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Abstract

The estimation of inverse covariance matrix (also known as precision matrix)

is an important problem in various research fields and methodologies, espe-

cially in the current age of high-dimensional data abundance. In addition,

the classical estimation methods are no longer stable and applicable in high

dimensional settings, i.e., when the dimensionality has the same order as the

sample size or is much larger.

This thesis focuses on the estimation of the precision matrices as well as their

applications. In particular, the goal of this thesis is to develop and analyse

accurate precision matrix estimators for problems in high-dimensional set-

tings. Moreover, the proposed precision matrix estimators should emulate

the existing prominent estimators in terms of different statistical measures

without being computationally more extensive.

This thesis is comprised of two articles on estimation of precision matri-

ces in high dimensional settings. In what follows, we summarize the main

contributions of this thesis.

First, we propose a simple improvement of the popular Graphical LASSO

(GLASSO) framework that is able to attain better statistical performance

without increasing significantly the computational cost. The proposed im-

provement is based on computing a root of the sample covariance matrix

to reduce the spread of the associated eigenvalues. Through extensive nu-

merical results, using both simulated and real datasets, we show that the

proposed modification improves the GLASSO procedure. Our results reveal

that the square-root improvement can be a reasonable choice in practice.

Second, we introduce two adaptive extensions of the recently proposed `1

norm penalized D-trace loss minimization method. It is well known that the

`1 norm penalization often fails to control the bias of the obtained estimator

because of its overestimation behavior. Our proposed extensions are based

on the adaptive and weighted adaptive thresholding operators and intend to

diminish the bias produced by the `1 penalty term. We present the algorithm
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for solving our proposed approaches, which is based on the alternating di-

rection method. Extensive numerical results, using both simulated and real

datasets, show the advantage of our proposed estimators.
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Chapter 1

Introduction

An accurate estimation of high-dimensional inverse covariance matrix (also

known as precision or concentration matrix) has a crucial role in the cur-

rent age of high-dimensional data explosion. It is an important problem in

various research fields and statistical methodologies. In the recent decade,

the high-dimensional precision matrix has attracted a growing interest due

to the massive flow of voluminous datasets spanning several intensely de-

veloping scientific areas (e.g., medicine, genetics, finance, sociology, etc.).

Properly estimated high-dimensional precision matrix is fundamental in lin-

ear and quadratic discriminant analysis, forecasting, clustering and several

other statistical methodologies when dealing with a vast amount of variables

(Mardia et al. 1979; McLachlan 2004). One of the a real-world appli-

cation which requires an accurate and stable precision matrix estimate is

the computation of optimal portfolios for large number of assets (Stevens

1998; Frahm and Memmel 2010; Goto and Xu 2013). We describe other

important applications in the next section.

Without loss of generality, we assume that X is a n× p mean-centered sam-

ple data matrix. Each row Xi = (X1
i , ..., X

p
i ) is a realization of a p-variate

random vector, independent and identically distributed for i = 1, ..., n, and

has an unknown p× p covariance matrix Σ with the corresponding precision

matrix Ω = Σ−1. In what follows, we thoroughly describe the importance

4



Chapter 1. Background and Literature Review 5

and virtues of precision matrix and the main drawbacks of the classical esti-

mations in high-dimensional settings. After, we provide a detailed literature

review of previously studied estimation approaches and methods for the pre-

cision matrix and related concepts.

1.1 Background and Literature Review

Unlike the covariance matrix, the precision matrix contains proper “mul-

tivariate” information. It is well known that each entry of the covariance

matrix represents the pair relationship of variables regardless the influence

of the other variables. On the other hand, each entry of the precision ma-

trix represents a “correlation indication” between two variables given all the

other variables. Moreover, the precision matrix is associated with the partial

correlation matrix. This statement can be seen through the following statis-

tical property of the precision matrix. The partial correlation between two

variables X i and Xj can be expressed as ρij = − ωij√
ωii
√
ωjj

, for 1 ≤ i, j ≤ p.

Therefore, the non-zero off-diagonal precision matrix entries indicate the

conditional dependence of the corresponding variables.

The exceeding attractiveness of the precision matrix estimation emerges un-

der the assumption of multivariate normality of data. It is well known that

when the data follow a Gaussian distribution, the zero entries ωij of the pre-

cision matrix indicate the conditional independence between the variables

X i and Xj, given all the other variables (Lauritzen 1996). More specifi-

cally, under the normality assumption, the precision matrix is often sparse

and represents the statistical dependency among the variables. Therefore, a

sparse representation of the precision matrix is an important issue in statis-

tics. The precision matrix is closely related to the Gaussian Graphical Models

(GGM), which is a prominent framework for representing the structure of the

dependencies among vast amount of normally distributed variables (Whit-

taker 1990) with a low cost. The GGM is an undirected graph1 G = (V,E),

where the set of the nodes, V = {1, ..., p}, represents the variables. The set

of the edges, E ⊆ V × V , consists of the pair indexes (i, j), that correspond

1All the edges in undirected graph are undirected.
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to ωij 6= 0, for 1 ≤ i, j ≤ p. For example, the concept of the GGM is a

convenient way to represent the interactions between large number (usually

tens of thousands) of genes. Moreover, in genetic studies the sparsity pattern

of the precision matrix and the corresponding GGM is fundamental for the

interpretation of the gene interactions, since most of the genes are condition-

ally independent and do not interact. To illustrate the idea of the GGM,

Figure 1.1 depicts a black-and-white heat map of a sparse precision matrix

for fifteen variables and the corresponding GGM. Note that the black and

white cells of the heat map represent the non-zero and zero entries of the

precision matrix, respectively.

Figure 1.1: A heat map of a sparse precision matrix and the
corresponding GGM

There are several notable applications involving the estimation of intrinsi-

cally sparse precision matrix and GGM such as genetic interaction networks

through high-dimensional gene expression data (Stifanelli et al. 2013; Yin

and Li 2013), brain connectivity networks through neuroimaging techniques

(Huang et al. 2010; Ryali et al. 2012), climate networks (Zerenner et al.

2014), etc.

The estimation of the precision matrix is still a challenging problem in high-

dimensional statistics. In classical statistics the most ordinary and straight-

forward precision matrix estimator is the Maximum Likelihood Estimator
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(MLE). It is known that under the normality assumption the log-likelihood

function for sample data X is defined (up to a constant) as:

`(X,Ω) ∝ log det Ω− trace(ΩS), (1.1)

where S is the sample covariance matrix.2 It can be seen that when n > p the

MLE of the precision matrix Ω is the inverse of matrix S. We provide more

details on derivation of the log-likelihood function and the MLE in remarks

E.1 and E.2 of Appendix E, respectively. Although the sample covariance

matrix is an unbiased estimator of the covariance matrix Σ, its inverse, S−1,

contains a considerable bias. When n > p, it is known that (see Anderson

2003)

E(S−1)− Ω =
p+ 2

n− p− 2
Ω. (1.2)

Thus, the traditional precision estimator S−1 becomes highly unstable when

the ratio
p

n
increases. For instance, when p =

n

2
− 2, then E(S−1)−Ω = Ω,

therefore, the bias of the classical estimator S−1 has the same magnitude

as Ω. To illustrate this statement, Figure 1.2 depicts the log-scaled Mean

Squared Error3 (MSE) of the sample covariance matrix (as the estimator

of the covariance matrix) and the inverse of the sample covariance matrix

(as the estimator of the precision matrix). We observe that the precision

estimation error increases exponentially with
p

n
. Moreover, when

p

n
> 1, the

matrix S becomes singular and, therefore, the estimator S−1 does not exist.

A straightforward approach could be inverting a well-defined covariance ma-

trix estimate. This approach is known as a two-step or indirect estimation.

In this way, several estimators of the covariance and the correlation matrices

have been provided with good practical and theoretical properties. Among

the most popular ones are the shrinkage estimators (e.g., Ledoit and Wolf

2004; Schafer and Strimmer 2005; Warton 2008; Touloumis 2015), esti-

mators based on thresholding, banding or tapering procedures (e.g., Bickel

and Levina 2008; El Karoui 2008; Cai and Yuan 2012; Wang and Daniels

2014) and those based on convex optimization frameworks (e.g., Rothman

2We provide the definition of the sample covariance matrix S in the Chapter 2.
3See Chapter 2 section 2.5.2 for a formal definition.
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Figure 1.2: Log-scaled MSE for S and S−1

2012; Xue et al. 2012; Deng and Tsui 2013; Cui et al. 2014). Although the

two-step approaches may seem to be convenient and problem-solving, the

obtained precision matrix estimators, in general, are not optimal in high-

dimensional settings (Ledoit and Wolf 2012). Firstly, by inverting an es-

timated covariance matrix, we may amplify its estimation error. Secondly,

inverting a very large matrix is computationally expensive in terms of the re-

quired memory and time. Finally, the two-step approach does not guarantee

the sparsity of the precision matrix estimator, even if the estimated covari-

ance matrix is sparse. Thus, to obtain a desirable precision matrix estimate,

most of the methodologies in the literature are based on direct estimation

techniques. Undoubtedly, direct precision matrix estimation approaches in

high-dimensional settings are mathematically more challenging and complex

than the two-step approaches because of the absence of a näıve precision

matrix estimator.

Substantial research exists related to the problem of precision matrix esti-

mation. A pioneer work has been done by Dempster (1972), who formulated

this problem as the covariance selection and proposed to study the interde-

pendence of the normally distributed variables through the sparsity notion

of the precision matrix. Here we briefly review the main techniques and

approaches for estimating precision matrix and associated GGM.
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Following the ideas of the shrinkage approaches of the covariance matrix

estimation, in essence, the same techniques can also be applied for estimating

the precision matrix. In other words, we can estimate the precision matrix

by considering different linear combinations between the matrix S−1 and a

selected target matrix (see, for instance, Haff 1980; Frahm and Memmel

2010; Kourtis et al. 2012). However, as explained above, these approaches

rely on p << n assumption, therefore, can not be used in high-dimensional

statistics.

To overcome the computational challenges and to deal with the situation of

p = O(n), prior research proposed several precision matrix estimators based

on a convex optimization framework. To address the sparsity requirement

of the matrix and to attain an accurate precision estimator, the LASSO or

`1 regularization can be applied. Originally, Tibshirani (1996) introduced

this regularization in the regression framework. However, it has achieved a

great interest in the covariance selection study, because it leads to a sparse

estimator and computationally convenient due to its convexity. In this way,

Banerjee et al. (2006) proposed the `1 norm penalized log-likelihood func-

tion (1.1) maximization approach which is one of the remarkable estimation

methods and is defined as the solution of the following problem:

arg max
Ω

log det Ω− trace(SΩ)− ν||Ω||1, (1.3)

where ν > 0 is a penalty parameter and ||Ω||1 is the entrywise `1 norm4 of

the matrix Ω. Note that the term ||Ω||1 is the convex upper bound of the

cardinality of a matrix, therefore, the `1 norm penalization endorses the spar-

sity of the estimated precision matrix. Moreover, the log-determinant term

guarantees the positive definiteness of the obtained estimator. The precision

matrix estimation approach based on the `1 norm penalized log-likelihood

function maximization problem (1.3) is known in the literature as Graphical

LASSO5 or, simply, GLASSO method. Prior work extensively studied this

approach. Moreover, some studies considered the original definition of the

4We provide the formulation of the entrywise `1 norm of a matrix in the Notations.
5This method is commonly called by the name of the popular and efficient algorithm

GLASSO for solving the `1 norm penalized log-likelihood function maximization problem.
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GLASSO method (see, for instance, d’Aspremont et al. 2008; Banerjee et al.

2008), whereas others (see, for instance, Yuan and Lin 2007; Rothman et al.

2008; Yin and Li 2013) defined the GLASSO method by regularizing only

the off-diagonal entries of the matrix Ω in the objective function (1.3). In

other words, they considered the term ||Ω||1,off =
p∑
i=1

p∑
j=1,j 6=i

|ωij| instead of

the term ||Ω||1 in the problem (1.3). Several algorithms have been developed

to solve the regularization problem efficiently, such as the Graphical LASSO

(Friedman et al. 2008), Project Sub-gradient Method (Duchi et al. 2008),

Alternating Linear Minimization (Scheinberg et al. 2010), and Interior

Point Method (Li and Toh 2010), among others. Moreover, some scholars

proposed approaches to improve the performance of the GLASSO method

through adaptive LASSO and non-convex SCAD (Smoothly Clipped Abso-

lute Deviation) penalties (see Fan et al. 2009) or through additional trace

norm penalty (see Maurya 2014). Witten et al. (2011) proposed procedure

that efficiently speeds-up the algorithm for solving the GLASSO problem.

More recently, Banerjee and Ghosal (2015) proposed a Bayesian approach to

the GLASSO method.

An alternative to the log-likelihood function (1.1) is the so-called D-trace

(DT) function, which is introduced recently by Zhang and Zou (2014). It

has the following definition:

fDT (Ω,Σ) =
1

2
trace(Ω2Σ)− trace(Ω). (1.4)

The function fDT (Ω,Σ) has much simpler structure than the log-likelihood

function (1.1). In this way, Zhang and Zou (2014) proposed sparse precision

matrix estimation approach through minimization of off-diagonal `1 norm

penalized D-trace function (1.4), defined as the solution of the following

optimization problem:

arg min
Ω�εI

1

2
trace(Ω2S)− trace(Ω) + τ ||Ω||1,off, (1.5)

where τ > 0 is a penalty parameter. The constraint Ω � εI guarantees

the positive definiteness6 of the obtained solution. We provide a broad and

6We write Ω � εI if Ω− εI � 0.
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detailed description of this method in the Chapter 3.

In addition, several other authors studied non-likelihood approaches to esti-

mate the precision matrix or the GGM. For instance, based on the LASSO

regression, Meinshausen and Bühlmann (2006) proposed a Neighborhood

Selection approach to select the GGM structure and Peng et al. (2009) pro-

posed a Sparse Partial Correlation Estimation (SPACE) method to estimate

the partial correlation matrix P . Regarding the precision matrix estima-

tion, Yuan (2010) proposed the use of the Dantzig selector and Cai et al.

(2011) proposed Constrained `1 minimization for Inverse Matrix Estimation

(CLIME) method.

Notwithstanding the sizable literature, the estimation of the precision matrix

is still attractive and sophisticated problem, especially in high-dimensional

settings. The goal of this thesis is to develop and analyse new estimation

methods for high-dimensional precision matrices. In particular, our objective

is to propose well-defined precision matrix estimators for problems, where di-

mensionality (e.g., the number of the variables), p, has the same order or can

exceed the sample size, n. Moreover, the proposed methods should provide

certain desirable properties (such as sparsity) and should ensure competitive

performance comparing with the existing state-of-the-art approaches, being

suitable for both the precision matrix estimation and the associated GGM

prediction.

1.2 Outline of the Thesis

In this work, we focus on the estimation of high-dimensional precision ma-

trix. Our main contribution is that we propose and analyse two new es-

timation approaches, which provide proper precision matrix estimate and

associated GGM prediction for high-dimensional problems. In particular, in

order to present the virtues of our proposed methodologies we conduct exten-

sive numerical simulations and real-world applications in high-dimensional

framework. The results show that the proposed precision estimators are
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well-defined and dominate state-of-the-art estimators in most of the numer-

ical results in terms of different statistical measures. The developed esti-

mators are also appropriate for estimating GGM structures. Moreover, we

demonstrate the merits of the proposed estimators when
p

n
> 1. We study

the applications of our proposed methods in different research fields, such as

genetics (e.g., indicating the state or the type of the tumour) and finance

(e.g., selection of large portfolios).

The outline of the thesis is as follows. In the Chapter 2, we propose a

simple improvement of the popular GLASSO framework that is able to attain

better statistical performance without having to increase significantly the

computational cost. Moreover, we can solve the proposed method using

any algorithm which solves the original GLASSO method. The proposed

improvement is based on computing a root of the sample covariance matrix to

reduce the spread of the associated eigenvalues. Through numerical results,

using both simulated and real datasets, we show that the proposed technique

outperforms the GLASSO estimator. Finally, for the proposed estimator, we

establish the convergence rate in the Frobenius norm.

In the Chapter 3, we focus on the recently proposed `1 norm penalized DT

loss minimization method. We introduce two adaptive extensions of this

method. The proposed extensions are based on the adaptive and weighted

adaptive thresholding operators and intend to diminish the bias produced

by the `1 penalty term. We present the algorithm for solving our proposed

approaches, which is based on the alternating direction method. Through

comprehensive numerical simulations we show that the methods based on

the proposed extensions outperform the original `1 norm penalized DT loss

minimization method. Finally, we study the performance of the proposed

estimators using real datasets.

In the Chapter 4, we provide concluding remarks of the thesis and possible

future research directions.



Chapter 2

Improving GLASSO Method

Using Roots of the Sample

Covariance Matrix

2.1 Introduction

Before proceeding with our proposed methodology, we assume that X is a

centered sample data matrix with dimension n × p, where each row Xi =

(X1
i , ..., X

p
i ) is a realization of a p-variate normal random vector that is in-

dependent and identically distributed for i = 1, ..., n, with covariance matrix

Σ and precision matrix Ω = Σ−1.

As mentioned in the Chapter 1, the `1 norm penalized log-likelihood max-

imization approach (Banerjee et al. 2006) is one of the state-of-the-art

methods for obtaining a sparse and proper precision matrix estimate. This

approach is known as the GLASSO method due to the popular solving al-

gorithm of the same name, proposed by Friedman et al. (2008). This al-

gorithm allows a fast, efficient and stable solution of the `1 norm penalized

log-likelihood maximization problem for the high-dimensional problems. As

13
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discussed in the Chapter 1, the GLASSO method has been extensively anal-

ysed by several scholars. Moreover, it is one of the frequently applied preci-

sion matrix estimation methods in several research fields.1

In this chapter, we focus on the GLASSO approach and propose a simple

modification that is able to attain a better statistical performance without

sacrificing too much the computational cost. According to the dual problem

of (1.3), GLASSO method is based on minimization of the log-determinant

of the precision matrix subject to its inverse being close to the sample co-

variance matrix, S. However, it is well known (Johnstone 2001) that in

high-dimensional settings the eigenvalues of S are very diffused and hence,

its condition number is large. Through simulations, Ledoit and Wolf (2004)

show that the condition number and the bias of the largest and smallest

sample eigenvalues tend to increase with
p

n
. To improve the stability of the

GLASSO estimation, we propose to use a k-root of the sample covariance

matrix, with k ≥ 1, to attain less diffused eigenvalues and therefore, to

obtain a more accurate estimation of Ω1/k and, therefore, of Ω.

Our proposed method is a simple modification of the GLASSO one. Similar

to the original GLASSO, it is based on minimization of the log-determinant

of the precision matrix, but now subject to its k-root inverse being close to

the k-root of the sample covariance matrix. Once the specific k-root and

the penalty parameter (associated with the original GLASSO framework)

are selected, the proposed procedure requires no additional cost than that

of the GLASSO method. Through extensive numerical results, using both

simulated and real datasets, we show that the proposed technique outper-

forms the GLASSO estimator when considering different statistical losses and

GGM prediction performance measures. In particular, we use the entropy

loss and the Mean Squared Error to measure the statistical performance of

the estimators. In addition, we use specificity, sensitivity and Matthews

Correlation Coefficient (MCC) to measure the GGM prediction accuracy.

Furthermore, we propose a calibration procedure for selecting the k-root of

the sample covariance matrix and also the penalty parameter that regularizes

1The article by Friedman et al. (2008) has more than 1400 citations as of November
2015 according to https://scholar.google.com/.

https://scholar.google.com/
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the log-likelihood function (1.1). Finally, for the proposed k-root GLASSO

method, we establish the convergence rate in the Frobenius norm.

The rest of the chapter is organized as follows. Section 2.2 describes the

proposed k-root GLASSO (or simply R-GLASSO) methodology to estimate

high-dimensional precision matrices. Section 2.3 analyses the convergence

rate of the proposed estimator. Section 2.4 proposes a procedure for selecting

both the k-root of the sample covariance matrix and the associated penalty

parameter that regularizes the log-likelihood function. Section 2.5 exhaus-

tively evaluates the statistical loss and GGM prediction performance of the

proposed methodology and compares with that of the GLASSO. Section 2.6

illustrates the solution properties when applying the proposed methodology

to three empirical applications: the prediction of breast cancer state, the pre-

diction of the SRBC tumour, and the computation of an optimal financial

portfolio. Finally, Appendix A provides the analytical proofs and Appendix

B contains the tables of the numerical results.

2.2 Proposed Methodology

Banerjee et al. (2006) have proposed the GLASSO method through maxi-

mizing the `1 norm penalized log-likelihood function (1.1). The GLASSO

estimator is the solution of the following optimization problem:

Ω̂GLASSO = arg max
Ω

log det Ω− trace(SΩ)− ν||Ω||1, (2.1)

where S =
1

n

n∑
i=1

XiX
T
i is the sample covariance matrix and ν > 0 is a

penalty parameter which controls the sparsity pattern of Ω̂GLASSO. This

parameter is unknown in practice and should be selected accurately. We

note that in this particular chapter, we follow the original definition of the

GLASSO estimator through regularization of all the entries of matrix Ω (see

Banerjee et al. 2006, 2008). Note that problem (2.1) is convex, and its dual

problem (2.2) is defined as

Ω̂GLASSO = arg min
Ω

log det Ω

subject to ||Ω−1 − S||∞ ≤ ν.
(2.2)
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We provide more details on derivation of dual problem (2.2) in remark E.3 of

Appendix E. As discussed in Section 2.1, the GLASSO method is sensitive to

the eigenvalue structure of the sample covariance matrix, S, especially when

p is large. To mitigate this sensitivity, we suggest to shrink the eigenvalue

spread by considering a k-root of matrix S defined as S1/k = BV 1/kB′,

where S = BV B′ is the eigen-decomposition of S and k > 1. In this way,

we propose the following R-GLASSO estimator:

Ω̂R-GLASSO = arg min
Ω

log det Ω

subject to ||Ω−1/k − S1/k||∞ ≤ ξk,
(2.3)

where ξk > 0 is the associated penalty parameter. The problem (2.3) can be

rewritten as
Γ̂ = arg min

Γ
log det Γ

subject to ||Γ−1 − S1/k||∞ ≤ ξk,
(2.4)

and we define our R-GLASSO estimator as Ω̂R-GLASSO = Γ̂k, for a given

k and ξk. Note that we can write the primal problem of the optimization

problem (2.4) as the following:

Γ̂ = arg max
Γ

log det Γ− trace(S1/kΓ)− ξk||Γ||1. (2.5)

Therefore, we can obtain the proposed estimator Ω̂R-GLASSO = Γ̂k by solving

the problem (2.5) using the same algorithm as for the problem (2.2) without

any additional cost. Finally, we note that when k = 1, the R-GLASSO

estimator coincides with the original one, and, moreover, when ξk = 0, we

obtain the classical naive estimator S−1 for any value of k.

Remark 2.1. It is important to note that the sparsity of the matrix Γ̂ does

not guarantee the sparsity of the matrix Ω̂R-GLASSO = Γ̂k. However, the

main assumption behind the proposed method is that the matrix Γ̂ can be

considered as an estimator of the matrix Ω1/k, and, therefore, matrix Γ̂k can

be considered as an estimator of the matrix Ω.

To better illustrate the behaviour of the proposed methodology, we show

next a particular example. Assume that the true precision matrix Ω has
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the following sparse structure: ωii = 1, ωi,i−1 = ωi−1,i = 0.45, and zero

otherwise. We set the values p = 200 and n = 200.

In Figure 2.1(a), the entropy loss2 of the proposed estimator is shown as a

function of different possible roots (between 1 and 5) and different values

of the penalty parameter (between 0.015 and 0.6 with increment of 0.015).

Note that, as k moves away from 1 (which corresponds to the GLASSO

estimator), it is possible to decrease the loss of the proposed estimator us-

ing convenient paths along ξk. That is, the minimum possible error of the

GLASSO estimator along the ν path is larger than the minimum possible er-

ror of the proposed R-GLASSO estimator along the ξk path, for some values

of k. This improvement can be observed more clearly in Figure 2.1(b), where

the entropy loss is plotted against k using the optimal values for ξk, i.e, the

penalty parameter that minimizes the entropy loss for a given k. Note that

we can reduce the statistical loss of the GLASSO estimator by using, for

instance, the square-root modification.

Figure 2.1: (a) Entropy loss of Ω̂R-GLASSO estimator as a function of
ξk and k. (b) Entropy loss of Ω̂R-GLASSO estimator as a function of k

(given the optimal ξk).

In Section 2.5, through an exhaustive empirical analysis including several

sparsity patterns for the precision matrix, we show how the proposed R-

GLASSO estimator can outperform the GLASSO under other statistical

performance measures covering those for graphical models.

2See Section 2.5.2 for a formal definition.
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2.3 Convergence Rate

In this section, we analyse the convergence rate of the proposed estimator

Ω̂R-GLASSO for rational values of k. First, we state the following main as-

sumptions on the precision matrix Ω:

A1 : λmin(Ω) ≥ α > 0,

A2 : λmax(Ω) ≤ ᾱ,

for some positive values ᾱ and α, where λmin(Ω) and λmax(Ω) are the mini-

mum and the maximum eigenvalues of matrix Ω, respectively. Note that the

assumptions A1 and A2 guarantee the existence of the matrix Ω. Next, we

define the set Z = {(i, j) : [Ω1/k]ij 6= 0} and card(Z) ≤ s. The following the-

orem presents the convergence rate of the proposed R-GLASSO estimator.

Theorem 2.2. Suppose Ω̂R-GLASSO is the solution of problem (2.3) and k ∈
Q. Under the assumptions A1, A2, if ||Σ1/k −S1/k||∞ = OP (||Σ−S||∞) and

ξk �
√

log p

n
,

||Ω̂R-GLASSO − Ω||2 = OP

(√
(p+ s) log p

n

)
. (2.6)

We provide the proof of the Theorem 2.2 in the Appendix A.

2.4 Penalty Parameter Selection

The choice of the penalty parameter has a crucial role in all estimation

procedures based on regularization. The penalty parameter controls the

properties of the estimator, especially its sparsity level. To account for this

sparsity level, we suggest the use of the BIC-type criterion.3 Yuan and

Lin (2007) proposed the following BIC criterion for selecting the penalty

parameter of the GLASSO method:

BIC(ν) = n
(
− log det Ω̂(ν) + trace(SΩ̂(ν))

)
+ log n× NZ, (2.7)

3In one of the empirical applications in Section 2.6, we use a cross-validation procedure
to calibrate the penalty parameter, since in this application the sparsity pattern is not
relevant.
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where NZ = card{(i, j) : 1 ≤ i ≤ j ≤ p, [Ω̂]ij 6= 0}. The penalty parameter

ν is selected by minimizing BIC(ν). Our proposed methodology requires to

calibrate two parameters, ξk and k. We define the following BIC score to

select simultaneously these parameters:

BIC(ξk, k) = n
(
− log det Ω̂(ξk, k) + trace(SΩ̂(ξk, k))

)
+ log n× NZ, (2.8)

where Ω̂(ξk, k) is the estimated precision matrix using the values ξk and k.

The parameters (ξk, k) are selected by minimizing BIC(ξk, k) using a two-

dimensional grid search.

2.5 Simulation Study

In this section, we perform a simulation analysis to compare the performance

of the proposed estimator Ω̂R-GLASSO with that of the GLASSO estimator

Ω̂GLASSO. Particularly, in subsection 2.5.1, we detail the considered models

for the precision matrix Ω. In subsection 2.5.2, we describe the performance

evaluation. Finally, in subsection 2.5.3, we provide the discussion of the

results.

2.5.1 Considered Models

We perform an exhaustive simulation study through seven different struc-

tures for the precision matrix with varying sizes. We divide the models into

random (with random sparsity pattern and elements) and non-random (with

fixed sparsity pattern and deterministic elements). The considered models

for the precision matrix Ω are the following:

(i) Random models4

• Model 1. A random p.d. matrix, containing 5% of non-zero entries.

• Model 2. A random p.d. matrix, containing 10% of non-zero entries.

4All random models are generated using the MATLAB command sprandsym.



Chapter 2. Simulation Study 20

• Model 3. A random p.d. matrix, containing 20% of non-zero entries.

• Model 4. A random block-diagonal matrix, with four equally-sized

blocks along the diagonal, each containing 50% of non-zero entries.

(ii) Non-random models

• Model 5. AR(1) structure: ωii = 1, ωi,i−1 = ωi−1,i = 0.45, and zero

otherwise (Yuan and Lin 2007; Friedman et al. 2008).

• Model 6. Decay structure: ωij = 0.6|i−j| (Cai et al. 2011; Fan et al.

2009).

• Model 7. A block-diagonal matrix, with four equally sized blocks along

the diagonal, with a decay model in each block.

For each of the models, we simulate multivariate normal random samples

with zero mean, where n = 200 and p = 100, 200 and 300. This procedure is

repeated 100 times.

2.5.2 Performance Evaluation

To compute the performance of a given estimator Ω̂, we use the entropy loss

function, also known as the Kullback-Leibler Loss (KLL) function (James

and Stein 1961), defined as follows:

KLL(Ω̂,Ω) = trace(Ω−1Ω̂)− log det(Ω−1Ω̂)− p. (2.9)

The KLL function is the simplified version of the Kullback-Leibler divergence

(Kullback and Leibler 1951) for multivariate Gaussian distribution. This

loss function has been used widely in the prior research on estimation of

covariance and precision matrices (see, for instance, Yuan and Lin 2007;

Rothman et al. 2008; Fan et al. 2009; Yin and Li 2013). Moreover, we

also use the Mean Squared Error defined as:

MSE(Ω̂,Ω) = ||Ω̂− Ω||22. (2.10)
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Regarding the sparsity pattern or GGM prediction performance, we compute

specificity, sensitivity and Matthews Correlation Coefficient (MCC), defined

as:

Specificity =
TN

TN + FP
, (2.11)

Sensitivity =
TP

TP + FN
, (2.12)

and

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (2.13)

where TP, TN, FP and FN are the numbers of true positives (number of

correctly estimated non-zero entries), true negatives (number of correctly

estimated zero entries), false positives (number of incorrectly estimated non-

zero entries) and false negatives (number of incorrectly estimated zero en-

tries), respectively. Note that FP and FN can be seen as Type I and Type II

errors, respectively. The MCC measure was introduced by Matthews (1975)

and it is commonly used to measure the performance of binary classifiers.

The MCC values are in [-1,1], and the closer the MCC to one is, the better

the classification is.

We consider the GLASSO and the R-GLASSO procedures where the penalty

parameters ν and ξk, as well as the k-root parameter, are estimated using the

BIC criterion (2.8). We also focus on the square-root GLASSO procedure,

i.e., k = 2, because of its good behaviour in practice. Finally, we include a

comparison with the method CLIME5 as it is one of the popular estimators

for the precision matrix. Cai et al. (2011) proposed the CLIME estimator

as a matrix which is obtained by symmetrizing the solution of the following

5For calculating GLASSO, R-GLASSO and CLIME estimators we use the R packages
glasso and clime, available at http://cran.r-project.org/web/packages.

http://cran.r-project.org/web/packages
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optimization problem:6

min ||Ω||1 (2.14)

subject to ||ΩS − I||∞ ≤ ν, (2.15)

where ν is the associated regularization parameter. The parameters for

GLASSO, CLIME and R-GLASSO for k = 2 are estimated using the BIC

criterion (2.7).

2.5.3 Discussion of Results

We firstly compare the computational time of the considered methods. The

computational time for each estimator represents the sum of the working

time of the parameter selection process and the working time of the estima-

tion using the selected parameters. For the proposed R-GLASSO method,

the parameter selection process includes the estimation of both parameters

ξk and k, where parameter k is selected from five values k = 1, 2, ..., 5. Fi-

nally, for selection of the penalty parameters, we consider the same grid size

for all the methods. Table 2.1 provides the computational times of the three

estimators for model 5.7 We observe that CLIME method is very time con-

suming, especially when p is large. On the other hand, the difference between

the time of the methods GLASSO and R-GLASSO is relatively small, even

for large values of p. Hence, we do not sacrifice too much the computational

cost for R-GLASSO method.

We provide the simulation results in the Appendix B to conserve space (see

Tables B.1-B.5). Each table reports the averages over 100 replications and

the standard deviations (SD) of the corresponding losses and prediction mea-

sures. We organize the discussion of our results as follows. We first compare

6Since in the problem (2.14) there is no symmetry condition on Ω, the solution Ω̂ =
[ω̂ij ]1≤i,j≤p is not symmetric in general. The CLIME estimator Ω̂o = [ω̂o

ij ]1≤i,j≤p is

obtained by symmetrizing Ω̂, i.e., ω̂o
ij = ω̂o

ji = ω̂ijI|ω̂ij |≤|ω̂ji| + ω̂jiI|ω̂ij |>|ω̂ji|, for 1 ≤ i, j ≤
p.

7The computational time differs for different models. However, the comparison results
are roughly the same.
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Table 2.1: Total computational time (in seconds) of the three
estimators for model 5.

p 100 200 300

GLASSO 0.37 2.15 7.26

R-GLASSO 0.84 5.32 11.61

CLIME 31.50 458.29 2480.95

our proposed R-GLASSO estimator with the GLASSO estimator. We then

compare the R-GLASSO estimator with the CLIME estimator.

We report the statistical losses in Tables B.1 and B.2. We observe that the

proposed R-GLASSO method provides lower KLL and MSE than GLASSO

for all the models. Therefore, R-GLASSO method outperforms GLASSO in

terms of the statistical losses.

Tables B.3, B.4 and B.5 illustrate the results of the GGM prediction per-

formances. From Tables B.3 and B.5, we observe that R-GLASSO outper-

forms GLASSO for all the models in terms of specificity and MCC.8 Finally,

R-GLASSO outperforms GLASSO in terms of sensitivity (see Table B.4)

for models with deterministic sparsity patterns (models 6, 7). However,

GLASSO performs better in terms of sensitivity for models with random

sparsity patterns (models 1, 2, 3, 4). For model 5 all three methods provide

the same sensitivity level.

When we compare the proposed estimator with CLIME, our proposed R-

GLASSO provides better results for models 2, 3, 4, 5 and similar results for

models 1, 6, 7 in terms of KLL. Moreover, R-GLASSO outperforms CLIME

for models 2, 3, 4, 5, 6, 7 and provides similar results for model 1 in terms

of MSE. In addition, the R-GLASSO estimator outperforms CLIME method

in terms of MCC for models 1, 2, 3, 4, 7. Our proposed R-GLASSO method

provides higher sensitivity for models 2, 3, 4, 6, 7 and higher specificity for

models 1, 2, 3, 4, 7. On the other hand, CLIME provides better GGM pre-

diction performances for model 5. However, we note that the computational

8Specificity and MCC are excluded for model 6, because these measurements are not
defined for dense models.
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cost of CLIME is considerably larger than that of R-GLASSO (see Table

2.1).

In sum, the proposed R-GLASSO estimation method provides better per-

formance, including matrix losses and GGM predictions, than GLASSO and

CLIME methods for most of the models. Note also that this conclusion holds

if we use the square-root GLASSO method (i.e., k = 2). This finding allows

us to simplify and “robustify” our framework without sacrificing too much

the performance.

2.6 Real Data Applications

In this section, we conduct an empirical analysis of the proposed R-GLASSO

method through three real-data applications. In particular, we use breast

cancer and SRBC tumour datasets to predict the tumour behaviour using

Linear Discriminant Analysis (LDA). Our last application aimed to select a

large financial portfolios.

2.6.1 Breast Cancer Data

In this application, we focus on the problem of predicting breast cancer pa-

tients with pathological complete response (pCR). The literature has shown

that the pCR state after the neoadjuvant chemotherapy strongly indicates

a cancer-free life (Kuerer et al. 1999). Thus, it is important to select the

patients with the pCR state correctly. In our application we use a dataset

containing gene expression levels,9 previously analysed by Hess et al. (2006).

This dataset contains 22283 gene expression levels of 133 patients (subjects)

with different stages of breast cancer. There are 34 patients with pCR and

99 patients with residual disease (RD).

First, we divide the data into a training set and a testing set with sizes 112

and 21, respectively. This process is repeated 100 times. We follow the same

division scheme applied in Cai et al. (2011). The testing set randomly selects

9The dataset is available at http://bioinformatics.mdanderson.org/pubdata.

html.

http://bioinformatics.mdanderson.org/pubdata.html.
http://bioinformatics.mdanderson.org/pubdata.html.
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Table 2.2: Average pCR/RD classification measurements over 100
replications for p = 113 genes.

Method Specificity Sensitivity MCC
GLASSO 0.726 0.580 0.281
R-GLASSO k = 2 0.633 0.840 0.413
R-GLASSO k = 3 0.618 0.856 0.414
R-GLASSO k = 4 0.611 0.868 0.419
CLIME 0.693 0.822 0.453

5 subjects with pCR and 16 subjects with RD. The training set contains the

remaining subjects. Second, for the training set we apply two sample t-test

between the two groups in order to select the most significant 113 genes

with the smallest p-values. Finally, the precision matrix Ω is estimated

with the methods GLASSO, R-GLASSO and CLIME, using the training set.

The penalty parameters for all three methods are estimated using the BIC

criterion (2.7). We analyse the performance of the R-GLASSO method when

the parameter k is selected from a range 2 to 4.10 The estimated precision

matrix is used in the Linear Discriminant Analysis (LDA) score:

δt(Y ) = Y T Ω̂µ̂t −
1

2
µ̂Tt Ω̂µ̂t, (2.16)

where t = 1, 2 (i.e., t = 1 for pCR and t = 2 for RD) and µ̂t =
1

nt

∑
i∈classt xi

is the within group average, calculated using the training data. We use the

LDA score δt(Y ) to classify the subject Y from the testing set. The rule for

the classification is t̂ = arg max δt(Y ) (t = 1, 2).

To measure the prediction accuracy for the three methods, we use specificity,

sensitivity and Matthews Correlation Coefficient (MCC), as defined in sec-

tion 2.5.2. Moreover, we consider TP and TN as the number of correctly

predicted pCR and RD, respectively, and FP and FN as the number of erro-

neously predicted pCR and RD, respectively. Table 2.2 reports the average

measures over 100 replications.

We observe that the proposed R-GLASSO for different values of k has a

higher MCC than the GLASSO one, which indicates a better classification

10For the sake of time, we do not estimate the parameter k. We choose different values
for this parameter.
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performance. Moreover, we find that the proposed R-GLASSO method out-

performs GLASSO in terms of sensitivity. We also observe that R-GLASSO

outperforms CLIME in terms of sensitivity. On the other hand, CLIME out-

performs GLASSO and R-GLASSO estimators in terms of specificity and

MCC. However, we note that CLIME is computationally time-consuming.

Additionally, we repeat the same application by considering the most signif-

icant 200 genes instead of 113. We provide the results in Table 2.3.

Table 2.3: Average pCR/RD classification measurements over 100
replications for p = 200 genes.

Method Specificity Sensitivity MCC
GLASSO 0.750 0.606 0.328
R-GLASSO k = 2 0.700 0.836 0.470
R-GLASSO k = 3 0.690 0.844 0.476
R-GLASSO k = 4 0.689 0.856 0.476
CLIME 0.712 0.838 0.483

As can be observed, the results are roughly similar to those obtained with

113 genes.

2.6.2 SRBC Tumour Data

In this application, we consider the problem of predicting the type of the

Small Round Blue Cell (SRBC) tumours. The accurate prediction and diag-

nosis of the SRBC tumours is a major challenge, because the associated ther-

apy and the treatment highly depend on the diagnosis (Khan et al. 2001).

We use a dataset analysed by Khan et al. (2001), which contains the ex-

pression levels of 2308 genes for 64 tissue samples.11 In this dataset, there

are four types of SRBC tumours: 12 tissues of Neuroblastoma (NB), 21 tis-

sues of Rhabdomyosarcoma (RMS), 8 tissues of Burkit Lymphoma, a subset

of non-Hodgkin Lymphoma (BL), and 23 tissues of Ewing family tumours

(EWS).

11The dataset is available at http://www.bioinf.ucd.ie/people/aedin/R/full/

_datasets/.

http://www.bioinf.ucd.ie/people/aedin/R/full/_datasets/
http://www.bioinf.ucd.ie/people/aedin/R/full/_datasets/
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First, we divide the data into a training set and a testing set with sizes 50 and

14, respectively. This process is repeated 100 times. To ensure that in both

sets there are tissues of all four types, we obtain the training set by randomly

selecting 18 tissues from the EWS class, 6 tissues from BL class, 9 tissues

from NB class and 17 tissues from RMS class (around 70% of the subjects

from each class). The remaining 14 tissues form the testing set. Second, we

select the most significant 100 genes according to their F-statistics values.

We rank the genes in the training set using the F-statistics (Rothman et al.

2009), defined as

F =

1
m−1

m∑
i=1

ni(x̄i − x̄)2

1
n−m

m∑
i=1

(ni − 1)s2
i

, (2.17)

where m = 4 is the number of tumour classes, n = 50 is the number of

tissue samples, ni is the number of tissue samples of class i, x̄ is the overall

mean, x̄i and s2
i are the sample mean and the variance of the class i, respec-

tively. Finally, using the training set, we estimate the precision matrix Ω by

GLASSO, R-GLASSO and CLIME methods. The penalty parameters for all

three methods are estimated using the BIC criterion (2.7). We analyse the

performance of the R-GLASSO method when the parameter k is selected

from a range 2 to 4.12 The estimated precision matrix is used in the LDA

score δt(Y ), defined as (2.16), where t = 1, 2, 3, 4 is the index of tumour

class. To measure the prediction accuracy, we use the average proportion of

correctly classified tissues:

AP =
1

100

100∑
i=1

NCCi
14

, (2.18)

where NCCi is the number of correctly classified tissues in the i-th replica-

tion. We also repeat the same application by considering the most significant

200 genes instead of 100. We report the results for both cases in Table 2.4.

12For the sake of time, we do not estimate the parameter k. We choose different values
for this parameter.
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Table 2.4: Average proportion of correctly classified tissues over 100
replications.

Method p = 100 p = 200
GLASSO 0.949 0.874
R-GLASSO k = 2 0.988 0.983
R-GLASSO k = 3 0.991 0.983
R-GLASSO k = 4 0.990 0.983
CLIME 0.988 0.982

We highlight that the average prediction level is higher for the R-GLASSO

estimator than that for the GLASSO one. Moreover, we observe that R-

GLASSO and CLIME provide similar results.

2.6.3 S&P 500 Portfolio Stock Selection

In our last application, we focus on developing a stock portfolio with mini-

mum risk (i.e., variance). The precision matrix estimation plays a fundamen-

tal role in computing this optimal portfolio (Stevens 1998). It is well known

that the weights of the (global) minimum variance portfolio are defined as:

wMV P =
Ω1p

1′pΩ1p
, (2.19)

(see DeMiguel et al. 2009) where 1p denotes a p× 1 vector of ones. As the

minimum-variance portfolio depends directly on the estimation of the preci-

sion matrix, an accurate estimation of such matrix may lead to a decrease

of the out-of-sample risk or variance of the portfolio.

Following the empirical analysis by Goto and Xu (2013), we use monthly

returns of the stock constituents of S&P 500 index for a total of n = 240

months.13 We consider three different portfolios: a small portfolio with

p = 80 of the largest stocks in the S&P 500 index, a medium portfolio

with p = 200 randomly selected stocks and a large portfolio with p = 300

randomly selected stocks. To compute the estimated precision matrices,

13The observations cover the period of April 1st 1994 - April 1st 2014.
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we apply the R-GLASSO, GLASSO and CLIME methods, using a “rolling-

horizon” procedure as in DeMiguel et al. (2009). In particular, the rolling

window contains 100 months, leaving 140 months to compute the out-of-

sample portfolio variances for each procedure.

In this particular application, we do not calibrate the penalty parameters us-

ing the BIC criterion because the sparsity pattern of the estimated precision

matrix does not have an important role. To select the penalty parameters

for the precision estimation methods, we propose the following methodology

based on cross-validation. For each estimation window of 100 months, we

select the first 80 months to compute the precision matrices and leave the

last 20 observations to minimize the corresponding portfolio variance over

the penalty parameter. Because this procedure is time consuming, we apply

this procedure in the first estimation window and then we fix the selected

parameter along the rest of the out-of-sample period, as in Goto and Xu

(2013). We consider different versions of the R-GLASSO procedure where

the root k is fixed from 1 to 5 with increment of 0.5.

Table 2.5 shows the out-of-sample variances for the different portfolios. The

Table 2.5: The out-of-sample variances for different portfolios.

Methods p = 80 p = 200 p = 300
GLASSO 0.00203 0.00143 0.00106
R-GLASSO k = 1.5 0.00157 0.00101 0.00103
R-GLASSO k = 2 0.00142 0.00091 0.00088
R-GLASSO k = 2.5 0.00141 0.00088 0.00090
R-GLASSO k = 3 0.00138 0.00229 0.00110
R-GLASSO k = 3.5 0.00155 0.00116 0.00106
R-GLASSO k = 4 0.00158 0.00168 0.00103
R-GLASSO k = 4.5 0.00161 0.00282 0.00100
R-GLASSO k = 5 0.00165 0.00462 0.00108
CLIME 0.00162 0.00650 0.00210

results show that the R-GLASSO method provides lower out-of-sample port-

folio risk than that of the GLASSO method, especially for values of k around

2. We observe the same insights when comparing R-GLASSO with CLIME.
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DT Estimator Using Adaptive

LASSO Penalties

3.1 Introduction

As discussed in the Chapter 2, the GLASSO method has become a state-

of-the-art estimator for the precision matrix and one of the most applied

approaches for covariance selection. We saw that the loss function of the

GLASSO method is the log-likelihood function of the Gaussian model. Al-

though the Gaussian assumption of data is quite restrictive, the GLASSO

framework still provides a consistent estimator for non-Gaussian data (Raviku-

mar et al. 2011). However, the log-likelihood function may not be a compre-

hensible loss function because of its complex nature. Recently, Zhang and

Zou (2014) introduced a so-called D-trace loss which has a much simpler

structure. The D-trace (DT) loss has the following definition:

fDT (Ω,Σ) =
1

2
trace(Ω2Σ)− trace(Ω). (3.1)

The function fDT (Ω,Σ) is convex in Ω, has a positive-definite Hessian ma-

trix, and a unique minimizer at Σ−1. We provide detailed proof of these

statements in the remark E.4 of Appendix E.

30
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Through numerical simulations, Zhang and Zou (2014) show that the `1 norm

penalized D-trace loss minimization approach outperforms the GLASSO

method in terms of different performance measures.

In this chapter, we focus on the `1 norm penalized D-trace loss minimization

method (hereafter, DT method). It is well known that `1 penalty produces

significant biases because of its overestimation feature (see, for instance, Zou

2006; Fan et al. 2009; Bühlmann and van de Geer 2011). The contribution

of this chapter aimed to mitigate those biases. Based on the adaptive frame-

work, we propose two re-weighted versions of the DT method. We employ

adaptive thresholding operators in our proposed extensions. Previously, the

adaptive framework has been applied in other context, such as variable selec-

tion (see Zou 2006; Zhou et al. 2009), precision matrix estimation (see Fan

et al. 2009) and covariance matrix estimation (see Rothman et al. 2009).

The advantage of the adaptive LASSO framework in high-dimensional set-

tings is that it provides a stable and sparse estimator, simultaneously corrects

the bias and, moreover, it does not augment the computational time.

Through extensive numerical simulations we show that the methods based on

the proposed extensions outperform the original DT method. In particular,

for the simulation study we consider different models, including those used in

the simulation experiments by Zhang and Zou (2014). To measure the sta-

tistical performance of the methods, we use the entropy loss, the Frobenius

norm loss, the operator norm loss and the matrix `1 norm loss. Furthermore,

we use the percentages of correctly estimated zeros and non-zeros, accuracy

and Matthews Correlation Coefficient (MCC) to measure the GGM predic-

tion performance. Finally, we investigate the performance of the estimators

in discriminant analysis using real datasets.

The rest of the chapter is organized as follows. In Section 3.2, after introduc-

ing some notations, we describe two extensions of the DT precision matrix

estimation based on the adaptive LASSO framework. We consider the sta-

tistical loss and GGM prediction performance of the proposed estimators in

Section 3.3 through exhaustive numerical simulations. We compare our pro-

posed estimators with the DT and GLASSO estimators. In Section 3.4, we



Chapter 3. Proposed Methodologies 32

apply the proposed methodologies to two real-world applications: the pre-

diction of breast cancer state and the prediction of the colon cancer state.

We provide the simulation results in Appendix C.

3.2 Proposed Methodologies

Zhang and Zou (2014) have proposed precision matrix estimation method

DT through minimizing the off-diagonal `1 norm penalized D-trace loss func-

tion (3.1). The DT estimator is the solution of the following optimization

problem:

Ω̂DT = arg min
Ω�εI

1

2
trace(Ω2S)− trace(Ω) + τ ||Ω||1,off, (3.2)

where τ > 0 is the associated penalty parameter and ε is a small positive

value. Note that in problem (3.2), the regularization of the matrix Ω is

considered through its off-diagonal entries. We have selected the off-diagonal

||Ω||1,off penalty term to be consistent with the original article. On the other

hand, we note that ||Ω||1 penalty can also be used in the problem (3.2).

In this way, for this chapter we employ the estimator GLASSO as the solution

of the off-diagonal `1 norm penalized log-likelihood function (1.1), defined as

follows:

Ω̂GLASSO = arg max
Ω

log det Ω− trace(SΩ)− ν||Ω||1,off, (3.3)

The choice of the term ||Ω||1,off enables us to achieve fair comparison with the

proposed method and with the results obtained by Zhang and Zou (2014).

To solve the problem (3.2), Zhang and Zou (2014) developed an algorithm,

based on the alternating direction method. Previously, other authors have

applied this algorithm for solving convex optimization problems (see, for

instance, Scheinberg et al. 2010; Xue et al. 2012; Cui et al. 2014).
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One of the important steps in the algorithm, where the LASSO penalty

appears, is the following optimization problem:

min
Ω=ΩT

1

2
trace(Ω2)− trace(ΩA) + τ ||Ω||1,off, (3.4)

where the matrix A is defined in the algorithm process. One can show that

the optimization problem (3.4) is strongly related to the soft thresholding

operator. We provide the proof of the equality between the problem (3.4)

and the soft thresholding operator in the remark E.5 of Appendix E. The

solution Ω̂ = [ω̂ij]1≤i,j≤p of problem (3.4) can be written as:

Ω̂ = T (A, τ), (3.5)

where T is the soft thresholding operator defined as follows:

[T (A, τ)]ij = sign(Aij) max(|Aij| − τ, 0)Ii6=j + AijIi=j

=


Aij, if i = j,

Aij − τ, if i 6= j, Aij > τ,

Aij + τ, if i 6= j, Aij < −τ,
0, if i 6= j,−τ ≤ Aij ≤ τ

,
(3.6)

for 1 ≤ i, j ≤ p.

As discussed in the Section 3.1, this work addresses the bias problem of the

LASSO. From the regularization point of view, the `1 penalty may not be

the best choice because of this issue. In order to reduce the bias of the DT

estimator, produced through the LASSO regularization in (3.4) (or through

the soft thresholding operator (3.6)), we propose two adaptive extensions of

the DT estimator.

We propose our first adaptive approach, motivated by the idea of the adap-

tive GLASSO method provided by Fan et al. (2009). First, for a specific

weight matrix W = [wij]1≤i,j≤p, we define the Weighted Adaptive Threshold-

ing operator as:

[WAT (A, τ)]ij = sign(Aij) max(|Aij| −
τ

|wij|
, 0)Ii6=j + AijIi=j, (3.7)
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for 1 ≤ i, j ≤ p. One can straightforwardly verify the following property of

the weighted adaptive thresholding operator (3.7):

wij = 0 =⇒ [WAT (A, τ)]ij = 0, (3.8)

for 1 ≤ i, j ≤ p. The small wij weights imply large penalties for the (i, j)

entries, whereas the large wij weights imply small penalties for the (i, j)

entries.

Next, we can write the Weighted Adaptive Thresholding operator (3.7) as

the solution of the following convex optimization problem:

min
Ω=ΩT

1

2
trace(Ω2)− trace(ΩA) + τ

p∑
i=1

p∑
j=1,j 6=i

|ωij|
|wij|

. (3.9)

Finally, by replacing the problem in (3.4) with the problem in (3.9), we derive

our proposed Weighted Adaptive D-trace estimator, defined as follows:

Ω̂WADT = arg min
Ω�εI

1

2
trace(Ω2S)− trace(Ω) + τ

p∑
i=1

p∑
j=1,j 6=i

|ωij|
|wij|

. (3.10)

Essentially, the matrix W is a prior information about the precision matrix

or any consistent, computationally cheap estimator (e.g., a well-defined two-

step estimator) and, therefore, should be chosen properly.

Our second adaptive approach is motivated by Rothman et al. (2009), where

we use the Adaptive Thresholding operator, defined as follows:

[AT (A, τ)]ij = sign(Aij) max(|Aij| −
τ

|Aij|
, 0)Ii6=j + AijIi=j, (3.11)

for 1 ≤ i, j ≤ p. The operator (3.11) can be considered as a special case

of the operator (3.7), when wij = Aij, 1 ≤ i, j ≤ p. To illustrate the idea,

Figure 3.1 depicts the soft and the adaptive thresholding operators for τ = 1.

The main advantage of the operator (3.11) is the absence of a weight matrix.

Through the Adaptive Thresholding operator (3.11), the large entries Aij are

penalized less and the small entries are penalized more. In other words, the
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Figure 3.1: Soft and Adaptive thresholding functions for τ = 1.

operator (3.11) overestimates less than the soft threshodling operator (3.6)

since many smaller values will be discarded. Hence, the operator (3.11) pro-

vides smaller bias than the operator (3.6) (i.e., the LASSO penalization). As

with the Weighted Adaptive D-trace estimator, one can derive formulations

similar to (3.9) and (3.10) for the Adaptive Thresholding operator. How-

ever, in these formulations the weight matrix W can not be defined directly,

since the matrix A appears in the solver and is not fixed. We can obtain

the D-trace estimator through the Adaptive Thresholding operator (3.11)

by simply replacing the soft thresholding operator (3.6) with the operator

(3.11) in the algorithm (see the Algorithm 1 bellow for more details). We

call the estimator obtained through the operator (3.11) the Adaptive D-trace

estimator Ω̂ADT .

For completeness, we present the algorithm for solving the DT method and

the necessary modifications for solving WADT and ADT methods. We first

provide definitions of some functions employed in the algorithm. Assume

that A = UV UT = Udiag(v1, ..., vp)U
T is the eigen-decomposition1 of any

1For a vector a = (a1, ..., ap) we set diag(a1, ..., ap) a diagonal matrix with entries ai.
For a matrix A we set diag(A) a diagonal matrix, which has the diagonal entries of A.



Chapter 3. Proposed Methodologies 36

p× p symmetric matrix A � 0 and v1 ≥ ... ≥ vp are its eigenvalues. For any

p× p matrix B, define

G(A,B) = U{(UTBU) ◦ C}UT , (3.12)

where Ci,j =
2

vi + vj
for 1 ≤ i, j ≤ p and ◦ denotes the Hadamard product

of matrices. For any symmetric matrix A and any ε > 0, define

[A]+ = Udiag{max(v1, ε), ...,max(vp, ε)}UT . (3.13)

Algorithm 1 provides the necessary steps for solving our proposed estimation

methods:

Algorithm 1 Alternating direction method

Step 1. Initialization: k = 0, Λ0
0 = Λ0

1, Θ0
0 = Θ0

1.

Step 2. Repeat the following sub-steps until convergence:

(a) Set k=k+1.

(b) Compute the matrix Θk+1 = G(S+2ρI, I+ρΘk
0 +ρΘk

1−Λk
0−

Λk
1), where function G is defined in (3.12).

(c) Set Θk+1
1 = [Θk+1 + Λk

1/ρ]+. Compute Θk+1
0 = T (Θk+1 +

Λk
0/ρ, τ/ρ) in case of DT estimator, Θk+1

0 = WADT (Θk+1 +
Λk

0/ρ, τ/ρ) in case of WADT estimator and Θk+1
0 = ADT (Θk+1 +

Λk
0/ρ, τ/ρ) in case of ADT estimator. The thresholding functions

T, WADT and ADT are defined in (3.6), (3.7) and (3.11), respec-
tively.

(d) Set Λk+1
0 = Λk

0 + ρ(Θk+1 − Θk+1
0 ) and Λk+1

1 = Λk
1 + ρ(Θk+1 −

Θk+1
1 ).

It is important to note that we can significantly reduce the computational

time of the Algorithm 1 by discarding the constraint Ω � εI in the initial

optimization problem (DT, WADT or ADT). This enables us to omit the

function (3.13) from the step 2c, which is the most computationally expen-

sive part of the algorithm. We call the optimization problem without the
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constraint Ω � εI as the secondary problem, defined as follows:

Ω̃ = arg min
ΩT =Ω

1

2
trace(Ω2S)− trace(Ω) + τPEN(Ω), (3.14)

where PEN(Ω) term is defined according to the estimation method (DT,

ADT or WADT). Following Zhang and Zou (2014), we also present the sim-

plified version of the Algorithm 1.

Algorithm 2 Alternating direction method (simplified)

Step 1. Initialization: k = 0, Λ0, Θ0
0 = diag(S)−1.

Step 2. Repeat the following sub-steps until convergence:

(a) Set k=k+1.

(b) Compute the matrix Θk+1 = G(S + ρI, I + ρΘk
0 − Λk).

Compute Θk+1
0 = T (Θk+1 + Λk/ρ, τ/ρ) in case of DT estimator,

Θk+1
0 = WADT (Θk+1 + Λk/ρ, τ/ρ) in case of WADT estimator

and Θk+1
0 = ADT (Θk+1 + Λk/ρ, τ/ρ) in case of ADT estimator.

(d) Set Λk+1 = Λk
0 + ρ(Θk+1 −Θk+1

0 ).

Step 3. Consider the converged Θk as the solution of the secondary
problem (3.14).

Step 4. If λmin(Θ̃) > ε, report Θ̃ as the solution of the initial problem.
Otherwise, use Algorithm 1 with Θ̃ as the starting value for Θ0

0 and
Θ0

1.

The algorithm stops if the following two conditions are satisfied:

||Θk+1 −Θk||2
max(1, ||Θk||2, ||Θk+1||2)

< 10−7,
||Θk+1

0 −Θk
0||2

max(1, ||Θk
0||2, ||Θk+1

0 ||2)
< 10−7.

Finally, in the algorithm we use ρ = 1 and ε = 10−8. For more details we

refer to Zhang and Zou (2014).
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3.3 Simulation Study

In this section, we implement a simulation study to show the goodness of

the proposed WADT and ADT estimators and to compare their associated

performance with those of the DT estimator and the state-of-the-art esti-

mator GLASSO. Particularly, in subsection 3.3.1, we introduce the models

considered for the true precision matrix Ω. In subsection 3.3.2, we describe

the performance evaluation. In subsection 3.3.3, we provide the discussion

of the obtained results.

3.3.1 Considered Models

We perform an exhaustive numerical simulation study through eight different

sparsity configurations for the precision matrix, including random and fixed

patterns. The considered models for the true precision matrix Ω are the

following:

• Model 1. AR(2) structure: ωi,i = 1, ωi,j = 0.2 for 1 ≤ |i− j| ≤ 2, and

zero otherwise.

• Model 2. AR(4) structure: ωi,i = 1, ωi,j = 0.2 for 1 ≤ |i− j| ≤ 4, and

zero otherwise.

• Model 3. A matrix with ωi,i = 1, ωi,i+1 = 0.2 for mod(i, p1/2) 6= 0,

ωi,i+p1/2 = 0.2, and zero otherwise.

• Model 4. AR(1) structure: ωii = 1, ωi,i−1 = ωi−1,i = 0.45, and zero

otherwise.

• Model 5. (Modified) AR(1) structure with different entries: Ω =

D1/2ΩAR(1)D
1/2, where D = diag(D1, ..., Dp) with Di =

4i+ p− 5

5(p− 1)
and ΩAR(1) is a matrix with a structure defined in the model 4.

• Model 6. Decay structure: ωij = 0.6|i−j|.

• Model 7. A random positive-definite matrix, containing 5% of non-zero

entries.
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• Model 8. A random positive-definite matrix, containing 10% of non-

zero entries.2

Our choice of these models is motivated as follows. To compare our proposed

methods with Zhang and Zou (2014), we consider the models employed in

their study (models 1, 2 and 3). In addition, we consider other models

commonly used in the prior literature, such as AR(1) structure model (model

4 - Yuan and Lin (2007), Friedman et al. (2008)), its modified version (model

5) and decay structure model (model 6 - Cai et al. (2011), Fan et al. (2009)).

Note that models 1-6 have deterministic patterns. We study the performance

of the considered methods also using models with random patterns (models

7 and 8). This allows us to obtain more robust evaluation and to have better

insight about the performance of the estimation methods.

Consistent with Zhang and Zou (2014), we simulate multivariate normal

random samples with zero mean and sample size n = 400, for each of the

models. For the number of variables, we choose p = 484 for model 3 and p =

500 for the other models.3 These values allow us to examine the performance

of the proposed estimators in high-dimensional settings and, especially, when

p > n. Finally, we repeat this procedure 100 times.

3.3.2 Performance Evaluation

Similar to Zhang and Zou (2014), to evaluate the statistical performance of

a given estimator Ω̂, we consider the Frobenius norm `2, the spectral norm

`spec and the matrix `1 norm, defined respectively as:

`2(Ω̂,Ω) = ||Ω̂− Ω||2, (3.15)

`spec(Ω̂,Ω) = ||Ω̂− Ω||spec, (3.16)

2Models 7 and 8 are generated using the Matlab command sprandsym.
3For model 3, p1/2 is required to be an integer.
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and

`1(Ω̂,Ω) = ||Ω̂− Ω||`1 . (3.17)

Next, we consider the entropy loss function, also known as Kullback-Leibler

Loss function (Kullback and Leibler 1951), defined as follows:

KLL(Ω̂,Ω) = trace(Ω−1Ω̂)− log det(Ω−1Ω̂)− p. (3.18)

In order to evaluate the sparsity pattern or GGM estimation performance,

we compute the percentages of correctly estimated non-zeros and zeros (also

known as sensitivity and specificity, respectively) and the accuracy of clas-

sification, defined respectively as:

Sensitivity =
TP

TP + FN
× 100, (3.19)

Specificity =
TN

TN + FP
× 100, (3.20)

and

Accuracy =
TN+TP

p2
× 100. (3.21)

We define TP, TN, FP and FN are defined in the Chapter 2. We also compute

the Matthews Correlation Coefficient (MCC), which is defined as follows:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (3.22)

In order to select the penalty parameters ν and τ , in line with Zhang and

Zou (2014), we use five-fold CV (cross-validation) technique. This technique

is defined as follows. We divide the sample data into five disjoint subgroups

(i.e., folds). We denote the index of the observations in the k-th fold by Tk,

for k = 1, ..., 5. We define five-fold CV score by
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CV (τ) =
5∑

k=1

(
nk log det(Ω̂−k(τ))−

∑
i∈Tk

XiΩ̂−k(τ)XT
i

)
, (3.23)

where nk is the size of the k-th fold4 and Ω̂−k(τ) is the precision matrix

estimate obtained using the sample X \ Tk = ∪5
i=1Ti \ Tk and the tuning pa-

rameter τ . Finally, we select the penalty parameter estimate by maximizing

the score CV(τ) using a grid search.

For the WADT estimator, as a weight matrix we choose the inverse of the

popular Ledoit-Wolf shrinkage covariance estimator, i.e., W = Σ̂−1
LW . Ledoit

and Wolf (2004) proposed this covariance estimator as the following:

Σ̂LW = (1− α)S + α
trace(S)

p
I, (3.24)

where α ∈ [0, 1] is the shrinkage parameter. Finally, we use the Matlab code

of Zhang and Zou (2014) to implement the algorithm for the DT method

and the modification of their code for the WADT and ADT estimators.

3.3.3 Discussion of Results

We provide the simulation results in the Appendix C to conserve space.

Tables C.1-C.8 report the averages of the corresponding losses and mea-

surements over 100 replications. The standard deviations (SD) are given in

parentheses. Tables C.5, C.6 and C.8 provide the measurements in percent-

ages. We organize the discussion of our results as follows. We first compare

our proposed estimators ADT and WADT with the DT estimator. We then

compare our proposed estimators ADT and WADT with the GLASSO esti-

mator. We finally compare the DT estimator with the GLASSO estimator.

We report the statistical losses in Tables C.1-C.4. We observe that for most of

the models either the ADT or the WADT estimator provides the lowest losses

versus the other methods (DT and GLASSO). More specifically, the ADT

estimator provides the lowest KLL for models 1, 2, 6, the lowest Frobenius

norm and spectral norm for models 2, 6 and the lowest matrix `1 norm for

4We set nk =
n−mod(n, 5)

5
, for all k = 1, ..., 5.
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models 1, 3, 6. On the other hand, the WADT estimator provides the lowest

KLL for models 3, 4, 5, 7, 8, the lowest Frobenius norm and spectral norm

for models 1, 3, 4, 5, 7, 8 and the lowest matrix `1 norm for models 4, 5, 7,

8. The only exception when the ADT estimator fails to outperform the DT

estimator is for models 2, 8 in terms of matrix `1 norm and for models 1, 3, 7

in terms of spectral norm. The only exception when the ADT estimator fails

to outperform the GLASSO method is for model 3 in terms of KLL. The only

exception when the WADT estimator fails to outperform the DT estimator

is for models 1, 2 (only in terms of matrix `1 norm) and for model 6, which is

precisely a dense model. The WADT method outperforms GLASSO method

in all the models.

The comparison of the performances of DT versus GLASSO yields the follow-

ing insights. In line with Zhang and Zou (2014), we find that DT outperforms

GLASSO for all the models in terms of Frobenius norm, spectral norm, and

`1 norm. However, in their work, Zhang and Zou (2014) did not compare DT

and GLASSO in terms of KLL. We find mixed results in comparative perfor-

mance of DT versus GLASSO. We observe that DT outperforms GLASSO

for models 1, 2, 5, 6, 7, 8 in terms of the KLL. In contrast to Zhang and Zou

(2014), we find that DT fails to outperform GLASSO for models 3 and 4 in

terms of KLL.

We report the GGM prediction performance in Tables C.5-C.8.5 We ob-

serve that for most of the models either the ADT or the WADT estimator

provides better GGM prediction performance than the other methods (DT

and GLASSO). More specifically, the ADT estimator provides the highest

specificity for models 1, 3, the highest sensitivity for model 2 and the highest

MCC and accuracy for models 1, 2, 3. On the other hand, the WADT esti-

mator provides the highest specificity for models 2, 4, 5, 7, 8 and the highest

MCC and accuracy for models 4, 5, 7, 8. All the estimators provide the same

sensitivity for models 4 and 5. The only exception when our proposed esti-

mators (ADT and WADT) fail to outperform the DT estimator is for models

1, 3, 6, 7, 8 only in terms of sensitivity. Note that the weak performance in

5Specificity, MCC and accuracy are excluded for model 6 because these measures are
defined only for sparse models.
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terms of sensitivity is due to the adaptive framework. As mentioned earlier,

this framework omits small values, which leads to sparser precision matrix

estimator. However, for those models the DT estimator fails to outperform

the estimators ADT and WADT in terms of the overall GGM prediction

measures MCC and accuracy. In addition, the only exception when our pro-

posed estimators fail to outperform the GLASSO estimator is for models

3, 6, 7, 8 in terms of sensitivity. However, the GLASSO estimator fails to

outperform the proposed estimators in terms of the overall GGM prediction

measures MCC and accuracy for those models. Comparing the DT estimator

with the GLASSO estimator our findings show that the later outperforms

the DT estimator for models 3, 6, 7, 8 in terms of sensitivity and for model 3

in terms of specificity. In terms of the overall GGM prediction measures the

DT estimator outperforms the GLASSO estimator for all the models except

for model 3, where the GLASSO provides slightly higher accuracy and MCC

than DT.

As a summary, our proposed adaptive approaches ADT and WADT outper-

form DT and GLASSO for overwhelming majority of the considered models.

In spite of few exceptions, the proposed methods provide better performance

in terms of the statistical losses and GGM prediction measures, than the com-

petitive methods. In addition, our findings show that the WADT method

provides relatively better results than the ADT method when the required

weight matrix is the inverse of an estimated covariance matrix.

3.3.4 Comparison with R-GLASSO method

In this subsection, we provide a simulation study to compare the precision

estimation measures of the estimators ADT and WADT with those of the

estimator R-GLASSO (see Chapter 2). Thus, for an accurate and equitable

comparison we consider the models and evaluation measures employed in

numerical study of the Chapter 2 (see subsections 2.5.1 and 2.5.2, respec-

tively). Moreover, we select the penalty parameter τ using the BIC criterion,

proposed by Yuan and Lin (2007) and defined in (2.7). We recall that the

penalty term of the R-GLASSO estimator is applied to all the entries of the
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estimated matrix (including the diagonal elements). Therefore, in the simu-

lations below we employ DT, ADT and WADT methods with a penalization

term, which includes all the entries of the estimated matrix.6

We provide the simulation results in the Appendix D to conserve space.

Tables D.1-D.5 report the averages of the corresponding losses and mea-

surements over 100 replications. The standard deviations (SD) are given in

parentheses. We organize the discussion of our results as follows. We first

compare our proposed estimators ADT and WADT with the DT estimator

as an addition to the numerical study of the subsection 3.3.3. We then com-

pare the obtained measures of ADT and WADT with those obtained for the

R-GLASSO estimator.

We report the statistical losses in Tables D.1-D.2. We observe that the ADT

estimator provides the lowest KLL for model 7. On the other hand, the

WADT estimator provides the lowest KLL for models 1, 2, 3, 4, 5, 6 and the

lowest MSE for all the models. The only exception when the ADT estimator

fails to outperform the DT estimator is for model 1 in terms of KLL (only

when p = 300).

We report the GGM prediction performance in Tables D.3-D.5.7 We observe

that the ADT estimator provides the highest MCC for model 7. On the other

hand, the WADT estimator provides the highest specificity for models 1, 2,

3, 4, 5, 7, the highest sensitivity for models 1, 2, 3, 4 and the highest MCC

for models 1, 2, 3, 4, 5. All the estimators provide the same sensitivity for

model 5. However, the ADT fails to outperform the DT estimator for models

1, 2, 3, 4, 6 in terms of sensitivity, for models 1, 2, 3, 4 and 5 (only when

p = 300) in terms of specificity and MCC. The WADT fails to outperform

the DT estimator for models for model 6 and 7 in terms of sensitivity.

Now we compare the measures of ADT and WADT from Tables D.1-D.5

with their corresponding measures of R-GLASSO from Tables B.1-B.5. We

6In this particular subsection, we consider the penalty term ||Ω||1 instead of ||Ω||1,off

in the optimization problem (3.2).
7Specificity, MCC and accuracy are excluded for model 6 because these measures are

defined only for sparse models.
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observe that both ADT and WADT estimators outperform R-GLASSO esti-

mator for all the models in terms of KLL. The ADT estimator outperforms

R-GLASSO for model 5 in terms of MSE and provides similar results for

models 1, 2, 3, 4. On the other hand, WADT estimator outperforms R-

GLASSO for models 1, 2, 3, 4, 5 in terms of MSE. However, R-GLASSO

outperforms ADT and WADT for models 6 and 7 in terms of MSE.

We obtain the following comparison regarding the GGM prediction perfor-

mance. Firsly, we observe that both ADT and WADT estimators outperform

R-GLASSO estimator for models 5, 7 in terms of the specificity. However,

R-GLASSO outperforms ADT and WADT for models 1, 2, 3, 4 in terms of

specificity. Secondly, the ADT estimator outperforms R-GLASSO estimator

for models 4 and provides similar results for models 2, 3 in terms of sensitiv-

ity. On the other hand, WADT estimator outperforms R-GLASSO estimator

for models 1, 2, 3, 4 in terms of sensitivity. However, R-GLASSO outper-

forms ADT estimator for models 1, 6, 7 and WADT estimator for models

6, 7 in terms of sensitivity. All the estimators provide the same sensitivity

for model 5. Finally, we observe that the ADT estimator outperforms R-

GLASSO estimator for model 5 in terms of MCC. On the other hand, the

WADT estimator outperforms R-GLASSO for models 1, 2, 3, 5. However,

R-GLASSO outperforms ADT estimator for models 1, 2, 3, 4, 7 and WADT

estimator for models 4, 7 in terms of MCC.

3.4 Real Data Applications

In this section, we perform an empirical analysis of the proposed adaptive

approaches through real-data examples. In particular, we use breast cancer

and colon cancer datasets to predict the tumour behaviour using Linear

Discriminant Analysis (LDA). All applied datasets are available in the web

site of the National Center for Biotechnology Information.8

8Available at http://www.ncbi.nlm.nih.gov/.

http://www.ncbi.nlm.nih.gov/
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3.4.1 Breast Cancer Data

In the first application, we focus on the problem of predicting breast cancer

patients (subjects) with pathological complete response (pCR). This is an

important issue because after the neoadjuvant chemotherapy, according to

Kuerer et al. (1999), the pCR indicates a cancer-free life with high probabil-

ity. For this application we use a dataset (see Shi et al. 2010) containing

gene expression levels of subjects with different stages of breast cancer. The

dataset consists of 22,283 gene expression levels of 271 subjects. There are

58 subjects with pCR and 213 subjects with residual disease (RD).

First, we divide the data into a training set and a testing set with sizes

227 (almost 5/6 of the observations) and 44 (almost 1/6 of the observa-

tions), respectively, and repeat this process 100 times. For the testing set,

we randomly select 9 subjects with pCR and 35 subjects with RD (roughly

proportional to the number of the subjects in each group). The training set

contains the remaining subjects. Second, based on the training set we per-

form two sample t-tests between the two groups in order to select the most

significant 100 genes with the smallest p-values. Third, using the training

set, we estimate the precision matrix Ω with the DT, ADT, WADT and

GLASSO methods. We obtain the penalty parameters for these methods

using five-fold cross-validation technique. Finally, we use the estimated pre-

cision matrix in the LDA score, defined as follows:

δt(Y ) = Y T Ω̂µ̂t −
1

2
µ̂Tt Ω̂µ̂t, (3.25)

where t = 1, 2 (t = 1 for pCR and t = 2 for RD) and µ̂t =
1

nt

∑
i∈classt xi is the

within group average, calculated using the training data. We use the LDA

score δt(Y ) to classify the subject Y from the testing set. The rule for the

classification is t̂ = arg max δt(Y ). To measure the prediction accuracy for

all the methods, we use the specificity, sensitivity and Matthews Correlation

Coefficient (MCC), as defined in Section 3.3.2. We consider TP and TN as

the number of correctly predicted RD and pCR, respectively, and FP and

FN as the number of erroneously predicted RD and pCR, respectively. We

report the average measurements over 100 replications in Table 3.1.
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Table 3.1: Average pCR/RD classification measurements over 100
replications for p = 100 genes.

Methods Specificity Sensitivity MCC
GLASSO 0.4800 0.7751 0.2333
DT 0.6556 0.7537 0.3572
ADT 0.6989 0.7409 0.3782
WADT 0.7211 0.7334 0.3889

Our findings show that the GLASSO provides the highest sensitivity, but

it attains the lowest specificity and MCC. On the other hand, the adaptive

approach WADT provides the highest specificity and dominates all the other

estimators in terms of MCC. Furthermore, the ADT and WADT estimators

show similar results, the latter being slightly better.

To check the robustness of the obtained results, we repeat the same applica-

tion by considering the most significant 200 genes instead of 100. Table 3.2

reports the results. Our findings show that the results are roughly similar to

those obtained with 100 genes. The methods ADT and WADT outperform

DT and GLASSO methods in terms of the overall measurement MCC.

Table 3.2: Average pCR/RD classification measurements over 100
replications for p = 200 genes.

Methods Specificity Sensitivity MCC
GLASSO 0.4600 0.7891 0.2310
DT 0.6333 0.7620 0.3459
ADT 0.7033 0.7394 0.3793
WADT 0.7089 0.7414 0.3860

3.4.2 Colon Cancer Data

In the second application, we consider the problem of classifying the colorec-

tal cancer patients with Microsatellite Stability (MSS) state and Microsatel-

lite Instability (MSI) state. The dataset (see Jorissen et al. 2008) contains

the expression levels of 54,675 genes for 155 colorectal cancer samples. There

are 77 MSS and 78 MSI specimens in the dataset.

As with the first application, we divide the data into a training set and a

testing set with sizes 130 (almost 5/6 of the observations) and 25 (almost
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1/6 of the observations), respectively, and repeat this process 100 times. We

randomly select 12 MSS and 13 MSI specimens (roughly proportional to the

number of the subjects in each group), respectively, for the testing set and

the training set contains the remaining subjects. Again, we select the 100

most-significant genes and estimate the precision matrix Ω with the DT,

ADT, WADT and GLASSO methods. We obtain the penalty parameters for

these methods using five-fold cross-validation technique. Finally, we use the

estimated precision matrix in the LDA score (3.25), where t = 1 is for MSS

specimens and t = 2 is for MSI specimens.

Table 3.3 shows the average performance measures over the 100 replicates.

We observe that GLASSO provides the lowest performance measures while

the WADT estimator provides the highest ones. The DT and ADT estima-

tors provide relatively similar results.

Table 3.3: Average MSI/MSS classification measurements over 100
replications for p = 100 genes.

Methods Specificity Sensitivity MCC
GLASSO 0.9258 0.8961 0.8262
DT 1 0.8977 0.9020
ADT 1 0.8915 0.8966
WADT 1 0.9208 0.9235

We repeat the same application by considering the most significant 200 genes

instead of 100. Table 3.4 provides the results. We observe that the results

are similar to those obtained using 100 genes.

Table 3.4: Average MSI/MSS classification measurements over 100
replications for p = 200 genes.

Methods Specificity Sensitivity MCC
GLASSO 0.8558 0.8330 0.6956
DT 1 0.9015 0.9050
ADT 1 0.9054 0.9086
WADT 1 0.9238 0.9258

In sum, our findings show that in the considered applications the proposed

WADT and ADT methods are able to provide better classification perfor-

mance than DT and GLASSO estimators.
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Conclusions and Future

Research

4.1 Conclusions

Accurate estimation of the precision matrix is an important and attractive

problem because it has an essential role in various methodologies and re-

search fields. This problem is quite challenging when the dimensionality

has the same order as the sample size or is much larger. The main goal of

this thesis is to develop new estimation methods for the precision matrix

in high-dimensional statistical settings. Moreover, the proposed estimators

should provide competitive performance comparing with existing prominent

estimators.

In this thesis, we propose and analyse two novel approaches, which pro-

vide proper precision matrix estimator for high-dimensional problems. The

numerical results show that our proposed precision estimators are found

to compare favourably with the state-of-the-art estimators (e.g., GLASSO,

CLIME, etc.) in terms of several measures, even when the number of the

variables exceeds the sample size. Moreover, our proposed estimators provide

advantageous numerical properties in terms of GGM prediction.

49
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In Chapter 2, we provide a new approach for estimating high-dimensional

precision matrices, using `1 penalization framework. The proposed method

is a simple modification of the popular GLASSO approach based on perform-

ing a k-root transformation of the sample covariance matrix which allows to

reduce the spread of the corresponding eigenvalues. Through an extensive

analysis, using both simulated and real data sets, we show numerically that

the proposed improvement helps to achieve better performance without hav-

ing to increase considerably the computational burden. In particular, the

proposed R-GLASSO method provides lower statistical losses and higher

accuracy for the prediction of GGM, than those for the GLASSO method.

Moreover, the proposed procedure attains better results to CLIME, being

computationally less demanding. Our proposed method requires the calibra-

tion of an additional parameter k associated with the root transformation.

We propose a calibration procedure based on the BIC criterion. However,

our results show that the square root transformation (e.g., k = 2) can be

a reasonable choice in practice. Finally, we establish the convergence rate

of the proposed R-GLASSO estimator in the Frobenius norm, under certain

conditions.

In Chapter 3, we develop two novel approaches for estimating the precision

matrix, based on the adaptive `1 regularization framework. We extend the re-

cently introduced D-trace estimator to Weighted Adaptive D-trace (WADT)

and Adaptive D-trace (ADT) estimators to correct the bias of the estimated

precision matrix produced by the `1 penalty. In our proposed methodologies,

we use the adaptive thresholding operators. We conduct an extensive nu-

merical analysis, applying both simulated and real data sets. For the WADT

estimator we use the two-step precision matrix estimator as a weight matrix.

Our findings show that it is a practical choice. We use different loss functions

and prediction performance measures for the evaluation. The results show

that the proposed estimators outperform the DT and GLASSO estimators.

In particular, the WADT and ADT estimators provide lower statistical losses

and higher GGM prediction measures than those for the DT and GLASSO

methods.
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4.2 Future Research Directions

In this thesis, we have proposed effective methods to estimate the precision

matrix in high-dimensional settings. However, we note that other interesting

approaches could be employed for this purpose. In this subsection, we present

several directions for the future research.

1. As discussed in this thesis, the `1 norm penalty guarantees the sparsity

pattern of the precision matrix estimator for a well-selected penalty param-

eter. However, it does not control the eigenvalues of the estimator. Maurya

(2014) showed that imposing an additional penalty of sum of the eigenval-

ues (i.e., the trace) on the objective function of the GLASSO method can

improve the performance of the precision estimator.

Our analysis shows that an additional negative trace penalization of the DT

method significantly improves the performance of the precision estimator in

terms of the norm losses. We propose the following estimator:

Ω̂ = arg min
Ω

1

2
trace(Ω2S)− trace(Ω) + τ ||Ω||1,off − γtrace(Ω)

= arg min
Ω

1

2
trace(Ω2S)− (1 + γ)trace(Ω) + τ ||Ω||1,off.

(4.1)

Note that we can solve problem (4.1) using the same algorithm employed for

the DT method.

2. Most of the methods in the literature assume that the data are inde-

pendent and identically distributed. In other words, we assume that the

precision matrix and, therefore, the corresponding GGM or the network are

time-invariant. However, the recent research shows that in the real-world

applications the time-invariance of the graphical structure often fails. In

this way, the graphical structure evolves over time (i.e., is time-varying)

and the data are not identically distributed. For example, fMRI research

shows that brain connectivity networks are often not stable over time and

an additional study is required to examine the dynamic changes of those

networks over time. In genetic studies, there is also a need for learning

the time-varying gene interaction network structure. On the other hand,

the time-varying networks are effective way for representing the interactions
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between varying stocks over time. Therefore, they are of high importance

for clearly understanding the stock markets. As discussed in this thesis, a

large amount of literature is dedicated to precision matrix estimation and

non-evolving graphical models using independent and identically distributed

data. To the best of our knowledge, a very small amount of research studies

the time-varying networks. Among the notable studies are by Zhou et al.

(2010); Chen et al. (2013); Monti et al. (2014). We note that all the existing

methods are based on the popular GLASSO method. In other words, the

methods use the following log-likelihood function at a given time t:

`(Xt,Ω, t) = log det Ω− trace(ΩS(t)), (4.2)

where S(t) is the kernel estimate of the sample covariance matrix and has

the following definition:

S(t) =

∑
i

witXiX
T
i∑

i

wit
. (4.3)

The weights are given as wit = K

(
|i− t|
h

)
, where K is a symmetric, non-

negative kernel function with the bandwidth parameter h.

We suggest to consider the following D-trace function at a given time t:

fDT (S(t),Ω, t) =
1

2
trace(Ω2S(t))− trace(Ω), (4.4)

where S(t) is defined in (4.3). In this way, by penalizing the function

fDT (S(t),Ω, t), we propose the methods DT, ADT and WADT for time-

varying network estimation. The numerical study of Chapter 3 shows that for

time-invariant data these methods outperform the GLASSO method for most

of the cases (especially, our proposed ADT and WADT methods). Therefore,

we expect that for time-varying data the methods DT, ADT and WADT will

outperform GLASSO method.

3. The inverse covariance shrinkage estimator is very popular in portfolio

selection (see, for instance, Frahm and Memmel 2010; Kourtis et al. 2012;
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DeMiguel et al. 2013), assuming that n > p. Precision shrinkage estimator

has the following form:

Ω̂shrink = (1− α)S−1 + αF1, (4.5)

where α ∈ [0, 1] is the shrinkage intensity parameter and F1 is a target

matrix.

Based on the shrinkage concept, we propose the following precision shrinkage

estimators which can be used also under high-dimensional settings:

Ω̂1 = (1− α) ((1− α)S + αF2)−1 + αF3, (4.6)

Ω̂2 = (1− α) (S + αF2)−1 + αF3, (4.7)

where F2 and F3 are target matrices. In contrast to the estimator Ω̂shrink,

the estimators Ω̂1 and Ω̂2 are defined when n < p. Moreover, our numerical

analysis showed that the proposed estimators Ω̂1 and Ω̂2 outperform Ω̂shrink

in terms of the MSE.1

1In the numerical analysis, we compare the minimum possible MSE of three shrinkage
estimators. We set n = 200, p = 100 and we consider target matrices F1 = F2 = F3 = I.
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Proofs of Chapter 2

Proof of Theorem 2.2: We define our proposed R-GLASSO estimator

as Ω̂R-GLASSO = Γ̂k, where Γ̂ is the solution of the problem (2.5). We note

that the solution Γ̂ can be considered as the GLASSO estimator for the

matrix Ω1/k. Therefore, before proceeding with the convergence rate of the

estimator Ω̂R-GLASSO, we provide the convergence rate of estimator Γ̂. First,

consider the following conditions for the true model:

B1 : λmin(Ω1/k) ≥ β > 0,

B2 : λmax(Ω1/k) ≤ β̄,

for some positive values β̄ and β. Note that the conditions A1, A2 imply the

conditions B1, B2 and vice versa. We prove that under the assumptions of

the Theorem 2.2

||Γ̂− Ω1/k||2 = OP

(√
(p+ s) log p

n

)
. (A.1)
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The proof of (A.1) is inspired by Rothman et al. (2008). First, consider the

following function

Q(Θ) = trace(ΘS1/k)− log det(Θ) + ξk||Θ||1 − trace(Ω1/kS1/k)− log det(Ω1/k)

− ξk||Ω1/k||1 = trace
(
(Θ− Ω1/k)(S1/k − Σ1/k)

)
−
(
log det(Θ)− log det(Ω1/k)

)
+ trace

(
(Θ− Ω1/k)Σ1/k

)
+ ξk

(
||Θ||1 − ||Ω1/k||1

)
.

(A.2)

It can be seen that the estimator Γ̂ minimizes the function Q(Θ), and there-

fore ∆̂ = Γ̂ − Ω1/k minimizes the function G(∆) = Q(Ω1/k + ∆). Consider

the following set:

Φn(M) = {∆ : ∆ = ∆T , ||∆||2 = Mrn}, (A.3)

where

rn =

√
(p+ s) log p

n
→ 0. (A.4)

Note that G(∆) = Q(Ω1/k + ∆) is a convex function, and G(∆̂) ≤ G(0) = 0.

Then, if we show that

inf{G(∆) : ∆ ∈ Φn(M)} > 0, (A.5)

the minimizer ∆̂ must be inside the set defined by Φn(M), and therefore

||∆̂||2 ≤Mrn.

We have

G(∆) = trace
(
∆(S1/k − Σ1/k)

)
−
(
log det(Ω1/k + ∆)− log det(Ω1/k)

)
+ trace

(
∆Σ1/k

)
+ ξk

(
||Ω1/k + ∆||1 − ||Ω1/k||1

)
.

(A.6)
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For the logarithm term in the equation (A.6), doing the Taylor expansion of

the function f(t) = log det(Θ + t∆), we get

log det(Ω1/k + ∆)− log det(Ω1/k) = trace(Σ1/k∆)

− ∆̃T

 1∫
0

(1− ν)(Ω1/k + µ∆)−1 ⊗ (Ω1/k + µ∆)−1dν

 ∆̃,
(A.7)

where ⊗ is the Kronecker product and ∆̃ is a vectorization of ∆. The equa-

tion (A.6) can be rewritten in the following form

G(∆) = trace
(
∆(S1/k − Σ1/k)

)
+ ∆̃T

 1∫
0

(1− ν)(Ω1/k + µ∆)−1 ⊗ (Ω1/k + µ∆)−1dν

 ∆̃

+ ξk
(
||Ω1/k + ∆||1 − ||Ω1/k||1

)
= T1 + T2 + T3.

(A.8)

For an index set U and a matrix A = [aij], denote AU = [aijI(i,j)∈U ]. Recall

Z = {(i, j) : Ω
(1/k)
ij 6= 0} and Z̄ is its complement. Note that ||Ω1/k +

∆||1 = ||Ω1/k
Z + ∆Z ||1 + ||∆Z̄ ||1 and ||Ω1/k||1 = ||Ω1/k

Z ||1. From the triangular

inequality we have

T3 = ξk
(
||Ω1/k + ∆||1 − ||Ω1/k||1

)
≥ ξk (||∆Z̄ ||1 − ||∆Z ||1) . (A.9)

Next, consider the term T1

|T1| =
∣∣trace

(
∆(S1/k − Σ1/k)

)∣∣ ≤ ∣∣∣∣∣∑
i6=j

(S1/k − Σ1/k)ij∆ij

∣∣∣∣∣
+

∣∣∣∣∣∑
i

(S1/k − Σ1/k)ii∆ii

∣∣∣∣∣ = T11 + T12.

(A.10)

To bound the terms T11 and T12, we use the following result (Bickel and

Levina 2008)

||S − Σ||∞ = max
ij
|(S − Σ)ij| = OP

(√
log p

n

)
, (A.11)
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which holds under the assumptions of the Theorem 2.2 and
log p

n
= o(1).

On the other hand, the assumption in Theorem 2.2 implies

max
ij
|(S1/k − Σ1/k)ij| = OP

(√
log p

n

)
. (A.12)

Therefore, using the sum inequality we can have the bound of the term T11,

with probability tending to 1,

T11 ≤ C1

√
log p

n
||∆−||1 ≤ C1

√
log p

n
||∆||1. (A.13)

From the Cauchy-Schwartz inequality we get

T12 ≤

[
p∑
i=1

(S1/k − Σ1/k)2
ii

]1/2

||∆+||2 ≤
√
p max

1≤i≤p
|(S1/k − Σ1/k)ii|||∆+||2

≤ C2

√
p log p

n
||∆+||2 ≤ C2

√
(p+ s) log p

n
||∆||2,

(A.14)

also with probability tending to 1.

Finally, it remains to check the bound of the second term T2. For ∆ ∈ Φn(M)

T2 ≥ λmin

 1∫
0

(1− ν)(Ω1/k + µ∆)−1 ⊗ (Ω1/k + µ∆)−1dν

 ||∆||22
≥

1∫
0

(1− ν)λ2
min(Ω1/k + µ∆)−1dν||∆||22 ≥

1

2
min

0≤ν≤1
λ2

min(Ω1/k + ∆)−1||∆||22

≥ 1

2
min{λ2

min(Ω1/k + ∆)−1, ||∆||2 ≤Mrn}||∆||22.
(A.15)

On the other hand,

λ2
min(Ω1/k + µ∆)−1 = λ−2

max(Ω1/k + ∆) ≥ (||Ω1/k||+ ||∆||)−2 ≥ (β̄ + o(1))−2,

(A.16)
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since ||∆|| ≤ ||∆||2 = o(1), with probability tending to 1. Thus, we get

T2 ≥
1

2
||∆||22(β̄ + o(1))−2 =

1

2
||∆||22γ, (A.17)

where γ = (β̄ + o(1))−2.

By our assumption in Theorem 2.2, ξk �
√

log p

n
. Taking ξk =

C1

ε

√
log p

n
and using the obtained bounds (A.9), (A.10), (A.17), we get

G(∆) ≥ 1

2
||∆||22γ − C1

√
log p

n
||∆||1 − C2

√
(p+ s) log p

n
||∆||2

+ ξk (||∆Z̄ ||1 − ||∆Z ||1) =
1

2
||∆||22γ − C1

√
log p

n
(1− 1

ε
)||∆Z̄ ||1

− C1

√
log p

n
(1 +

1

ε
)||∆Z ||1 − C2

√
(p+ s) log p

n
||∆||2.

(A.18)

Since the second term is always positive, we can omit it for the lower bound.

Note that

||∆Z ||1 ≤
√
s||∆Z ||2 ≤

√
s||∆||2 ≤

√
s+ p||∆||2. (A.19)

Hence, we have

G(∆) ≥ 1

2
||∆||22γ − C1

√
(p+ s) log p

n
(1 +

1

ε
)||∆||2

− C2

√
(p+ s) log p

n
||∆||2 ≥ ||∆||22

[
1

4
γ − C1

√
(p+ s) log p

n
(1 +

1

ε
)||∆||−1

2

]

+ ||∆||22

[
1

4
γ − C2

√
(p+ s) log p

n
||∆||−1

2

]
= ||∆||22

[
1

4
γ − C1

M
(1 +

1

ε
)

]
+ ||∆||22

[
1

4
γ − C2

M

]
> 0.

(A.20)

for M sufficiently large. This establishes the convergence rate (A.1).

To obtain the convergence rate of our estimator, we prove the following

lemma:
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Lemma A.1. For any symmetric, p.d. matrices A and B and for any

finite q ∈ N, if ||A||spec = OP (1), ||B||spec = OP (1), ||A||min = OP (1) and

||B||min = OP (1), then

||Aq −Bq||2
P� ||A−B||2.. (A.21)

Proof of Lemma 1: For any matrices A and B, we have that

Aq −Bq =

q∑
i=1

Aq−i(A−B)Bi−1. (A.22)

Therefore, we can write the following:

||Aq −Bq||22 = trace
(
(Aq −Bq)(Aq −Bq)T

)
= trace

((
q∑
i=1

Aq−i(A−B)Bi−1

)(
q∑
i=1

Bi−1(A−B)Aq−i

))

= trace

(
q∑
i=1

q∑
j=1

Aq−i(A−B)Bi−1Bj−1(A−B)Aq−j

)

= trace

(
q∑
i=1

q∑
j=1

A2q−i−j(A−B)Bi+j−2(A−B)

)

=

q∑
i=1

q∑
j=1

trace
(
A2q−i−j(A−B)Bi+j−2(A−B)

)
.

(A.23)

Next, for any symmetric matrices X, Y and Z consider trace(XY ZY ). For

any matrix A, we denote A·i and Ai· as the i -th row and the i -th column of

matrix A, respectively. We can write

trace(XY ZY ) =

p∑
i=1

(XY )i·ZY·i ≤ λmax(Z)

p∑
i=1

(XY )i·Y·i = λmax(Z)trace(XY Y )

= λmax(Z)

p∑
i=1

Yi·X(Y·i) ≤ λmax(Z)λmax(X)

p∑
i=1

Yi·(Y·i)

= λmax(Z)λmax(X)trace(Y Y T ) = λmax(Z)λmax(X)||Y ||22.
(A.24)
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Similarly, we can write

trace(XY ZY ) =

p∑
i=1

(XY )i·ZY·i ≥ λmin(Z)

p∑
i=1

(XY )i·Y·i = λmin(Z)trace(XY Y )

= λmin(Z)

p∑
i=1

Yi·X(Y·i) ≥ λmin(Z)λmin(X)

p∑
i=1

Yi·(Y·i)

= λmin(Z)λmin(X)trace(Y Y T ) = λmin(Z)λmin(X)||Y ||22.
(A.25)

We can summarize the expressions (A.24) and (A.25) as the following:

λmin(Z)λmin(X)||Y ||22 ≤ trace(XY ZY ) ≤ λmax(Z)λmax(X)||Y ||22. (A.26)

We can apply the inequalities in (A.26) on the trace of the equality (A.23).

Thus, we can write the following two inequalities:

q∑
i=1

q∑
j=1

trace
(
A2q−i−j(A−B)Bi+j−2(A−B)

)
≥ ||A−B||22

q∑
i=1

q∑
j=1

λmin(A2q−i−j)λmin(Bi+j−2),

(A.27)

q∑
i=1

q∑
j=1

trace
(
A2q−i−j(A−B)Bi+j−2(A−B)

)
≤ ||A−B||22

q∑
i=1

q∑
j=1

λmax(A2q−i−j)λmax(Bi+j−2).

(A.28)

From the inequalities (A.27), (A.28) and the equality (A.23) it follows that

||Aq −Bq||2 ≥ ||A−B||2

(
q∑
i=1

q∑
j=1

λmin(A2q−i−j)λmin(Bi+j−2)

) 1
2

, (A.29)

||Aq −Bq||2 ≤ ||A−B||2

(
q∑
i=1

q∑
j=1

λmax(A2q−i−j)λmax(Bi+j−2)

) 1
2

. (A.30)
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Since q is finite, the assumptions λmax(A) = ||A||spec = OP (1), λmax(B) =

||B||spec = OP (1), λmin(A) = ||A||min = OP (1), λmin(B) = ||B||min = OP (1)

imply that the following rates:

(
q∑
i=1

q∑
j=1

λmin(A2q−i−j)λmin(Bi+j−2)

) 1
2

= OP (1), (A.31)

(
q∑
i=1

q∑
j=1

λmax(A2k−i−j)λmax(Bi+j−2)

) 1
2

= OP (1). (A.32)

From the inequalities (A.29), (A.30), (A.31) and (A.32) it follows that

||Aq −Bq||2
P� ||A−B||2, (A.33)

which concludes the proof of Lemma A.1.

From the assumptions B1 and B2 it follows that ||Ω 1
k ||min = O(1) and

||Ω 1
k ||spec = O(1), respectively. Assuming that n grows faster than p, the

rate (A.1) implies that ||Γ̂||min = OP (1) and ||Γ̂||spec = OP (1). Now, if we

consider q = k, A = Γ̂, B = Ω
1
k , we will have Aq = Γ̂k = Ω̂R-GLASSO and

Bq = Ω. Therefore, Lemma A.1 implies that

||Ω̂R-GLASSO − Ω||2
P� ||Γ̂− Ω

1
k ||2, (A.34)

which concludes the proof of the theorem for k ∈ N.

We can prove the Theorem 2.2 under assumption that k is a rational number.

We express k as a fraction
r

m
, where r,m ∈ N. In this case we have that

Ω̂R-GLASSO = Γ̂
r
m . If we consider q = r, A = Γ̂, B = Ω

m
r , we will have

Aq = Γ̂r and Bq = Ωm. Since r and m are finite, we can use the Lemma

(A.1), which implies that

||Γ̂r − Ωm||2
P� ||Γ̂− Ω

m
r ||2. (A.35)
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On the other hand, if we consider q = m, A = Γ̂
r
m , B = Ω, we will have

Aq = Γ̂r and Bq = Ωm. Therefore, as previously, Lemma (A.1) implies that

||Γ̂r − Ωm||2
P� ||Γ̂

r
m − Ω||2. (A.36)

Summarizing (A.35) and (A.36), we will have the following:

||Γ̂− Ω
m
r ||2

P� ||Γ̂
r
m − Ω||2, (A.37)

Finally, (A.1) and (A.37) establish the rate (2.6) for rational k =
r

m
.
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Table B.1: Average KLL (with standard deviations) over 100 replica-
tions.

Model 1
p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME
100 12.225 (0.832) 5.049 (0.462) 7.8280 (0.231) 9.0541 (1.328)

200 34.760 (1.469) 19.770 (1.063) 18.970 (0.397) 21.015 (0.481)

300 62.975 (1.927) 41.488 (0.667) 41.488 (0.667) 40.036 (2.648)
Model 2

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME
100 14.382 (0.902) 8.336 (0.548) 10.244 (0.684) 12.556 (1.743)

200 40.423 (1.634) 28.555 (0.718) 28.511 (0.542) 30.094 (0.507)

300 69.625 (1.704) 52.375 (0.961) 52.375 (0.961) 56.741 (4.129)
Model 3

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME
100 15.572 (0.959) 10.883 (0.965) 12.985 (0.959) 18.316 1.6251

200 44.006 (1.672) 33.932 (0.803) 33.932 (0.803) 38.444 1.1220

300 73.999 (2.026) 57.472 (0.761) 57.472 (0.761) 62.256 0.6433
Model 4

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME
100 16.076 (0.798) 12.073 (1.227) 13.102 (0.963) 18.019 (2.497)

200 45.844 (1.786) 34.595 (0.756) 34.554 (0.581) 37.908 (2.629)

300 78.341 (2.003) 65.810 (1.822) 65.810 (1.822) 76.770 (2.498)
Model 5

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME
100 11.134 (0.936) 10.413 (0.447) 10.399 (0.433) 13.145 1.920

200 28.082 (0.989) 16.684 (2.571) 16.684 (2.571) 21.429 1.510

300 49.287 (0.486) 34.198 (1.421) 34.198 (1.421) 35.856 4.437
Model 6

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME
100 17.553 (0.483) 12.735 (0.247) 12.735 (0.247) 13.457 (0.274)

200 38.697 (0.450) 26.778 (0.859) 26.778 (0.859) 28.413 (0.420)

300 58.169 (0.386) 46.054 (1.179) 46.054 (1.179) 41.965 (0.536)
Model 7

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME
100 17.194 (0.528) 12.363 (0.365) 12.434 (0.334) 12.983 (0.308)

200 38.163 (0.932) 26.409 (0.743) 26.409 (0.743) 27.850 (0.378)

300 57.904 (0.399) 45.602 (1.051) 45.602 (1.051) 41.531 (0.555)
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Table B.2: MSE (with standard deviations) over 100 replications.

Model 1
p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 4.609 (0.256) 0.722 (0.094) 2.433 (0.079) 1.997 (0.304)

200 11.383 (0.324) 3.665 (0.514) 4.064 (0.110) 3.991 (0.161)

300 19.325 (0.353) 7.394 (0.099) 7.394 (0.099) 7.105 (0.732)
Model 2

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 5.275 (0.239) 1.686 (0.106) 3.281 (0.207) 3.216 (0.400)

200 12.858 (0.301) 6.979 (0.182) 6.995 (0.091) 6.575 (0.137)

300 20.531 (0.297) 9.658 (0.206) 9.658 (0.206) 11.249 (1.174)
Model 3

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 5.565 (0.229) 1.756 (0.145) 3.903 (0.233) 3.709 (0.338)

200 13.207 (0.301) 7.523 (0.191) 7.523 (0.191) 7.319 (0.267)

300 21.214 (0.331) 10.750 (0.100) 10.750 (0.100) 13.185 (0.159)
Model 4

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 6.324 (0.212) 2.467 (0.596) 4.387 (0.252) 4.188 (0.510)

200 13.989 (0.331) 7.787 (0.217) 7.807 (0.105) 7.766 (0.640)

300 22.708 (0.303) 12.286 (0.593) 12.286 (0.593) 15.210 (0.684)
Model 5

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 31.298 (2.435) 21.720 (1.365) 21.612 (0.773) 29.116 (4.448)

200 75.484 (1.984) 22.586 (5.487) 22.586 (5.487) 47.712 (3.624)

300 127.591 (0.710) 23.393 (1.448) 23.393 (1.448) 78.381 (11.235)
Model 6

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 117.466 (1.621) 97.470 (0.890) 97.470 (0.890) 100.700 (1.218)

200 247.054 (1.251) 184.370 (4.257) 184.370 (4.257) 209.921 (1.616)

300 371.535 (0.966) 217.055 (2.138) 217.055 (2.138) 311.636 (2.055)
Model 7

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 111.704 (1.797) 91.816 (1.870) 92.229 (1.240) 94.703 (1.257)

200 240.704 (2.739) 179.012 (3.692) 179.012 (3.692) 203.530 (1.398)

300 365.989 (0.970) 212.590 (1.954) 212.590 (1.954) 305.770 (2.050)
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Table B.3: Average specificity (with standard deviations) over 100 repli-
cations.

Model 1
p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.941 (0.009) 0.998 (0.001) 0.987 (0.004) 0.977 (0.008)

200 0.973 (0.003) 0.998 (0.0009) 0.997 (0.0008) 0.994 (0.0008)

300 0.983 (0.002) 0.999 (0.0001) 0.999 (0.0001) 0.993 (0.001)
Model 2

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.947 (0.009) 0.994 (0.002) 0.986 (0.005) 0.983 (0.009)

200 0.972 (0.004) 0.996 (0.0008) 0.996 (0.0008) 0.992 (0.001)

300 0.983 (0.001) 0.999 (0.0003) 0.999 (0.0003) 0.997 (0.002)
Model 3

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.938 (0.010) 0.992 (0.003) 0.986 (0.005) 0.978 (0.011)

200 0.972 (0.004) 0.997 (0.001) 0.997 (0.001) 0.990 (0.001)

300 0.984 (0.002) 0.999 (0.0001) 0.999 (0.0001) 0.999 (0.0002)
Model 4

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.938 (0.007) 0.993 (0.003) 0.984 (0.005) 0.972 (0.014)

200 0.974 (0.003) 0.997 (0.0008) 0.997 (0.0008) 0.990 (0.003)

300 0.984 (0.001) 0.999 (0.0006) 0.999 (0.0006) 0.998 (0.001)
Model 5

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.932 (0.010) 0.947 (0.004) 0.947 (0.004) 0.965 (0.016)

200 0.967 (0.002) 0.972 (0.005) 0.972 (0.005) 0.985 (0.002)

300 0.981 (0.0009) 0.989 (0.001) 0.989 (0.001) 0.994 (0.004)
Model 6

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 NA (NA) NA (NA) NA (NA) NA (NA)

200 NA (NA) NA (NA) NA (NA) NA (NA)

300 NA (NA) NA (NA) NA (NA) NA (NA)
Model 7

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.980 (0.005) 0.992 (0.003) 0.992 (0.003) 0.963 (0.006)

200 0.992 (0.002) 0.998 (0.001) 0.998 (0.001) 0.993 (0.001)

300 0.992 (0.0006) 0.997 (0.0006) 0.997 (0.0006) 0.994 (0.0005)



Appendix B. Numerical Results of Chapter 2 67

Table B.4: Average sensitivity (with standard deviations) over 100 repli-
cations.

Model 1
p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.501 (0.020) 0.485 (0.032) 0.498 (0.021) 0.430 (0.031)

200 0.225 (0.010) 0.196 (0.009) 0.202 (0.007) 0.211 (0.006)

300 0.163 (0.006) 0.138 (0.005) 0.138 (0.005) 0.164 (0.010)
Model 2

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.290 (0.017) 0.283 (0.023) 0.274 (0.019) 0.243 (0.036)

200 0.148 (0.008) 0.145 (0.006) 0.145 (0.005) 0.146 (0.005)

300 0.100 (0.004) 0.081 (0.004) 0.081 (0.004) 0.078 (0.011)
Model 3

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.203 (0.015) 0.186 (0.020) 0.189 (0.016) 0.163 (0.021)

200 0.096 (0.006) 0.080 (0.005) 0.080 (0.005) 0.084 (0.005)

300 0.062 (0.004) 0.042 (0.001) 0.042 (0.001) 0.036 (0.001)
Model 4

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.290 (0.013) 0.353 (0.056) 0.345 (0.029) 0.246 (0.041)

200 0.147 (0.010) 0.139 (0.007) 0.140 (0.007) 0.132 (0.016)

300 0.100 (0.004) 0.092 (0.010) 0.092 (0.010) 0.066 (0.006)
Model 5

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 1 (0) 1 (0) 1 (0) 1 (0)

200 1 (0) 1 (0) 1 (0) 1 (0)

300 1 (0) 1 (0) 1 (0) 1 (0)
Model 6

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.049 (0.004) 0.060 (0.003) 0.060 (0.003) 0.084 (0.006)

200 0.022 (0.001) 0.027 (0.001) 0.027 (0.001) 0.029 (0.001

300 0.017 (0.0005) 0.019 (0.0005) 0.019 (0.0005) 0.019 (0.0004)
Model 7

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.136 (0.006) 0.207 (0.014) 0.204 (0.006) 0.219 (0.009)

200 0.066 (0.002) 0.100 (0.001) 0.100 (0.001) 0.096 (0.002)

300 0.046 (0.0009) 0.068 (0.001) 0.068 (0.001) 0.061 (0.001)
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Table B.5: Average MCC (with standard deviations) over 100 replica-
tions.

Model 1
p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.350 (0.020) 0.660 (0.021) 0.563 (0.033) 0.443 (0.042)

200 0.230 (0.010) 0.408 (0.013) 0.394 (0.013) 0.364 (0.013)

300 0.205 (0.007) 0.349 (0.007) 0.349 (0.007) 0.291 (0.014)
Model 2

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.269 (0.016) 0.463 (0.015) 0.400 (0.027) 0.356 (0.027)

200 0.186 (0.008) 0.326 (0.009) 0.326 (0.010) 0.283 (0.010)

300 0.159 (0.005) 0.258 (0.005) 0.258 (0.005) 0.234 (0.012)
Model 3

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.199 (0.013) 0.352 (0.015) 0.325 (0.018) 0.262 (0.021)

200 0.138 (0.006) 0.230 (0.007) 0.230 (0.007) 0.196 (0.007)

300 0.121 (0.005) 0.180 (0.004) 0.180 (0.004) 0.161 (0.003)
Model 4

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.263 (0.013) 0.527 (0.039) 0.473 (0.027) 0.326 (0.024)

200 0.204 (0.006) 0.330 (0.011) 0.330 (0.011) 0.265 (0.008)

300 0.175 (0.004) 0.275 (0.009) 0.275 (0.009) 0.223 (0.006)
Model 5

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.543 (0.030) 0.592 (0.017) 0.592 (0.017) 0.686 (0.075)

200 0.555 (0.019) 0.593 (0.039) 0.593 (0.039) 0.707 (0.045)

300 0.593 (0.010) 0.696 (0.016) 0.696 (0.016) 0.826 (0.105)
Model 6

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 NA (NA) NA (NA) NA (NA) NA (NA)

200 NA (NA) NA (NA) NA (NA) NA (NA)

300 NA (NA) NA (NA) NA (NA) NA (NA)
Model 7

p GLASSO R-GLASSO k = kBIC R-GLASSO k = 2 CLIME

100 0.237 (0.014) 0.372 (0.022) 0.368 (0.014) 0.290 (0.014)

200 0.173 (0.008) 0.265 (0.006) 0.265 (0.006) 0.229 (0.006)

300 0.131 (0.004) 0.207 (0.005) 0.207 (0.005) 0.178 (0.003)
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Table C.1: Average KLL (with standard deviations) over 100 replica-
tions.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 21.680 (1.388) 38.497 (0.342) 16.792 (0.436) 18.201 (0.685)

DT 20.598 (0.384) 37.335 (0.331) 19.317 (0.494) 19.381 (0.454)

ADT 19.171 (0.483) 34.318 (0.434) 17.511 (0.595) 6.727 (0.285)

WADT 19.536 (0.970) 35.512 (0.496) 12.860 (0.513) 4.652 (0.214)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 23.336 (0.389) 53.028 (0.270) 41.149 (0.333) 47.480 (0.333)

DT 18.518 (0.517) 30.733 (0.433) 29.248 (0.423) 33.168 (0.407)

ADT 10.642 (0.416) 21.219 (0.344) 28.342 (0.390) 31.611 (0.916)

WADT 4.9425 (0.247) 48.439 (0.337) 21.880 (0.475) 26.031 (0.483)

Table C.2: Average Frobenius norm losses (with standard deviations)
over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 7.402 (0.314) 12.042 (0.030) 5.398 (0.060) 6.931 (0.314)

DT 6.953 (0.066) 11.467 (0.041) 4.898 (0.063) 4.890 (0.082)

ADT 6.685 (0.094) 10.681 (0.068) 4.803 (0.081) 2.741 (0.076)

WADT 6.563 (0.396) 10.949 (0.123) 4.068 (0.080) 2.366 (0.066)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 5.512 (0.042) 20.782 (0.032) 3.307 (0.013) 3.774 (0.011)

DT 2.668 (0.070) 16.057 (0.080) 2.296 (0.027) 2.765 (0.025)

ADT 1.938 (0.063) 13.478 (0.119) 2.205 (0.030) 2.627 (0.068)

WADT 1.562 (0.058) 18.106 (0.066) 1.960 (0.024) 2.307 (0.026)
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Table C.3: Average operator norm losses (with standard deviations)
over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 0.774 (0.028) 1.630 (0.007) 0.589 (0.013) 0.663 (0.026)

DT 0.741 (0.018) 1.556 (0.012) 0.535 (0.016) 0.539 (0.024)

ADT 0.750 (0.023) 1.454 (0.020) 0.544 (0.022) 0.388 (0.029)

WADT 0.704 (0.054) 1.474 (0.024) 0.451 (0.021) 0.348 (0.038)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 0.797 (0.022) 2.980 (0.005) 0.613 (0.009) 0.736 (0.007)

DT 0.412 (0.030) 2.474 (0.017) 0.544 (0.009) 0.644 (0.009)

ADT 0.317 (0.031) 2.198 (0.032) 0.551 (0.009) 0.644 (0.012)

WADT 0.292 (0.032) 2.691 (0.012) 0.509 (0.010) 0.593 (0.012)

Table C.4: Average matrix `1 norm losses (with standard deviations)
over 100 replications.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 1.329 (0.138) 2.032 (0.042) 0.992 (0.050) 0.970 (0.038)

DT 1.109 (0.047) 1.939 (0.034) 0.924 (0.043) 0.680 (0.034)

ADT 1.051 (0.045) 1.953 (0.052) 0.840 (0.045) 0.505 (0.038)

WADT 1.138 (0.121) 1.955 (0.052) 0.846 (0.053) 0.477 (0.048)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 0.923 (0.030) 3.390 (0.039) 1.242 (0.014) 1.659 (0.015)

DT 0.590 (0.045) 2.900 (0.042) 1.077 (0.033) 1.571 (0.028)

ADT 0.426 (0.047) 2.612 (0.054) 1.077 (0.034) 1.575 (0.039)

WADT 0.385 (0.046) 2.916 (0.026) 0.997 (0.044) 1.522 (0.038)
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Table C.5: Average specificity (with standard deviations) over 100 repli-
cations.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 97.01 (1.21) 98.14 (0.05) 98.18 (0.05) 96.30 (0.72)

DT 98.26 (0.03) 98.18 (0.04) 98.03 (0.04) 99.33 (0.02)

ADT 99.49 (0.02) 98.68 (0.03) 99.73 (0.01) 99.63 (0.01)

WADT 98.96 (0.68) 98.87 (0.15) 99.05 (0.08) 99.66 (0.02)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 95.31 (0.07) NA (NA) 94.78 (0.07) 94.73 (0.07)

DT 97.40 (0.05) NA (NA) 97.86 (0.05) 98.02 (0.04)

ADT 99.17 (0.02) NA (NA) 98.45 (0.03) 98.38 (0.38)

WADT 99.70 (0.02) NA (NA) 99.63 (0.02) 99.46 (0.02)

Table C.6: Average sensitivity (with standard deviations) over 100 repli-
cations.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 88.94 (5.04) 61.23 (0.77) 99.62 (0.15) 100 (0)

DT 91.17 (0.82) 67.53 (0.81) 99.54 (0.20) 100 (0)

ADT 84.13 (1.26) 68.18 (0.91) 97.20 (0.53) 100 (0)

WADT 84.55 (5.20) 62.01 (1.62) 98.97 (0.33) 100 (0)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 100 (0) 4.86 (0.08) 20.25 (0.30) 12.92 (0.19)

DT 100 (0) 3.88 (0.04) 19.37 (0.26) 11.36 (0.15)

ADT 100 (0) 1.77 (0.02) 17.87 (0.24) 10.72 (0.67)

WADT 100 (0) 0.68 (0.09) 16.65 (0.23) 9.80 (0.13)
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Table C.7: Average MCC (with standard deviations) over 100 replica-
tions.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 0.467 (0.082) 0.467 (0.005) 0.589 (0.006) 0.372 (0.036)

DT 0.555 (0.005) 0.511 (0.005) 0.573 (0.004) 0.685 (0.006)

ADT 0.720 (0.009) 0.565 (0.006) 0.872 (0.005) 0.785 (0.007)

WADT 0.639 (0.080) 0.549 (0.010) 0.708 (0.016) 0.800 (0.009)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 0.329 (0.002) NA (NA) 0.136 (0.002) 0.094 (0.002)

DT 0.427 (0.003) NA (NA) 0.216 (0.003) 0.164 (0.002)

ADT 0.646 (0.006) NA (NA) 0.230 (0.003) 0.172 (0.007)

WADT 0.816 (0.010) NA (NA) 0.325 (0.004) 0.229 (0.003)

Table C.8: Average accuracy (with standard deviations) over 100 repli-
cations.

Methods Model 1 Model 2 Model 3 Model 4

GLASSO 96.93 (1.15) 97.48 (0.04) 98.19 (0.05) 96.33 (0.71)

DT 98.19 (0.03) 97.63 (0.04) 98.05 (0.03) 99.33 (0.02)

ADT 99.33 (0.02) 98.13 (0.03) 99.71 (0.01) 99.63 (0.01)

WADT 98.82 (0.62) 98.21 (0.12) 99.05 (0.08) 99.67 (0.02)

Methods Model 5 Model 6 Model 7 Model 8

GLASSO 95.34 (0.07) NA (NA) 91.21 (0.06) 86.96 (0.06)

DT 97.41 (0.05) NA (NA) 94.10 (0.04) 89.79 (0.04)

ADT 99.18 (0.02) NA (NA) 94.59 (0.03) 90.05 (0.28)

WADT 99.70 (0.02) NA (NA) 95.65 (0.02) 90.94 (0.02)
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Table D.1: Average KLL (with standard deviations) over 100 replica-
tions.

Model 1
p DT ADT WADT

100 7.416 (0.948) 6.540 (0.588) 3.011 (0.359)

200 19.752 (0.710) 19.144 (1.359) 9.269 (0.749)

300 36.848 (1.097) 38.560 (3.307) 19.554 (1.700)
Model 2

p DT ADT WADT

100 10.165 (1.013) 9.703 (0.846) 4.817 (0.535)

200 27.398 (0.771) 24.880 (1.783) 13.509 (0.787)

300 45.939 (0.670) 43.043 (4.538) 25.399 (1.294)
Model 3

p DT ADT WADT

100 10.600 (0.305) 9.453 (0.855) 5.355 (0.569)

200 30.606 (2.968) 28.022 (1.582) 17.669 (0.924)

300 52.170 (0.563) 48.650 (3.311) 31.463 (2.044)
Model 4

p DT ADT WADT

100 10.954 (0.722) 10.213 (0.925) 6.286 (0.496)

200 33.509 (2.580) 30.912 (1.855) 19.306 (1.102)

300 57.717 (2.737) 52.566 (3.242) 33.564 (1.234)
Model 5

p DT ADT WADT

100 8.103 (0.410) 3.306 (0.441) 2.406 (0.279)

200 16.542 (1.146) 7.794 (0.406) 4.724 (0.374)

300 33.946 (1.267) 11.801 (0.772) 8.027 (0.491)
Model 6

p DT ADT WADT

100 13.410 (0.287) 9.378 (0.819) 10.028 (0.236)

200 27.019 (0.334) 20.076 (1.208) 20.855 (0.302)

300 40.580 (0.508) 32.452 (2.506) 31.840 (0.541)
Model 7

p DT ADT WADT

100 12.937 (0.309) 8.931 (0.793) 9.618 (0.305)

200 26.473 (0.431) 19.565 (1.337) 20.388 (0.273)

300 40.044 (0.461) 31.189 (2.553) 31.248 (0.327)
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Table D.2: MSE (with standard deviations) over 100 replications.

Model 1
p DT ADT WADT

100 1.565 (0.209) 0.975 (0.108) 0.371 (0.058)

200 4.139 (0.178) 3.050 (0.250) 1.383 (0.141)

300 8.980 (0.233) 7.866 (0.617) 4.098 (0.360)
Model 2

p DT ADT WADT

100 2.757 (0.209) 2.299 (0.162) 1.210 (0.147)

200 6.122 (0.167) 4.605 (0.349) 2.469 (0.158)

300 11.695 (0.177) 9.874 (0.914) 5.681 (0.290)
Model 3

p DT ADT WADT

100 2.942 (0.102) 2.242 (0.187) 0.986 (0.142)

200 7.643 (0.615) 6.168 (0.329) 3.707 (0.176)

300 13.068 (0.151) 11.220 (0.634) 7.403 (0.493)
Model 4

p DT ADT WADT

100 3.385 (0.172) 2.664 (0.239) 1.544 (0.127)

200 7.939 (0.517) 6.377 (0.350) 3.861 (0.237)

300 14.970 (0.543) 12.653 (0.625) 8.013 (0.293)
Model 5

p DT ADT WADT

100 19.542 (0.959) 5.700 (0.965) 3.408 (0.474)

200 39.495 (2.686) 13.826 (0.885) 6.228 (0.632)

300 80.105 (2.803) 20.819 (1.653) 10.457 (0.755)
Model 6

p DT ADT WADT

100 102.051 (1.222) 74.978 (5.855) 72.381 (2.744)

200 206.092 (1.511) 159.585 (7.894) 150.432 (3.138)

300 309.819 (2.095) 254.779 (16.547) 229.845 (5.492)
Model 7

p DT ADT WADT

100 95.905 (1.259) 69.252 (5.515) 66.876 (3.198)

200 199.773 (1.882) 153.710 (8.626) 145.100 (2.934)

300 303.596 (1.978) 244.170 (16.740) 223.509 (3.236)
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Table D.3: Average specificity (with standard deviations) over 100 repli-
cations.

Model 1
p DT ADT WADT

100 0.990 (0.003) 0.989 (0.002) 0.999 (0.0007)

200 0.994 (0.0006) 0.994 (0.001) 0.999 (0.0004)

300 0.996 (0.0004) 0.996 (0.001) 0.999 (0.0005)
Model 2

p DT ADT WADT

100 0.989 (0.003) 0.989 (0.002) 0.998 (0.001)

200 0.996 (0.0006) 0.994 (0.001) 0.998 (0.0003)

300 0.997 (0.0002) 0.993 (0.013) 0.999 (0.0002)
Model 3

p DT ADT WADT

100 0.991 (0.001) 0.989 (0.002) 0.998 (0.001)

200 0.995 (0.002) 0.994 (0.001) 0.998 (0.0003)

300 0.997 (0.0002) 0.995 (0.001) 0.999 (0.0004)
Model 4

p DT ADT WADT

100 0.990 (0.002) 0.990 (0.003) 0.998 (0.0009)

200 0.996 (0.001) 0.994 (0.001) 0.999 (0.0003)

300 0.997 (0.0008) 0.996 (0.001) 0.999 (0.0002)
Model 5

p DT ADT WADT

100 0.990 (0.001) 0.995 (0.001) 0.997 (0.001)

200 0.992 (0.001) 0.998 (0.0003) 0.998 (0.0004)

300 0.998 (0.0005) 0.998 (0.0003) 0.999 (0.0001)
Model 6

p DT ADT WADT

100 NA (NA) NA (NA) NA (NA)

200 NA (NA) NA (NA) NA (NA)

300 NA (NA) NA (NA) NA (NA)
Model 7

p DT ADT WADT

100 0.997 (0.0008) 0.997 (0.001) 0.999 (0.0006)

200 0.997 (0.0004) 0.998 (0.0005) 0.999 (0.0002)

300 0.997 (0.0003) 0.999 (0.0005) 0.999 (0.0001)
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Table D.4: Average sensitivity (with standard deviations) over 100 repli-
cations.

Model 1
p DT ADT WADT

100 0.390 (0.016) 0.378 (0.011) 0.399 (0.018)

200 0.206 (0.005) 0.192 (0.007) 0.217 (0.009)

300 0.152 (0.003) 0.136 (0.008) 0.158 (0.009)
Model 2

p DT ADT WADT

100 0.237 (0.016) 0.226 (0.015) 0.263 (0.014)

200 0.135 (0.004) 0.133 (0.008) 0.146 (0.005)

300 0.083 (0.001) 0.085 (0.018) 0.090 (0.004)
Model 3

p DT ADT WADT

100 0.150 (0.005) 0.148 (0.009) 0.146 (0.0090)

200 0.076 (0.008) 0.075 (0.004) 0.081 (0.0032)

300 0.044 (0.0008) 0.045 (0.004) 0.050 (0.0040)
Model 4

p DT ADT WADT

100 0.234 (0.011) 0.2258 (0.014) 0.227 (0.013)

200 0.113 (0.011) 0.1118 (0.008) 0.128 (0.007)

300 0.078 (0.005) 0.0810 (0.006) 0.092 (0.003)
Model 5

p DT ADT WADT

100 1 (0) 1 (0) 1 (0)

200 1 (0) 1 (0) 1 (0)

300 1 (0) 1 (0) 1 (0)
Model 6

p DT ADT WADT

100 0.036 (0.001) 0.040 (0.004) 0.031 (0.0012)

200 0.019 (0.0005) 0.019 (0.001) 0.015 (0.0003)

300 0.014 (0.0002) 0.012 (0.001) 0.010 (0.0003)
Model 7

p DT ADT WADT

100 0.135 (0.002) 0.151 (0.011) 0.124 (0.004)

200 0.070 (0.001) 0.073 (0.004) 0.060 (0.0007)

300 0.047 (0.0008) 0.047 (0.003) 0.040 (0.0003)
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Table D.5: Average MCC (with standard deviations) over 100 replica-
tions.

Model 1
p DT ADT WADT

100 0.498 (0.024) 0.478 (0.019) 0.608 (0.010)

200 0.356 (0.008) 0.337 (0.009) 0.439 (0.006)

300 0.303 (0.006) 0.287 (0.010) 0.371 (0.005)
Model 2

p DT ADT WADT

100 0.381 (0.013) 0.366 (0.013) 0.475 (0.010)

200 0.304 (0.007) 0.282 (0.007) 0.349 (0.006)

300 0.230 (0.004) 0.208 (0.020) 0.275 (0.004)
Model 3

p DT ADT WADT

100 0.299 (0.010) 0.288 (0.011) 0.337 (0.008)

200 0.215 (0.005) 0.204 (0.005) 0.247 (0.003)

300 0.160 (0.003) 0.147 (0.004) 0.191 (0.004)
Model 4

p DT ADT WADT

100 0.392 (0.011) 0.381 (0.012) 0.442 (0.010)

200 0.278 (0.006) 0.260 (0.007) 0.327 (0.007)

300 0.236 (0.004) 0.223 (0.004) 0.273 (0.004)
Model 5

p DT ADT WADT

100 0.872 (0.016) 0.936 (0.024) 0.960 (0.016)

200 0.817 (0.027) 0.943 (0.009) 0.940 (0.012)

300 0.940 (0.018) 0.921 (0.013) 0.955 (0.007)
Model 6

p DT ADT WADT

100 NA (NA) NA (NA) NA (NA)

200 NA (NA) NA (NA) NA (NA)

300 NA (NA) NA (NA) NA (NA)
Model 7

p DT ADT WADT

100 0.307 (0.006) 0.331 (0.008) 0.307 (0.004)

200 0.209 (0.003) 0.227 (0.005) 0.211 (0.001)

300 0.165 (0.003) 0.180 (0.003) 0.170 (0.001)



Appendix E

Proofs of Background

Statements

The following material provides detailed derivation of some statements and

formulas employed in this thesis.

Remark E.1. The probability density function of a mean-centered multi-

variate Normally distributed variable x ∈ Rp is given by

p(x|Σ) = (2π)−p/2 det(Σ)−1/2 exp

(
−1

2
xTΣ−1x

)
. (E.1)

We can express the function (E.1) in terms of the precision matrix Ω as

follows:

p(x|Ω) = (2π)−p/2 det(Ω)1/2 exp

(
−1

2
xTΩx

)
. (E.2)

We write the log-likelihood function of a mean-centered sample dataset X

as

`(X,Ω) = log
n∏
i=1

p(Xi|Ω) = −p
2

log(2π) +
n

2
log det(Ω)− 1

2

n∑
i=1

(
XT
i Ω−1Xi

)
=
n

2
log det(Ω)− 1

2

n∑
i=1

trace
(
XT
i ΩXi

)
− p

2
log(2π).

(E.3)
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Since the trace is a linear map in the space of square matrices, we can rewrite

the expression (E.3) as

`(X,Ω) =
n

2
log det(Ω)− 1

2
trace

(
Ω

n∑
i=1

XT
i Xi

)
− p

2
log(2π)

=
n

2
log det(Ω)− n

2
trace (ΩS)− C.

(E.4)

Note that the final expression of the equation (E.4) is proportionally equiv-

alent to the function (1.1) excluding the constant.

Remark E.2. In order to obtain the MLE of the matrix Ω, we calculate the

partial derivative of the log-likelihood function `(X,Ω) with respect to Ω.

∂`(X,Ω)

∂Ω
= Ω−1 − S. (E.5)

By setting the partial derivative to zero, we get Ω̂MLE = S−1.

Remark E.3. We can write the optimization problem (2.1) as follows:

max
Ω

min
||Θ||∞≤ν

log det Ω− trace(Ω(S + Θ))

= min
||Θ||∞≤ν

max
Ω

log det Ω− trace(Ω(S + Θ)).
(E.6)

Consider the derivative of the objective function of the inner maximization

problem with respect to Ω. By setting the derivative to zero and solving the

resulting equation for Ω, we obtain Ω = (S + Θ)−1. Similarly, we can have

Θ = Ω−1 − S. By employing the obtained expression of Ω in the problem

(E.6), we obtain

min
||Θ||∞≤ν

max
Ω
− log det(S + Θ)− p. (E.7)
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Finally, by writing the problem (E.6) in more accurate way, using the ex-

pression of Θ, we obtain the dual problem (2.2)

min
Ω

log det Ω (E.8)

subject to ||Ω−1 − S||∞ ≤ ν. (E.9)

Remark E.4. In order to show that fDT (Ω,Σ) is convex function of Ω, we

have to prove that for any η ∈ [0, 1] and Ω1, Ω2 � 0 the following inequality

holds:

ηfDT (Ω1,Σ) + (1− η)fDT (Ω2,Σ) ≥ fDT (ηΩ1 + (1− η)Ω2,Σ), (E.10)

or equivalently

ηfDT (Ω1,Σ) + (1− η)fDT (Ω2,Σ)− fDT (ηΩ1 + (1− η)Ω2,Σ) ≥ 0. (E.11)

Using the definition of fDT (Ω,Σ) given in (3.1), we can write the left-hand

side of inequality (E.11) as follows:

η

(
1

2
trace(Ω2

1Σ)− trace(Ω1)

)
+ (1− η)

(
1

2
trace(Ω2

2Σ)− trace(Ω2)

)
− 1

2
trace((ηΩ1 + (1− η)Ω2)2Σ) + trace(ηΩ1 + (1− η)Ω2)

= η
1

2
trace(Ω2

1Σ) + (1− η)
1

2
trace(Ω2

2Σ)− η2 1

2
trace(Ω2

1Σ)− (1− η)2 1

2
trace(Ω2

2Σ)

− η(1− η)
1

2
trace(Ω1Ω2Σ)− η(1− η)

1

2
trace(Ω2Ω1Σ) = η(1− η)

1

2
trace(Ω2

1Σ)

+ η(1− η)
1

2
trace(Ω2

2Σ)− η(1− η)
1

2
trace(Ω1Ω2Σ)− η(1− η)

1

2
trace(Ω2Ω1Σ)

= η(1− η)
1

2
trace((Ω1 − Ω2)2Σ),

(E.12)

which is always positive for any Ω1, Ω2 � 0 and η ∈ [0, 1].

Next, we show that the convex function fDT (Ω,Σ) has a unique minimizer in

Σ−1. To check verify this statement, we consider the derivative of fDT (Ω,Σ)
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with respect to Ω and set it to zero:

∂fDT (Ω,Σ)

∂Ω
=

∂

∂Ω

(
1

2
trace(Ω2Σ)− trace(Ω)

)
=

ΣΩ + ΩΣ

2
− I = 0.

(E.13)

The matrix equation (E.13) is known as the Lyapunov equation. We ver-

ify that the (E.13) holds for Ω = Σ−1. Firstly, we consider the eigen-

decomposition of the matrix Σ as Σ = PUP T . Matrix U = diag{ui, ..., up}
is diagonal and contains the eigenvalues of Σ. Secondly, we pre-multiply the

last expression in (E.13) by P T and post-multiply by P .

P T (PUP TΩ + ΩPUP T )P

2
− I =

UP TΩP + P TΩPU

2
− I = 0. (E.14)

We denote Ω̄ = [ω̄ij]1≤i,j≤p = P TΩP . We can write (E.14) in terms of the

matrix entries as follows:

(uiω̄ii + ω̄iiui)/2− 1 = 0, for 1 ≤ i ≤ p, (E.15)

and

(uiω̄ik + ω̄ikuk)/2 = 0, for 1 ≤ i, k ≤ p, i 6= k. (E.16)

From the equation (E.15) we obtain ω̄ii = u−1
i for 1 ≤ i ≤ p. On the

other hand, from the equation (E.16) we obtain ω̄ik = 0 for 1 ≤ i, k ≤ p

and i 6= k. Therefore, Ω̄ = diag{u−1
i , ..., u−1

p } is a diagonal matrix. Finally,

using the definition of Ω̄, we obtain Ω = P Ω̄P T = Pdiag{u−1
i , ..., u−1

p }P T =

PU−1P T = Σ−1.

Finally, we consider the Hessian matrix of function fDT (Ω,Σ), which can be

written as follows:

∂2fDT (Ω,Σ)

∂Ω2
=

Σ⊗ I + I ⊗ Σ

2
, (E.17)

where ⊗ is the Kronecker product. Note that the Hessian matrix (E.17) is

positive-definite because the matrix Σ is positive-definite.
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Remark E.5. Consider the following optimization problem

min
Ω=ΩT

1

2
trace(Ω2)− trace(ΩA) + τ ||Ω||1,off. (E.18)

Here we show that we can represent the solution of the problem (E.18)

through the soft thresholding operator.

In order to solve the problem (E.18), we set the partial derivative of its

objective function to zero.

0 ∈ ∂

∂Ω

(
1

2
trace(Ω2)− trace(ΩA) + τ ||Ω||1,off

)
= Ω− A+ τ∂||Ω||1,off.

(E.19)

The entries of the matrix ∂||Ω||1,off depend on whether the corresponding

entries ωij are positive, negative or equal to zero. Below we consider each of

the cases.

When ωij > 0, for 1 ≤ i, j ≤ p and i 6= j, then ωij −Aij + τ = 0. Therefore,

ωij = Aij − τ . Since ωij > 0, we have that Aij > τ .

When ωij < 0, for 1 ≤ i, j ≤ p and i 6= j, then ωij −Aij − τ = 0. Therefore,

ωij = Aij + τ . Since ωij < 0, we have that Aij < −τ .

When ωij = 0, for 1 ≤ i, j ≤ p and i 6= j, then ωij−Aij ∈ [−τ, τ ]. Therefore,

ωij ∈ [Aij − τ, Aij + τ ]. Since ωij = 0, we have that −τ ≤ Aij < τ .

Finally, since we consider the off-diagonal `1 norm penalization of Ω, we can

write ωii − Aii = 0, for 1 ≤ i ≤ p. Summarizing all the cases, we obtain

the expression given in (3.6). Similarly, we can write the entries ωij of the

solution in terms of the soft thresholding operator, given as:

ωij = sign(Aij) max(|Aij| − τ, 0)Ii6=j + AijIi=j. (E.20)

Straightforwardly, we can prove the equality between the problem (3.9) and

the weighted adaptive thresholding operator (3.7), simply by substituting τ

with
τ

|wij|
in the proof given above.
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