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Other variables such as y;; and X} can be obtained similarly. In this case,
ef = Cer = (1,23, . ..,0,) where the o,’s can be obtained recursively as
follows:

a;=l

t—1
a, =14+ D) Noyys for t=2,3,...,q,
s=1

q
a=1+3Na,, for t=q+1,g+2,...,T an

s=1

d? =e¥’ef = 3 7_, a? and the derivations of £* and ¢,L* /2 are the same
as before, see (8) through (13). The typical element of y; can be obtained re-
cursively as in (16), and that of y** = ¢,Z~2y* from (14) with the newly
defined «,’s in (17).
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92.4.4. Comparison of GLS and OLS for a Linear Regression Model with
Noninvertible MA(1) Errors— Solution,' proposed by Luis J. Alvdrez and
Juan J. Dolado. Let the DGP be
V= p+ U t=12,...,7)

— . — 2y . 2
U =€ — €3 e =0, E(e;) = 0",

(1) In matrix notation the var-cov matrix of g (OLS estimator) and g (GLS
estimator) are

V(i) = o)~ (i'Qi) (i') ! §))

V(i) = o*(i'Q7 )7}, ()
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where i’ = (1,1,...,1), and

[ 1 -1 o 0...0]

-1 2 -1 0...0
Q= 0o -1 2 -1...0

0 0 o 2
and

[ T T-1 T-2 T-3...1]

T-1 T—-1 T-2 T-3...1
. 1 wll . pl2
Q'=|T-2 T—-2 T-2 T-3...1 =T—l<21922)

| 1 1 1 1.1 |
Hence,
iRi=1 QA3)
- = T(T+ 1)2T + 1)' @

6

Remark 1. To obtain (4), note that i’Q ~!i is the sum of the elements of
2!, Denote such a sum by Sr and, correspondingly, the sum of the ele-
ments of 8% by Sy_;. Then, it follows that

ST =5+ ST—I; Sl =1, o)

where s is the sum of w!!, w!?, and

w21(= T(T+1)  T(T-1 _ T2>.

2 2

Hence, from (5), S7 = 5712 = T(T + 1)(2T + 1)/6. Thus

V(i) = 0%/T? ©)
V(i) = o2 6/[T(T + 1)Q2T + 1)], )

where V(g) > V(n) for T= 2.
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Therefore, the limiting distributions of 4 and g are

T(j—p) = N(0,0%) ®)
T3 — p) = N(0,30%) )]
by Lyapunov’s CLT.

Remark 2. The OLS estimator is Op(T ') (“super-consistent”), while the
GLS estimator is Op(T ~*/?) (“hyper-consistent”). The intuition behind
these properties is as follows.

On the one hand, application of OLS yields

T
. (e, —e_y) er

= + —— + —,
= El] T bt
since e, is Op(1), then (8) follows.

On the other hand, denote y, = y,/A(=y, + ¥, + -+ + y;), then GLS
is equivalent to OLS in the model

Ji=nut +e,.

since 237 te, is Op(T~3/?) and 37 ¢? is Op(T3); then (9) follows.

(2) Theorem 1 in Kruskal [1] says that 4 and & are the same if @ X eA for
all x € A, where x (the regressor) is assumed to lie in the linear manifold A.
In this case x = i, thus

[0] (1' 1]
0 1 1
gi=|.|=|.]=1|. 10
0 1 1
LN R I

and clearly
R(Qi) = R(),

where the symbol R signifies the range space of a matrix. Thus, it follows
by Kruskal’s theorem that GLS and OLS are not equivalent.

The graphs in Figure 1 represent the recursive OLS (&) and GLS (i) es-
timates up to a sample size of 100 observations.
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FiGURE 1. DGP: y, =15+ u,,u,=¢,—e,_, (t=1,...,T), e,=0, e, ~n.id. (0,1).

NOTE
1. An excellent solution has been proposed independently by In Choi, the poser of the
problem.
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92.4.5. Tabulation of Farebrother’s Test for Linear Restriction— Solu-
tion,' proposed by Jean-Marie Dufour and Sophie Mahseredjian. We con-
sider A separate linear regression models of the form:

yj=)(ij+ej’ ej"N[O:asznj]’ j=1s'~-’h’ (1)

where y; is an n; X 1 vector of observations on a dependent variable, X is
an n; X k; fixed matrix such that 1 < rank(X;) = k; < n;, ¢ is an n; X 1 vec-



