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A Hardware-Software Approach for On-line 
Soft Error Mitigation in Interrupt-Driven 

Applications 
Antonio Martínez-Álvarez, Felipe Restrepo-Calle, Sergio Cuenca-Asensi,                                 

Leonardo M. Reyneri, Almudena Lindoso, Luis Entrena 

Abstract— Integrity assurance of configuration data has a significant impact on microcontroller-based systems reliability. This 

is especially true when running applications driven by events which behavior is tightly coupled to this kind of data. This work 

proposes a new hybrid technique that combines hardware and software resources for detecting and recovering soft-errors in 

system configuration data. Our approach is based on the utilization of a common built-in microcontroller resource (timer) that 

works jointly with a software-based technique, which is responsible to periodically refresh the configuration data. The 

experiments demonstrate that non-destructive single event effects can be effectively mitigated with reduced overheads. Results 

show an important increase in fault coverage for SEUs and SETs, about one order of magnitude.  

Index Terms— Single Event Upset (SEU), Single Event Transient (SET), fault tolerance, soft error, radiation effects, design 

hardening.   

——————————      —————————— 

1 INTRODUCTION

ICROCONTROLLERS are key components in safe-
ty-critical and   high availability missions, because 

their programmability, performance and cost-
effectiveness. In addition, Commercial Off-The-Shelf 
electronic components (COTS) offer important capabili-
ties and benefits in the implementation of low-cost sys-
tems, and are opening new opportunities in space and 
avionic industry, such as small satellites [1] or safety sys-
tems [2]. However, COTS microcontrollers’ main draw-
back remains the low tolerance to radiation-induced ef-
fects. This fact can limit their applicability in the near 
future [3], [4] and consequently there is an increasing 
effort focused on developing new hardening techniques 
for COTS-based systems.  

Different approaches have been proposed to tackle this 
problem. Among them, hardware redundancy is the most 
usual and effective solution when is applied in qualified 
RadHard microprocessors. However, this fine-grain re-
dundancy does not fit in COTS components because the 
impossibility to modify their internal hardware. Coarse-
grain alternatives, as duplication or triplication of com-
ponents [5], have also been explored and even used in 
real systems, obtaining very good results. These ap-

proaches increase the complexity, cost and power con-
sumption; hiding the benefits of COTS components and 
limiting their use in low-cost and small systems. 

Software-based techniques also known as SIHFT 
(Software Implemented Hardware Fault Tolerance) do 
not require any modifications in the hardware of the mi-
croprocessor and they provide higher flexibility as well as 
lower development time and cost [6]. These techniques 
can detect and recover faults that are latent in the data 
inside the microprocessor (mainly in register file and 
micro-architecture registers) [14], as well as faults in the 
control flow [7]. Their main drawbacks are usually related 
to the overheads incurred in code size and performance 
degradation. 

In this context, configuration data are one of the most 
fault-sensitive bits of microcontrollers, especially in mis-
sion-critical reactive systems which are usually driven by 
events. The control flow of these programs is determined 
by diverse event sources synchronized with interrupts. 
The main algorithm is modeled by means of diverse in-
terrupt service routines (ISR) which react to the different 
external events. The use of interrupts avoids the need of a 
constantly polling loop and reduces the computational 
effort of the microprocessor. The configuration involves 
two main sets of data. Firstly, data devoted to define the 
operation of peripherals which generate or acquire the 
external events, such as timers, I/O ports, A/D convert-
ers, UARTs, etc… Secondly, data to define the behavior of 
interrupts (interrupt vectors, interrupt mask, etc…). It is 
worth noting the criticality of this configuration data set. 
For example, the corruption of the interrupt mask regis-
ters can have catastrophic consequences because some 
critical interrupt sources may be blocked or, alternatively, 
unwanted interrupts may be randomly generated. 
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Nevertheless, as far as we know, very little attention 
has been paid to the protection of configuration data of 
microcontroller peripherals and interrupts related regis-
ters. The fact that in most of the cases the configuration 
data are stored in some kind of protected memory may be 
the reason of this lack of attention. Designers have usual-
ly addressed this issue adopting as guidelines a set of 
good practices jointly with ad-hoc solutions [15].  

Among them, one of the most usual techniques is blind 
scrubbing of the whole memory contents [27], which is 
too time consuming and also stops the operation of the 
system. This strategy is not sufficient for dependable 
designs where a short recovery time is required, because 
during the normal system operation those critical config-
uration data leave the secure storage of memory and pass 
to reside in vulnerable dedicated registers. On the other 
hand, protection by means of traditional software-only 
techniques may reduce the recovery time, but also may 
produce a high waste of resources due to the long (or 
unlimited) lifetime of configuration data. 

In this work, we propose a hybrid technique that lev-
erages the advantages of SIHFT and self-scrubbing tech-
niques. It is aimed to the soft error mitigation in the sys-
tem configuration data, and especially focused on inter-
rupt-driven applications. The proposal is based on the 
utilization of a common built-in COTS microcontroller 
resource (timer) that works jointly with a software-based 
technique, which is responsible to periodically refresh the 
configuration data. Unlike usual scrubbing approaches, 
our on-line technique works on the fly without stopping 
the system. Preliminary results were presented in [24]. 

In order to assess the reliability provided by the stud-
ied approach, a fault injection campaign was carried out 
on a microcontroller using a non-intrusive tool [8]. The 
microcontroller was built around the PicoBlaze soft-core 
microprocessor [9]. 

2 MOTIVATION 

Let us assume p as the constant probability density of 
having a Single Event Upset (SEU) in a single configura-
tion bit in a given time. Thus, it is measured in 
[SEU/bit/s] (number of SEU events per bit per second). 
Let P(F(x), T) be the fault probability of a set of configura-
tion registers x having a lifetime of T seconds. It is sup-
posed that n bits of the configuration registers are critical 
such that SEUs always become a failure. The same might 
not apply to the rest of bits within a real system. 

As reported by [22], the probability of not upsetting 
during a time t can be modeled by the 0th order Poisson 
distribution. Thus, it can be expressed as: 

 
                   

 
Therefore MTTF (mean time to failure) can be calculated 
as: 

     
 

  
 

 
Real 16-bit MCU COTS-based systems running applica-

tions of some complexity usually need more than 300 
configuration bits. To highlight the importance of harden-
ing the configuration bits in an actual system, let us sup-
pose a Texas Instrument MSP430-based system (used in 
[1][23]) having the following set of configuration bits: 12-
bits ADC (36 bits), 2 UART(2 × 50 bits = 100 bits), clock 
(30 bits), four 8-bit I/O ports (32 × 4 = 128 bits), 2 timers 
(2 × 20 bits = 40 bits), Interrupt-Enable register (16 bits), 
Program Counter (PC) + Stack Pointer (SP) initial values 
(16 + 16 = 32 bits). That is, a total of 382 configuration bits. 

Assuming an actual on-orbit probability density of p = 
1.20e-4 SEU/bit-day [26], and n = 382 bits, we obtain a 
MTTF of 0.0597 years (≈ 22 days), which is an extremely 
high fault-rate for a mission-critical system. 

Among the 382 configuration bits, only faults in the PC 
and the SP registers could be detected by the watchdog 
timer in a normal system (that is, when no configuration 
bits are hardened). Therefore only about 8% (32 out of 
382) of those would be detected and corrected. Our pro-
posal is focused on the protection of the remaining 92%. 

It must be noted that this paper focuses on the protec-
tion of configuration bits, namely those which are written 
by the program itself. In fact, there are also status bits 
and, in particular, interrupt flags. These cannot be hard-
ened with the proposed technique as they are volatile, 
that is, the hardware peripheral can autonomously modi-
fy them. 

Yet the total number of such bits is about one order of 
magnitude less than configuration bits, therefore about 
ten times less frequent. Furthermore errors in most con-
figuration bits (e.g., baud rate of a UART) normally cause 
malfunctions for a long period of time until a new config-
uration is written, while errors in status bits usually gen-
erate temporary faults whose effect ends after a limited 
amount of time (e.g., a SEU in a UART interrupt flag 
causes one byte to be duplicated inside a message; after 
the end of the message, all the following messages are 
again correctly transferred). 

3 SOFT-ERROR MITIGATION IN THE SYSTEM 

CONFIGURATION DATA 

The protection of the configuration data for microcon-

troller peripherals is a must in mission-critical systems. In 

this work, we address the hardening of configuration 

registers (for example: clock configuration registers, pe-

ripheral configuration registers, and interrupt configura-

tion registers). In particular, hardening the configuration 

data of interrupts which is a mandatory issue in critical 

reactive systems.  

An application whose functionality is directed by inter-

rupt events, and which is mainly managed by means of a 

set of ISRs (Interrupt Service Routines) is known as a 

interrupt-driven application. One can identify two differ-

ent tasks when hardening this kind of applications based 

on software: the ISR-code hardening itself, and the system 

configuration hardening. 

For the first task, let us suppose the ISR-code to be a 

typical data driven routine such as a control attitude rou-
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tine running in a real-time control flight system. Tech-

niques for hardening this kind of routines have already 

been presented in [10] and, therefore, they are not within 

the scope of this paper. 

The second and most important task is the system con-

figuration hardening. A soft error in the system configura-

tion data is far more disruptive than an error occurring in 

a non-configuration register (e.g., a bit of a general pur-

pose register used in the ISR-code): the former might 

prevent a given ISR to be ever called or a full sub-system 

to be accessed (even after reboot), whereas an error in a 

general purpose register only affects program functionali-

ty occasionally. Hence, this work is aimed to the harden-

ing of the system configuration data.  

Regarding the configuration data of a system, as first 

stated in [1], two different scenarios can be studied taking 

into account the lifetime or rating access of the involved 

storage resources. Firstly, the configuration data remain 

static during the program execution. Secondly, the scenar-

io when the configuration data change dynamically 

throughout the program execution. It is worth mention-

ing that in both cases, storage resources do have infinite 

lifetime or a lifetime much higher than most other regis-

ters in the system. 

The following subsections present the proposed hard-

ening approach for each scenario.  

3.1 Static configuration hardening 

The term static refers to the contents of configuration 

registers which are never expected to change. The static 

configuration hardening addresses the protection of those 

peripheral configuration registers which remain un-

changed during the whole program execution. For in-

stance, this is the case of systems that statically configure 

their peripherals or I/O subsystems using specific con-

figuration registers, and storing  custom configuration 

words (e.g., baud rate and modulation for UARTs, acqui-

sition modes for ADCs and DACs, counting mode and 

period for timers/counters, pin direction for I/O ports).  

The proposed technique to harden the static configura-

tion data in event-driven applications is summarized in 

Fig. 1. Although this approach is mainly based on soft-

ware, it also needs a hardware timer. Briefly, the ap-

proach consists in refreshing the static configuration peri-

odically by means of an additional interrupt service rou-

tine that is triggered by a hardware timer.  

In order to maximize the fault coverage, the refreshing 

rate for the configuration data must be tuned according to 

two parameters: the expected soft error rate, and the ap-

plication interrupt rate. A high refreshing rate may im-

prove error mitigation while making the whole system 

less reactive. An optimal refreshing rate should be deter-

mined for each application taking into account these con-

siderations. 

Since only a single hardware timer is needed, regard-

less the number of configuration registers to be protected, 

the introduced overheads are negligible in terms hard-

ware resources. 
Main processing Interrupt processing 

main: 
Application  

interrupt i 

Hardening timer 

interrupt 

Setup conf.   

… ISRi: ISR refresh: 

forever: Interrupt handler Setup conf. 

wait …  

jump forever return from int. return from int. 

end   

Fig. 1. Proposed approach for static configuration hardening in 
interrupt-driven applications. 

3.2 Dynamic configuration hardening 

The second scenario for the hardening of event-driven 

applications concerns those processors or peripheral con-

figuration registers which are occasionally modified dur-

ing program execution, i.e., the configuration data is dy-

namic. For instance, an interrupt occasionally ena-

bled/disabled, a change of ADC configuration, etc. 

As in the static case, the hardening interrupt service 

routine is triggered periodically. However, the main dif-

ference with respect to the previous case is that the ISR 

triggered by the hardware timer does not know before-

hand what values to refresh into the configuration regis-

ters, as they change throughout the program execution.  

Hardening the dynamic configuration data requires the 

actions illustrated in Fig. 2. Firstly, during the main pro-

cessing is necessary to maintain redundant copies (two) 

of the configuration data (using protected regis-

ters/memory). Every time there are configuration chang-

es, the replicas have to be updated. Notice that data 

should be copied before proceeding to configure the sys-

tem. Secondly, the ISR driven by the hardware timer in-

cludes majority voters to check the configuration registers 

correctness (using the original registers and their two 

copies); and finally, it refreshes the configuration data 

accordingly. 

Next section presents a case study for both cases: hard-

ening static and dynamic system configuration of an 

event-driven application. 

  
Main processing Interrupt processing 

main: 
Application 

interrupt i 

Hardening timer 

interrupt 

Setup initial conf.   

… ISRi: ISR refresh: 

forever: Int. handler  Majority voter 

if (new conf.)       … Refresh conf.  

Replicate conf. return from int.  

Conf. update  return from int. 

end if   

jump forever   

end   

Fig. 2. Proposed approach for dynamic configuration hardening in 
interrupt-driven applications. 

4 CASE STUDY 

4.1 Experimental setup 

The microcontroller used for the experimental setup 

was built around the PicoBlaze microprocessor [9]. The 8-

bit soft-core microprocessor used in this experiment is a 
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technology-independent version, especially developed for 

this work (RTL PicoBlaze). This version is cycle accurate 

and RTL equivalent to the original PicoBlaze-3 version. 

The main features of the microprocessor are: 16 byte-

wide general-purpose data registers, byte-wide Arithme-

tic Logic Unit with CARRY and ZERO indicator flags, 64-

byte internal scratchpad RAM, 256 input and 256 output 

ports, 31-location CALL/RETURN stack, 1 interrupt input, 

INTERRUPT ENABLE (IE) indicator flag. 

Besides the 1K instructions (10 bits) of programmable 

on-chip program store, additional features have been 

implemented externally to provide PicoBlaze with some of 

the microcontroller common resources: 1 interrupt con-

troller (int_ctlr), 2 timers (timer0 and timer1), and several 

I/O ports. In addition, an LFSR (Linear Feedback Shift 

Register) module has been included in the circuit. The 

block diagram of the circuit can be seen in Fig. 3. 

The interrupt controller (int_ctrl) is a peripheral that ex-
tends the capability of PicoBlaze to manage up to eight 
interrupt sources. It should be enabled and properly con-
figured from the software. The configuration of interrupts 
has two hierarchical levels: the Interrupt Enable (IE) flag 
which is a global enable/disable control for the micropro-
cessor interrupts, and the interrupt_mask which is an 8-bit 
register to enable/disable each interrupt line in the 
int_ctrl. 

 

 
Fig. 3. Extended Picoblaze microcontroller block diagram. 

 
Each timer can be configured to generate a system 

“tick” (interrupt) in the range of 1µs-10ms, by means of an 

8-bit register called timerX_conf (where X is equal to 0 or 

1). The interrupt signal of every peripheral is automatical-

ly cleared once the interrupt_ack has been received from 

the PicoBlaze.  

The LFSR module will be used in the second part of 

this case study. It generates a bit sequence that will be 

responsible to emulate dynamic changes to the interrupt 

controller configuration.  

This case study comprises two parts. The first one is fo-

cused on a scenario for the static configuration case, 

whereas the second part presents a dynamic configura-

tion scenario.  

 

Static configuration scenario 
Using the resources described above, a critical reactive 

application has been developed, namely a Real Time Clock 

(RTC). In this application, configuration registers remain 

unchanged during program execution, so it has a static 

configuration with infinite lifetime.  

Fig. 4 presents the flowchart of this application. Hereaf-

ter, this version will be called non-hardened static RTC. 

This is a typical interrupt-driven application, where the 

main processing is only responsible for the configuration 

of the microcontroller and its peripherals. The RTC appli-

cation logic is implemented by the “Interrupt handler RTC” 

procedure within the ISR. Configuration data for this 

application is comprised of the following registers: IE flag, 

interrupt_mask (int_ctrl), and timer0_conf.  

According to our proposal, Fig. 5 shows the flowchart 

of the hardened static RTC application. The hardening 

strategy is hybrid. On the hardware side, an additional 

timer (timer1) is used; whereas on the software side, three 

transformations have been applied to the original code. 

Transformation 1 is responsible for the new peripheral 

configuration. Firstly, the interrupt controller is config-

ured with a new value for the interrupt_mask to enable 

interrupts coming from timer1 (besides those coming 

from timer0). Secondly, the “hard timer” (timer1) is con-

figured according to the required refresh configuration 

rate. 

 
Fig. 4. Flowchart describing the non-hardened static RTC application 
(main and interrupt processing).  

 

 

 
Fig. 5. Flowchart describing the hardened static RTC application.  

 

Transformation 2 does not affect the existing “Interrupt 

handler RTC”; it only appends a new handler for the “hard 

timer” interrupt. This handler sends the ACK to the inter-

rupt source and refreshes the static configuration registers 

(interrupt_mask in the int_ctrl, timer0_conf, and tim-
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er1_conf). It is worth noting that interrupt priority is de-

fined by the designer within the code. In this case, since 

the RTC is a real time application, the “Interrupt handler 

RTC” has the highest priority. 

Finally, Transformation 3 includes an instruction to ena-

ble the microcontroller interrupt flag (IE) within the infi-

nite loop in the main process. This will not affect the main 

process, which instead of doing nothing will be refreshing 

the interrupt flag. In case a soft error affects the IE flag, it 

will recover its correct value the next time the “forever” 

loop is executed. Otherwise, if a fault disables this flag, 

future interrupts will be ignored. 

It must be noted that the additional timer used in our 
hardening approach (hard timer), can protect the static 
configuration of several peripherals simultaneously. 
 
Dynamic configuration scenario 

The experimental setup for this scenario is the same as 

in the previous case but including the LFSR module, 

which is responsible to emulate the dynamic nature of the 

system configuration. This module is connected to a Pico-

Blaze input port, and depending on every value of the 

generated sequence, it determines to enable/disable the 

interrupt controller dynamically. Fig. 6 depicts the 

flowchart of this application, which is called non-hardened 

dynamic RTC. The differences with respect to the static 

case can be seen in the main processing, specifically in the 

three emphasized blocks.  

 

 
Fig. 6. Flowchart describing the non-hardened dynamic RTC applica-
tion (main and interrupt processing).  

 
As explained in Section III.B., in this case, additionally 

to having a refreshing interrupt service routine which is 

triggered periodically (as in the static case), the protection 

for the dynamic configuration consists in maintaining 

replicated copies of the current configuration. In this way, 

configuration correctness is checked every time before 

proceeding to refresh the system configuration by means 

of a software-based majority voter.  Fig. 7 illustrates the 

flowchart describing the hardened dynamic RTC applica-

tion. 

 

 
Fig. 7. Flowchart describing the hardened dynamic RTC application.  

 

As in the static case, Transformation 1 is responsible for 

the new peripheral configuration (timer1 - Hard Timer). In 

addition, notice that the configuration should be replicat-

ed as well. In this particular case study, we replicate the 

configuration of the interrupt controller (int_ctlr). Copies 

should be stored in available memory, which can be lo-

cated externally with its own protection mechanisms. In 

the experiments, the worst case scenario was implement-

ed since copies are stored within the microprocessor reg-

ister file.  

Transformation 2 inserts replication instructions to cre-

ate copies every time the configuration changes. Note that 

replicas should be created before updating the system 

configuration because it avoids overwriting the correct 

new configuration value from the periodic refreshing ISR. 

Similarly to the static case, Transformation 3 enables the 

microcontroller interrupt flag (IE) constantly.  

Transformation 4 appends a new handler for the “hard 

timer” interrupt. This handler includes a majority voter 

procedure to detect and recover any possible data corrup-

tion in the configuration. Then, it refreshes the proper 

configuration registers. 

Although the code size overhead caused by this tech-

nique is higher than the one produced in the static case, in 

both cases these overheads are negligible compared to 

usual software-based techniques [6]. The additional code 

required to implement the proposed approach is in the 

order of 15 instructions for the static case and 34 instruc-

tions for the dynamic case, including the ISR for the hard-

timer. Unlike conventional software-based techniques, 

the proposed transformations are focused only in the 

mentioned pieces of the source code, and they are not 

applied to the entire program.   

 
4.2 SEU/SET Emulation System (AMUSE) 

Fault injection is commonly used in COTS micropro-

cessors to evaluate the error rate. A fault is injected by 

changing the contents of a register. This action can be 

triggered by software [12], interrupts [11] or breakpoints 

[13]. However, these approaches cannot be used in our 

case, because they are highly intrusive and can interfere 
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with the generation of true system events. To overcome 

these limitations, we used the AMUSE (Autonomous 

MUltilevel emulation System for Soft Error evaluation) 

emulation system [8][18][19][20][21]. 

AMUSE is an emulation-based fault injection system 

that supports SEU and SET fault injection for any ASIC 

technology. For SETs, pulses of a selected duration can be 

injected at any node in the circuit and their propagation 

analyzed across many clock cycles. Since the propagation 

of a pulse across combinational logic is delay-dependent, 

ASIC delays must be properly modeled. To this purpose, 

AMUSE uses a voltage-time quantization approach that 

accurately models dynamic delay effects, including elec-

trical masking effects [19]. Quantized rising/falling tran-

sition curves are implemented by a non-linear counter 

driven by a time quantization clock. This approach ena-

bles embedding ASIC delays into a model that can be 

synthesized and mapped into a FPGA to speed up the 

fault injection process. Furthermore, AMUSE combines a 

delay-accurate gate-level model with a fast cycle-accurate 

register transfer level model to improve performance 

without loss of accuracy [8]. Thanks to this multilevel 

scheme, very high fault injection rates are obtained and 

very large fault injection campaigns can be executed in a 

short time. 

Since our experimental setup is based on a soft-core 

microcontroller, it can be used within the FPGA-based 

fault emulation system AMUSE in order to exhaustively 

evaluate the fault coverage in real conditions. Hence, fault 

injection tests with a large number of faults can be carried 

out to obtain statistically representative reliability results.  

5 EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed approach has been validated by fault in-

jection using the AMUSE emulation system. The extend-

ed Picoblaze microcontroller was synthesized for the 

90nm ASIC library technology provided by Synopsys 

(SAED90nm) [25]. Fault injection campaigns were per-

formed for several software versions with different inter-

rupt and refresh rates, also including the original, unpro-

tected software version. The results presented in this 

paper focus only on the evaluation of the proposed ap-

proach to harden the configuration data of microcontrol-

ler peripherals and interrupts. The SEU and SET sensitivi-

ties of the microprocessor core using partial hardware 

and software hardening have been analyzed previously in 

[16] and [17], respectively. 

For the sake of comparison, each hardened software 

version is characterized by the ratio of the refresh rate to 

the interrupt rate. We refer to this ratio as the Relative 

Refresh Rate (RRR). For instance, RRR = 1 means the 

configuration registers are refreshed on average as often 

as interrupts occur. If the configuration registers are re-

freshed several times between two interrupts, then RRR is 

greater than 1. Conversely, a RRR value smaller than 1 

means the refresh rate is smaller than the interrupt rate 

and that several interrupts may occur without refreshing 

the configuration registers. The non-hardened version is 

characterized by RRR = 0, i.e., no refresh at all. 

The refresh rate is determined by the “hard timer” con-

figuration. The interrupt service routine of the “hard 

timer” requires 64 clock cycles to execute and refresh the 

peripheral registers. A critical situation may happen 

when there is a collision between the “RTC timer” and 

the “hard timer” interrupts. For simplicity, we considered 

that a delay of 100 clock cycles in servicing the “RTC 

timer” interrupt is acceptable for the application. Thus, in 

case the “RTC timer” interrupt signal arrives while the 

“hard timer” interrupt is being serviced, the “RTC timer” 

interrupt service will be slightly delayed. Interrupt priori-

ties can be used if the “RTC timer” interrupt cannot be 

delayed. 

5.1 Static configuration results 

For the first experiments, we set the RTC interrupt rate 

to 500 clock cycles and the refresh rate to several values 

between 5000 clock cycles (RRR = 0.1) and 50 clock cycles 

(RRR = 10). The original version with no refresh (RRR = 0, 

hard timer disabled) was also included in the experi-

ments. The results for SEU and SET fault injection are 

summarized in Figs. 8 and 9, respectively.  

For each refresh rate, we run the Real Time Clock ap-

plication for 65,000 clock cycles, servicing 130 RTC inter-

rupt events. Along this time, we injected 12,534 random 

SETs and SEUs into every gate and flip-flop, respectively, 

of the peripheral circuit, which includes the timers and 

the interrupt controller. SEUs were also injected into the 

interrupt enable flag register of the microcontroller, since 

this register is critical for the peripheral operation. For 

gates, SET pulses of 500 ps were injected at random in-

stants. For flip-flops, SEUs were injected at random clock 

cycles. The total number of faults injected in each version 

was 5,414,688 faults.  

The results in Fig. 8 show that the SEU sensitivity can 

be reduced from 13.4% in the original circuit to 1.3% in 

the case of RRR = 10. As expected, the error rate reduces 

when the refresh rate increases, and the reduction is sig-

nificantly higher for RRR greater than 1. Remarkably, the 

interrupt enable flag produced no error in all hardened 

versions while it has a sensitivity of 85% in the original 

non-hardened version. The results for SETs in Fig. 9 are 

very similar, but with smaller error rates.  

In practical cases, very high error mitigation can be ob-

tained since the time between interrupts is typically much 

larger than the one we used in the experiments (500 clock 

cycles). The opportunity window for an error to appear is 

then reduced to the time between the last refresh and the 

next application interrupt, which can be made very small 

by increasing the refresh rate. 

We have also checked that errors in the hard-timer and 

errors due the execution of the hardening ISR are mostly 
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benign, because the effect in most cases is just a tempo-

rary change in the refresh rate, which is eventually cor-

rected when the ISR is executed again. For instance, the 

hardening ISR uses a single register (s0) to configure the 

refresh rate, and the SEU error sensitivity of this register 

varies from 0.37% to 0.69% when the RRR varies between 

0 and 10 respectively. This result has been obtained when 

this register is not hardened at all. These errors can be 

easily removed by software hardening of the ISR.  

 

 
Fig. 8. SEU Error Rates for static configuration and variable refresh 
rate 

 

 

 

 
Fig. 9. SET Error Rates for static configuration and variable refresh 
rate 

 

In a second set of experiments, the refresh rate was set 

to the minimum feasible value of 100 clock cycles, while 

the RTC interrupt rate was varied to evaluate how the 

error rate decreases as interrupts occur less frequently. 

Fig. 10 shows the SEU error rate in this case. For RRR = 1, 

the error rate is smaller than in Fig. 8 because the refresh 

rate is higher now. For RRR higher than 25 (2500 clock 

cycles between interrupts), the error coverage is higher 

than 99%. 
 

 
 Fig. 10. SEU Error Rates for static configuration and fixed refresh 
rate  

 

5.2 Dynamic configuration results 

Figure 11 shows the results for the dynamic configuration 

case. As in the first experiment, the RTC interrupt rate was 

set to 500 clock cycles, but interrupts were randomly ena-

bled/disabled, depending on the bit sequence generated by 

the peripheral LFSR. The RRR is referred to the average 

interrupt rate. Although there is no fixed interrupt rate, the 

proposed approach is similarly effective: the higher the 

refresh rate, the higher the mitigation. 

As it can be seen, the error rate is higher than in the static 

case, but presents a similar trend reaching to an important 

decrease of errors for moderate refresh rates. 

 
Fig.11. SEU Error Rates for dynamic configuration and variable 

refresh rate  

 

An additional experiment was carried out injecting 

faults into the configuration register replicas (located in 

the microprocessor register file). Error rate did not vary 

significantly due to the software redundancy. 

A more detailed analysis of the results in both cases, 

static and dynamic, points out that only one single inter-

nal register of the interrupt controller is the source of 

more than 80% of the residual errors (those ones that are 

not mitigated using high RRR). This specific register is 

not accessible from the software and, therefore, deter-

mines the maximum fault coverage that can be achieved 

with this technique, above 99%. If this register is hard-

ened by hardware, the error rate reduces by more than 

one additional order of magnitude. 
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Regarding the overheads introduced by the technique, 

on the software side, the increase in the code size com-

prises the insertion of a few lines of code responsible to: 

rewrite the configuration data and its replicas, implement 

the voter procedure, and handle the hardening interrupt 

event. On the hardware side, the overhead only supposes 

one additional timer, regardless the number of configura-

tion data to protect. In addition, there is no performance 

overhead because the execution of the refreshing proce-

dure takes place when the main processing is not being 

executed. However, there is a possible low impact in the 

system responsiveness. This occurs only in case the hard-

ening interrupt routine is being executed when the appli-

cation interrupt arrives. This supposes to delay the sys-

tem response for the number of clock cycles until the 

hardening ISR finishes its work (in the worst case in 

terms of latency, 64 and 94 clock cycles respectively for 

the static and dynamic scenarios). Moreover, power con-

sumption overhead is a must issue to be addressed in the 

design of embedded systems with tight power budget. 

Although the repetitive execution of the refreshing rou-

tine increases the power consumption, this overhead is 

negligible for low RRR because it comprises only a few 

instructions. In case of high RRR causing excessive power 

demand, designers should always find the best trade-offs 

among RRR, fault coverage, and power to cope with the 

system requirements. 

6 CONCLUSIONS AND FUTURE WORK 

The use of Commercial Off-The-Shelf components in 

the implementation of low-cost safety-critical systems 

offers important benefits. However, it is necessary to 

reduce their vulnerability to radiation-induced effects, 

such as soft-errors.  This work proposes a systematic ap-

proach for soft-error mitigation that attempts to overcome 

the limitations of common ad-hoc solutions. It is focused 

on the protection of the configuration registers, which are 

the most critical resources in interrupt-driven applica-

tions. Both possible cases, static and dynamic configura-

tion, were studied.  

The technique was assessed by extensive fault injection 

campaigns for SEUs and SETs. The impact in code size 

and cost was negligible independently of the number of 

configuration registers to be protected. It is worth noting 

that a single timer can be used to protect several configu-

ration registers. The results show an important increase in 

fault coverage for SEUs and SETs, about one order of 

magnitude. From the experiments, it is deduced that the 

refresh rate and the interrupt rate are directly related in 

static and dynamic cases. Regarding the final application, 

the RRR can be used to find the best trade-off between 

reliability and system responsiveness. The proposed ap-

proach can be combined with other hardening approach-

es [10] to protect the complete microprocessor-based sys-

tem. 
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