx}x is a system of Haar measures, namely, it satisfies equation (44). 
Again, such a system exists under proper hypotheses on λ.

Moreover, suppose that the measure μ is similar to its inverse. This means that, calling the inverse

τ : G→ G
α �→ α−1, (47)

the push-back of μ with respect to τ is similar to μ:

τ∗μ=μ ◦ τ−1 =�−1μ. (48)

Here, �−1 is a function from G to R+ , and represents the Radon-Nikodym derivative of the inverse measure τ∗μ with 
respect to the measure μ. We will call � modular function, and we shall see that it is connected to the Tomita-Takesaki 
modular operator discussed in Section 2.2. It can be proved that

�(α−1)=�(α)−1,

�(α ◦ β)=�(α)�(β) , (49)

which means that the modular function is a groupoid homomorphism from the groupoid G to the multiplicative group R+ .
It is possible to construct an algebra starting from this measure. Let F be a measurable function

F : G→C, (50)

and define its Hahn norm as

‖F‖L1H =max

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∫
G

|F (α)|dμx(α)

∥∥∥∥∥∥
L∞

,

∥∥∥∥∥∥
∫
G

�−1(α)
∣∣F (α−1)

∣∣dμx(α)

∥∥∥∥∥∥
L∞

⎫⎪⎬
⎪⎭ . (51)

Here, L∞ is the essential supremum over the space �, with respect to the measure λ̃ and the parameter x in the integrals. 
Call L1H(G) the set of functions with finite Hahn norm. Then, the vector space

C= L1H(G)∩ L2(G) (52)

is a left-Hilbert algebra [6,45], with involution and product given respectively by

F †(α)=�−1(α)F (α−1)=�(α−1)F (α−1), (53)

(F � G)(α)=
∫
G

F (β)G(β−1 ◦ α)dμt(α)(β). (54)

The von Neumann algebra generated by C will be indicated by ν[G] = C′′ , and it will represent the algebra of physical 
observables. It is clear that in the finite case, using the counting measure, the previous equations will yield the algebra (32).

In general, the algebra ν[G] is non commutative, and in this sense the theory we are describing is non-classical. This 
representation is not irreducible but provides an algebra already in a standard form. According to the general theory of 
left-Hilbert algebras, the involution operator † can be written as the product J�1/2 where J is an antiunitary operator and 
� is the modular operator. In this case the operator � : C → C is the multiplication operator by the modular function, 
whereas J : L2(G) → L2(G) acts as follows:

J f = δ−
1
2 f ◦ τ . (55)

This representation of the algebra is not irreducible, and the commutant, obtained by conjugation with the operator J , 
corresponds to the algebra generated by the right action of the groupoid on itself.

A commutative subalgebra corresponds to the measure of outcomes in �, at least in the finite case. We infer this algebra 
from the example of standard groupoid of pairs, Example 7. Here, the physical algebra corresponding to � × � can be 
represented as a complete algebra of matrices, as in equation (41). Using standard quantum mechanics, the classical sub-
algebra corresponding to the computational base |x〉x∈� is the algebra of diagonal matrices:

νcl(�×�)= diag(λx : x ∈�). (56)

The action of this subalgebra in the regular representation is∑
λx |x〉〈x| �

∑
cyz |y〉〈z| =

∑
λxcxz |x〉〈z| . (57)
x yz xz

10
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4. The infinite qubit-chain groupoid

In this section, we are going to apply the construction of the previous section to a particular example of groupoid. We 
will consider an infinite countable number of copies of the qubit groupoid [3]. It can be interpreted as a chain of spins. We 
are going to show that the physical algebra corresponding to this example can be of either type I I1 or I I I , depending on 
the chosen measure on the groupoid. This shows how nontrivial algebras may naturally arise in the groupoid picture.

Let us start with a bit of notation. Let i ∈N , and call

�i = {0,1}, (58)

the base of the i-th qubit, whose elements are the possible outcomes of a measurement on it. The base of the chain will be

�∞ =
∏
i∈N

�i = {(x1, x2, . . . )|xi ∈�i}. (59)

A sequence (x1, x2, . . . ) in �∞ will represent a measurement on the whole chain, getting information on each site.
As discussed previously, noncommutative aspects enter the theory via transitions. We will introduce transitions that only 

allow a finite number of spins (or qubits) to flip. They can be introduced on �∞ as elements of the following countable set

�= {(x1, x2, . . . ) ∈�∞|∃N s.t. xi = 0 ∀i > N}. (60)

Given an element xo ∈ �, if xi = 1 is a member of the sequence equal to 1, there will be a flip of the i-th qubit. To be more 
precise, we will consider the groupoid

G =�∞ × �, (61)

with target and source functions given by

s(x, xo)= x⊕ xo, (62)

t(x, xo)= x, (63)

for (x, xo) ∈�∞ × �. Here, the ⊕ symbol stands for sum modulo 2, and the sum of two sequences is intended as the term 
by term sum. Let us note, here, that the set � endowed with the operation ⊕ forms a countable Abelian group and the 
inverse operation coincides with ⊕ itself. From now on, we will indicate with x, y, . . . the elements in �∞ and xo, yo, . . .
the elements of �. Two elements of the groupoid α = (x, xo) and β = (y, yo) can be composed iff y = t(β) = s(α) = x ⊕ xo , 
in which case

α ◦ β = (x, xo) ◦ (y, yo)= (x, xo ⊕ yo). (64)

Note that description given in (64) differs from the one corresponding to the groupoid of pairs in Example 7, as the 
second term in (61) is the difference between target and source, rather than the source itself. In particular, note that the 
groupoid is not connected, as a transition between different elements in the base can be defined if and only if they are 
equal after a finite number of terms. Actually, this groupoid can be seen as an action groupoid, with the group (�, ⊕) acting 
on the base �∞ , see [3].

Given an element x in the base, its identity is Ix = (x, 0), while the inverse of an element (x, xo) in the groupoid is 
(x, xo)−1 = (x ⊕ xo, xo).

We are interpreting this model as a system of spins, and we are measuring their spin along the z axis, assuming that a 
finite number of qubits (or spins) can be flipped due to noise or quantum jumps and every transition can in principle be 
reversed.

In order to construct the von Neumann algebra of observables as defined in Section 3.1, we need a measure on the 
groupoid G which is absolutely continuous to its inverse (Eq. (48)) and left invariant (Eq. (44)). We explicitly construct it as 
a product of measures, one over the base �∞ and the other on the set of transitions �.

The construction of the measure on �∞ will follow the standard approach to define a probability on an infinite product 
in probability theory [62–64]. We briefly summarize it. First, we need to define the measurable sets. Given a set AN ⊂∏N

i=1 �i , define the cylinder on �∞ with base AN as the set

C (AN)= {x ∈�∞|(x1, . . . , xN) ∈ AN}. (65)

This cylinder is the set of all the sequences with the first N elements in AN . Running N ∈N and AN ⊂∏N
i=1 �i , we get a 

family of cylinders in �∞ . We define the σ -algebra �∞ as the σ -algebra generated by these cylinders. It is then possible 
to obtain a product probability over �∞ . Let a probability be defined on each �i by

νi = λiδ{0} + (1− λi)δ{1}, 0� λi � 1. (66)
11
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Here, δ{k}(A) is the delta measure at k, with value 1 when k is in A, 0 otherwise. Then, there exists a unique probability 
measure ν∞ =∏

i νi on �∞ which acts on the cylinders as the product of the finite product measure of νi , namely

ν∞(C (AN))=
{

N∏
i=1

νi

}
(AN), (67)

for all N ∈N and AN ⊂∏N
i=1 �i . This result is referred to as Kolmogorov’s theorem [62, p. 27].

We now need a measure on �. Note that �, as a subset of �∞ , is a measurable set of 0 measure with respect to ν∞
(unless the pathological case λi = 1, definitively in i). In order to get a nontrivial theory, we have to introduce a different 
measure on it. Since � is a countable commutative group under ⊕, we will use the (group) Haar measure on it, which is 
just the counting measure #:

#(A)=
∑
xo∈A

1, (68)

defined for all A ⊂ �. The σ -algebra on � is the power set of �, P(�). The measure on G is given by the product measure 
μ = ν∞ × #, over the product σ -algebra �∞ ×P(�).

As underlined in Section 3.1, the measure μ has to satisfy certain requirements in order to obtain the physical algebra 
mentioned in the previous section [54,55]. In particular, it must be equivalent to its inverse (48), and its restrictions to the 
fibers of the target map must form a system of left-invariant Haar measures (44).

Inverse We need to check that the measure μ is equivalent to its inverse. Let us consider the inverse map

τ : G =�∞ × �→ G =�∞ × � (69)

α = (x, xo) �→ α−1 = (x⊕ xo, xo). (70)

The inverse measure is obtained as the push-forward of μ by τ :

τ∗μ(K )=μ(K−1)=μ({(x, xo)−1|(x, xo) ∈ K }), (71)

with (x, xo)−1 = (x ⊕ xo, xo). By setting K |x0 = {x|(x, xo) ∈ K }, we get

μ(K−1)=
∑
xo∈�

ν∞(K−1|xo )=
∑
xo∈�

((Lxo )∗ν∞)(K |xo ). (72)

Now, we claim that ((Lxo )∗ν∞) =�−1ν∞ , with the modular function � given by

�−1(x, xo)=
∞∏
i=1

(
λi

1− λi

)(2xi−1)xoi
. (73)

Indeed, we choose a finite family of elements yi ∈ �i , with i = 1, . . . , N , and prove the previous formula for the cylinder 
C ({(y1, . . . , yN )}), then the uniqueness in Kolmogorov theorem will then ensure that the equality holds on the whole 
σ -algebra �∞ . Explicitly,

((Lxo )∗ν∞)(C ((y1, . . . , yn)))= ν∞(C (y1 ⊕ xo1, . . . , yN ⊕ xoN))

=
N∏

i=1

[λiδ{0}(yi ⊕ xoi )+ (1− λi)δ{1}(yi ⊕ xoi )]

=
N∏

i=1

[λi f
i
0(x

o
i )δ{0}(yi)+ (1− λi) f

i
1(x

o
i )δ{1}(yi)]. (74)

Here, λi f i0 must have value λi for xoi = 0, and 1 − λi for xoi = 1, while (1 − λi) f i1 must have value 1 − λi for xoi = 0, and 
λi for xoi = 1. But these are exactly the values of �−1(x, xo). Compare this equation with [22, p. 139]. Since � is a strictly 
positive function, we have that the two measures μ and τ∗μ are absolutely continuous to each other.
12
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Left-invariance Following the approach from [54,55], we need to decompose the measure μ as in (46), in terms of a 
probability λ absolutely continuous to μ. Consider a probability distribution m over � in the form

m(A)=
∑
xo∈A

m(xo) 0 <m(xo) < 1,
∑
xo∈�

m(xo)= 1. (75)

Then, the probability λ = ν∞ ×m makes (G, λ) a measure groupoid. Observe that λ is absolutely continuous with respect 
to μ. Write the push-forward of λ with respect to the target function t , as in equation (42):

λ̃(A)= t∗λ(A)= λ(t−1(A))= λ(A × �)= ν∞(A), (76)

for all A measurable subsets of �∞ . Then

μ=
∫

�∞

dλ̃(x)μx =
∫

�∞

dλ̃(x)δ{x} × #, (77)

where

μx = δ{x} × #, (78)

satisfies the property that μx(G \ t−1({x}) = 0, see equation (43). We should now check that the family {μx}x∈�∞ is left-
invariant. For α = (x, xo), the left action (45) becomes

Lα : {x⊕ xo} × �→{x} × �

β = (x⊕ xo, yo) �→ α ◦ β = (x, xo ⊕ yo). (79)

Here, {x ⊕ xo} ×� = t−1({x ⊕ xo}) is the set of all transformations that can be composed with α, while {x} × � = t−1({x}) is 
the set of transformations with same target as α.

Equation (44) now becomes, for a set K⊂ G =�∞ × � such that Kx =K ∪ t−1(x) �= ∅:
(Lα)∗ (μs(α))(K)=μs(α) ◦ Lα−1(K)=μs(α) ◦ Lα−1 (Kx)

=μx+xo ◦ L−1
(x,xo)(Kx)= #(Kx)=μx(K). (80)

Here, we used the fact that Lα has range on t−1(x). As a result, it is possible to obtain a left-Hilbert algebra, and a von 
Neumann algebra, from the infinite qubit-chain groupoid G using the measure ν∞ × #.

Convolution We now follow the step of Section 3.1 to obtain the left-Hilbert algebra C and the von Neumann algebra of 
observables ν[G] on the Hilbert space H= L2(G, μ).

Given a measurable function F on G , its Hahn norm is defined as in equation (51), with � the modular function given 
in (73), and the measures μx given by (78). The Hahn norm of a function F is

‖F‖L1H =max

{∥∥∥∥∥∑
xo∈�

∣∣F (x, xo)
∣∣∥∥∥∥∥

L∞
,

∥∥∥∥∥∑
xo∈�

�(x, xo)−1
∣∣F (x, x⊕ xo)

∣∣∥∥∥∥∥
L∞

}
(81)

If F , G are in L2(G, μ) and have finite Hahn norm, a convolution is well defined [6]. Let α = (x, xo) in G , and write the 
convolution of F and G as in (54)

(F � G)(α)=
∫
G

F (β)G(β−1 ◦ α)dμt(α)(β)

=
∫
G

F (y, yo)G((y⊕ yo, yo) ◦ (x, xo))dμx(y, yo)

=
∑
yo∈�

F (x, yo)G((x⊕ yo, yo) ◦ (x, xo))

=
∑
yo∈�

F (x, yo)G(x⊕ yo, xo ⊕ yo), (82)

with β = (y, yo). The Dirac measure δ in (78) ensures that y = t(β) = t(α) = x.
Call L1H(G,μ) the space of function with finite Hahn norm, and A the set of those which are also in L2(G, μ):

C= L1H(G,μ)∩ L2(G,μ). (83)
13
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The convolution (78) turns out to be associative on C, as the measure is σ -finite [70]. The operator

πF : L2(G,μ)→ L2(G,μ)

ψ �→ πFψ = F � ψ (84)

is bounded. Indeed, given F ∈ C and ψ in L2(G), and using the Schwartz inequality, we get

‖F � ψ‖2L2 =
∫

�∞

∑
xo∈�

∣∣∣ ∑
yo∈�

F (x, yo)ψ(x⊕ yo, xo ⊕ yo)
∣∣∣2dν∞(x)

�
∫

�∞

∑
xo∈�

∑
zo∈�

∣∣∣F (x, zo)
∣∣∣ ∑
yo∈�

∣∣∣F (x, yo)ψ(x⊕ yo, xo ⊕ yo)2
∣∣∣dν∞(x)

� ‖F‖L1H
∫

�∞

∑
xo∈�

∑
yo∈�

∣∣∣F (x⊕ yo, yo)ψ(x, xo)2
∣∣∣dν∞(x⊕ yo)

= ‖F‖L1H
∫

�∞

∑
xo∈�

|ψ(x, xo)|2
∑
yo∈�

|F (x⊕ yo, yo)|�(x, yo)−1dν∞(x)

� ‖F‖2
L1H
‖ψ‖2L2 , (85)

so that ‖πF ‖B(L2) � ‖F‖L1H . The vector space C becomes a left-Hilbert algebra, with the involution † : C → C in (53) expressed 
as

F †(α)=�−1(α)F (α−1), (86)

and � given in equation (73). Finally, the Hilbert-algebra of operators can be closed with respect to the weak topology on 
L2(G, μ), thus obtaining the von Neumann algebra of observables.

From now on, we shall set all λi equal to a given λ, with 0 < λ � 1/2. In the next section, we are going to show that 
this algebra of operators is isomorphic to the algebras defined by Powers in [24], and we will do it by observing that they 
are both equivalent to the algebra defined by Pukánszky in his work [22].

4.1. Pukánszky algebra

We are now going to show that the physical algebra ν[G] associated with the infinite qubit-chain groupoid is isomorphic 
to the algebra obtained by Pukánszky [22] and Powers [24], and from this it will follow that different values of λ yield 
different and nonequivalent quantum theories. In particular, for 0 < λ < 1/2, we get factors of type I I I , while for λ = 1/2
we get the hyperfinite type I I1 factor. In particular, the inequivalent type I I I factors for 0 < λ < 1/2 are indicated in 
literature as Rλ̃ , λ̃= λ/(1 − λ) ∈ [0, 1] [29,43].

Using the notation introduced above, the Pukánszky algebra is defined on L2(G, μ), and it is generated by the two 
families of operators, Vxo , Lϕ : L2(G, μ) → L2(G, μ) given by

(V yoψ)(x, xo)=�(x, yo)−1/2ψ(x⊕ yo, xo ⊕ yo), (87)

(Lϕψ)(x, xo)= ϕ(x)ψ(x, xo). (88)

Here, yo is an element of �, while ϕ is a measurable function in L∞(�∞, ν∞). The term �−1/2 makes the operator V yo

unitary.
Let MP be the von Neumann algebra generated by Vxo and Lϕ . We now prove that MP = ν[G]. In order to do this, we 

just need to prove that the generating operators of both algebras belong to each other.
We start with MP ⊂ ν[G]. Let yo be in �, and we look for a function F yo ∈ L2 ∩ L1H such that

(V yoψ)(x, xo)= (F yo � ψ)(x, xo)=
∑
zo∈�

F yo (x, z
o)ψ(x⊕ zo, xo ⊕ zo), (89)

for all ψ ∈ L2. This implies F yo (x, xo) = δyo (xo)�(x, xo)−1/2. Moreover, F yo is indeed in L2 ∩ L1H. Explicitly, 
∥∥F yo

∥∥
L2 = 1, while

∑
xo∈�

∣∣F yo (x, x
o)
∣∣=�(x, yo)−1/2 �

(
1− λ

λ

)∑
j∈N yoj/2

<+∞, (90)

∑
xo∈�

∣∣F yo (x, x
o)
∣∣�−1(x, xo)=�(x, yo)−3/2 �

(
1− λ

λ

)∑
j∈N 3yoj/2

<+∞. (91)
14
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So, V yo ∈ ν[G]. Regarding (88), let ϕ ∈ L∞(�∞), and consider the equation

(Lϕψ)(x, xo)= (Gϕ � ψ)(x, xo)=
∑
zo∈�

Gϕ(x, zo)ψ(x⊕ zo, xo ⊕ zo). (92)

Then, we get

Gϕ(x, xo)= δ{0}(xo)ϕ(x). (93)

It is easy to see that 
∥∥Gϕ

∥∥
L2 � ‖ϕ‖L∞ , while∥∥∥∥∥∑

xo∈�

∣∣Gϕ(x, xo)
∣∣∥∥∥∥∥

L∞
=

∥∥∥∥∥∑
xo∈�

δ{0}(xo)|ϕ(x)|
∥∥∥∥∥
L∞
= ‖ϕ‖L∞ <+∞, (94)

∥∥∥∥∥∑
xo∈�

∣∣Gϕ(x, xo)
∣∣�(x, xo)−1

∥∥∥∥∥
L∞
=

∥∥∥∥∥∑
xo∈�

δ{0}(xo)|ϕ(x)|�(x, xo)−1

∥∥∥∥∥
L∞
= ‖ϕ‖L∞

<+∞, (95)

so that Gϕ ∈ C, and Lϕ ∈ ν[G]. In particular, note that the operators Lϕ define an Abelian subalgebra which we can be 
interpreted as the classical algebra corresponding to a noiseless measurement on the spins. As a result, MP ⊂ ν[G].

Conversely, we should prove that a function in C is in the Pukánszky algebra. First, observe that for all yo ∈ � and 
ϕ ∈ L∞(�∞), the function

F (x, xo)= δ{yo}(xo)ϕ(x) (96)

is in L2 ∩ L1H, and also

(F � ψ)(x, xo)=
∑
zo∈�

δ{yo}(zo)ϕ(x)ψ(x⊕ zo, xo ⊕ zo)= ϕ(x)ψ(x⊕ zo, xo ⊕ zo)

= ϕ(x)�(x, yo)1/2(V yoψ)(x, xo)= Lϕ
√

�V yoψ(x, xo). (97)

Therefore, a function in the form (96) defines an operator πF (84) via the convolution (82), and this operator is in the 
Pukánszky algebra MP. Next, we decompose any other function F in C as a sum of functions of type (96). Explicitly

F (x, xo)=
∑
yo∈�

δ{yo}(xo)F (x, xo) , (98)

where 
∥∥F (x, xo)

∥∥
L∞ ≤ ‖F‖L1H <∞. This means that every element in the previous sum is in the form (96) and thus it is in 

the Pukánszky algebra. Consequently, any finite sum of such elements is in the algebra, too. In order to prove that F is in 
the algebra, we just need to prove that

(χ�n F ) � ψ
L2−→ Fψ, (99)

with �n = {xo ∈ �|xi = 0, ∀i > n}, and χ�n the characteristic function over �n . By calling Gn = F (1 −χ�n ) and repeating the 
same steps as in (85), we have

‖Gn � ψ‖2L2 =
∫

�∞

∑
xo∈�

∣∣∣ ∑
yo∈�

Gn(x, y
o)ψ(x⊕ yo, xo ⊕ yo)

∣∣∣2dν∞(x)

�
∫

�∞

∑
xozo∈�

∣∣∣Gn(x, z
o)

∣∣∣ ∑
yo∈�

∣∣∣Gn(x, y
o)ψ(x⊕ yo, xo ⊕ yo)2

∣∣∣dν∞(x)

� ‖F‖L1H
∑
yo /∈�n

⎧⎪⎨
⎪⎩

∫
�∞

∑
xo∈�

∣∣∣F (x, yo)ψ(x⊕ yo, xo ⊕ yo)2
∣∣∣dν∞(x)

⎫⎪⎬
⎪⎭ . (100)

The last element in the equation converges to 0 if the sum over all yo is convergent. But this is the case as

∑
yo∈�n

⎧⎪⎨
⎪⎩

∫
�

∑
xo∈�

∣∣∣F (x, yo)ψ(x⊕ yo, xo ⊕ yo)2
∣∣∣dν∞(x)

⎫⎪⎬
⎪⎭� ‖F‖L1H ‖ψ‖

2
L2 <∞, (101)
∞
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by repeating the same computation of the last line in equation (85). As a result, πF ∈MP, and MP ⊃ ν[G], so that MP =
ν[G].

In the final part of this section we will show how one can obtain the Pukánszky algebra MP from the Powers con-
struction given in Section 2.1. In particular, we will represent the algebra A in equation (11) on the Hilbert space L2(G, μ), 
obtaining an equivalent cyclic representation. This construction was first obtained by Glimm [23], and maps the Pukánszky 
factors generated by (87) and (88) to the ones obtained by Powers. In order to get the corresponding cyclic representation, 
it is necessary for the parameter λ in the measure on � of Eq. (66) to be the same λ as in (14).

For k ∈N , consider Vek and Lψk , with

ek = (δkj) j∈N = (0, . . . ,0,

k↓
1,0, . . . ) ∈ �, (102)

ψk(x)=
{
+1 if xk = 0,

−1 if xk = 1.
∈ L∞(G,μ). (103)

The Glimm representation πλ of A on L2(G, μ) is defined by assigning

σ
(k)
1 = I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

k−1

⊗σ1 ∈ M2k �→ Vek ∈ νP, (104)

σ
(k)
3 = I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

k−1

⊗σ3 ∈ M2k �→ Lψk ∈ νP. (105)

The cyclic vector is

�λ(x, x
o)= δ{0}(xo)χ�∞(x), (106)

and 〈�λ|πλ(A)�λ〉 = φ(A). To prove this, just expand an A in M2n in a tensor product basis of {I2, σ1, σ2, σ3} and evaluate 
explicitly the expectation values of �λ .

4.2. Modular theory

Given a left-Hilbert algebra, it is possible to write the polar decomposition of the closure of the involution †, as in 
equation (22). We will indicate with �̂ the modular operator obtained from Tomita-Takesaki, to distinguish it from the 
modular function � in (73).

As we have already mentioned in Section 3.1 the modular operator and the modular conjugation are connected to the 
modular function � of the groupoid G by

( J F )(α)=�−1/2(α)F (α−1), (107)

(�̂F )(α)=�(α)F (α), (108)

for F in C. It turns out that � is just a multiplication operator. Explicitly, by using (73), one gets

�̂(x, xo)=
∞∏
j=1

(
1− λ

λ

)(2x j−1)xoj
. (109)

From Tomita-Takesaki modular theory, and in particular from Theorem 5, it is possible to define a unitary dynamics on 
the algebra ν[G], see equation (29). The Hamiltonian generating this dynamics is given by the logarithm of the modular 
operator �̂, which in our case explicitly reads

H(x, xo)= log �̂(x, xo)= log
1− λ

λ

∞∑
j=1

(2x j − 1)xoj . (110)

The corresponding spectrum is the essential range of the multiplication function, namely:

spec(H)= log

(
1− λ

λ

)
k, k ∈Z. (111)

Explicitly, for each site j, each term in the sum takes the value +1 for x0j = 1 and x j = 1, while it is −1 for x0j = 1 and 
x j = 0. The corresponding eigenvectors are obtained as combination of characteristic function over these sets. Compare this 
spectrum with [43, p. 485].
16



F.M. Ciaglia, F. Di Cosmo, P. Facchi et al. Journal of Geometry and Physics 191 (2023) 104901
5. DFS states

In the groupoid picture, there are different ways to introduce states. From one point of view, one could define a state 
as a quantum measure on the groupoid. The quantum measure approach was proposed by Sorkin [65] as a realistic space-
time interpretation of Quantum Mechanics via a generalized measure which replaces the usual concept of probability. This 
generalized measure is not interpreted in the sense of frequencies but in the sense of preclusion [66] and it accounts for 
the interference terms due to the lack of additivity.

On the other hand, once the groupoid algebra is defined, states can be described as positive normalized functionals over 
the algebra of observables ν[G], inheriting the structure of the algebraic description [4]. In this paper we will follow this 
second approach.

Between states defined in the groupoid picture, a family which turns out to be particularly relevant is the family of 
Dirac-Feynman-Schwinger states [25]. For the groupoid of pairs over a measurable space � (see Example 7), they turn out 
to be the pure states of the theory, once the physical algebra is introduced (Eq. (41)). However, their major interest is related 
to the possibility of encoding the dynamics of a system in the histories approach to quantum mechanics [25,67,68]. Indeed, 
these states are represented via a function of positive-type on the groupoid which is also a homomorphism of the groupoid 
with values in U (1), and the corresponding phase factor can be interpreted as an abstract action functional for the groupoid 
of paths of a kinematical groupoid.

On the other hand, DFS functions can be used to define homomorphisms of the groupoid with values in R+ , if one 
replaces the imaginary exponential with a real exponential. We have already seen an example of such function, the function 
� of the infinite qubit-chain which has been proved to be associated with the Tomita-Takesaki operator of the correspond-
ing groupoid-algebra. In this sense, DFS functions can determine dynamics via the automorphism of the groupoid-algebra 
associated with the Tomita-Takesaki operator. In this paper, we will look at DFS functions from this perspective and we will 
firstly arrive at a complete characterization of them, using the fact that they are connected to a certain cohomology class of 
the group �. Then, one can ask oneself if there is a suitable Haar system of measures on the groupoid which has the chosen 
real DFS function as modular function. The answer is affirmative as one can see in [69,70] and we will provide an example 
of interest connected with Ising dynamics. Let us start with the first result.

For the infinite qubit-chain, a real DFS state is defined starting from a function of positive type of the form

ϕ(α)= e−S (α), (112)

where S : G→R is a measurable function which satisfies the condition

S (α ◦ β)=S (α)+S (β). (113)

We will now give a constructive procedure to obtain real DFS function for the infinite qubit-chain groupoid. The homo-
morphism condition (113) reads

S (x, xo ⊕ yo)=S (x⊕ yo, xo)+S (x, yo)=S (x, xo)+S (x⊕ xo, yo). (114)

In a first approach, one could simply define S on the elements (x, ek), with {ek}k∈N being the elements in � in equa-
tion (59), and x in �∞ . Then, this expression should be extended to all (x, xo) in �∞ × � by writing xo =∑

i eki and using 
the first equality of (114). Unfortunately, the second equality introduces other constraints on the space of DFS functions. 
Note that it is a consequence of the commutativity of the group �.

We can refine the previous idea, and use it to construct a DFS function inductively. First, we need to observe some basic 
properties of a DFS function. In particular, S has to satisfy

S (x,0)= 0, (115)

as S (x, xo) =S (x, xo ⊕ 0) =S (x, 0) +S (x, xo). Moreover

S (x⊕ xo, xo)=S (x,0)−S (x, xo)=−S (x, xo), (116)

We will use these two properties to inductively construct S . Define for n ∈N the sets

�n = {(x1, x2 . . . ) ∈�∞ : xk = 0, ∀k > n}, (117)

Cn = {(x1, x2 . . . ) ∈�∞ : xk = 0, ∀k� n}. (118)

Note that �n ⊂ � =∪k�k , while Cn ⊂�∞ is the cylinder C ({0,0, . . . ,0︸ ︷︷ ︸
n

}), see equation (65).

We will use induction hypothesis by requiring that S satisfies the DFS condition on the set

�∞ × �n, (119)

which means that (114) is satisfied for all xo, yo ∈ �n and x ∈ �∞ . Then, we will extend S to a function satisfying DFS 
condition on �∞ × �n+1. The process is performed in the following way.
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(1) Define freely the function S (x, en+1) for x in the cylinder Cn+1. This means that x1 = x2 = · · · = xn+1 = 0, and S is 
defined on Cn+1 × {en+1}.

(2) Extend it on Cn using condition (116). This means defining S (x ⊕ en+1, en+1) ≡−S (x, en+1), with x again in Cn+1. At 
this point, S is defined on �∞ × �n and Cn × {en+1}.

(3) Consider xo ∈ �n and z ∈�∞ . Decompose uniquely z = z⊕ zo , with zo ∈ �n and z in Cn . Thus, define

S (z, xo ⊕ en+1)≡S (z⊕ en+1, z
o ⊕ xo)︸ ︷︷ ︸

∈ �∞×�n

−S (z, zo)︸ ︷︷ ︸
∈�∞×�n

+S (z, en+1)︸ ︷︷ ︸
∈Cn×{en+1}

. (120)

Since �n+1 = �n ∪ (�n ⊕ {en+1}), equation (120) extends S on the whole �∞ × �n+1. We must prove that it is indeed a 
DFS function on �∞ × �n+1. Explicitly, we need to show that

S (z, xo ⊕ yo)=S (z⊕ yo, xo)+S (z, yo)=S (z, xo)+S (z⊕ xo, yo) (121)

for all z ∈�∞ and xo, yo ∈ �n+1. We will check it by evaluating each term for all possible values of xon+1 and yon+1.

Case 1: xon+1 = 1, yon+1 = 0.
Recall xo = en+1⊕xo , so that xo ∈ �n . Decompose z= zo⊕ z, with zo ∈ �n and z ∈ Cn . We check the first equality in (121).

S (z⊕ zo, (xo ⊕ en+1)⊕ yo)=S (z⊕ en+1, x
o ⊕ yo ⊕ zo)−S (z, zo)+S (z, en+1)

=S (z⊕ en+1, x
o ⊕ (yo ⊕ zo))−S (z, yo ⊕ zo)

+S (z, en+1)+S (z, yo ⊕ zo)−S (z, zo)

=S (z⊕ yo ⊕ zo, xo + en+1)+S (z⊕ zo, yo)

=S (z⊕ yo, xo ⊕ en+1)+S (z, yo) (122)

For the second equality in (121)

S (z⊕ zo, (xo ⊕ en+1)⊕ yo)=S (z⊕ en+1, x
o ⊕ yo ⊕ zo)−S (z, zo)+S (z, en+1)

=S (z⊕ en+1, x
o ⊕ zo)−S (z, zo)+S (z, en+1)

+ S(z⊕ zo ⊕ xo ⊕ en+1, y
o)

=S (z, xo ⊕ en+1)+S (z⊕ xo ⊕ en+1, y
o). (123)

This proves equation (121) in the first case.

Case 2: xon+1 = yon+1 = 1.
Again, recall xo = xo ⊕ en+1, yo = yo ⊕ en+1, so that xo, yo ∈ �n . Note that S(z, (xo ⊕ en+1) ⊕ (yo ⊕ en+1)) = S(z, xo ⊕ yo). 

On the other side

S (z⊕ (yo ⊕ en+1), x
o ⊕ en+1)=S ((z⊕ en+1)⊕ (yo ⊕ zo), xo ⊕ en+1)

=S ((z⊕ en+1)⊕ en+1, x
o ⊕ yo ⊕ zo)

−S (z⊕ en+1, y
o ⊕ zo)+S (z⊕ en+1, en+1)

=S (z, xo ⊕ yo ⊕ zo)−S (z⊕ en+1, y
o ⊕ zo)

−S (z, en+1). (124)

As a result

S (z⊕ (yo ⊕ en+1)x
o ⊕ en+1)+S (z, yo ⊕ en+1)=S (z, xo ⊕ yo ⊕ zo)

−S (z⊕ en+1, y
o ⊕ zo)−S (z, en+1)

+S (z⊕ en+1, z
o ⊕ yo)−S (z, z)−S (z, zo)

=S (z⊕ zo, xo ⊕ yo). (125)

In this way, we see that equation (120) generates a real DFS function on �∞×�n . By repeating this procedure, it is possible 
to extend it to the whole space �∞ × �.

Let us note here that the condition (114) can be interpreted also in terms of a cohomology of the group �. Indeed, let 
A be the space of measurable functions on �∞ which is a �-module [71] under the following action of the group �:
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(xo ◦ S)(x)= S(x⊕ xo) . (126)

In particular, observe that a �-module can be interpreted as a function from �∞ × � in R.
Call �n the direct product of n copies of �

�n = �× �× · · · × �︸ ︷︷ ︸
n

. (127)

The cochains of order n of this cohomology are the functions from �n to A , defined recursively via the differential operator 
δn : Cn → Cn+1 in the following way

(δnc)(xo1, x
o
2, · · · , xon+1)= (xo1 ◦ c)(xo2, · · · , xon+1)+

n∑
k=1

(−1)kc(xo1, x
o
2, · · · , xok ⊕ xok+1, · · · , xon+1)+ (−1)n+1c(xo1, x

o
2, · · · , xon) . (128)

In the previous formula, Cn is the set of cochains of order n, and c is a function in Cn . In particular, DFS functions will 
satisfy the following 2-cocycle condition:

(δ1S)(xo, yo)[x] = (xo ◦ S(yo))[x] − S(xo ⊕ yo)[x] + S(xo)[x] = 0. (129)

Therefore, as a special class of solutions of this 2-cocycle condition, there are cochains which are exact, which in this case 
satisfies the following condition:

S(xo)[x] = (δ0H)(xo)[x] = (xo ◦ H)[x] − H[x] (130)

which are expressed only in terms of a measurable function H : �∞ → R. In the next section we are going to present 
an example where we use one of these exact cochains as a modular function of a measured groupoid, and the associated 
Tomita-Takesaki dynamics can be interpreted in terms of the well-known Ising model.

5.1. The Ising model

In this section, we are going to use the infinite qubit chain groupoid (61) to describe the Ising model for an infinite 
chain. It is a standard problem in thermodynamics. The system can be solved in the finite dimensional case by considering 
the Jordan-Wigner transformation [72–74]. Nevertheless, the problem for the infinite dimensional chain is well defined only 
for proper boundary conditions. By using the groupoid formalism it is possible to obtain a well defined Hamiltonian by 
defining the energy corresponding to a transition, that is, how the total energy changes for the flip of a spin, despite the 
fact that the total energy of an infinite chain diverges. The Ising model for a chain of spins at zero magnetic field is written 
as

H =− J
∑
k

σ
(k)
3 σ

(k+1)
3 . (131)

For simplicity, we will consider the z axis as reference, so that it will be easier to represent the operator on the groupoid 
chain (61). Moreover, we use the same convention as in equation (104). Using the Glimm’s map (104), we can explicitly 
write the action of H on the groupoid space L2(G, μ):

H(x)=−
∑
k∈N

Jψk(x)ψk+1(x), (132)

with ψk(x) defined in equation (103). Now, observe that in general this Hamiltonian is not well defined, as the series here 
is not absolutely convergent, since |ψk(x)| = 1. However, by using the groupoid formalism, we can actually obtain a finite 
and well defined Hamiltonian which gives the change in energy corresponding to a transition. It is formally obtained from 
H as

S(x, xo)= H(x⊕ xo)− H(x). (133)

Since the two functions are not well defined separately, we give the explicit expression of it as

S(x, xo)=− J
∑
k∈N

(ψk(x⊕ xo)ψk+1(x⊕ xo)−ψk(x)ψk+1(x)). (134)

The function S is now well defined as for all x and xo the sum is convergent, as k now runs only over a finite number of 
terms. Explicitly, this is a multiplication self-adjoint operator on L2(G, μ), and (up to a sign) it is nothing but the difference 
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in energy between the source and the target of the transition (x, xo). We can evaluate it, for example, for xo = ek , as defined 
in (102). Explicitly, one gets

S(x, ek)=− J (ψk(x⊕ ek)ψk+1(x)−ψk(x)ψk+1(x)+ψk−1(x)ψk(x⊕ ek)

−ψk−1(x)ψk(x))

=− Jψk+1(x)(ψk(x⊕ ek)−ψk(x))− Jψk−1(x)(ψk(x⊕ ek)−ψk(x))

=− J (ψk+1(x)+ψk−1(x))(ψk(x⊕ ek)−ψk(x)). (135)

In other words, the flip of a spin will change the energy of the whole system depending of the sign of its neighbors spins.
The issue that we are going to address now is the following: can we find a measure on the groupoid G such that the 

function

�H (x, xo)= e−S(x,xo), (136)

will be the associated modular function? The answer is affirmative. Indeed, in Connes’ notation, a Haar system of measures 
on the groupoid is nothing but a transverse function [69,70]. Once a modular function is chosen, which is a homomorphism 
of the groupoid � : G → R+ with values in the group of positive real numbers, every transverse measure provides a 
measure on the base space of the groupoid such that we have a desintegrated measure on the whole groupoid absolutely 
continuous with respect to its inverse. The corresponding modular function will be the chosen �. A transverse measure in 
Connes’ noncommutative integration is a functional � : E+ → R+ from the space of transverse functions to the extended 
positive real numbers satisfying certain conditions. Introducing them properly would lead us out of the scope of this work 
and we refer to the cited works for the details. We have mentioned it to show that the issue we are posing at this moment 
can be addressed in a general framework using Connes’ noncommutative integration theory. However, in the rest of this 
section we are going to explicitly construct a measure on the space �∞ such that the associated modular function is 
indeed �H .

In order to build this measure we will introduce a family of probability spaces 
{
(�×n, ν(n)

H )
}
n∈N , and, as in the previous 

analysis, we will make use of the Kolmogorov theorem to define a probability νH on �∞ . By calling

�×n =
n∏

i=1

�i (137)

we approximate the Ising Hamiltonian (132) on �×n as follows:

Hn(x
(n))=− J

n−1∑
k=1

ψk(x)ψk+1(x)=− J
n−1∑
k=1

(2xk − 1)(2xk+1 − 1), (138)

with x(n) = (x1, · · · , xn) an element in �×n . Note the free condition on the boundary. We then consider the probability on 
�×n defined via the Boltzmann distribution function

ν
(n)
H (An)= 1

Zn

∑
x(n)∈An

eHn(x), (139)

with An a generic subset of �×n , and x(n) = (x1, · · · , xn). The normalization factor Zn is the partition function

Zn =
∑

x(n)∈�×n

eHn(x(n)) =
∑

x̄1,...,x̄n=±1

e− J (x̄1 x̄2+x̄2 x̄3+···+x̄n−1 x̄n)

=
∑

x̄1,...,x̄n−1=±1

e− J (x̄1 x̄2+x̄2 x̄3+···+x̄n−2 x̄n−1)2cosh( J x̄n−1)

= 2cosh J
∑

x̄1,...,x̄n−1=±1

e− J (x̄1 x̄2+x̄2 x̄3+···+x̄n−2 x̄n−1) = (2cosh J )n. (140)

Here, for simplicity, we called x̄k = 2xk−1. Note that in the second line the function cosh( J x̄n) is even, and it is independent 
of xn .

Consider the family of surjective maps πn,k : �×n → �×k , defined for n > k, which acts as πn,k(x1, x2, · · · , xn) =
(x1, x2, · · · , xk), so that πn,k ◦ πk, j = πn, j (n > k > j). A straightforward application of the definition of push-forward of 
measures shows that (πn,k)∗ν(n) = ν

(k) . Indeed, call Ak a subset of �×k , and consider:
H H
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(πn,k)∗ν(n)
H (Ak)= ν

(n)
H (π−1

n,k (Ak))= ν
(n)
H (Ak ×�×n−k)= 1

Zn

∑
x(n)∈Ak×�×n−k

eH(x(n))

= 1

Zn
(
∑

x(k)∈Ak

eH(x(k)))(2cosh J )n−k = 1

Zk

∑
x(k)∈Ak

eH(x(k)) = ν
(k)
H (Ak) . (141)

Therefore, the system of measure spaces 
{
(�n, ν

(n)
H ,πn,k)

}
n,k

forms an inverse system of compatible probability spaces, and 
by Kolmogorov theorem [62–64] there is a unique probability measure νH on the set �∞ which can be computed on the 
cylinder C (Ak) as follows:

νH (C (Ak))= ν
(k)
H (Ak). (142)

Moreover, this measure νH satisfies the following covariance property under the action of the group �:

((Lxo )∗νH )(C ((y1, . . . , yn)))= νH (C (y1 ⊕ xo1, . . . , yn ⊕ xon))

= eH(y1⊕xo1,...,yn⊕xon) =�−1
H (xo, y)eH(y1,...,yn) (143)

so that ((Lxo )∗νH ) =�−1
H νH , with �H given by equation (136). Summarizing the previous results, we have that the measure 

μH = νH ×# defines a left-invariant system of Haar measures for the infinite qubit-chain groupoid G with modular function 
�H .

The multiplication operator by the function �H defines a self-adjoint operator on the Hilbert space L2(G, μH ), which is 
the Tomita-Takesaki operator associated with the new left-Hilbert algebra C of the groupoid.1 We can write explicitly the 
unitary evolution corresponding to the Hamiltonian S:

Ut = eiSt . (144)

The corresponding Tomita-Takesaki dynamics [32] can be written for the elements in the left-Hilbert algebra C of (83). 
Let F be in C, and write its evolution at time t , applied to a function ψ in L2(G, μH ):

e−iSt F � eiStψ(x, xo)= e−iS(x,xo)t
∑
yo∈�

F (x, yo)eiS(x⊕yo,xo⊕yo)tψ(x⊕ yo, xo ⊕ yo)

=
∑
yo∈�

F (x, yo)e−iS(x,xo)t+iS(x,xo)t+iS(x,yo)tψ(x⊕ yo, xo ⊕ yo)

= (eiSt F ) � ψ(x, xo). (145)

We obtain the interesting result that the Tomita-Takesaki evolution corresponding to the Hamiltonian (134) is equiva-
lent to the unitary Heisenberg evolution of the elements in the algebra. This property is a direct consequence of the DFS 
composition (113), and holds for all DFS function S . Clearly, the evolved state eiSt F is still in C, since the multiplication 
operator has modulus 1, and does not affect neither the L2 nor the L1H norms (81). This is a feature deriving from the fact 
that by using the measure on the groupoid one defines a left-Hilbert algebra which has a canonical normal weight and an 
associated modular automorphism.

The previous discussion suggests, in a simple model, that the DFS functions are central in the description of dynamics in 
the groupoid picture not only for the groupoid of histories. Indeed, we have seen that these functions are associated with 
the unitary evolution determined by the Tomita-Takesaki operator of the left-Hilbert algebra used for the definition of the 
groupoid algebra. This evolution is naturally associated with the choice of a left-invariant system of Haar measures on the 
groupoid of interest. In this sense, it is a thermodynamical time for the system under analysis [75].

6. Conclusions

In this paper we analyzed some features of the groupoid picture of quantum mechanics. In particular, we focused on 
the construction of algebras of observables which would be non-trivial. Using the action-groupoid built out of a free, er-
godic and non-transitive action of a discrete countable group � on a measurable space �∞ , we explicitly showed that the 
associated von Neumann reduced algebra is a factor which could be type I I1 or type I I Iλ depending on the choice of the 
measure on �∞ . This construction reproduces well-known results from the theory of von Neumann algebras and in this 
work we have tried to interpret them from the perspective of Schwinger’s picture of quantum mechanics. In this direction, 
we have provided a different interpretation for the positive definite function ϕS = exp{iS } which are associated with the 

1 This left-Hilbert algebra is constructed as in Sec. 4 by replacing the Hilbert space L2(G, μ) with the Hilbert space L2(G, μH ). With a slight abuse of 
notation we still call it C.
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so-called DFS states. We have seen that replacing the imaginary exponential with a real exponential we obtained a homo-
morphism of the groupoid with values in the group of positive real numbers and we can find a measure for which this is 
the corresponding modular function. Therefore, this modular function generates a modular automorphism which determines 
a canonical dynamics associated with the choice of the measure on the groupoid. The parameter of this dynamics is a ther-
mal time for the system under investigation. As a particular example of this construction we have built a measure on the 
groupoid G =�∞ × � whose associated modular automorphism can be interpreted as the dynamics of an infinite chain of 
spins with an Ising interaction. In a future work we would like to interpret this groupoid as emerging from the action of a 
“gauge” group on the groupoid of histories of a simplified configuration space made up only of two outcomes. In this sense, 
we could interpret the DFS function as an action functional on this configuration space. This implementation could help to 
clarify some aspects of Schwinger’s picture of quantum mechanics: from one point of view it could shed some light on the 
formulation of the quantum action principle, from the other point of view it could be a toy model of a system subject to 
local gauge transformations.
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