
This is a postprint version of the following published document:

Martinez-Alvarez, A., Restrepo-Calle, F., Cuenca-Asensi, S.,
Reyneri, L. M., Lindoso, A. & Entrena, L. (2016). A Hardware-
Software Approach for On-Line Soft Error Mitigation in
Interrupt-Driven Applications. IEEE Transactions on
Dependable and Secure Computing, 13(4), 502–508.

DOI: 10.1109/tdsc.2014.2382593

 © 2015 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

https://doi.org/10.1109/tdsc.2014.2382593

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMUTING, MANUSCRIPT ID 1

A Hardware-Software Approach for On-line
Soft Error Mitigation in Interrupt-Driven

Applications
Antonio Martínez-Álvarez, Felipe Restrepo-Calle, Sergio Cuenca-Asensi,

Leonardo M. Reyneri, Almudena Lindoso, Luis Entrena

Abstract— Integrity assurance of configuration data has a significant impact on microcontroller-based systems reliability. This

is especially true when running applications driven by events which behavior is tightly coupled to this kind of data. This work

proposes a new hybrid technique that combines hardware and software resources for detecting and recovering soft-errors in

system configuration data. Our approach is based on the utilization of a common built-in microcontroller resource (timer) that

works jointly with a software-based technique, which is responsible to periodically refresh the configuration data. The

experiments demonstrate that non-destructive single event effects can be effectively mitigated with reduced overheads. Results

show an important increase in fault coverage for SEUs and SETs, about one order of magnitude.

Index Terms— Single Event Upset (SEU), Single Event Transient (SET), fault tolerance, soft error, radiation effects, design

hardening.

——————————  ——————————

1 INTRODUCTION

ICROCONTROLLERS are key components in safe-
ty-critical and high availability missions, because

their programmability, performance and cost-
effectiveness. In addition, Commercial Off-The-Shelf
electronic components (COTS) offer important capabili-
ties and benefits in the implementation of low-cost sys-
tems, and are opening new opportunities in space and
avionic industry, such as small satellites [1] or safety sys-
tems [2]. However, COTS microcontrollers’ main draw-
back remains the low tolerance to radiation-induced ef-
fects. This fact can limit their applicability in the near
future [3], [4] and consequently there is an increasing
effort focused on developing new hardening techniques
for COTS-based systems.

Different approaches have been proposed to tackle this
problem. Among them, hardware redundancy is the most
usual and effective solution when is applied in qualified
RadHard microprocessors. However, this fine-grain re-
dundancy does not fit in COTS components because the
impossibility to modify their internal hardware. Coarse-
grain alternatives, as duplication or triplication of com-
ponents [5], have also been explored and even used in
real systems, obtaining very good results. These ap-

proaches increase the complexity, cost and power con-
sumption; hiding the benefits of COTS components and
limiting their use in low-cost and small systems.

Software-based techniques also known as SIHFT
(Software Implemented Hardware Fault Tolerance) do
not require any modifications in the hardware of the mi-
croprocessor and they provide higher flexibility as well as
lower development time and cost [6]. These techniques
can detect and recover faults that are latent in the data
inside the microprocessor (mainly in register file and
micro-architecture registers) [14], as well as faults in the
control flow [7]. Their main drawbacks are usually related
to the overheads incurred in code size and performance
degradation.

In this context, configuration data are one of the most
fault-sensitive bits of microcontrollers, especially in mis-
sion-critical reactive systems which are usually driven by
events. The control flow of these programs is determined
by diverse event sources synchronized with interrupts.
The main algorithm is modeled by means of diverse in-
terrupt service routines (ISR) which react to the different
external events. The use of interrupts avoids the need of a
constantly polling loop and reduces the computational
effort of the microprocessor. The configuration involves
two main sets of data. Firstly, data devoted to define the
operation of peripherals which generate or acquire the
external events, such as timers, I/O ports, A/D convert-
ers, UARTs, etc… Secondly, data to define the behavior of
interrupts (interrupt vectors, interrupt mask, etc…). It is
worth noting the criticality of this configuration data set.
For example, the corruption of the interrupt mask regis-
ters can have catastrophic consequences because some
critical interrupt sources may be blocked or, alternatively,
unwanted interrupts may be randomly generated.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Antonio Martínez-Álvarez, and Sergio Cuenca-Asensi are with the Com-
puter Technology Department, University of Alicante, Carretera San Vi-
cente del Raspeig s/n, 03690 Alicante, Spain. E-mail: {amartinez, ser-
gio}@dtic.ua.es.

 Felipe Restrepo-Calle is with the Department of Systems and Industrial
Engineering, Universidad Nacional de Colombia, Bogotá, Colombia (e-mail:
ferestrepoca@unal.edu.co).

 Leonardo M. Reyneri is with the Department of Electronics and Telecom-
munications, Politecnico di Torino. Cso. Duca degli Abruzzi 24, 10129
Torino, Italy. E-mail: leonardo.reyneri@polito.it.

 Almudena Lindoso and Luis Entrena are with the Department of Electronic
Technology, University Carlos III of Madrid, Leganes, Madrid 28911,
Spain. E-mail: {alindoso, entrena}@ing.uc3m.es

M

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Nevertheless, as far as we know, very little attention
has been paid to the protection of configuration data of
microcontroller peripherals and interrupts related regis-
ters. The fact that in most of the cases the configuration
data are stored in some kind of protected memory may be
the reason of this lack of attention. Designers have usual-
ly addressed this issue adopting as guidelines a set of
good practices jointly with ad-hoc solutions [15].

Among them, one of the most usual techniques is blind
scrubbing of the whole memory contents [27], which is
too time consuming and also stops the operation of the
system. This strategy is not sufficient for dependable
designs where a short recovery time is required, because
during the normal system operation those critical config-
uration data leave the secure storage of memory and pass
to reside in vulnerable dedicated registers. On the other
hand, protection by means of traditional software-only
techniques may reduce the recovery time, but also may
produce a high waste of resources due to the long (or
unlimited) lifetime of configuration data.

In this work, we propose a hybrid technique that lev-
erages the advantages of SIHFT and self-scrubbing tech-
niques. It is aimed to the soft error mitigation in the sys-
tem configuration data, and especially focused on inter-
rupt-driven applications. The proposal is based on the
utilization of a common built-in COTS microcontroller
resource (timer) that works jointly with a software-based
technique, which is responsible to periodically refresh the
configuration data. Unlike usual scrubbing approaches,
our on-line technique works on the fly without stopping
the system. Preliminary results were presented in [24].

In order to assess the reliability provided by the stud-
ied approach, a fault injection campaign was carried out
on a microcontroller using a non-intrusive tool [8]. The
microcontroller was built around the PicoBlaze soft-core
microprocessor [9].

2 MOTIVATION

Let us assume p as the constant probability density of
having a Single Event Upset (SEU) in a single configura-
tion bit in a given time. Thus, it is measured in
[SEU/bit/s] (number of SEU events per bit per second).
Let P(F(x), T) be the fault probability of a set of configura-
tion registers x having a lifetime of T seconds. It is sup-
posed that n bits of the configuration registers are critical
such that SEUs always become a failure. The same might
not apply to the rest of bits within a real system.

As reported by [22], the probability of not upsetting
during a time t can be modeled by the 0th order Poisson
distribution. Thus, it can be expressed as:

Therefore MTTF (mean time to failure) can be calculated
as:

Real 16-bit MCU COTS-based systems running applica-

tions of some complexity usually need more than 300
configuration bits. To highlight the importance of harden-
ing the configuration bits in an actual system, let us sup-
pose a Texas Instrument MSP430-based system (used in
[1][23]) having the following set of configuration bits: 12-
bits ADC (36 bits), 2 UART(2 × 50 bits = 100 bits), clock
(30 bits), four 8-bit I/O ports (32 × 4 = 128 bits), 2 timers
(2 × 20 bits = 40 bits), Interrupt-Enable register (16 bits),
Program Counter (PC) + Stack Pointer (SP) initial values
(16 + 16 = 32 bits). That is, a total of 382 configuration bits.

Assuming an actual on-orbit probability density of p =
1.20e-4 SEU/bit-day [26], and n = 382 bits, we obtain a
MTTF of 0.0597 years (≈ 22 days), which is an extremely
high fault-rate for a mission-critical system.

Among the 382 configuration bits, only faults in the PC
and the SP registers could be detected by the watchdog
timer in a normal system (that is, when no configuration
bits are hardened). Therefore only about 8% (32 out of
382) of those would be detected and corrected. Our pro-
posal is focused on the protection of the remaining 92%.

It must be noted that this paper focuses on the protec-
tion of configuration bits, namely those which are written
by the program itself. In fact, there are also status bits
and, in particular, interrupt flags. These cannot be hard-
ened with the proposed technique as they are volatile,
that is, the hardware peripheral can autonomously modi-
fy them.

Yet the total number of such bits is about one order of
magnitude less than configuration bits, therefore about
ten times less frequent. Furthermore errors in most con-
figuration bits (e.g., baud rate of a UART) normally cause
malfunctions for a long period of time until a new config-
uration is written, while errors in status bits usually gen-
erate temporary faults whose effect ends after a limited
amount of time (e.g., a SEU in a UART interrupt flag
causes one byte to be duplicated inside a message; after
the end of the message, all the following messages are
again correctly transferred).

3 SOFT-ERROR MITIGATION IN THE SYSTEM

CONFIGURATION DATA

The protection of the configuration data for microcon-

troller peripherals is a must in mission-critical systems. In

this work, we address the hardening of configuration

registers (for example: clock configuration registers, pe-

ripheral configuration registers, and interrupt configura-

tion registers). In particular, hardening the configuration

data of interrupts which is a mandatory issue in critical

reactive systems.

An application whose functionality is directed by inter-

rupt events, and which is mainly managed by means of a

set of ISRs (Interrupt Service Routines) is known as a

interrupt-driven application. One can identify two differ-

ent tasks when hardening this kind of applications based

on software: the ISR-code hardening itself, and the system

configuration hardening.

For the first task, let us suppose the ISR-code to be a

typical data driven routine such as a control attitude rou-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MARTÍNEZ-ÁLVAREZ ET AL.: A HARDWARE-SOFTWARE APPROACH FOR ON-LINE SOFT ERROR MITIGATION IN INTERRUPT-DRIVEN APPLICATIONS 3

tine running in a real-time control flight system. Tech-

niques for hardening this kind of routines have already

been presented in [10] and, therefore, they are not within

the scope of this paper.

The second and most important task is the system con-

figuration hardening. A soft error in the system configura-

tion data is far more disruptive than an error occurring in

a non-configuration register (e.g., a bit of a general pur-

pose register used in the ISR-code): the former might

prevent a given ISR to be ever called or a full sub-system

to be accessed (even after reboot), whereas an error in a

general purpose register only affects program functionali-

ty occasionally. Hence, this work is aimed to the harden-

ing of the system configuration data.

Regarding the configuration data of a system, as first

stated in [1], two different scenarios can be studied taking

into account the lifetime or rating access of the involved

storage resources. Firstly, the configuration data remain

static during the program execution. Secondly, the scenar-

io when the configuration data change dynamically

throughout the program execution. It is worth mention-

ing that in both cases, storage resources do have infinite

lifetime or a lifetime much higher than most other regis-

ters in the system.

The following subsections present the proposed hard-

ening approach for each scenario.

3.1 Static configuration hardening

The term static refers to the contents of configuration

registers which are never expected to change. The static

configuration hardening addresses the protection of those

peripheral configuration registers which remain un-

changed during the whole program execution. For in-

stance, this is the case of systems that statically configure

their peripherals or I/O subsystems using specific con-

figuration registers, and storing custom configuration

words (e.g., baud rate and modulation for UARTs, acqui-

sition modes for ADCs and DACs, counting mode and

period for timers/counters, pin direction for I/O ports).

The proposed technique to harden the static configura-

tion data in event-driven applications is summarized in

Fig. 1. Although this approach is mainly based on soft-

ware, it also needs a hardware timer. Briefly, the ap-

proach consists in refreshing the static configuration peri-

odically by means of an additional interrupt service rou-

tine that is triggered by a hardware timer.

In order to maximize the fault coverage, the refreshing

rate for the configuration data must be tuned according to

two parameters: the expected soft error rate, and the ap-

plication interrupt rate. A high refreshing rate may im-

prove error mitigation while making the whole system

less reactive. An optimal refreshing rate should be deter-

mined for each application taking into account these con-

siderations.

Since only a single hardware timer is needed, regard-

less the number of configuration registers to be protected,

the introduced overheads are negligible in terms hard-

ware resources.
Main processing Interrupt processing

main:
Application

interrupt i

Hardening timer

interrupt

Setup conf.

… ISRi: ISR refresh:

forever: Interrupt handler Setup conf.

wait …

jump forever return from int. return from int.

end

Fig. 1. Proposed approach for static configuration hardening in
interrupt-driven applications.

3.2 Dynamic configuration hardening

The second scenario for the hardening of event-driven

applications concerns those processors or peripheral con-

figuration registers which are occasionally modified dur-

ing program execution, i.e., the configuration data is dy-

namic. For instance, an interrupt occasionally ena-

bled/disabled, a change of ADC configuration, etc.

As in the static case, the hardening interrupt service

routine is triggered periodically. However, the main dif-

ference with respect to the previous case is that the ISR

triggered by the hardware timer does not know before-

hand what values to refresh into the configuration regis-

ters, as they change throughout the program execution.

Hardening the dynamic configuration data requires the

actions illustrated in Fig. 2. Firstly, during the main pro-

cessing is necessary to maintain redundant copies (two)

of the configuration data (using protected regis-

ters/memory). Every time there are configuration chang-

es, the replicas have to be updated. Notice that data

should be copied before proceeding to configure the sys-

tem. Secondly, the ISR driven by the hardware timer in-

cludes majority voters to check the configuration registers

correctness (using the original registers and their two

copies); and finally, it refreshes the configuration data

accordingly.

Next section presents a case study for both cases: hard-

ening static and dynamic system configuration of an

event-driven application.

Main processing Interrupt processing

main:
Application

interrupt i

Hardening timer

interrupt

Setup initial conf.

… ISRi: ISR refresh:

forever: Int. handler Majority voter

if (new conf.) … Refresh conf.

Replicate conf. return from int.

Conf. update return from int.

end if

jump forever

end

Fig. 2. Proposed approach for dynamic configuration hardening in
interrupt-driven applications.

4 CASE STUDY

4.1 Experimental setup

The microcontroller used for the experimental setup

was built around the PicoBlaze microprocessor [9]. The 8-

bit soft-core microprocessor used in this experiment is a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

technology-independent version, especially developed for

this work (RTL PicoBlaze). This version is cycle accurate

and RTL equivalent to the original PicoBlaze-3 version.

The main features of the microprocessor are: 16 byte-

wide general-purpose data registers, byte-wide Arithme-

tic Logic Unit with CARRY and ZERO indicator flags, 64-

byte internal scratchpad RAM, 256 input and 256 output

ports, 31-location CALL/RETURN stack, 1 interrupt input,

INTERRUPT ENABLE (IE) indicator flag.

Besides the 1K instructions (10 bits) of programmable

on-chip program store, additional features have been

implemented externally to provide PicoBlaze with some of

the microcontroller common resources: 1 interrupt con-

troller (int_ctlr), 2 timers (timer0 and timer1), and several

I/O ports. In addition, an LFSR (Linear Feedback Shift

Register) module has been included in the circuit. The

block diagram of the circuit can be seen in Fig. 3.

The interrupt controller (int_ctrl) is a peripheral that ex-
tends the capability of PicoBlaze to manage up to eight
interrupt sources. It should be enabled and properly con-
figured from the software. The configuration of interrupts
has two hierarchical levels: the Interrupt Enable (IE) flag
which is a global enable/disable control for the micropro-
cessor interrupts, and the interrupt_mask which is an 8-bit
register to enable/disable each interrupt line in the
int_ctrl.

Fig. 3. Extended Picoblaze microcontroller block diagram.

Each timer can be configured to generate a system

“tick” (interrupt) in the range of 1µs-10ms, by means of an

8-bit register called timerX_conf (where X is equal to 0 or

1). The interrupt signal of every peripheral is automatical-

ly cleared once the interrupt_ack has been received from

the PicoBlaze.

The LFSR module will be used in the second part of

this case study. It generates a bit sequence that will be

responsible to emulate dynamic changes to the interrupt

controller configuration.

This case study comprises two parts. The first one is fo-

cused on a scenario for the static configuration case,

whereas the second part presents a dynamic configura-

tion scenario.

Static configuration scenario
Using the resources described above, a critical reactive

application has been developed, namely a Real Time Clock

(RTC). In this application, configuration registers remain

unchanged during program execution, so it has a static

configuration with infinite lifetime.

Fig. 4 presents the flowchart of this application. Hereaf-

ter, this version will be called non-hardened static RTC.

This is a typical interrupt-driven application, where the

main processing is only responsible for the configuration

of the microcontroller and its peripherals. The RTC appli-

cation logic is implemented by the “Interrupt handler RTC”

procedure within the ISR. Configuration data for this

application is comprised of the following registers: IE flag,

interrupt_mask (int_ctrl), and timer0_conf.

According to our proposal, Fig. 5 shows the flowchart

of the hardened static RTC application. The hardening

strategy is hybrid. On the hardware side, an additional

timer (timer1) is used; whereas on the software side, three

transformations have been applied to the original code.

Transformation 1 is responsible for the new peripheral

configuration. Firstly, the interrupt controller is config-

ured with a new value for the interrupt_mask to enable

interrupts coming from timer1 (besides those coming

from timer0). Secondly, the “hard timer” (timer1) is con-

figured according to the required refresh configuration

rate.

Fig. 4. Flowchart describing the non-hardened static RTC application
(main and interrupt processing).

Fig. 5. Flowchart describing the hardened static RTC application.

Transformation 2 does not affect the existing “Interrupt

handler RTC”; it only appends a new handler for the “hard

timer” interrupt. This handler sends the ACK to the inter-

rupt source and refreshes the static configuration registers

(interrupt_mask in the int_ctrl, timer0_conf, and tim-

CPU
(RTL PicoBlaze)

OSC

Interrupt

Controller

(int_ctrl)

Program

memory

ROM

Scratchpad

RAM

I/O Ports

Timer 0

RTC
Timer 1

Hard

Comm

Port
ADC

Implemented microcontroller features

LFSR

Interrupt processingMain processing

INIT
RTC counters initialization

CONFIGURATION
- Enable µC interrupt (IE)

- Configure int_ctrl mask

- Configure timer0 (RTC Timer)

- Enable int_ctrl

FOREVER

Reset

ISR_start
Read interrupt lines from int_ctrl

(IE and int_ctrl are disabled)

ISR_end
- Enable int_ctrl

- Return from interrupt

Interrupt

int line 0?
RTC Timer

Interrupt handler RTC
- Send interrupt ACK to timer0

- Increase RTC counters

- Output current time

Yes

No

Interrupt processingMain processing

INIT
RTC counters initialization

CONFIGURATION
- Enable µC interrupt (IE)

- Configure int_ctrl NEW mask

- Configure timer0 (RTC Timer)

- Configure timer1 (Hard Timer)

- Enable int_ctrl

Reset

ISR_start
Read interrupt lines from int_ctrl

(IE and int_ctrl are disabled)

ISR_end
- Enable int_ctrl

- Return from interrupt

Interrupt

int line 0?
RTC Timer

Interrupt handler RTC
- Send interrupt ACK to timer0

- Increase RTC counters

- Output current time

FOREVER
- Enable µC interrupt (IE)

int line 1?
Hard Timer

Interrupt handler Hard
- Send interrupt ACK to timer1

- Refresh configuration:
 Configure int_ctrl NEW mask

 Configure timer0 (RTC Timer)

 Configure timer1 (Hard Timer)

Yes

No

Yes

No

1

2

3

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MARTÍNEZ-ÁLVAREZ ET AL.: A HARDWARE-SOFTWARE APPROACH FOR ON-LINE SOFT ERROR MITIGATION IN INTERRUPT-DRIVEN APPLICATIONS 5

er1_conf). It is worth noting that interrupt priority is de-

fined by the designer within the code. In this case, since

the RTC is a real time application, the “Interrupt handler

RTC” has the highest priority.

Finally, Transformation 3 includes an instruction to ena-

ble the microcontroller interrupt flag (IE) within the infi-

nite loop in the main process. This will not affect the main

process, which instead of doing nothing will be refreshing

the interrupt flag. In case a soft error affects the IE flag, it

will recover its correct value the next time the “forever”

loop is executed. Otherwise, if a fault disables this flag,

future interrupts will be ignored.

It must be noted that the additional timer used in our
hardening approach (hard timer), can protect the static
configuration of several peripherals simultaneously.

Dynamic configuration scenario

The experimental setup for this scenario is the same as

in the previous case but including the LFSR module,

which is responsible to emulate the dynamic nature of the

system configuration. This module is connected to a Pico-

Blaze input port, and depending on every value of the

generated sequence, it determines to enable/disable the

interrupt controller dynamically. Fig. 6 depicts the

flowchart of this application, which is called non-hardened

dynamic RTC. The differences with respect to the static

case can be seen in the main processing, specifically in the

three emphasized blocks.

Fig. 6. Flowchart describing the non-hardened dynamic RTC applica-
tion (main and interrupt processing).

As explained in Section III.B., in this case, additionally

to having a refreshing interrupt service routine which is

triggered periodically (as in the static case), the protection

for the dynamic configuration consists in maintaining

replicated copies of the current configuration. In this way,

configuration correctness is checked every time before

proceeding to refresh the system configuration by means

of a software-based majority voter. Fig. 7 illustrates the

flowchart describing the hardened dynamic RTC applica-

tion.

Fig. 7. Flowchart describing the hardened dynamic RTC application.

As in the static case, Transformation 1 is responsible for

the new peripheral configuration (timer1 - Hard Timer). In

addition, notice that the configuration should be replicat-

ed as well. In this particular case study, we replicate the

configuration of the interrupt controller (int_ctlr). Copies

should be stored in available memory, which can be lo-

cated externally with its own protection mechanisms. In

the experiments, the worst case scenario was implement-

ed since copies are stored within the microprocessor reg-

ister file.

Transformation 2 inserts replication instructions to cre-

ate copies every time the configuration changes. Note that

replicas should be created before updating the system

configuration because it avoids overwriting the correct

new configuration value from the periodic refreshing ISR.

Similarly to the static case, Transformation 3 enables the

microcontroller interrupt flag (IE) constantly.

Transformation 4 appends a new handler for the “hard

timer” interrupt. This handler includes a majority voter

procedure to detect and recover any possible data corrup-

tion in the configuration. Then, it refreshes the proper

configuration registers.

Although the code size overhead caused by this tech-

nique is higher than the one produced in the static case, in

both cases these overheads are negligible compared to

usual software-based techniques [6]. The additional code

required to implement the proposed approach is in the

order of 15 instructions for the static case and 34 instruc-

tions for the dynamic case, including the ISR for the hard-

timer. Unlike conventional software-based techniques,

the proposed transformations are focused only in the

mentioned pieces of the source code, and they are not

applied to the entire program.

4.2 SEU/SET Emulation System (AMUSE)

Fault injection is commonly used in COTS micropro-

cessors to evaluate the error rate. A fault is injected by

changing the contents of a register. This action can be

triggered by software [12], interrupts [11] or breakpoints

[13]. However, these approaches cannot be used in our

case, because they are highly intrusive and can interfere

Interrupt processingMain processing

INIT
RTC counters initialization

CONFIGURATION
- Enable µC interrupt (IE)

- Configure int_ctrl mask

- Configure timer0 (RTC Timer)

- Enable int_ctrl

Reset

ISR_start
Read interrupt lines from int_ctrl

(IE and int_ctrl are disabled)

ISR_end
- Enable int_ctrl

- Return from interrupt

Interrupt

int line 0?
RTC Timer

Interrupt handler RTC
- Send interrupt ACK to timer0

- Increase RTC counters

- Output current time

Yes

No

Read LFSR
new

configuration?

Update
Config update

for int_ctrl mask

Yes

No

Forever
Keep current configuration state

Interrupt processingMain processing

INIT
RTC counters initialization

CONFIGURATION
- Enable µC interrupt (IE)

- Configure int_ctrl NEW mask

- Replicate int_ctlr config

- Configure timer0 (RTC Timer)

- Configure timer1 (Hard Timer)

- Enable int_ctrl

Reset

ISR_start
Read interrupt lines from int_ctrl

(IE and int_ctrl are disabled)

ISR_end
- Enable int_ctrl

- Return from interrupt

Interrupt

int line 0?
RTC Timer

Interrupt handler RTC
- Send interrupt ACK to timer0

- Increase RTC counters

- Output current time

int line 1?
Hard Timer

Interrupt handler Hard
- Send interrupt ACK to timer1

- Majority voter for int_ctrl

configuration

- Refresh configuration:
 Configure int_ctrl mask

 Configure timer0 (RTC Timer)

 Configure timer1 (Hard Timer)

Yes

No

Yes

No

1

3

Read LFSR
new

configuration?

Update
- Replicate int_ctlr
configuration
- Config update for
int_ctrl mask

Yes

No

Forever
- Keep current configuration state

- Enable µC interrupt (IE)

2

4

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

with the generation of true system events. To overcome

these limitations, we used the AMUSE (Autonomous

MUltilevel emulation System for Soft Error evaluation)

emulation system [8][18][19][20][21].

AMUSE is an emulation-based fault injection system

that supports SEU and SET fault injection for any ASIC

technology. For SETs, pulses of a selected duration can be

injected at any node in the circuit and their propagation

analyzed across many clock cycles. Since the propagation

of a pulse across combinational logic is delay-dependent,

ASIC delays must be properly modeled. To this purpose,

AMUSE uses a voltage-time quantization approach that

accurately models dynamic delay effects, including elec-

trical masking effects [19]. Quantized rising/falling tran-

sition curves are implemented by a non-linear counter

driven by a time quantization clock. This approach ena-

bles embedding ASIC delays into a model that can be

synthesized and mapped into a FPGA to speed up the

fault injection process. Furthermore, AMUSE combines a

delay-accurate gate-level model with a fast cycle-accurate

register transfer level model to improve performance

without loss of accuracy [8]. Thanks to this multilevel

scheme, very high fault injection rates are obtained and

very large fault injection campaigns can be executed in a

short time.

Since our experimental setup is based on a soft-core

microcontroller, it can be used within the FPGA-based

fault emulation system AMUSE in order to exhaustively

evaluate the fault coverage in real conditions. Hence, fault

injection tests with a large number of faults can be carried

out to obtain statistically representative reliability results.

5 EXPERIMENTAL RESULTS AND DISCUSSION

The proposed approach has been validated by fault in-

jection using the AMUSE emulation system. The extend-

ed Picoblaze microcontroller was synthesized for the

90nm ASIC library technology provided by Synopsys

(SAED90nm) [25]. Fault injection campaigns were per-

formed for several software versions with different inter-

rupt and refresh rates, also including the original, unpro-

tected software version. The results presented in this

paper focus only on the evaluation of the proposed ap-

proach to harden the configuration data of microcontrol-

ler peripherals and interrupts. The SEU and SET sensitivi-

ties of the microprocessor core using partial hardware

and software hardening have been analyzed previously in

[16] and [17], respectively.

For the sake of comparison, each hardened software

version is characterized by the ratio of the refresh rate to

the interrupt rate. We refer to this ratio as the Relative

Refresh Rate (RRR). For instance, RRR = 1 means the

configuration registers are refreshed on average as often

as interrupts occur. If the configuration registers are re-

freshed several times between two interrupts, then RRR is

greater than 1. Conversely, a RRR value smaller than 1

means the refresh rate is smaller than the interrupt rate

and that several interrupts may occur without refreshing

the configuration registers. The non-hardened version is

characterized by RRR = 0, i.e., no refresh at all.

The refresh rate is determined by the “hard timer” con-

figuration. The interrupt service routine of the “hard

timer” requires 64 clock cycles to execute and refresh the

peripheral registers. A critical situation may happen

when there is a collision between the “RTC timer” and

the “hard timer” interrupts. For simplicity, we considered

that a delay of 100 clock cycles in servicing the “RTC

timer” interrupt is acceptable for the application. Thus, in

case the “RTC timer” interrupt signal arrives while the

“hard timer” interrupt is being serviced, the “RTC timer”

interrupt service will be slightly delayed. Interrupt priori-

ties can be used if the “RTC timer” interrupt cannot be

delayed.

5.1 Static configuration results

For the first experiments, we set the RTC interrupt rate

to 500 clock cycles and the refresh rate to several values

between 5000 clock cycles (RRR = 0.1) and 50 clock cycles

(RRR = 10). The original version with no refresh (RRR = 0,

hard timer disabled) was also included in the experi-

ments. The results for SEU and SET fault injection are

summarized in Figs. 8 and 9, respectively.

For each refresh rate, we run the Real Time Clock ap-

plication for 65,000 clock cycles, servicing 130 RTC inter-

rupt events. Along this time, we injected 12,534 random

SETs and SEUs into every gate and flip-flop, respectively,

of the peripheral circuit, which includes the timers and

the interrupt controller. SEUs were also injected into the

interrupt enable flag register of the microcontroller, since

this register is critical for the peripheral operation. For

gates, SET pulses of 500 ps were injected at random in-

stants. For flip-flops, SEUs were injected at random clock

cycles. The total number of faults injected in each version

was 5,414,688 faults.

The results in Fig. 8 show that the SEU sensitivity can

be reduced from 13.4% in the original circuit to 1.3% in

the case of RRR = 10. As expected, the error rate reduces

when the refresh rate increases, and the reduction is sig-

nificantly higher for RRR greater than 1. Remarkably, the

interrupt enable flag produced no error in all hardened

versions while it has a sensitivity of 85% in the original

non-hardened version. The results for SETs in Fig. 9 are

very similar, but with smaller error rates.

In practical cases, very high error mitigation can be ob-

tained since the time between interrupts is typically much

larger than the one we used in the experiments (500 clock

cycles). The opportunity window for an error to appear is

then reduced to the time between the last refresh and the

next application interrupt, which can be made very small

by increasing the refresh rate.

We have also checked that errors in the hard-timer and

errors due the execution of the hardening ISR are mostly

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MARTÍNEZ-ÁLVAREZ ET AL.: A HARDWARE-SOFTWARE APPROACH FOR ON-LINE SOFT ERROR MITIGATION IN INTERRUPT-DRIVEN APPLICATIONS 7

benign, because the effect in most cases is just a tempo-

rary change in the refresh rate, which is eventually cor-

rected when the ISR is executed again. For instance, the

hardening ISR uses a single register (s0) to configure the

refresh rate, and the SEU error sensitivity of this register

varies from 0.37% to 0.69% when the RRR varies between

0 and 10 respectively. This result has been obtained when

this register is not hardened at all. These errors can be

easily removed by software hardening of the ISR.

Fig. 8. SEU Error Rates for static configuration and variable refresh
rate

Fig. 9. SET Error Rates for static configuration and variable refresh
rate

In a second set of experiments, the refresh rate was set

to the minimum feasible value of 100 clock cycles, while

the RTC interrupt rate was varied to evaluate how the

error rate decreases as interrupts occur less frequently.

Fig. 10 shows the SEU error rate in this case. For RRR = 1,

the error rate is smaller than in Fig. 8 because the refresh

rate is higher now. For RRR higher than 25 (2500 clock

cycles between interrupts), the error coverage is higher

than 99%.

 Fig. 10. SEU Error Rates for static configuration and fixed refresh
rate

5.2 Dynamic configuration results

Figure 11 shows the results for the dynamic configuration

case. As in the first experiment, the RTC interrupt rate was

set to 500 clock cycles, but interrupts were randomly ena-

bled/disabled, depending on the bit sequence generated by

the peripheral LFSR. The RRR is referred to the average

interrupt rate. Although there is no fixed interrupt rate, the

proposed approach is similarly effective: the higher the

refresh rate, the higher the mitigation.

As it can be seen, the error rate is higher than in the static

case, but presents a similar trend reaching to an important

decrease of errors for moderate refresh rates.

Fig.11. SEU Error Rates for dynamic configuration and variable

refresh rate

An additional experiment was carried out injecting

faults into the configuration register replicas (located in

the microprocessor register file). Error rate did not vary

significantly due to the software redundancy.

A more detailed analysis of the results in both cases,

static and dynamic, points out that only one single inter-

nal register of the interrupt controller is the source of

more than 80% of the residual errors (those ones that are

not mitigated using high RRR). This specific register is

not accessible from the software and, therefore, deter-

mines the maximum fault coverage that can be achieved

with this technique, above 99%. If this register is hard-

ened by hardware, the error rate reduces by more than

one additional order of magnitude.

0%

2%

4%

6%

8%

10%

12%

14%

0 0.1 0.2 1 2 10

E
rr

o
r

R
a

te

Relative Refresh Rate (RRR)

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

0 0.1 0.2 1 2 10

E
rr

o
r

R
a

te

Relative Refresh Rate (RRR)

0%

1%

2%

3%

4%

5%

0 10 20 30 40 50

E
rr

o
r

R
a

te

Relative Refresh Rate (RRR)

0%

2%

4%

6%

8%

10%

12%

14%

16%

0.00 1.00 2.00 3.00 4.00 5.00

E
rr

o
r

R
a

te

Relative Refresh Rate

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Regarding the overheads introduced by the technique,

on the software side, the increase in the code size com-

prises the insertion of a few lines of code responsible to:

rewrite the configuration data and its replicas, implement

the voter procedure, and handle the hardening interrupt

event. On the hardware side, the overhead only supposes

one additional timer, regardless the number of configura-

tion data to protect. In addition, there is no performance

overhead because the execution of the refreshing proce-

dure takes place when the main processing is not being

executed. However, there is a possible low impact in the

system responsiveness. This occurs only in case the hard-

ening interrupt routine is being executed when the appli-

cation interrupt arrives. This supposes to delay the sys-

tem response for the number of clock cycles until the

hardening ISR finishes its work (in the worst case in

terms of latency, 64 and 94 clock cycles respectively for

the static and dynamic scenarios). Moreover, power con-

sumption overhead is a must issue to be addressed in the

design of embedded systems with tight power budget.

Although the repetitive execution of the refreshing rou-

tine increases the power consumption, this overhead is

negligible for low RRR because it comprises only a few

instructions. In case of high RRR causing excessive power

demand, designers should always find the best trade-offs

among RRR, fault coverage, and power to cope with the

system requirements.

6 CONCLUSIONS AND FUTURE WORK

The use of Commercial Off-The-Shelf components in

the implementation of low-cost safety-critical systems

offers important benefits. However, it is necessary to

reduce their vulnerability to radiation-induced effects,

such as soft-errors. This work proposes a systematic ap-

proach for soft-error mitigation that attempts to overcome

the limitations of common ad-hoc solutions. It is focused

on the protection of the configuration registers, which are

the most critical resources in interrupt-driven applica-

tions. Both possible cases, static and dynamic configura-

tion, were studied.

The technique was assessed by extensive fault injection

campaigns for SEUs and SETs. The impact in code size

and cost was negligible independently of the number of

configuration registers to be protected. It is worth noting

that a single timer can be used to protect several configu-

ration registers. The results show an important increase in

fault coverage for SEUs and SETs, about one order of

magnitude. From the experiments, it is deduced that the

refresh rate and the interrupt rate are directly related in

static and dynamic cases. Regarding the final application,

the RRR can be used to find the best trade-off between

reliability and system responsiveness. The proposed ap-

proach can be combined with other hardening approach-

es [10] to protect the complete microprocessor-based sys-

tem.

ACKNOWLEDGMENT

This work was funded in part by the Spanish Ministry of
Education, Culture and Sports with the project “Develop-
ing hybrid fault tolerance techniques for embedded mi-
croprocessors” (PHB2012-0158-PC).

REFERENCES

[1] Reyneri, L.M.; Roascio, D.; Passerone, C.; Iannone, S.; De los
Rios, J.C.; Capovilla, G.; Martínez-Álvarez, A.; and Hurtado,
J.A. “Modularity and Reliability in Low Cost AOCSs”, Advances
in Spacecraft Systems and Orbit Determination, Dr. Rushi Ghada-
wala (Ed.), InTech, March 2012.

[2] Pignol, M. "COTS-based applications in space avionics," In
Proc. Design, Automation & Test in Europe Conference & Exhibition
(DATE), vol., no., pp.1213-1219, 8-12 March 2010.

[3] Edwards, R.; Dyer, C.; and Normand, E. “Technical standard
for atmospheric radiation single event effects (SEE) on avionics
electronics”. In Proc. IEEE Radiation Effects Data Workshop
(REDW), pages 1–5. IEEE, 2004.

[4] Michalak, SE; Harris, KW; Hengartner, NW; Takala, BE; and
Wender, SA. “Predicting the number of fatal soft errors in Los
Alamos National Laboratory’s ASC Q supercomputer”. IEEE
Transactions on Device and Materials Reliability, 5(3):329–335, SEP
2005.

[5] Pignol, M. "How to cope with SEU/SET at system level?," In
Proc. 11th IEEE International On-Line Testing Symposium, 2005.
IOLTS 2005, pp. 315- 318, 6-8 July 2005.

[6] Azambuja, J. R.; Sousa, F.; Rosa, L.; Kastensmidt, F. L. “Evalu-
ating the efficiency of software-only techniques to detect SEU
and SET in microprocessors”, In Proc. IEEE Latin American Sym-
posium on Circuits and Systems, 2010.

[7] Oh, N.; Shirvani, P.P.; and McCluskey, E.J. “Control-Flow
Checking by Software Signatures,” IEEE Transactions on Reliabil-
ity, vol. 51, no. 1, pp. 111-122, Mar. 2002.

[8] Entrena, L.; Garcia-Valderas, M.; Fernandez-Cardenal, R.;
Lindoso, A.; Portela Garcia, M.; Lopez-Ongil, C. "Soft Error
Sensitivity Evaluation of Microprocessors by Multilevel Emula-
tion-Based Fault Injection," IEEE Transactions on Computers, pp.
313-322, March, 2012.

[9] XILINX. “PicoBlaze 8-bit Embedded Microcontroller User
Guide”. UG129 (v1.1.2). Xilinx Ltd., June 2008.

[10] Martínez-Álvarez, A.; Cuenca-Asensi, S.; Restrepo-Calle, F.;
Palomo Pinto, F.R.; Guzmán-Miranda, H.; Aguirre, M.A.
"Compiler-Directed Soft Error Mitigation for Embedded Sys-
tems," IEEE Transactions on Dependable and Secure Compu-
ting, vol. 9, no. 2, pp. 159-172, March-April 2012,

[11] Velazco, R.; Rezgui, S.; and Ecoffet, R. “Predicting Error Rate
for Microprocessor-Based Digital Architectures through C.E.U.
(Code Emulating Upsets) Injection”, IEEE Transactions on Nu-
clear Science, vol. 47, pp. 2405–2411, Dec. 2000.

[12] Benso, A.; Rebaudendo, M.; Sonza-Reorda, M. “Fault Injection
for Embedded Microprocessor-based Systems”. Journal of Uni-
versal Computer Science, vol. 5, no. 10, pp. 693-711, 1999.

[13] Portela-García, M.; Lopez-Ongil, C.; García-Valderas, M.; En-
trena, L. “Fault Injection in Modern Microprocessors Using On-
Chip Debugging Infrastructures”. IEEE Transactions on Depend-
able and Secure Computing, vol. 8, no. 2, 308-314, March 2011.

[14] Reis, G. A.; Chang, J.; and August, D. I. “Automatic instruction-
level software-only recovery,” IEEE Micro, vol. 27, no. 1, pp. 36–
47, 2007.

[15] “NASA Software Safety Guidebook”. NASA-GB-8719.13,
March 2004.

[16] Cuenca-Asensi, S.; Martínez-Álvarez, A.; Restrepo-Calle, F.;
Palomo, F. R.; Guzmán-Miranda, H.; Aguirre, M. A.; "A Novel
Co-Design Approach for Soft Errors Mitigation in Embedded
Systems," IEEE Transactions on Nuclear Science, Vol. 58, no. 3, pp.
1059-1065, June 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MARTÍNEZ-ÁLVAREZ ET AL.: A HARDWARE-SOFTWARE APPROACH FOR ON-LINE SOFT ERROR MITIGATION IN INTERRUPT-DRIVEN APPLICATIONS 9

[17] Lindoso, A.; Entrena, L.; Millan, E. S.; Cuenca-Asensi, S.; Mar-
tínez-Álvarez, A.; Restrepo-Calle, F.; "A Co-Design Approach
for SET Mitigation in Embedded Systems," IEEE Transactions on
Nuclear Science, vol.59, no.4, pp.1034-1039, Aug. 2012

[18] Lopez-Ongil, C.; Garcia-Valderas, M.; Portela-Garcia, M.; En-
trena, L.; , "Autonomous Fault Emulation: A New FPGA-Based
Acceleration System for Hardness Evaluation," IEEE Transac-
tions on Nuclear Science, vol.54, no.1, pp.252-261, Feb. 2007

[19] Entrena, L.; García-Valderas, M.; Cardenal, R.F.; Portela-Garcia,
M.; López-Ongil, C.; , "SET Emulation Considering Electrical
Masking Effects," IEEE Transactions on Nuclear Science, vol.56,
no.4, pp.2021-2025, Aug. 2009

[20] Entrena, L.; Lindoso, A.; García-Valderas, M.; Portela, M.;
López-Ongil, C.; , "Analysis of SET Effects in a PIC Micropro-
cessor for Selective Hardening," IEEE Transactions on Nuclear
Science, vol.58, no.3, pp.1078-1085, June 2011

[21] Pagliarini, S.; Kastensmidt, F.; Entrena, L.; Lindoso, A.; Millan,
E.S.; , "Analyzing the Impact of Single-Event-Induced Charge
Sharing in Complex Circuits," IEEE Transactions on Nuclear Sci-
ence, vol.58, no.6, pp.2768-2775, Dec. 2011.

[22] Bajura, M.A.; Boulghassoul, Y..; Naseer, R..; DasGupta, S..;
Witulski, A.F.; Sondeen, J..; Stansberry, S.D.; Draper, J..; Mas-
sengill, L.W.; Damoulakis, J.N.; , "Models and Algorithmic Lim-
its for an ECC-Based Approach to Hardening Sub-100-nm
SRAMs," IEEE Transactions on Nuclear Science, vol.54, no.4,
pp.935-945, Aug. 2007.

[23] Del Corso, D.; Passerone, C.; Reyneri, L.; Sansoe, C.; Speretta,
S.; Tranchero, M.; , "Design of a University Nano-Satellite: the
PiCPoT Case," IEEE Transactions on Aerospace and Electronic Sys-
tems, vol.47, no.3, pp.1985-2007, July 2011.

[24] A. Martínez-Álvarez, F. Restrepo-Calle, S. Cuenca-Asensi, L.
Reinery, A. Lindoso, L. Entrena. A hybrid technique for soft er-
ror mitigation in interrupt-driven applications. In Proc. of the
13th European Conference on Radiation and its Effects on Compo-
nents and Systems RADECS 2012. Biarritz, France. Sept 24 - 28,
2012.

[25] SAED 90nm Generic Library, Synopsys Armenia Educational
Department, [Online]. Available: http://www.synopsys.com/
Community/UniversityProgram

[26] Michael A. Cosgrove, “Using a System-Level Bit-Error-Rate Model
to Predict On-Orbit Performance”, IEEE Transactions on Nuclear
Science, vol. 50, NO. 6, pp. 2352–2357, Dec. 2003.

[27] A. Saleh, 1. Serrano, and J. Patel, "Reliability of scrubbing recovery
techniques for memory systems," IEEE Transactions on Reliability,
vol. 39, no. 1, pp. 114-122, Apr 1990.

Antonio Martínez-Álvarez received the MS and PhD degree in
electronics engineering from the University of Granada, Spain, in
2002 and 2006, respectively. From 2002 to 2006 he joined the De-
partment of Computer Architecture and Technology at the Universi-
ty of Granada, Spain. He is currently an associate professor with the
Department of Computer Technology, University of Alicante, Spain.
His main research interests deal with methods and tools for depend-
able design of digital integrated circuits and FPGAs, embedded
systems based on reconfigurable devices, bioinspired high-
performance image-processing architectures, and automatic hard-
ware generation of bioinspired visual systems. He is also interested
in neuroengineering and neuroprosthesis devices. Currently, he is
working in the design and development of SHE (Software Harden-
ing Environment).

Felipe Restrepo-Calle was born in Pereira, Colombia in 1981. He
received his Systems and Computer Engineering degree and M.Sc.
Physics Instrumentation degree cum laude by the Universidad
Tecnológica de Pereira (Colombia) in 2004 and 2011, respectively. He
received the PhD degree cum laude from the University of Alicante
(Spain) in 2011. He worked as a postdoctoral research fellow in the
University of Seville (Spain) during 2012 and 2013. In addition, he
did a postdoctoral stay during the first semester of 2014 in the Uni-
versity Federal Rio Grande do Sul (Porto Alegre, Brazil). Since Au-
gust of 2014 he joined the Department of Systems and Industrial

Engineering at the National University of Colombia (Bogotá, Co-
lombia). His field of interest is related with methods and tools for
dependable design in embedded systems. He is also interested in
programming languages theory and assistive technologies. Current-
ly, he is working in the design and development of SHE (Software
Hardening Environment).

Sergio Cuenca-Asensi is an Associate Professor in the Computer
Technology and Computation Department at University of Alicante,
Spain. He received the B.S. degree in Electronic Physics in 1990 from
University of Granada, Spain. He received a Ph.D. in Computer
Engineering from the University Miguel Hernández of Elche, Spain,
in 2002. His current research interests are reconfigurable computing,
Multi-Objective Optimization, high-performance image-processing
architectures, hardware/software co-design and soft error mitiga-
tion in embedded systems.

Leonardo M. Reyneri received the M.Sc. degree cum laude at
Politecnico di Torino in 1984 and the Ph.D. in 1992. He is Associated
Professor of Electronics at the Faculty of Engineering of Politecnico
di Torino and is currently researching in the fields of VLSI design,
HW/SW and mixed-signal co-design and co-simulation, parallel
computing and real-time signal processing, neuro-fuzzy networks
and their applications to industry and agriculture. He has worked on
the development of tools and methods for co-design and co-
simulation of HW/SW and mixed-signal systems, and on the design
of systems centered on digital and analog FPGAs, with particular
interest in real time signal processing and telecommunication sys-
tems. He is also working on industrial and agricultural applications
of neuro-fuzzy classification, characterization, and forecasting tech-
niques. He has also coordinated and participated to the development
of an HW/SW co-design environment based on Simulink, aimed at
high-performance systems. Dr. Reyneri has published more than 160
papers and he holds 6 patents. He has also been guest editor and
referee of international magazines and conferences and program and
steering chairman of international conferences. He has also spent
periods of time at the European Space Agency and at the Universi-
ties of Pisa, Edinburgh, and Granada.

Almudena Lindoso received the MS degree in 2001 from the Uni-
versity Politécnica of Madrid and the PhD degree in 2009 from the
University Carlos III of Madrid. Since 2003, she has been an assistant
professor and a researcher in the Electronic Technology Department
at University Carlos III of Madrid. Her current research interests
include image processing, fault tolerance, hardware acceleration,
and reconfigurable devices.

Luis Entrena received the MS degree from Universidad de Valladol-
id (Spain) in 1989, and the PhD degree from Universidad Politecnica
de Madrid (Spain) in 1995. From 1990 to 1993 he was with AT&T
Microelectronics at Bell Labs (USA). From 1993 to 1996 he was with
TGI, Spain. Since 1996 he is Associate Professor at Universidad
Carlos III de Madrid (Spain), where he has been head of the Elec-
tronic Technology Department. He has worked on the development
of fast fault injection methods and efficient soft error mitigation
techniques. Dr. Entrena has published more than 100 papers and
holds 1 patent for the invention of the redundancy addition and
removal method of logic optimization. His current research interests
include on-line testing, fault tolerance, soft error mitigation and
hardware acceleration.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2014.2382593

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.synopsys.com/%20Community/
http://www.synopsys.com/%20Community/

