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a b s t r a c t

This paper presents the IVVI 2.0 a smart research platform to foster intelligent systems in vehicles. Com
putational perception in intelligent transportation systems applications has advantages, such as huge
data from vehicle environment, among others, so computer vision systems and laser scanners are the
main devices that accomplish this task. Both have been integrated in our intelligent vehicle to develop
cutting edge applications to cope with perception difficulties, data processing algorithms, expert knowl
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making. The long term in vehicle applications, that are presented in this paper, out
significant and fundamental technical limitations, such as, robustness in the face of
ental conditions. Our intelligent vehicle operates outdoors with pedestrians and oth
tperforms illumination variation, i.e.: shadows, low lighting conditions, night vision,
ur applications ensure the suitable robustness and safety in case of a large variety of
and complex perception tasks. Some of these complex tasks are overcome by the
er devices, such as, inertial measurement units or differential global positioning sys
architectures that accomplish sensor fusion processes in an efficient and safe manner.

and architectures enhance the accuracy of computational perception and outreach the
device separately.
1. Introduction

Traffic accidents are one of the main health risk problems. Glob
ally, as the number of vehicles on the road increases so does the
number of fatalities and injuries. As a consequence of road acci
dents, every year approximately 1.2 million people are killed and
50 million disabled or injured (WHO, 2009). Not only are road traf
fic accidents the eleventh cause of death in the world, but it is the
only cause of death among the worst twelve which is not related to
illnesses or diseases.

Human errors are the cause of most traffic accidents. Drivers’
inattention and wrong driving decisions are the two main errors.
Governments are trying to reduce the said accidents with infra
structure improvement and educational campaigns, but they can
not be completely eliminated due to the human factor. The speed
of vehicles on the road is directly related to the risk factor associ
ated with accidents and is also responsible for the consequences
(WHO, 2008). Excess velocity on the road within areas of a deter
mined speed limit and inappropriate driving speed are the main
cause of traffic accidents, i.e. driving at an excess velocity when
considering parameters such as: the driver, the volume of the traf
fic, and the condition of the vehicle and the road. That is why
Advanced Driver Assistance Systems (ADAS) can reduce the num
ber, danger and severity of traffic accidents. Several ADAS, which
nowadays are being researched for intelligent vehicles, are based
on Artificial Intelligence, Laser and Computer Vision technologies
(Guan, Bayless, & Neelakantan, 2012; Milanés et al., 2012).

ADAS are designed to help human drivers. Thus, there are
examples of road lane detection (Collado, Hilario, de la Escalera,
& Armingol, 2008; Zhou, Xu, Hu, & Ye, 2006), and obstacles recog
nition and avoidance in the vehicle’s path such as either vehicles
(Musleh, de la Escalera, & Armingol, 2012b) or pedestrians
(Musleh, de la Escalera, & Armingol, 2011; Soquet, Perrollaz,
Labayrade, & Auber, 2007) or other elements, like traffic lights
and marks on roads (Franke et al., 2001). ADAS are on board vehi
cle systems which focuses on the driving process. One of the main
objectives of this technology has been to increases driver aware
ness by providing useful information.

There are a large variety of systems on the market that employ
cameras based on Computer Vision, Radar, Light Detection Ranging
(LIDAR) and Ultrasonic Sensors to support ADAS. These sensors are
critical to support the aim of intelligent vehicles, such as the IVVI
vehicle that has been conceived at Intelligent Systems Lab to



incorporate our developed technologies to foster the implantation
of next generation of vehicles and its growing potential for the
Transportation Sector (Fig. 1).

The advancement of sensors and computation devices have
allowed in vehicle technology rapidly advancing and a complete
standardization in present and forthcoming vehicles. The applica
tions that require object detection, such as vehicle collision avoid
ance (Chang, Tsai, & Young, 2010), have reached a growing interest
in vehicle manufacturers due to increasing safety conditions for
both passengers and pedestrians (Guo, Ge, Zhang, Li, & Zhao,
2012). These advances have influenced a number of in vehicle
applications already available in the automotive sector, such as a
system developed by Mercedes that monitors the space available
on both sides and behind the vehicle and that is capable of detect
ing other vehicles. It notifies the presence of other close by vehicles
when changing lane (Daimler, 2013a). The parking assistant devel
oped by Bosch (2013) employs a total of six sensors on the front
and rear of the vehicle and measures the parking space which is
indicated to the driver using an acoustic emission whose charac
teristics are in function of the size of the space available. Driver
behaviour monitoring system is another safety application to be
implemented in vehicles to a widespread transition to intelligent
vehicles. Another driver monitoring system has been developed
for Nissan which monitors the attention of the driver and detects
possible symptoms of drowsiness (Nissan., 2013). The lane depar
ture system of Iteris (2013) warns drivers of unintentional lane
changes in areas where the lanes are marked. It detects both con
tinuous and discontinuous lines even when the road markings are
not clearly visible. Other innovations have demonstrated also the
possibility to improve safety and mobility, this is the case of Mer
cedes Corporation, where a multipurpose device has been con
structed, named DistronicPlus, which among other features has
an adaptive cruise control function. This is used specifically for
traffic jam situations where the system can take control of the
car and maintains automatic user preselected security distances
between vehicles by braking and accelerating (Daimler, 2013b).

Intelligent transport system and road safety applications are
common topic in expert systems, thanks to the recent advances
Fig. 1. IVVI 2.0 intelligent vehicle
in information technologies, modern applications are used to
enhance the vehicle positioning, prevent road accidents or in the
event of an accident, mitigate the harm of the agents involved: in
Bhatt, Aggarwal, Devabhaktuni, and Bhattacharya (2014) authors
proposed a hybrid fusion scheme based on low cost INS systems
to overcome the eventual signal loss in GPS systems. In Castro,
Delgado, Medina, and Ruiz Lozano (2011) a fuzzy logic base sys
tem is presented for pedestrian accidents avoidance. Adaboost
and SVM system for pedestrian detection is presented in Guo
et al. (2012), and also SVM algorithm fused with laser scanner
information is presented by García, García, Ponz, de la Escalera,
and Armingol (2014) for pedestrian detection and tracking. In
Conesa, Cavas Martínez, and Fernández Pacheco (2013) vehicles
driving in opposite direction are identified by means on an agent
based architecture. A different approach, but also related with traf
fic security is presented on Abellán, López, and De Oña (2013)
where an algorithm to identify the severity of the accidents based
on decision trees is presented. Finally driver drowsiness is ana
lyzed based on computer vision algorithms and biological mea
surements in Jo, Lee, Park, Kim, and Kim (2014). All these
applications represent important advances in the latest years in
the expert system field related to the road safety and intelligent
transport systems topics. In further sections, ADAS systems appli
cations developed in the research platform IVVI 2.0 are presented,
each of them provides new and novel solution on their respective
fields.

Following with recent innovations over the past decade, scien
tists and engineers at Intelligent Systems Lab have developed intel
ligent systems in industry and academia to solve a wide variety of
safety problems in vehicles, adapting to market needs of the bur
geoning vehicle industry. These in vehicle systems have favoured
vehicle manufacturers due to difficulties of integrating devices
together with safety applications, which can cope with the wide
spread changes on the vehicle environment. So, this work presents
our contribution to intelligent transportation systems (ITS) by
means of devices that deal with machine vision, laser scanning,
inertial measurement, GPS positioning and computer based pro
cessing technology. The on board applications are obstacle and
from Intelligent Systems Lab.
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free space detection, vehicle and pedestrian detection and classifi
cation, and drive monitoring, among others. Then, these long term
research and improvements to advance in intelligent systems are
condensed and presented in following sections.

This article is organised in nine parts. Section 2 describes our
experimental vehicle IVVI 2.0, emphasising the availability of in
vehicle low level devices and the forthcoming ROS architecture.
Section 3 presents an analysis of our motivations and ITS solutions
to justify approaches that are detailed in following sections by
means of new in vehicle sensor data and results. Section 4 explains
the stereo vision for obstacle and free space detection that is the
foundation of vehicle positioning by visual odometry of following
Section 8. Section 5 explains the far infrared pedestrian detection,
Section 6 explains the driver safety through facial recognition, Sec
tion 7 explains the obstacle detection and classification based on
data fusion with laser scanner and computer vision, and Section 8
explains the vehicle positioning in urban environments by sensor
fusion and visual odometry methodologies. The conclusions and
future work of this review are presented in Section 9.
2. IVVI 2.0: an experimental vehicle

IVVI 2.0 vehicle is the second research platform of the Intelli
gent System Lab for the implementation of smart systems based
on computer vision and laser techniques, with the goal of develop
ing and testing ADAS technologies. The purpose of the IVVI is to
test new algorithms under real conditions. At this moment, differ
ent sensing capabilities are being researched for road lanes, pedes
trians, vehicles, traffic signs, driver monitoring and positioning.
They can be taken as inputs for some ADAS like Lane Keeping Sys
tem, Adaptive Cruise Control, Pedestrian Protector, Traffic Sign
Recognition, Driver Monitoring Systems and Autopilot Systems.
All of the designed ADAS work in urban and road environments,
providing real time information to the driver.

The different sensing devices include a colour CCD camera
(Fig. 2) mounted on the windscreen, for the detection of traffic
signs and other vertical signs; a stereo vision system for road lane
detection and classification and object detection (vehicles, pedes
trians, etc.) in day driving conditions has been included; an infra
red camera, mounted on the rear view mirror, for pedestrian
detection in night driving conditions; a Kinect system, placed on
the dashboard, for face detection and driver monitoring has been
chosen. A multi layer laser is mounted on the front bumper for
object detection, and finally, the overall devices are completed
with a GNSS receiver and an Inertial Measurement Unit (IMU),
which are integrated in a platform on the roof of the IVVI vehicle
and aligned with the rear axis.

The processing system is based on a computer placed in the
vehicle’s boot, which is used for processing all the sensorial infor
mation in real time conditions. In order to provide information to
the driver, it is connected to the loudspeakers of the vehicle and
different audio warning messages and alerts are broadcasted.
Moreover, a display in the driver’s dashboard shows visual warn
ings and danger alerts.

In vehicle device data are available directly from sensors to our
applications, or low level data can be also acquired through Robot
Operating System (ROS) (Quigley et al., 2009). The advantage of
synchronizing low level data by means of ROS is the timestamp
of data acquisition. So, we have upgraded our IVVI platform from
stand alone data acquisition to synchronized data acquisition
using ROS architecture. That is, ROS allows us a collection of driv
ers and middleware that aim to simplify the complex task of global
data acquisition and sensor synchronization. Thus, applications
presented on this paper have been created accordingly to ROS
architecture (Fig. 3(a)). Moreover, sensor fusion processes allow
to improve the performance of each application in high level
stages.

Thus in the designed architecture, all processes communicate
with each other in order to refine information and knowledge, pro
viding higher level information to improve the decision making
process(i.e.: to warn safely the driver of a possible collision). ROS
architecture allows inter process communication in an indepen
dent and modular form, allowing on board computer to run multi
ple and parallel algorithms in order to achieve both low level tasks
(e.g.: sensor acquisition, and data preprocessing, as shown in
Fig. 3(b)), and high level objectives such as pedestrian detection.
Moreover, ROS scalability allows to adapt the whole system to
changes of the in vehicle technology due to novel sensors or higher
capabilities of the applications, i.e. the use of standard messages
from sensors of the same type makes the whole system immune
to hardware changes.

In the following sections, our driver assistance systems and
their perception modules will be described in detail.
3. Our motivations and ITS solutions

Our motivation is to warn vehicle drivers and pedestrians, pro
viding assistance to avoid potential hazards by means of intelligent
systems. In this section, we introduce our last intelligent systems
in the automobile industry that provide safety applications.

Our computer vision application for obstacle and free space
detection in front of the vehicle is based on stereo vision, which
is integrated in the IVVI vehicle and allows to monitor and analyze
the environment in real time (by using Graphics Processing Unit
(GPU)). Stereo rig device has two image sensors to capture images,
which joints with a computer, it is possible to analyze these images
and extract information of interest to create stereo vision intelli
gent system. So, this machine vision system based on computer
aids drivers indicating the presence of obstacles and free spaces
within front view of the vehicle by identifying visual attributes
such as points of the road or the objects (Musleh, Martin, de la
Escalera, & Armingol, 2012a). Moreover, this is the foundation for
following Section 8, where visual odometry will be explained to
accomplish vehicle positioning task in urban environments.

Related to safe daylight and nightlight pedestrian detection, the
IVVI vehicle integrates another computer vision system, that is, a
single far infrared camera based on a microbolometer, which can
establish more than the presence of an object. This system can
classify the object based upon the requirements of an intelligent
application (e.g.: pedestrian detection and tracking for night driv
ing (Olmeda, de la Escalera, & Armingol, 2011)). So, an infrared
camera is attached to left rear view mirror for pedestrian detec
tion, which can operate in low light conditions. The presented
method can determine if a pedestrian is in vehicle trajectory by
means of the temperature of the human body. Moreover, the
pedestrian trajectory is estimated in subsequent steps to warn
the driver of the vehicle and to reduce break reaction time if it is
necessary to stop the vehicle.

Moreover, in vehicle computer vision’s advantages can be
applied to driver safety using facial recognition. Thus, driver’s face
recognition is determined by means of an integrated XBOX 360
Kinect (Microsoft., 2014) over the dashboard of IVVI vehicle, where
the camera allows us to obtain the depth perception feature
besides the colour image. This information leads to a 3D model
of the face (Peláez, García, de la Escalera, & Armingol, 2013).

Sensor fusion composes following IVVI sophisticated intelligent
system, which is based on laser scanner and computer vision, that
is, environment perception based on Laser Imaging Detection and
Ranging (LIDAR) sensor and digital camera that allows safe obsta
cle detection and classification (Garcia, de la Escalera, Armingol,
3



Fig. 2. IVVI on-board devices.

Fig. 3. (a) Left image, ROS diagram of global data acquisition and synchronization of low-level processes, (b) Right image, example of real-time data acquisition from in-
vehicle laser scanner and stereo camera using ROS.
Herrero, and Llinas, 2011; García et al., 2013). So, in intelligent
transportation systems, our sensor fusion technology can be
applied to detect objects which may represent safety risks to driv
ers and pedestrians. This fused information provides full under
standing of the environment.

The improvement of positioning in urban environments by
means of visual odometry and sensor fusion is our solution for
enhanced urban navigation, that is, our aim is to improve the effi
ciency of IVVI vehicle positioning in complex urban canyons where
GNSS signals are high degraded or even loss for seconds (Martí
et al., 2012). We deploy a visual odometry application that uses
the movement of the vehicle to provide 2D visual ego motion esti
mation. This method is based on a stereo vision system where the
road feature points are tracked frame to frame in order to estimate
4



the movement of the vehicle, avoiding outliers from dynamic
obstacles. The second method is an advanced GNSS/IMU fusion
system based on a context aided Unscented Kalman filter, where
new scenarios have been analyzed to be presented in this work.
The architecture of the system is designed to use contextual
knowledge that reasons about sensor quality and driving context
adapting to complex urban environment, besides to provide a con
tinuous estimation and correction of INS drift errors.

Summarizing, our in vehicle applications present advantages
over many other devices or technologies (e.g. advanced automotive
radar). Both, vision and low cost laser scanner systems, are com
posed by devices which are easily installed on a vehicle. Vision sys
tems detect and identify pedestrians, vehicles, road signs and
traffic signals, enriching the available data of the vehicle environ
ment. That is, vision systems capture a tremendous wealth of
visual information beyond the range of automotive radar, allowing
our computer vision algorithms cope with this wealth of visual
information to identify and classify more subtle changes and dis
tinctions between pedestrians and vehicles, enabling safe applica
tions to vehicle manufacturers. Moreover, together with computer
vision, laser scanner data, provide IVVI useful information to detect
pedestrians and vehicles under a wide variety of changing environ
mental conditions (e.g. illumination or weather), besides GNSS
positioning, which improves location in urban environments by
fusing GNSS and IMU data.

Following Sections provide a detailed description of each
technology.
4. Stereo vision for obstacle and free space detection

Research in obstacle and free space in front of the vehicle have
advanced significantly in recent years. Most research, however, has
focused on the development of new applications rather than opti
mising the algorithms of existing methodology. Thus, our research
addresses these algorithms, exploring the challenges of the real
world through the configuration of specific settings and smart
techniques to accomplish the safe obstacle and free space detec
tion. These robust results are later applied to develop our visual
odometry application, which is explained in Section 8 as a vehicle
positioning method in urban environments.

The dense disparity map and the u v disparity (Hu, Lamosa, &
Uchimura, 2005) are developed in order to detect obstacles in front
of the vehicle. The system is composed of two cameras, which are
necessary to calculate the depth (Z) for a point P ðX;Y ; ZÞ in
world coordinates by means of the stereo Eq. (1). The projection
of the point P over the image plane is (uL,vL) for the left camera
and (uR,vR) for the right one, d is the disparity, f is the focal length
and B is the baseline between both cameras.

Z
f � B

d
f � B

uL uR
ð1Þ

The disparity map is obtained by means of the rectified images
that are supplied by the stereo system, where the disparity (d) is
represented in the disparity map for every pixel of the image. So,
the pixels corresponding to shortest distances between a world
point and the camera have a bigger grey level and the largest ones,
an inferior grey level (Fig. 4). Following, once the disparity map has
been obtained, the u v disparity can be created: the v disparity
expresses the histogram over the disparity values for every image
row (v coordinate), whereas the u disparity is calculated for every
column (u coordinate). The systematic use of the disparity map and
its corresponding u v disparity allow us to extract useful informa
tion of the world, such as the obstacles that are located perpendic
ularly in front of the vehicle. These obstacles appear as horizontal
lines in the u disparity and as vertical lines in the v disparity
(Broggi, Caraffi, Fedriga, & Grisleri, 2005), in their corresponding
values of disparity. So, this method for detecting obstacles has, as
a result, two different dense disparity maps: the obstacle map
(Fig. 4(c)) and the free map (Fig. 4(d)). The obstacle map is a dispar
ity map where only the obstacles appear, whereas the free map is
simply the opposite of the obstacle map, where only the empty
space ahead of the vehicle appears. This useful information can
be utilised by an intelligent system for detection and localization
of obstacles, as presented in Musleh et al. (2011).

Therefore, the obstacle map is one of the results of the obstacle
detection step. The obstacle map is composed of two stages: firstly,
the u disparity is thresholded, using as a threshold the minimum
height of an obstacle measured in pixels. The requirement for the
selection of the threshold value is that it must be small enough
to detect every obstacle, which blocks the movement of the vehi
cle, and large enough so as not to detect possible obstacles which
do not avoid the movement of the vehicle, for example a speed
bump. Thus, secondly, once the u disparity has been thresholded,
every pixel of the disparity map that does not belong to an obstacle
is removed, getting the obstacle map. The second result of the
obstacle detection is the free map. The process to obtain the free
map follows the same method that the first stage of the obstacle
map, however, in the second stage, every pixel belonging to an
obstacle is removed. The free map corresponds usually to the road,
although it is necessary to highlight that the free map is the whole
empty space ahead of the vehicle. So, in addition to the information
of the obstacles, it is possible to obtain information about the road
from the v disparity, that is, the road appears in the v disparity as
an oblique line called the road profile (Labayrade, Aubert, & Tarel,
2002). Then, if a flat ground assumption is performed, this road
profile can be expressed as a straight line (Eq. (2)), where v is the
vertical coordinate of the image, m is the slope of the road profile
and b is the theoretical value of the horizon of the stereo system.

v m � dþ b ð2Þ

A difficult scenario to apply this method is in urban environ
ments, where the estimation the road profile v disparity by means
of the disparity map is a difficult task, that is, the detection of the
oblique line corresponding to the road profile is difficult. The anal
ysis of this complex task is presented in Musleh et al. (2012b),
where the conclusion is that it is better to use the free map in order
to generate the v disparity, because the obstacles are removed
from the v disparity, and then it is easier to estimate the road
profile.

Finally, the information provided by the road profile can be
used for many different issues. For example, Eqs. (1) and (2) allows
to obtain the position of the obstacles regarding to the vehicle, and
it is also possible to classify the obstacles into two different types:
obstacles that are on the ground and obstacles that are elevated.
However, the main issue is visual odometry for vehicle positioning
that is explained in Section 8.
5. Far infrared pedestrian detection

Nowadays IR vision technology is ripe for ITS applications due
to properties such as, flexibility in daytime or nighttime obstacle
detection, or the ability to support a variety of algorithms. So, IR
vision provides drivers with additional information which is rele
vant to the driving task, where the IR information available, espe
cially at night, is richer than what may be obtained by the driver
himself.

In vehicle IR sensors can cover a wider area than that available
from the driver’s perception, and these sensors are not limited to
the visible light spectrum, unlike in the case of a human driver.
This section explains our research in classification of pedestrians
5



Fig. 4. Example of the obstacles and road detection.
that uses information acquired by a camera sensitive to the ther
mal infrared or far infrared range (FIR). The recognition algorithm
has been integrated as an ADAS module for intelligent transporta
tion system applications. The aim is to detect pedestrians in low
light conditions, but the method presented here is valid for any
luminosity and temperature.

Illumination conditions have a major influence on the number
of traffic accidents, this is particularly significant in the case of
accidents involving pedestrians. With less light it takes longer for
a driver to perceive a pedestrian on the road. Another important
factor is exhaustion on the part of the driver. In this case the reac
tion time to a stimulus is much higher and chances of causing an
accident grow. This type of accident is more common in conditions
of limited visibility, even though there are fewer pedestrians and
vehicles than during the day. Low cost cameras sensitive to far
infrared spectrum are often based on microbolometer sensors.
The images obtained by this kind of device represent the heat
emission of the objects; thus, it makes them useful in low light
or even in total absence of illumination. The relation between the
measured and the actual temperature of an object is nonlinear
and depends on the specific sensor being used. As such, tempera
ture based detection would require periodic radiometric calibra
tion of the sensor. Moreover, temperature based object detection
in uncontrolled environments, such as in ITS applications, is not
robust because the temperature of the object depends heavily on
the ambient temperature. For example, in the case of pedestrians,
the temperature of the skin and the kind of clothing is significantly
different depending on the season.

In Olmeda, Premebida, Nunes, Armingol, and de la Escalera
(2013) present an in depth analysis of several well known VL
pedestrian classifiers applied to FIR images:

(a) LBP: Local Binary Patterns (LBP), as introduced in Ojala,
Pietikainen, and Maenpaa (2002), represent the image as a
similarity vector of each pixel with their surroundings. This
descriptor encodes information as a binary number. For each
pixel, the neighbours with a gray value higher or equal con
tribute with one in their position in the binary number,
otherwise with zero. Each sample is divided in 3 � 3 pixel
non overlapping cells.

(b) HOG: In this work we have used 5 � 5 pixel non overlapping
cells. In our 64 � 32 dataset this means 104 cells per image,
once removed the border blocks. Within each cell a 9 bins
histogram of orientation between 0 and 2p radians is
calculated.

(c) HOPE: Pedestrian detection algorithms usually encode the
appearance of a person based on the normalised gradient
(Dalal & Triggs, 2005). In the case of FIR images, this
approach has some drawbacks. First, the gray level scale of
a scene depends on the temperature of the sensor. Further
more, the emission spectrum to which this type of sensor
is sensitive is much wider than in the case of cameras sensi
tive to visible light. To overcome these problems, the authors
propose a contrast invariant descriptor for object detection
in far infrared images based on its phase congruency. The
phase congruency features of an image are proportional to
its local symmetry (Kovesi, 1999). As such, the resulting
edges are not biased by the difference in temperature
between the objects and the background. Because of it the
resultant magnitude is also invariant to the sensor tempera
ture. To overcome these challenges, we proposed in Olmeda,
de la Escalera, and Armingol (2012) a contrast invariant
descriptor for pedestrian classification in FIR images called
HOPE. Basically, the HOPE descriptor encodes a grid of local
oriented histograms extracted from the phase congruency of
the images, which is computed from a joint of Gabor filters.

The histograms are calculates in 5 � 5 pixel non overlapping
cells with 9 bins of orientation between 0 and 2p radians, for
a total of 10 � 4 cells per image. No normalisation step is
6



applied. Phase congruency was calculated out of a set of 30
complex Gabor filters, divided in 5 scales ranging between a
minimum wavelength of 2 pixels and a maximum of 10, and
6 orientations, ranging from 0 to 2p radians. Two different
kernels were used for benchmarking: a linear classifier,
hereafter called SVM Lin, and a radial basis function (RBF)
kernel (Adeli & Karim, 2000; Karim & Adeli, 2002) desig
nated by SVM Rbf. In this implementation the radial Gauss
ian function kernel K x; yð Þ e c x yk k2

has a scale parameter
c = 1. Both linear and RBF kernel have a regularisation
trade off parameter C = 0.05.

(d) PCA: We treat PCA (Ghosh Dastidar, Adeli, & Dadmehr,
2008; Martinez & Kak, 2001) eigenvectors as a grey level
feature vector. The initial motivation for applying this
approach is that PCA tends to disregard small details at high
frequency, while FIR images usually have poor levels of
detail, as they present softness due to motion blur, especially
at low resolutions. We retain the 30 most significant eigen
vectors, that is, those with the largest eigenvalues.

(e) Feature Concatenation: Descriptor fusion is explored as fea
ture vector concatenation, resulting in a new higher dimen
sion feature vector with different kinds of complementary
information, which can improve the overall performance.

The authors conclude that histogram based features perform
best than LBP or PCA features. Among the features, HOPE performs
better both for classification and detection problems. LBP and PCA
features get worse overall performance, though some gains can be
achieved by merging them with HOG or HOPE.
Fig. 5. Pedestrian detection in an infrared image in sunny conditions.
6. Driver safety through facial recognition

A safety focused ITS application, which depends upon computer
vision technology, is facial recognition for driver protection. Our
warning system is composed by the XBOX 360 Kinect from Micro
soft, which takes the depth information into account, and so it is
possible to fuse colour images and 3D information at the same
time. Thus, the IVVI vehicle includes a drowsiness or distraction
warning system based on the study of the facial features of the dri
ver to avoid a possible vehicle accident.

Recently, Kinect applications are increasing, as is demonstrated
in Frati and Prattichizzo (2011), where the tracking of a hand is
used for applications oriented to virtual reality. In Santos,
Lamounier, and Cardoso (2011), authors provide a solution which
uses gestures as a way to interact with virtual objects in an aug
mented reality application. The detection of a human presence is
achieved in Xia, Chen, and Aggarwal (2011), where the depth infor
mation and 2D information is associated to the contour of the
head. Moreover, the Kinect device can also be used as a comple
mentary sensor in a complex system (Ganganath & Leung, 2012),
where a mobile robot uses a Kinect device for the location of land
marks to correct the robot’s position. Despite Kinect is not time of
flight sensor, it is used for 3D environment mapping, that is, there
are others and different applications that have been developed,
such as Soutschek, Penne, Hornegger, and Kornhuber (2008), so a
touch less user interface is developed for certain medical applica
tions where sterility requirements in the operation’s room prevent
direct contact. Another application is found in Keller, Orthmann,
Kolb, and Peters (2007) that explains the development of a simula
tion of camera like time of flight sensors. In Garcia et al. (2011),
the time of fly and data fusion features are used in order to
improve the road safety by detecting pedestrians (see Fig. 5).

Our application obtains a single structure through the Point
Cloud Library (PCL), which contains information about the video
and depth perceived. The RGB information is extracted from this
structure to build a 640 � 480 picture. The cloud obtained from
the sensor (Fig. 6), is a point structure representing Euclidean
XYZ coordinates, according to a reference system where the centre
of the cloud corresponds to ‘‘0’’ in each of the 3 axis and the RGB
colour. A cloud with the Euclidean coordinates and colour informa
tion for each point is used in our application (XYZRGB cloud).

After the cloud is obtained, the colour image is built from the
cloud by unpacking the RGB values. That is, from the cloud to a
matrix with the same dimensions as the cloud and 3 colour chan
nels. This matrix is converted to an image to apply computer vision
algorithms; moreover, a direct association between a detected
object in the colour image and its corresponding set of points in
the cloud is done without additional conversions.

Then, the image is obtained and the following step is to search
the facial features into the image. The process to face this step is a
series of searches with different Region of Interest (ROI). That is,
the image is subjected to a search of a larger object, and once
detected, a more specific search is done in the area corresponding
to the previous large object detected. So, the algorithm doesn’t go
straight for the facial features, but instead goes for a constant
reduction of the searching space followed by more specific
searches. The first object to be searched into the image is the upper
body, following the face, and finally the eyes and mouth.

The detection is performed by a haar like features method,
which allows the search of a part of the human body in the whole
area of the image. This detection algorithm starts with a window of
configured size, which is moved over the input image, and for each
subsection of the image, the object specified in the configuration
file is searched. In case of no object is found into the image, the
area of the window is increased automatically by a percentage
specified in the configured parameters, and following the search
is repeated. So, to find an object of an unknown size in the image,
the scan procedure is done several times at different scales. Our
algorithm focus in the upper body, the face, the eyes and the
mouth, where the ROI of the resulting object has different proper
ties, such as: width (w0), height (h’), and the coordinates of the
upper left corner. This ROI is a sub image and therefore has the 3
colour channels (c0).

Once the facial features are obtained, a new cloud is constructed
with those points that belong to the face including depth informa
tion. Our algorithm allows to obtain more than one face and its
respective point cloud, however only one is obtained to supervise
supervising the driver’s gestures and gaze direction.

The system has been tested with different lighting conditions
and positions of the face, where if the face is detected in the RGB
image then a point cloud from the face is obtained. Moreover, we
7



Fig. 6. XYZRGB cloud with the coordinates system.
wish to remark that the computation time of the algorithm
depends on the configured parameters of the face detection library.
The learned lessons are the following: Fig. 7

(i) Kinect device is designed originally for analyzing objects like
human body size, however we have demonstrated that
Kinect presents suitable results as the facial 3D model pro
vides some distinguishable features such as the nose and
the ocular cavities as can be observed in Fig. 7.

(ii) The second lesson is the possibility of the false positive
reduction related to the detected faces inside the RGB image.
That is, a 2D image mask with the depth image delivers a
reduced search space for the face, and therefore, the false
candidates that have geometrical and chromatic similitude
with a face, are removed.

(iii) Our algorithm has been accomplish in nearly real time, with
a frequency of 10 Hz, to obtain the coloured cloud of the face
and the detection of the facial features such as eyes and
mouth.

(iv) The obtained cloud has the same information as a 2D image,
but it also includes the depth perceived by the sensor, and
therefore, it offers a new method for detecting and monitor
Fig. 7. Point Clouds of the
ing facial gestures. That is, driver’s assistance applications,
where the face is analyzed constantly, are benefited from
the additional information of the perceived depth.

The proposed algorithm was able to provide the analysis in 2D
from the image and to associate this information with the corre
sponding 3D point from the depth image. Furthermore, the system
is able to identify relevant parts of the human face, such as nose or
eyes. It provides accurate results with relatively low processing
time and based on a extremely low cost acquisition system: Kinect.
This technology was designed and tested based on the low cost
sensor, although it could be adapted to any 3D sensor device, such
as stereo camera, or time of flight cameras presented before. The
high performance and the 3D information based with low cost nat
ure of the sensor represented an important advance in relation to
other similar works, such as those presented by Jo et al. (2014)
or Flores, Armingol, and Escalera (2009).
7. Obstacle detection and classification based on data fusion
with laser scanner and computer vision

Laser devices are common in ITS applications due to their reli
ability. Laser scanner provide accurate and trustable range infor
face, XYZ and XYZRGB.
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mation of the surroundings. This information can be used alone or
can be fused with other sensors and vehicle data to enhance the
understanding of the environment. However, the main disadvan
tage of the laser scanner is the small amount of information pro
vided. By fusion of the information with other sensors e.g.:
computer vision algorithms, it is possible to overcome the limita
tions of each one. Fig. 8 depicts the data fusion architecture used.

Following, the data fusion architecture is described accordingly.
The first stage is related to the laser scanner detection and later the
computer vision and tracking algorithms are detailed:

7.1. Laser scanner detection and obstacle classification

The laser scanner is mounted on the bumper of the vehicle.
Thus, the displacement of the vehicle causes variations and dis
placement in the estimation of the shape of the obstacles found.
In order to avoid the misinterpretation of the data, the displace
ment of the vehicle has to be compensated. Euler angles, obtained
by the inertial system mounted on the vehicle, are used to correct
the displacement of the measurements, compensating the move
ment of the vehicle. Eq. (3) depicts the rotation and translation
to correct this displacement, this way the points are referenced
to the position of the last point received (Fig. 9(a)).
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Fig. 8. Data fusion architectur
where Dd, Du and Dh are the increment of the Euler angles, roll,
pitch and yaw respectively, for a given period of time Ti, and coor
dinates (x,y,z) and (x0,y0,z0) are the Cartesian coordinates of a given
point after and before respectively to the vehicle movement com
pensation. R is the rotation matrix; Tv the translation matrix accord
ing to the velocity of the vehicle; T0 the translation matrix according
to the position of the laser and the inertial sensor; v is the velocity
of the vehicle; Ti the time between the given point and the first one
in a given scan, and finally (xt,yt,zt) is the distance from the laser
scanner coordinate system to the inertial measurement system.

The clouds of points are clustered using Euclidean distance and
a threshold that is distance dependant (Eq. (4)), where th0 is the
threshold base and K is a proportional constant which is multiplied
by the distance.

th th0 þ K � dist ð4Þ

So, each point p(xi,yi) must be treated as belonging to a segment
Sj if it satisfies:

piðxi; yiÞ�Sj ! 9 pjðxj; yjÞ�Sj
� �

: dðpj;piÞ < th
� �

ð5Þ

The algorithm verifies the points of the segments and the points
among them, so if a point is not included within any segment then
a new segment is created. Finally the algorithm searches for seg
ments containing only one point, which are removed as they are
considered as false detection points.

7.2. Polyline creation process

Polyline creation process is explained on García et al. (2012)
and based on the work presented on Broggi, Cerri, Ghidoni,
Grisleri, and Jung (2008). The process consists on connecting the
points within a segment using straight lines, stating by merging
first and last point of a segment. If a given point is too close to
an existing line, no line is created, merging this point with the
existing line (Fig. 9(b) shows the polylines created from the points
given by the laser scanner detections depicted in Fig. 9(a)). Some
e for road understanding.
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Fig. 9. Vehicle displacement compensation and data alignment: (a) the detection points, in blue colour before the vehicle displacement compensation, and in red, the
compensated points, (b) the reconstructed shape is shown after the compensation, and (c) the alignment of the laser scanner data and the visual image is displayed. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
hints of the laser scanner obstacle estimation algorithm is provided
below, although further explanation is found on García et al. (2012)
for vehicles and on García et al. (2013) for pedestrians.

7.3. Laser scanner classification

Low level classification uses the information of the previous
stage, where the obstacles can be differentiated as:

(1) Small obstacles: this type of obstacles are considered when
ever the size is compatible with that of a small obstacle. So,
these type of obstacles can belong to pedestrians, lampposts,
milestones, trees, traffic sings, and other small obstacles that
can be found in road environments. Moreover, in the case of
pedestrians, a specific algorithm is applied later to deter
mine if the obstacle is truthfully a pedestrian. It is done by
comparing the resulting polyline with a pattern. We address
this specific case subsequently.

(2) Road limits: this case is composed of two different possibil
ities according to the following procedures: first big obsta
cles located parallel to the road (parallel to the movement
of the vehicle) and second small obstacles parallel to the
road, this detection is based on histogram detection. So, if
the frequency of small obstacles is sufficient it may be con
sidered that the obstacles found on the road borders can be
considered as road limits.
(3) Vehicles: the pattern is based on the fast movement of the
vehicles and the delayed detection points provided by the
laser scanner. The obstacles are detected using the rotation
technique of the SICK LMS291 laser scanner, which performs
4 independent scans that provides 4 sets of delayed spots.
After a scan, the laser scanner returns a complete set of spots
separated by 0.25�. In this configuration, if a dynamic obsta
cle is found, the four scans sets for a single detection appear
with a variation that is proportional to the velocity and
direction of the detected object or vehicle. After the pattern
is found, the velocity of the vehicle can be estimated by mea
suring the distance between two consecutive points
(Fig. 10).

(4) Pedestrians: The pedestrian classification is composed of
two steps. First, based on context information, obstacles
with a size proportional to a pedestrian are selected among
the different obstacles found, and secondly, the shape of the
polyline is compared with a pedestrian pattern. Human size
was estimation was based on anthropometric works
(Highway Capacity Manual., 2000; Skehill, Barry, &
Mcgrath, 2005) defining the human being dimension as an
ellipsis which main axes are 0.6 and 0.5 m. Pattern matching
algorithm was based on the study of the patterns given by
pedestrians with different leg positions where the informa
tion from laser scanner is translated to the image (García
et al., 2013) (Fig. 11).
10



Fig. 10. Laser scanner vehicle detection with the given pattern.

Fig. 11. Laser scanner pedestrian detection.
(5) Big obstacles: These obstacles are the obstacles that, due to
their dimensions, could not be classified as any of the afore
mentioned kind of obstacles.

Given the limitation of the laser scanner information, false pos
itives were expected, based on the aforementioned pattern match
ing algorithms. To reduce the rate of false positives, a high level
stage was added. In this stage data is integrated into a specific per
iod, by correlating obstacles in subsequent scans. So, this higher
level stage cope with the behaviour of different obstacles for a spe
cific time period. At this stage, a voting scheme is used to classify
the obstacles, based on the low level decision in the last 10 detec
tions, a multi feature approach is used for obstacle correlation
along time (García et al., 2012). Finally, the obstacles being tracked
(vehicles and pedestrians), are studied according to their behav
iour, eliminating those performing impossible manoeuvres (eg:
impossible lateral movements for vehicles or velocities)
7.4. Fusion with computer vision algorithms

In order to increase the accuracy of the algorithms, and taking
advantage of the experience of the vision algorithms previously
motioned. Fusion stage was added to the laser scanner that pro
vides redundancy to the vehicle and pedestrians detections,
increasing the performance of the whole system. By means of the
fusion of the information from the camera and the laser scanner,
the limitations inherent to each sensors are overcome.

7.4.1. Computer vision algorithms
The obstacles detected by the laser scanner are extrapolated to

the camera field of view based on the pin hole model creating
regions of interest (ROI). Later, vision algorithms are used to iden
tify these obstacles in the computer vision space. The use of these
ROIs helps to reduce the computational cost of the vision approach
and adds reliability, thanks to the trustability of the laser scanner.

To provide accurate localization provided by the laser scanner,
extrinsic calibration has to be performed. The extrinsic calibration
process is based on rotational and translation equations presented
on (Eq. (3)), an online calibration process was used. Later two dif
ferent detection algorithms were preformed on the ROIs, for each
kind of obstacle to be detected:

� Vehicle classification was performed based on Haar Like fea
tures (Viola & Jones, 2001), trained for both frontal and back
panel detection. These parts of the vehicles have specific char
acteristics, such as lights or bumpers that make them easy to
be detected with this algorithm (Fig. 12 (b)).
� Pedestrian detection is based on Histogram of Oriented Gradi

ents (HOG) features. This approach, proposed on Dalal and
Triggs (2005), is a classical approach for human detection
(Fig. 12(a)).

7.5. Tracking algorithm

After the pedestrians and vehicles are detected, they are
tracked, based on an unimodal (Multiple Target Tracking) MTT
algorithm: Global Nearest Neighbours (GNN) and Unscented Kal
man Filter (UKF). The movement model was defined using the con
stant velocity target model shown in Eqs. (6) (10).
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Fig. 12. Example of visual pedestrian detection (left), and vehicle (right).
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where r2
�;x y r2

�;y are the standard deviation for the measurements
in x, y coordinates. The matrixes bX , H and F are the matrixes that
define the UKF movement: State vector, observation model matrix
and state transition model matrix respectively. Q and R are the
covariance matrixes of the process noise and measurement noise
of the system. Following the constant velocity model, Q was
selected to model the changes in the velocity of the target, the
parameters defining this model was different for vehicles and
pedestrians.

The GNN algorithm used on this application was based on the
definition of consolidated and non consolidated tracks. First refers
to those tracks with positive detections provided by both sensors.
Non consolidated are tracks that were positively detected by a sin
gle sensor among the two available. The last case, is tracked,
although they are considered not reliable to be reported. This
way, in the case that the other sensor provides positive detection,
they become consolidated tracks.

The GNN consist on the assignation of the detected track to the
closest obstacle, based on the distance definition given by (11).
This normalised distance uses a stability factor that gives less pri
ority to less stable tracks:

d2 ðxi xÞ2

r2
x
þ ðyi yÞ2

r2
y
þ ln ðrxryÞ ð11Þ
7.6. Conclusion

The presented computer vision approach was able to enhance
classical computer vision algorithms, providing reliable and trust
able pedestrian and vehicle detection. Although typical vision
works for vehicle and pedestrian detection have successfully
proved their performance in literature, the novel fusion algorithm
presented on this section provides an advanced in the following
lines: First by the use of laser scanner to reduce the region to
search and thus speeding up the system and reducing the false pos
itives; and second by providing original laser scanner detection
algorithms which can act as backup system in case of absence of
visual information. All these advances, together with the powerful
tracking algorithm provides an advance respect to other vision
based systems, such as those presented on Guo et al. (2012)) or
García et al. (2012).

8. IVVI vehicle positioning in Urban Environments by visual
odometry and sensor fusion

The improvement of positioning in urban environments is
accomplish by visual odometry and sensor fusion. Our continuous
goal is to enhance urban navigation and the efficiency of IVVI vehi
cle positioning in complex urban canyons where GNSS signals are
high degraded or even loss for seconds, as has been studied ini
tially in previous works (Martí et al., 2012; Musleh et al., 2012a).
So, we present our long term research in advanced visual odome
try and GNSS/IMU fusion system based on a context aided
Unscented Kalman filter and embedded into IVVI vehicle. The
visual odometry system uses the road profile (explained in Sec
tion 4) to obtain the world coordinates of the road feature points
as a function of its left image coordinates, where it is only neces
sary to search feature points in the lower third of the left images.
Otherwise, the sensor fusion architecture of the system has been
designed to use contextual knowledge, which reasons about sensor
quality and driving context adapting to complex urban
environment.

Nowadays, vehicle positioning by Global Navigation Satellite
System (GNSS) has become a wide scale device in intelligent vehi
cles. However, GNSS receiver presents significant variations of
accuracy depending on the environment conditions and available
enhancements. In urban conditions the accuracy is typically
around 20 m, or even more, depending on following characteris
tics: (i) the number of available satellites and geometrical configu
ration (dilution of precision, DOP); (ii) signal propagation; and (iii)
multipath conditions, a very common situation in urban condi
tions, whose the worst case is referred as the ‘‘urban canyon’’ prob
lem (Morrison, Renaudin, Bancroft, & Lachapelle, 2012). So, our
methods based on visual odometry and sensor fusion overcome
specially ‘‘urban canyon’’ problems, when the direct path is totally
12



occluded and receivers only make use of signals bounced off walls
of close buildings, with the corresponding degradation or even loss
of any positioning solution.

Then, the use of only GNSS has been demonstrated as an insuf
ficient positioning solution at complex urban environments. Our
GNSS rover receiver calculates solutions based on two modes
depending on environment characteristics: (i) single point position
mode (SINGLE mode), which utilises all available GPS satellites to
calculate the position solution without differential corrections,
and (ii) differential mode (DGPS mode), where the base station is
positioned at accurately known location and transmits differential
corrections in real time to a rover receiver that is positioned in a
complex urban environment. The rover receiver automatically
switches between both modes, but DGPS mode has priority if
appropriate corrections are received. In following tests, the rover
receiver has been configured to use L1 C/A code data for differen
tial solution due to advantages in urban environment instead of
using carrier phase DGPS (Martí et al., 2012). Then, the experi
ments of this work have been performed with a DGPS system using
L1 C/A code data for differential solution where accuracy is less
than 1 m.

Therefore, following scenario delves into technical details of the
GNSS receiver that causes inaccuracy of position in urban environ
ments and other special cases selected to demonstrate the
improvement of visual odometry and sensor fusion. Some cases
of low accuracy caused by switching from DGPS to SINGLE mode
are also presented. DGPS mode loss can be caused shortly by GPS
signal unavailability or 3G network outages, and thus the DGPS
recovery time is variable and depends on the technical details of
the receiver. Another characteristic is the age of the corrections
in DGPS mode, and its effect in the accuracy of calculated solution
has been also analyzed. This characteristic predicts anomalous
behaviour, since high values of differential ages cause a decrement
of accuracy in DGPS mode. The accuracy in DGPS mode can be also
affected by baseline length effect, atmospheric errors, satellite
clock and ephemeris errors.

Generally, some researches use only the Dilution of Precision
(DOP) to characterise the position accuracy, as proposed in
Fakharian, Gustafsson, and Mehrfam (2011), which is a numerical
representation of satellite geometry. However, lower DOP values
generally represent better position accuracy, although a lower
DOP value does not automatically mean a low position error
(NovAtel Inc., 2012). So, to face position error, our system uses five
parameters related to accuracy of position and its reliability, which
are provided by OEMV 1G NovAtel receiver: the standard deviation
of latitude, longitude and height errors; the age of corrections; and
the number of satellites used in solution. Among these parameters,
the accuracy of GPS and DGPS positions calculated by rover recei
ver depends mainly on the number of satellites that are used in the
solution, which can be reduced caused by satellite signal obstruc
tions (unintentional obstacles, such as buildings or trees), and the
incorrect geometry of the satellites that is quantified by lower dilu
tion of precision (DOP) parameter. There are other factors, which
affect also the accuracy of GPS, such as multipath, ionospheric or
tropospheric effects. The positioning error due to multipath prob
lem cannot be reduced by the use of DGPS in urban environments,
due to this type of error depends on local reflection geometry near
each receiver antenna (Grewal, Weill, & Andrews, 2007).

Following experiment shows some factors that affect accuracy
in urban environments and have been observed by means of the
measured magnitudes: the standard deviations (latitude, longitude
and height), the age of corrections and the number of satellites
used in solution (Fig. 13). This trajectory shows the behaviour of
the positioning system in a complex urban trajectory with variable
number of satellites and DGPS correction. The accuracy is affected
by complex urban environment, so through the whole trajectory it
can be observed that DGPS accuracy is reduced when only four sat
ellites are available. This well known effect of inaccuracy can be
observed in Fig. 13; where the left graph shows DGPS trajectory
in Universal Transverse Mercator (UTM) geographic coordinate
system. The middle graph shows latitude and longitude accuracy
in metres. The right graph presents the performance of the receiver
in DGPS mode, where differential ages and number of satellites are
according with accuracy, however when four satellites are only
used in solution, the DGPS mode loses best conditions and accu
racy is reduced. Moreover, the behaviour of the receiver changes
several times from differential mode to GPS SINGLE mode, causing
again more reduction of accuracy. This effect can be noticed in
right Fig. 13 where the value of differential age is zero.

Following the same trajectory, the exit of the urban environ
ment is displayed in Fig. 14, where middle graph presents an
increase of accuracy at 60 s of the experiment. The effect is
observed again in right graph with the increase of satellites used
in differential solution that leads to recovery of accuracy in differ
ential mode.

Our first IVVI 2.0 research to face the GNSS inaccuracy in Urban
Environments and enhance IVVI vehicle positioning is visual
odometry. Thus, this method allows to know the 2D displacements
of the vehicle in urban environments with a great accuracy, over
coming the difficulties of vehicle positioning by GNSS systems.
Our visual odometry method acquires images from a stereo vision
system (Fig. 15(a)), and is performed by means of detecting and
tracking feature points between consecutive frames (Parra,
Sotelo, Llorca, & Ocana, 2010). The algorithm uses a dense disparity
map (Scharstein & Szeliski, 2002) to detect the road in front of the
vehicle in order to use only the feature points that belong to the
road, avoiding feature points of obstacles that can be a source of
outliers if the obstacles are moving (Wangsiripitak & Murray,
2009). Moreover, another advantage of using only feature points
that belong to the road, is that it is not necessary to search feature
points in the whole image, as our algorithm processes only the
lower third of the image. The information of the road profile
(Labayrade et al., 2002) and the position of the feature points on
the left image are used to obtain the world coordinates of the fea
ture road points. Moreover, our feature points are close to the vehi
cle reducing the uncertain in depth estimation. So, the disparity
estimation is simplified unlike the usual visual odometry algo
rithms, which need to perform a matching between the images
of the stereo pair in order to obtain the disparity for each feature
point.

Our algorithm tracks feature points between consecutive
frames of the left camera that belong to the road. These road points
are located on world coordinates by using the coordinates of points
on the left image (Musleh et al., 2012a). An implementation of the
Scale Invariant Transform Feature (SIFT) detector and descriptor
(Lowe, 2004) has been used in order to detect the feature points
of the images. Moreover, we have tested our algorithm with in
vehicle stereo rig images that have been extracted from the visual
odometry benchmark of Karlsruhe Institute of Technology (Geiger,
Lenz, & Urtasun, 2012) (Fig. 15(b)).

The kinematic motion of the vehicle is modelled by the Acker
man’s steering model (Borenstein, Everett, & Feng, 1996). In order
to simplify the visual odometry estimation, two assumptions are
applied: (i) the movement of the vehicle between two consecutive
frames can be divided into two stages, whose velocity is constant
in each one: a rotation around the centre of the motion of the rear
axle, and a forward translation after the rotation, and (ii) there is
no wheel slip in any direction.

Following the visual odometry between consecutive frames is
estimated, where the vehicle motion estimation between two con
secutive frames (t and t + 1) is performed in two steps. In the first
step, the road feature points have to be detected on the two left
13



Fig. 13. Urban environment where differential correction is inactive in some cases and the change to GPS SINGLE mode reduces accuracy.

Fig. 14. Effect of leaving the urban environment.

Fig. 15. (a) IVVI stereo rig, (b) Example of road feature points detecting and matching between consecutives frames.
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images of the stereo pair at instants t and t + 1. The correspondence
between the two sets of feature points (t and t + 1) is established in
order to know the displacement of the road feature points within
both images. Thus, our method uses only the points of the road
that are located in the bottom of the image fostering the reduction
of the computation time. The detection of the road feature points at
the bottom of the image is accomplished by means of checking
what feature points belong to the free map obtained using stereo
camera. Once the image coordinates of the road feature points have
been obtained, it is possible to calculate the world coordinates
{X,Z} of these road feature points in the instants t and t + 1.

Secondly, the estimation of the vehicle movement between two
consecutives frames (t and t + 1) is calculated by using the different
locations in the instant t and t + 1 of both road points. Thus, the
rotation angle h of the vehicle is calculated by means of Eq. (12),
where ZT and XT represent the translation after the rotation.
Besides, it is possible to express ZT and XT as a function of h and
the locations of a road point, in the instant t and t + 1 by using
Eq. (13). So, we use Eqs. (12) and (13) to obtain (14), where angle
h is the unknown variable of the expression. So, it is possible to
obtain firstly h solving the second order Eq. (15) and then ZT and
XT by using (13).
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The result is a set of solutions {h,ZT,XT} to the visual odometry
estimation, where a solution {h,ZT,XT}k has been calculated for each
pair of points {Xt,Zt}k and {Xt+1,Zt+1}k. Following, different methods
can be selected in order to choose a unique solution {h,ZT,XT} from
the set of solutions, and then, the final result of the visual odome
try between two consecutive frames. The simplest method to
choose a unique solution from the set of solutions is the mean,
however our algorithm uses the median because it is more robust
to possible outliers.

Our second approach to face the GNSS inaccuracy in Urban
Environments is sensor fusion architecture for enhancing IVVI
vehicle positioning, which has been designed to use contextual
knowledge and to reason about sensor quality and driving context
Fig. 16. Integration of GNSS antenna of the in-vehicle receive
adapting to complex urban environments. Thus, besides the GNSS
receiver, we use an Inertial Measurement Unit (IMU). This inertial
device obtains the attitude of vehicle by integrating angular rate
measurements in time, and the position is computed and updated
with respect to an initial solution. Then, GPS and IMU devices are
complementary key technologies, and a carefully designed sensor
fusion architecture can be used to provide an enhanced vehicle
positioning solution.

The aim of the sensor fusion architecture is to enhance GNSS
with dead reckoning capability, so that accurate vehicle navigation
remains available for a certain amount of time when the GNSS sig
nal data becomes unavailable or seriously degraded. However,
GPS/IMU fusion is vulnerable to residual errors so a continuous
monitoring of the process is necessary to guarantee that the quality
of the vehicle positioning is acceptable, minimizing the effect of
these factors during GPS or DGPS availability drops. The integration
of both devices (DGPS + IMU) for sensor fusion that solves the
unavailability of GPS positioning data in urban environments and
improve its accuracy is presented in Fig. 16. The IMU axes are indi
cated accordingly on image with red arrows and their rotations
(roll, pitch and yaw) in blue colour.

The fusion methodology uses adaptive non linear filters
(Unscented Kalman Filter, UKF) (Julier & Uhlmann, 2004), which
are continuously monitored by a contextual reasoning process to
provide improved performance. This architecture separates atti
tude and kinematic filters to create a loosely coupled closed loop
scheme that continuously estimates the IMU biases to correct
them and exploit whenever the GPS data is degraded or unavail
able. The aim of the architecture is to inject contextual knowledge
about vehicle dynamics to adapt the model to the real conditions.
Therefore, conditions such as stops, straight motion, lane changes,
turns, roundabouts, are considered in the model. Besides, as it has
been previously explained, it is integrated a GPS reasoning module
with rules depending on conditions based on extra information,
such as the availability and age of differential corrections, the num
ber of satellites, the standard deviation, among others. This infor
mation is applied to weight the fusion parameters or switch the
bias estimation processes accordingly to the conditions (Martí
et al., 2012).

The new experimental validation has been performed in com
plex scenarios, such as urban canyons, to show the reliability of
our second approach to face the GNSS inaccuracy. Thus, the follow
ing result displays the performance of the filters when GNSS sig
nals are unavailable or severely degraded in complex urban
environments (Fig. 17).

This scenario is related to a complex urban environment where
the vehicle is passing through urban canyons with low visibility of
r and IMU in a platform over the roof of the IVVI vehicle.
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Fig. 17. (a) Rover trajectory within complex urban canyon, (b) DGPS and GPS solutions (red circle), UKF filter solution (blue circle), and standard deviations of DGPS and GPS:
East (upper blue bar) and North (lower green bar). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
satellites. The Fig. 17 shows initially vehicle positioning with active
DGPS mode, cases with inactive DGPS mode and active SINGLE GPS
mode solution, positioning errors due to GPS outages, and cases
with DGPS East low accuracy caused by the reduction of visibility
from 9 to 5 satellites for 1s. The trajectory can be observed in
the left graph (Fig. 17(a)) where the vehicle is into complex urban
canyons, and the rover receiver is changing frequently their mode
depending on conditions through complex urban environment. The
right graph (Fig. 17(b)) displays the diversity of cases presented in
this experiment, where it is difficult to obtain optimal DGPS condi
tions in complex urban canyons. The red trajectory (Fig. 17(b)) dis
plays the difficult calculation of vehicle positioning by rover DGPS
system caused by the inaccuracies of the complex urban area. The
estimated solution using UKF filter is blue trajectory (Fig. 17(b)).
Initially the DGPS trajectory is the same that the UKF filter trajec
tory, but positioning inaccuracy appears when the rover changes
from DGPS to GPS, caused by the movement of the vehicle in a
complex canyon where close buildings cause GPS and DGPS inac
curacies, and outages. The UKF solution is presented in Fig. 17(b)
(blue trajectory), and shows the filter reliability with a smooth tra
jectory that corresponds to the real trajectory following by the
vehicle, as can be observed in Fig. 17(a). Moreover, the GPS and
DGPS standard deviations are presented in Fig. 17(b) to show the
positioning errors that are solved by sensor fusion architecture.
The last part of the trajectory displays an increase of DGPS East
standard deviation caused to use five satellites in the solution for
1 s, where once more, the UKF filter solution displays again reli
ability to estimate the position of the vehicle.

The algorithms presented in this section represent a wide and
complete set of solutions developed to overcome the classical
GNSS problems algorithms in three ways: First, by the use of DGPS
correction to increase the accuracy of the vehicle localization, sec
ond by combining the GNSS information with visual odometry for
vehicle localization in the event of GNSS signal loss, and finally, by
the fusion of the INS data with GNSS information for accuracy and
localization improvement. The combination of all these technolo
gies allows IVVI 2.0 to be able to adapt to all the different situations
and configurations, representing an important advance to other
works presented with a limited scope due to the use of a single
solution, or with less advanced algorithms, such as those presented
in Musleh et al. (2012a), Martí et al. (2012) or Bhatt et al. (2014).
The novel and accurate results proved the performance of the sys
tem in the most challenging situations.
9. Conclusions

In this article, IVVI 2.0 Intelligent Vehicle has been presented as
a whole framework to cope with cutting edge ADAS technology.
Vehicle perception, data fusion and positioning has been studied
as complex and essential tasks for intelligent transportation sys
tems, where presented ADAS take advantages of heterogeneous
sensors to accomplish complex tasks from safe pedestrian detec
tion to reliable vehicle positioning.

The usefulness and advantages of the presented reliable solu
tions have been demonstrated through real results under demand
ing circumstances, such as, complex obstacles and close vehicles,
cloud of pedestrians, different environment temperatures, complex
driver’s head poses, or GNSS outages, while IVVI vehicle maintains
all applications working together reaching the aim of a safe intel
ligent vehicle. So, complex scenarios have been evaluated and dif
ficulties have been be overcome successfully. The different
performed tests proved both, the trustable performance of the dif
ferent solutions provided and the improvements in relation to the
previous works available in literature.

The different ADAS techniques mounted in the IVVI 2.0 repre
sent cutting edge applications in intelligent transport systems
and expert system research fields. The cooperation of all these
applications helps to overcome classical problems of road trans
portation and safety: By the use of fusion techniques between laser
scanner and computer vision, together with thermal camera algo
rithm presented, users of the road (pedestrians and vehicles) are
protected, thus safety of the road, both in daylight and nightlight
conditions is increased. Additionally, accurate detection and local
ization is achieved by means of the advanced tracking algorithms
provided. Furthermore, the use of advance techniques based on
data fusion for advance positioning, and the stereo camera system
for visual odometry help to overcome the signal loss in extreme
conditions, enhancing the data positioning systems available in
the market. Finally, the advanced 3D driver monitoring system
allows full understanding of the driving context, based in an extre
mely low cost sensor.

The strengths of the presented applications were clearly stated
in the manuscript: a safer and more efficient road transportation
systems based on close to market sensors such as laser scanner,
computer vision cameras and advance positioning systems. How
ever, all these applications have specific drawbacks which should
be taken into account, mainly related with the nature of the sens
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ing devices used: First, the camera based systems have the main
advantage of the low cost sensor devices, with high amount of
information, but with the drawback of the high sensitivity to light
ing conditions (e.g. direct sun light may lead to lack of information
with both the Kinect device and colour vision camera). On the
other hand, laser scanners provide accurate and reliable detections
with the problem of the high sensitivity to strong pitching move
ments. Finally, both laser scanner and inertial systems provided
high accurate measurements, resulting interesting solutions for
future road applications, although the actual high costs of these
sensors difficult the implementation of the presented applications
for commercial purposes. Nonetheless, the novel applications
recently developed, such as the applications presented here, pro
vide an important added value that brings these sensing devices
closer to the final market.

All the presented algorithms give IVVI 2.0. full understanding of
the driving situation, the accurate location and detection systems
have the practical implication of a complete modern vehicle solu
tion, with several close to market applications that provides an
added value to the driving process, by means of a safer and more
trustable driving experience. IVVI 2.0 is the second platform of
the Intelligent System Lab, and represents the next generation of
vehicles that are forthcoming, as an intermediate vehicle prior to
the future autonomous upcoming vehicles. IVVI 2.0 was designed
as a copilot vehicle, able to help and understand the driver neces
sities during the driving experience. Besides IVVI vehicle applica
tions for ADAS can be applied, using presented available sensors,
in forthcoming vehicles that will require reliable positioning in
urban environments, automatic manoeuvres for pedestrian safety,
autonomous vehicles, and collision avoidance, among other ITS
applications. Furthermore, the whole deployment of an architec
ture based on ROS software to gather and manage the enormous
data and knowledge of IVVI vehicle, will foster the improvement
of all applications by fusing and integrating computer vision, laser
scanner, GNSS, and digital map information, which could influence
a number of ADAS applications in the forthcoming automotive
industry.

Future researches, regarding to IVVI projects are already in pro
gress, and are focused in three main lines: First refers to the
improvement of the available systems, adding new sensing capa
bilities and developing more robust and complex algorithms that
helps to overcome the actual limitations, e.g. new laser scanner
device, able to provide higher amount of information, or stereo
vision based on thermal camera, able to provide more accurate
pedestrian localization. The second research line focus on increas
ing the sensing capabilities of the platform, helping to increase the
environment understanding of the vehicle, these new applications
refers to road understanding (e.g. road lanes and traffic signs iden
tification) and the combinations of all this information with online
context information, such as digital maps, traffic sign databases,
among others. All this information, combined with the ROS based
architecture, able to provide inter process communication, will
enhance the information provided by the platform. All these work
ing lines certainly converge to the next generation of intelligent
vehicle i.e. autonomous vehicles, Intelligent System Lab is cur
rently working in providing a fully autonomous vehicle, which
inherits all the presented applications, and evolves them to allow
safe and reliable autonomous driving.
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