Other variables such as y_{ii}^* and X_{ii}^* can be obtained similarly. In this case, $e_T^{\alpha} = Ce_T = (\alpha_1, \alpha_2, \dots, \alpha_t)'$ where the α_t 's can be obtained recursively as follows:

$$\alpha_1 = 1$$

$$\alpha_t = 1 + \sum_{s=1}^{t-1} \lambda_s \alpha_{t-s}$$
 for $t = 2, 3, ..., q$,
 $\alpha_t = 1 + \sum_{s=1}^{q} \lambda_s \alpha_{t-s}$ for $t = q + 1, q + 2, ..., T$. (17)

 $d^2 = e_T^{\alpha'} e_T^{\alpha} = \sum_{t=1}^T \alpha_T^2$ and the derivations of Σ^* and $\sigma_{\epsilon} \Sigma^{*-1/2}$ are the same as before, see (8) through (13). The typical element of y_{it}^* can be obtained recursively as in (16), and that of $y^{**} = \sigma_{\epsilon} \Sigma^{-1/2} y^*$ from (14) with the newly defined α_t 's in (17).

REFERENCES

- Choudhury, A.H. & R.D. St. Louis. A note on Park and Heikes' (1983) modified approximate estimator for the first-order moving-average process. *Journal of Econometrics* 46 (1990): 399-406.
- 2. Fuller, W.A. & G.E. Battese. Estimation of linear models with cross-error structure. *Journal of Econometrics* 2 (1974): 67-78.
- Wansbeek, T. & A. Kapteyn. A simple way to obtain the spectral decomposition of variance components models for balanced data. Communications in Statistics A11 (1982): 2105-2112.
- Wansbeek, T. & A. Kapteyn. A note on spectral decomposition and maximum likelihood estimation of ANOVA models with balanced data. Statistics and Probability Letters 1 (1983): 213-215.

92.4.4. Comparison of GLS and OLS for a Linear Regression Model with Noninvertible MA(1) Errors—Solution, proposed by Luis J. Alvárez and Juan J. Dolado. Let the DGP be

$$y_t = \mu + u_t \qquad (t = 1, 2, \ldots, T)$$

$$u_t = e_t - e_{t-1};$$
 $e_0 = 0, E(e_t^2) = \sigma^2.$

(1) In matrix notation the var-cov matrix of $\hat{\mu}$ (OLS estimator) and $\tilde{\mu}$ (GLS estimator) are

$$V(\hat{\mu}) = \sigma^2(i'\mathbf{i})^{-1}(i'\Omega i)(i'i)^{-1}$$
(1)

$$V(\tilde{\mu}) = \sigma^2 (i'\Omega^{-1}i)^{-1},\tag{2}$$

where i' = (1, 1, ..., 1), and

$$\Omega = \begin{bmatrix} 1 & -1 & 0 & 0 \dots 0 \\ -1 & 2 & -1 & 0 \dots 0 \\ 0 & -1 & 2 & -1 \dots 0 \\ & \dots & \dots & \dots \\ 0 & 0 & 0 \dots & 2 \end{bmatrix}$$

and

$$\Omega^{-1} = \begin{bmatrix} T & T-1 & T-2 & T-3 \dots 1 \\ T-1 & T-1 & T-2 & T-3 \dots 1 \\ T-2 & T-2 & T-2 & T-3 \dots 1 \\ & \dots & \dots & \dots \\ 1 & 1 & 1 & 1 \dots 1 \end{bmatrix} = \frac{1}{T-1} \begin{pmatrix} w^{11} & w^{12} \\ w^{21} & \Omega^{22} \end{pmatrix}$$

Hence,

$$i'\Omega \mathbf{i} = 1 \tag{3}$$

$$i'\Omega^{-1}i = \frac{T(T+1)(2T+1)}{6}. (4)$$

Remark 1. To obtain (4), note that $i'\Omega^{-1}i$ is the sum of the elements of Ω^{-1} . Denote such a sum by S_T and, correspondingly, the sum of the elements of Ω^{22} by S_{T-1} . Then, it follows that

$$S_T = s + S_{T-1}; S_1 = 1,$$
 (5)

where s is the sum of w^{11} , w^{12} , and

$$w^{21}\bigg(=\frac{T(T+1)}{2}+\frac{T(T-1)}{2}=T^2\bigg).$$

Hence, from (5), $S_T = \sum_{1}^{T} t^2 = T(T+1)(2T+1)/6$. Thus

$$V(\hat{\mu}) = \sigma^2/T^2 \tag{6}$$

$$V(\hat{\mu}) = \sigma^2 6/[T(T+1)(2T+1)], \tag{7}$$

where $V(\hat{\mu}) > V(\tilde{\mu})$ for $T \ge 2$.

Therefore, the limiting distributions of $\hat{\mu}$ and $\tilde{\mu}$ are

$$T(\hat{\mu} - \mu) \Rightarrow N(0, \sigma^2)$$
 (8)

$$T^{3/2}(\tilde{\mu} - \mu) \Rightarrow N(0, 3\sigma^2) \tag{9}$$

by Lyapunov's CLT.

Remark 2. The OLS estimator is $Op(T^{-1})$ ("super-consistent"), while the GLS estimator is $Op(T^{-3/2})$ ("hyper-consistent"). The intuition behind these properties is as follows.

On the one hand, application of OLS yields

$$\hat{\mu} = \mu + \sum_{1}^{T} \frac{(e_t - e_{t-1})}{T} = \mu + \frac{e_T}{T},$$

since e_T is Op(1), then (8) follows.

On the other hand, denote $\tilde{y}_t = y_t/\Delta (= y_t + y_{t-1} + \cdots + y_1)$, then GLS is equivalent to OLS in the model

$$\tilde{y}_t = \mu t + e_t.$$

Hence,

$$\tilde{\mu} = \mu + \sum_{1}^{T} t \epsilon_t / \sum_{1}^{T} t^2,$$

since $\sum_{1}^{T} t \epsilon_t$ is $Op(T^{-3/2})$ and $\sum_{1}^{T} t^2$ is $Op(T^{-3})$; then (9) follows.

(2) Theorem 1 in Kruskal [1] says that $\hat{\mu}$ and $\tilde{\mu}$ are the same if $\Omega \times \epsilon \Lambda$ for all $x \in \Lambda$, where x (the regressor) is assumed to lie in the linear manifold Λ . In this case x = i, thus

$$\Omega i = \begin{bmatrix} 0 \\ 0 \\ . \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ . \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ . \\ 1 \\ 0 \end{bmatrix}$$
 (10)

and clearly

$$R(\Omega i) \neq R(i)$$
,

where the symbol R signifies the range space of a matrix. Thus, it follows by Kruskal's theorem that GLS and OLS are not equivalent.

The graphs in Figure 1 represent the recursive OLS $(\hat{\mu})$ and GLS $(\tilde{\mu})$ estimates up to a sample size of 100 observations.

FIGURE 1. DGP: $y_t = 15 + u_t$, $u_t = e_t - e_{t-1}$ (t = 1, ..., T), $e_o = 0$, $e_t \sim \text{n.i.d.}$ (0,1).

NOTE

1. An excellent solution has been proposed independently by In Choi, the poser of the problem.

REFERENCE

- 1. Kruskal, W. When are Gauss-Markov and least squares estimators identical? A coordinate free approach. *Annals of Mathematical Statistics* 39 (1968): 70-75.
- 92.4.5. Tabulation of Farebrother's Test for Linear Restriction—Solution, proposed by Jean-Marie Dufour and Sophie Mahseredjian. We consider h separate linear regression models of the form:

$$y_j = X_j \beta_j + \varepsilon_j, \ \varepsilon_j \sim N[0, \sigma_j^2 I_{n_j}], \qquad j = 1, \ldots, h,$$
 (1)

where y_j is an $n_j \times 1$ vector of observations on a dependent variable, X_j is an $n_j \times k_j$ fixed matrix such that $1 \le \text{rank}(X_j) = k_j < n_j$, ε_j is an $n_j \times 1$ vec-