
Towards a Reconfiguration Service for Distributed Real-Time Java 

P. Basanta-Val, and M. García-Valls 
Dpto. de Ingeniería de Telemática 
Universidad Carlos III de Madrid 

Avda. Universidad nº 30, Leganés- Madrid (Spain) 28911 
{pbasanta, mvalls}@it.uc3m.es 

 
 

Abstract—Ancient monolithic distributed systems were 
attached to well-known development practices and offline 
analysis. Current scenarios are more dynamic, and open, 
plenty of applications and services which appear and 
disappear dynamically at runtime. Likewise, these scenarios 
require taking into account actions that were traditionally 
addressed offline, this time in an online scenario. This paper 
contributes a reconfiguration service in the context of 
distributed real-time Java application as a means to include 
real-time reconfiguration into next generation real-time Java 
systems. The paper addresses the integration taking into 
account changes required in the API and the cost of some 
reconfiguration strategies. 
 

Keywords- DRTSJ, real-time Java, real-time middleware, 
predictable reconfiguration. 

I.  INTRODUCTION  

Many real-time infrastructures consider admission 
control as an offline feature [1, 2][3]. Using accurate 
analysis tools, (real-time) systems engineers analyze 
system requirements executing feasibility tests before 
deploying their applications. These algorithms check if all 
tasks of the system get satisfied their requirements and 
generate also a static configuration that can be deployed on 
top of real-time operating systems and/or real-time 
middleware. However, many applications are much more 
dynamic and may benefit from a on-line scheduling 
analysis integrated within its core ([4][5][6][7] [8]). New 
nodes and tasks may appear and disappear dynamically 
without deadline misses. Also, there is an increased need 
for adaptation and reconfiguration. 

This paper addresses a real-time reconfiguration 
service for distributed real-time Java. Its goal is to include 
algorithms able to modify the behavior of a whole 
distributed application by adding and removing groups of 
tasks. The reconfiguration service proposed is also of 
interest for the DRTSJ (i.e. the Distributed Real-Time 
Specification for Java) community (e.g. 
[9][6][10][11][12][13]) that may include this new service 
within its core. Currently, DRSTJ is silent on real-time 
reconfiguration issues. 

The reconfiguration service proposed in this paper is 
similar to the reconfiguration strategies proposed in [5] 
[8] for the iLAND middleware. Both approaches aim at 
producing online admission control for predictable end-
to-end response-times. However, their contexts and goals 
are rather different. While iLAND [14] is described in the 
context of SOAs (Service Oriented Architectures) with 
multiple service implementations for C-applications; the 

proposed service is focused on distributed real-time Java 
applications. 

Thus, the goal of the service in distributed real-time 
Java is to produce a common framework useful for real-
time {re}configuration. The rest of the paper describes the 
approach and evaluates a simple {re}configuration 
strategy. Section 2 describes the context of the 
reconfiguration service. Section 3 relates its performance 
on a networked infrastructure. Section 4 connects the 
work to the state of the art. Finally, Section 5 introduces 
conclusions and outlines related work. 

II. RECONFIGURATION SERVICE  

The service proposed is described for DREQUIEMI a 
framework for distributed real-time Java, and its 
particular API ([11]). The extensions and techniques 
described in this section may be included without major 
changes into DRTSJ (The Distributed Specification for 
Real-time Java). 

A. Distributed Real-Time Java middleware 
DREQUIEMI (Figure 1 and Table I) divides the 

system distribution infrastructure into a set of layers that 
contribute to hide distribution issues. The model identifies 
three main resources that may be managed (namely: 
memory, CPU, and the network). These services are 
accessed via an infrastructure middleware (which could 
be supported via a real-time Java virtual machine) which 
accesses these resources. On top of the infrastructure 
middleware, two new layers (distribution and common 
services) are in charge of providing standard services for 
distribution. The list includes stub/skeleton in charge of 
real-time invocations ([15] [16]); DGC in charge of 
distributed garbage collection, naming for a white page 
service; and synch events for end-to-end event models 
([17][18]). The common services use three main pools 
(connection, thread, and memory area-pools [19]) to 
parameterize the behavior of these services. Globally, 
resource allocation is managed by three managers: 
distributed memory manager, processor manager and 
distributed connection manager. On top of common 
services, there is application subsystem which divides 
applications into a set of reusable components (currently 
addressed with OSGi technology [20][21]). 

In DREQUIEMI, there are three natural 
reconfiguration points. The first is placed at the 
infrastructure level, as a means to control locally memory 
processor and network. The second extends this control to 
a distributed scheme and it is placed at the distributed 

REACTION 2012 9



manager which controls distributed applications 
performance. The last level of control is at component 
level performing adaptations taking into account the 
components of an application.  

 

 
Figure 1.  DREQUIEMI’s architecture 

TABLE I.  QOS PARAMETERS FOR DISTRIBUTION MIDDLEWARE IN 
DREQUIEMI 

QoS parameters in 
distribution layer 

 
Meaning in DREQUIEMI 

 

Scheduling Parameters 
«Priority» 

Priority used during the up-call at the server 

Release Parameters 
«Release Time, Period, 

Deadline, and Cost»  

Invocation pattern at the server according to 
the real-time scheduling theory 

Processing Group 
Parameters 

«Release Time, Period, 
Deadline and Cost» 

Invocation pattern at the server according to 
the real-time scheduling theory 

Memory Parameters  
Parameters used by the garbage collector at 
the server 

Thread Pool 
Thread pool used at the sever to manage 
remote invocations 

Connection Pool 
Connection pool used at the client to carry 
out the remote invocation 

Memory Area Pool 
Memory area pool used at the server to 
accept remote invocations 

  

port 
The IP port on which the remote object is 
accepting incoming messages  

RemoteStub 
The stub with the remote reference to the 
remove object 

EventCommonInt. 
A remote object which allows subscriptions 
and may be remotely triggered. 

 
The service analyzed in this section is at distribution 

level, it manages adaptation at distribution level by 
controlling resource in all distributed nodes. Internally, it 
uses the resource manager included in each node. It also 

offers support to the component manager defined at the 
application level of DREQUIEMI. 

B. Extension for Reconfiguration Service 
Figure 2 shows the API changes introduced to 

accommodate the reconfiguration service in the 
DREQUIEMI ecosystem, which includes new APIs for 
centralized and distributed real-time Java. 

 

Figure 2.  New classes proposed for the reconfiguration service 

In centralized Java, the main extension required is 
network support. Currently RTSJ [22], the main approach 
in real-time Java, does not take into account the existence 
of different types of networks. In the support proposed for 
reconfiguration two new elements are included to 
introduce the network into the system. The first is a 
characterization for networks similar to memory 
parameters and scheduling parameters currently included 
in RTSJ via a tagging interface (NetworkParameters). 
All network classes include a tagging interface that 
extends scheduling parameters list included in Table I 
with network parameters. Network parameters are domain 
dependant and may consist of a simple non preemptive 
priority for the router. (e.g., in [23] the authors used a 
non-preemptive model with network release times, and 
scheduling parameters to model a prioritized IP-based 
Switched-Ethernet.) The possibility of including 
additional networks is added via a new scheduler template 
named 3ResourcesScheduler. 

Then, the distributed scheduler API extends the API 
scheduler interface of RTSJ to be accessible as a remote 
object via DRTSJ. This simple mechanism is enough to 
allow the allocation of schedulable entities from another 
remote node. The code for the extension is provided in 
Listing 1. In all this code all the parameters of the remote 
object have to be serializable in order to be able to be 
transferred via the network. (Note: a way to transfer this 
non-functional information among in distributed remote 
invocations is described addressed in [24] [25]). 

From the point of view of the definition of a 
reconfiguration service (ReconfigurationService in 
Listing 2), the approach analyzed in this article is simple. 

Me mory Pro c esso r Netw or k 

Me mory
man ageme n t Pr o c ess or

man a g e ment
Netw or k

ma nag ement

D G C N a mi ng Syn ch 
even ts

Di stributed
Memor y

Manag ement

Di str ib uted
Proce ss o r

manag ement

Di strib uted
 Conne ctio n
 manage ment

. .. ......

Stub/ 
Skeleton 

Infraestructure
middleware

Di s t ribut i on
  mi ddleware

Resources

co nnec tion
 
p ool thre ad

 
po ol memory

 
po o l 

Common
s ervi ces

  mi ddleware

Me mory Pro c esso r Netw or k 

Me mory
mana ge ment

Pro ces s o r 
ma na g emen t N e tw ork 

ma n agement

DGC N ami ng Synch 
eve nts

Di stributed
Memor y

manag ement

Di str ib uted
Proce sso r 

man age ment

D is tri bute d 
 C onne cti on 
 man ageme nt

. .. ......

Stub/
Skel eton

Infraestructure
middleware

Di s tribution
 mi ddleware

Resources

co nn ecti on
 
po ol th read 

 
pool mem ory

 
poo l

Common
serv ices 

 mi ddleware

Applicat i on

module

 

Comp. manag. 

Comp. mem  
manag. 

Comp. proc  
manag. 

Comp. comm  
manag. 

REACTION 2012 10



It is based on modeling the distributed scheduler 
(described in Listing 1) as an RTSJ’ schedulable object. 
This simple approach enables to define generic real-time 
parameters for the reconfiguration service. 

 

Listing 1. API interface for the distributed scheduler 

 

Listing 2. API interface for the reconfiguration service. 
 

By using this approach, the API of the reconfiguration 
could be bounded time. It offers mechanisms to limit 
declare the amount of CPU, memory, bandwidth in the 
network required for the reconfiguration process. 
Furthermore, the reconfiguration process could be 

globally modeled as a periodic, or sporadic process which 
may scheduled with the remaining tasks in each remote 
node. 

Lastly, notice that by default there is not a dominant 
reconfiguration algorithm or technique. This is a 
distinctive feature of the scheduler of RTSJ too. In both 
cases the idea is that different algorithms may extend the 
basic tasking template to include system requirements. A 
developer may also extend the basic reconfiguration 
policy to take into account different application domains. 

C.  End-2-End Flow-Shop Reconfiguration Use-Case 

The use case, which is empirically explored in the 
evaluation of Section III, is the simple end-to-end flow-
shop model used by Sun [26], Tindell [27], and Palencia 
[28]. In this model, an end-to-end restriction is modeled 
(see Figure 3) as a sequence of subtasks that execute in 
order (i.e. with precedence constraints). Each end-to-end 
transaction (Γj | j ∈ 1..M) is defined as follows: 
• Global deadline (Dj) 
• A global period (Tj) 
• A set of jn schedulable segments {Sj

1→….→Sj
n} 

o A local execution priority (Pj
n) for each end-

to-end transaction segment (Sj
n). 

o A local worst-case execution time (Cj
n) for 

each segment (Sj
n). 

In addition, each node runs a periodic enforcer [29] 
that allows analyzing each flux in a node as it was local. 

 

 
Figure 3.  Reconfigurable Priority-Based End-To-End transactions 
classes for the reconfiguration service. It consists of five schedulable 
segments. 

III. EMPIRICAL EVIDENCES 

An empirical evaluation of the mechanism described in 
Section II was carried out. The goal pursued in this 

REACTION 2012 11



evaluation was to obtain a reference performance for the 
system. This performance has been evaluated on a 
networked infrastructure. The evaluated application 
consists of N Java nodes (Figure 4) that host distributed 
applications. There is a single local area network (LAN) 
supported with an IP-router that connects nodes one each 
other. The router enforces a priority driven policy via end-
to-end communications. 

In the example of Figure 4, the application consists of 
two end-to-end transactions (A1 and A2). A1 is made of 
five consecutive schedulable segments (one local in node 
1, another two for the network and another at node 3). A2 
is allocated in Node1. All updates are done via the 
manager node which adds locally the two applications and 
transfers this information to the required nodes. 

 
Figure 4.  Evaluated scenario (All 796Mhz DREQUIEMI- 100 Mbps 
Ethernet) 

A. Cost Tributaries 
The results (Figure 5) show a strong dependence 

among the number of schedulable entities (tasks) and the 
time required to carry out their deployments. In the 
experiments 4096 schedulable tasks keep the cost over 1 
second. The minimum cost, which happens with one task 
and one processor, keeps it in below 100 µs. There is also 
a linear dependence among the number of processors and 
the time required to run the feasibility algorithm. This 
dependence is more moderate than the existing one in the 
number of JVMs. 

The previous results (Figure5) do not take into 
consideration the cost of allocating tasks in a remote node. 
Figure 6 shows the cost of allocating a number of 
schedulable objects in a JVM node. It considers three 
different schedulable segments: threads (Rthread), event 
handlers (AsyncEventHandler), and remote objects 
(RtRO). 

These results are complemented considering the cost of 
sending setup information from the manager node to the 
subscribed nodes. Figure 7 shows the total cost of creating 
a remote entity in a local node considering a different 
number of schedulable entities.  

 
Figure 5.  Minimum Cost of partitioning the system dependence using 
DREQUIEMI (796Mhz-100Mbps at manager node) 

 
Figure 6.  Task instantiation (796Mhz-100Mbps) cost, locally in a JVM 
node  

 
Figure 7.  Remote allocation costs (796Mhz-100Mbps) using 
DREQUIEMI 

B. Total Configuration Time 
The total {re}configuration time is calculated as the 

time consumed deciding in which node is allocated each 
schedulable part of an application and the cost of 
deploying this task. Figure 8 shows this time for the given 
configuration (i.e. considering [4-32] JVMs (Java Virtual 
Machines) and [1-4096] AyncEventHandler schedulable 
segments). The results showed that the service is not able 
to perform 1024 assignments and deployments per second, 
even when there is a single JVM that has to host all tasks.  

1,E+00
1,E+01
1,E+02
1,E+03
1,E+04
1,E+05
1,E+06
1,E+07

64 32 16 8 4 2 1

Ti
m

e 
co

ns
um

ed
 (u

s)

Processors  (JVMs) and Network available

Feasiblity test algorithm costs

4096Tasks

1024Tasks

64Tasks

1Task

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

40
96

10
24 25
6 64 8 1

Ti
m

e 
co

ns
um

ed
 (u

s)

Schedulable Segments (tasks) to deploy

Allocation costs  depending on the  kind of schedulable

AsyncEventHandler

RtRO

Rthread

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

40
96

10
24 25
6 64 8 1

Ti
m

e 
co

ns
um

ed
 (u

s)

Schedulable Segments (tasks) to deploy

Remote allocation of remote entities

AsyncEventHandler

RtRO

Rthread

REACTION 2012 12



 
Figure 8.  Total reconfiguration cost dending on the number of 
schedulables and the number of virtual machines (796Mhz-100Mbps) 
using DREQUIEMI. All schedulables are async event handlers (worst 
cost). 

IV. RELATED WORK 

This section focuses on middleware aspects. It goes 
through the real-time middleware reviewing the way 
different architectures have dealt with similar problems. 

DRTSJ [9, 30], the leading effort towards a distributed 
real-time Java, technology is focused on a scheduling 
framework to accommodate the distributed real-time 
thread. The proposed real-time reconfiguration service 
may be adapted to the distributable threads used by 
DRTSJ to configure a global system dynamically. York’s 
approach [31] may also use the real-time reconfiguration 
service to carry out on-line configurations. From the point 
of view of the three profiles defined by UPM [32], the 
described reconfiguration service is useful for its flexible 
profile. 

Recently, researchers working in RT-CORBA have 
described a distributed real-time manager [33, 34]. This 
distributed real-time manager connects different ORBs 
with a task manager in charge of allocating components to 
ORBs and performing load balancing and admission 
control. The described real-time reconfiguration service is 
closer to their model, i.e. both carry out admission control 
dynamically.  

In RT-SOA (Service Oriented Architecture), it stands 
out the work carried out in real-time service composition 
([4,35][5][8][14]), which deals with the problem of 
dynamic allocation of services with multiple available 
implementations. The authors addressed the problem of 
finding an optimum system configuration with 
composition algorithms, which have heuristics and figures 
of merit. The use of these techniques allows reducing the 
overhead of executing these algorithms several orders in 
magnitude. The proposed real-time reconfiguration service 
could be extended with these parameters. 

An eventual piece of work is the distributed transaction 
manager (DTM) [36]. This service extends the contract 
model of FRESCOR [37] from a local scenario to a 
distributed system. The main difference between DTM and 
the service designed in this paper is in terms of entities 
negotiated and negotiation algorithms. Nevertheless, the 
algorithms described for the configuration service could be 
also included in DTM and vice versa. 

V. CONCLUSIONS AND FUTURE WORK 

Next generation real-time systems will benefit from 
having an enhanced infrastructure able to cope with 
predictable reconfiguration. The proposed reconfiguration 
service provides a template for a reconfiguration service in 
distributed real-time Java. The template may be extended 
to include different strategies and different kinds of 
applications. The empirical evaluation of a simple 
configuration strategy showed total reconfiguration costs 
that may be in hundreds milliseconds for a small number 
of nodes and schedulable segments. 

Our ongoing work is focused on mode change 
protocols ([38, 39]). Implicitly, the addressed 
configuration service assumes that applications may be 
stopped and started at runtime without requiring 
configuration from the user. However, this is not realistic 
because reconfiguration is application-dependent in 
general. One solution to this problem is mode change 
protocols, which carry out this activity taking into 
consideration application nature. Additionally, the authors 
are exploring reconfiguration for real-time OSGi platforms 
(like [20, 40][41][42]). 

ACKNOWLEDGEMENTS 

This research was partially supported by the European 
Commission (ARTIST2 NoE, IST-2004-004527; iLAND 
ARTEMIS-JU Call 1) and by the Spanish national project 
REM4VSS (TIN-2011-28339). 

REFERENCES 

[1] R. Rajkumar, Insup Lee, Lui Sha and J. Stankovic. Cyber-physical 
systems: The next computing revolution. Presented at Design 
Automation Conference (DAC), 2010 47th ACM/IEEE. 2010, .  

[2] E. A. Lee. Cyber physical systems: Design challenges. Presented at 
International Symposium on Object/Component/Service-Oriented 
Real-Time Distributed Computing (ISORC). 2008, 

[3] J. White, B. Dougherty, R. E. Schantz, D. C. Schmidt, A. A. Porter 
and A. Corsaro. R&D challenges and solutions for highly complex 
distributed systems: A middleware perspective. J.Internet Services 
and Applications 3(1), pp. 5-13. 2012.  

[4] M. Garcia-Valls, I. Rodriguez-Lopez, L. Fernandez-Villar, I. 
Estevez-Ayres and P. Basanta-Val, "Towards a middleware 
architecture for deterministic reconfiguration of service-based 
networked applications," in 15th IEEE Conference on Emerging 
Technologies and Factory Communication, Bilbao, 2010, pp. 1-4.  

[5] M. García-Valls, I. Rodríguez-López and L. Fernández-Villar. 
iLAND: An enhanced middleware for real-time reconfiguration of 
service oriented distributed real-time systems. Industrial 
Informatics, IEEE Transactions on pp. -. 2012.  

[6] P. Basanta-Val and J. S. Anderson, "Using real-time java in 
distributed systems: Problems and solutions," in Distributed and 
Embedded Real-Time Java Systems, T. H. Toledano and A. J. 
Wellings, Eds. Springer, 2012, pp. 23-45.  

[7] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres. Towards a 
cyber-physical architecture for industrial systems via real-time java 
technology. Computer and Information Technology, International 
Conference on 0pp. 2341-2346. 2010.  

[8] M. García-Valls, P. Basanta-Val and I. Estévez-Ayres. Real-time 
reconfiguration in multimedia embedded systems. Consumer 
Electronics, IEEE Transactions on pp. 1287. 2011. Available: 
10.1109/TCE.2011.6018885.  

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

40
96

10
24 25
6 64 8 1

Ti
m

e 
co

ns
um

ed
 (u

s)

Schedulable Objects to allocate

Total  {re}configuration time 

32JVM

16JVM

4JVM

REACTION 2012 13



[9] J. S. Anderson and E. D. Jensen. Distributed real-time specification 
for java: A status report (digest). Presented at JTRES '06: 
Proceedings of the 4th International Workshop on Java 
Technologies for Real-Time and Embedded Systems. 2006, .  

[10] D. Tejera, A. Alonso and M. A. de Miguel. RMI-HRT: Remote 
method invocation - hard real time. Presented at Proceedings of the 
5th International Workshop on Java Technologies for Real-Time 
and Embedded Systems. 2007 

[11] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "An 
architecture for distributed real-time java based on RTSJ and RMI," 
in 15th IEEE Conference on Emerging Technologies and Factory 
Communication, 2010, pp. 1-8.  

[12] J. Rodriguez, D. Decouchant, S. Mendoza and C. M. Escobar. Java-
based framework for implementing soft real-time distributed 
applications. Presented at Computer Science, 2008. ENC '08. 
Mexican International Conference on. 2008, .  

[13] M. Malohlava, A. Plsek, F. Loiret, P. Merle and L. Seinturier, 
"Introducing distribution into a RTSJ-based component 
framework," in 2nd Junior Researcher Workshop on Real-Time 
Computing (JRWRTC’08), Rennes, France, 2008, .  

[14] García-Valls M., R. Castro, I. Estévez-Ayres, P. Basanta-Val and I. 
Rodríguez-López, "A bounded-time ServiceComposition algorithm 
for distributed real-time systems," in Proc. 9th International 
Conference on Embedded Software and Systems, Liverpool, UK, 
2012, pp. 25-27.  

[15] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres. Simple 
asynchronous remote invocations for distributed real-time java. 
Industrial Informatics, IEEE Transactions on 5(3), pp. 289-298. 
2009. Available: 10.1109/TII.2009.2026271.  

[16] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres. A dual 
programming model for distributed real-time java. Industrial 
Informatics, IEEE Transactions on 7(4), pp. 750-758. 2011.  

[17] P. Basanta-Val, I. Estevez-Ayres, M. Garcia-Valls and L. Almeida. 
A synchronous scheduling service for distributed real-time java. 
Parallel and Distributed Systems, IEEE Transactions 21(4), pp. 
506. 2010.  

[18] P. Basanta-Val, L. Almeida, M. Garcia-Valls and I. Estevez-Ayres. 
Towards a synchronous scheduling service on top of a unicast 
distributed real-time java. Presented at Real Time and Embedded 
Technology and Applications Symposium, 2007.RTAS '07.13th 
IEEE. 2007, .  

[19] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres. No-heap 
remote objects for distributed real-time java. ACM 
Trans.Embed.Comput.Syst. 10(1), pp. 1-25. 2010.  

[20] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres. Enhancing 
OSGi with real-time java support. Software: Practice and 
Experience -(-), pp. ---. 2012.  

[21] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Avres, "Real-time 
distribution support for residential gateways based on OSGi," in 
11Th IEEE Conference on Consumer Electronics, Las Vegas, 2011, 
pp. 747-748.  

[22] Bollella G. et al. The real-time specification for java. 2001. 
Available: http://www.rtsj.org/.  

[23] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres, "Using 
switched-ethernet and linux TC for distributed real-time java 
infrastructures," in Work‐in‐Progress Proceedings IEEE RTAS 
2010, 2010, .  

[24] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres. Non-
functional information transmission patterns for distributed real-
time java. Software: Practice and Experience 41(12), pp. 1409-
1435. 2011.  

[25] P. Basanta-Val, M. Garcia-Valls and I. Estevez-Ayres. Towards 
propagation of non-functional information in distributed real-time 
java. Presented at Object/Component/Service-Oriented Real-Time 
Distributed Computing (ISORC), 2010 13th IEEE International 
Symposium on. 2010, .  

[26] J. Sun. Fixed-priority end-to-end scheduling in distributed real-time 
systems. 1997.  

[27] K. Tindell, A. Burns and A. J. Wellings. Analysis of hard real-time 
communications. Real-Time Syst. 9(2), pp. 147-171. 1995.  

[28] J. C. P. Gutierrez and M. G. Harbour. Schedulability analysis for 
tasks with static and dynamic offsets. Presented at IEEE Real-Time 
Systems Symposium. 1998, .  

[29] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-
time tasks with rate-monotonic priorities. Presented at Proceedings 
of the 2010 16th IEEE Real-Time and Embedded Technology and 
Applications Symposium. 2010,  

[30] J. S. Anderson, B. Ravindran and E. D. Jensen. Consensus-driven 
distributable thread scheduling in networked embedded systems. 
Presented at EUC'07: Proceedings of the 2007 International 
Conference on Embedded and Ubiquitous Computing. 2007, .  

[31] A. Borg and A. J. Wellings. A real-time RMI framework for the 
RTSJ. Presented at Real-Time Systems, 2003. Proceedings. 15th 
Euromicro Conference on. 2003, .  

[32] D. Tejera, R. Tolosa, M. A. d. Miguel and A. Alonso. Two 
alternative RMI models for real-time distributed applications. 
Presented at ISORC '05: Proceedings of the 8th IEEE International 
Symposium on Object-Oriented Real-Time Distributed Computing 
(ISORC'05). 2005,  

[33] K. Bryan, L. C. DiPippo, V. F. Wolfe, M. Murphy, J. Zhang, D. 
Niehaus, D. Fleeman, D. W. Juedes, C. Liu, L. R. Welch and C. D. 
Gill. Integrated CORBA scheduling and resource management for 
distributed real-time embedded systems. Presented at IEEE Real-
Time and Embedded Technology and Applications Symposium. 
2005, .  

[34] Y. Zhang, C. D. Gill and C. Lu. Configurable middleware for 
distributed real-time systems with aperiodic and periodic tasks. 
IEEE Trans. Parallel Distrib. Syst. 21pp. 393-404. 2010.  

[35] I. Estevez-Avres, L. Almeida, M. Garcia-Valls and P. Basanta-Val. 
An architecture to support dynamic service composition in 
distributed real-time systems. 2007.  

[36] D. Sangorrin, M. G. Harbour, H. Perez and J. J. Gutierrez. 
Managing transactions in flexible distributed real-time systems. 
Presented at Ada-Europe. 2010, .  

[37] M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J. M. Drake, 
G. Fohler, P. Gai, M. Gonzalez Harbour, G. Guidi, J. J. Gutierrez, 
T. Lennvall, G. Lipari, J. M. Martinez, J. L. Medina, J. C. Palencia 
and M. Trimarchi. FSF: A real-time scheduling architecture 
framework. Presented at RTAS '06: Proceedings of the 12th IEEE 
Real-Time and Embedded Technology and Applications 
Symposium. 2006, .  

[38] M. Garcia-Valls, A. Alonso and J. A. d. l. Puente. Mode change 
protocols for predictable contract-based resource management in 
embedded multimedia systems. Presented at ICESS '09: 
Proceedings of the 2009 International Conference on Embedded 
Software and Systems. 2009, .  

[39] J. Real and A. Crespo. Mode change protocols for real-time 
systems: A survey and a new proposal. Real-Time Syst. 26(2), pp. 
161-197. 2004.  

[40] T. Richardson and A. J. Wellings, "RT-OSGi: Integrating the OSGi 
framework with the real-time specification for java," in Distributed 
and Embedded Real-Time Java Systems, M.T. Higuera-Toledano 
and A. J. Wellings, Eds. Springer, 2011, pp. 293-322.  

[41] J. C. Américo, W. Rudametkin and D. Donsez. Managing the 
dynamism of the OSGi service platform in real-time java 
applications. Presented at Proceedings of the 27th Annual ACM 
Symposium on Applied Computing. 2012,  

[42] M. Garcia-Valls and P. Basanta-Val. A practical solution for 
functional reconfiguration of real-time service-based applications 
through partial reconfiguration schedulability. On 2012 
International Workshop on Real-Time and Distributed Computing 
in Emerging Applications. San Juan (Puerto Rico) 4 December 
2012. 

REACTION 2012 14


