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study, we analyse the finite sample behaviour of the usual Durbin-Watson statistic in a 

regression between two independent nonstationary fractionally integrated processes wiht MA(l) 

innovations. 

Key Words 

Near observational equivalence; fractional integration and cointegration; Durbin-Watson 

statistic. 

·Department of Statistics y Econometrics, Universidad Carlos III de Madrid, e-mail: 

fmarmol@est-econ.uc3m.es; Department of Economics, Universitat Autonoma de Barcelona. 

We are grateful to Anindya Banerjee, Juan J. Dolado and Jesus Gonzalo for useful comments 

and suggestions. The first author acknowledges grant from the Training and Mobility of 

Researches Program. The second author tanks the DGICYT PB94-0709 for financial support. 

J.E.L. Classification: C12, CIS, C22. 



NEAR OBSERVATIONAL EQUIVALENCE AND 

FRACTIONALLY INTEGRATED PROCESSES * 

Francesc Marmol+ 

Department of Statistics and Econometrics, Universidad Carlos III de Madrid 

& 

Juan C. Reboredo 

Department of Economics, Universitat Autonoma de Barcelona 

First Version, September 1997 

Revised Version, May 1998 

SUMMARY 

The aim of this paper is to study the presence of nearly observationally 

equivalence problems in fractionally integrated processes. In order to 

illustrate our results, by means of a Monte Carlo study, we analyse the finite 

sample behaviour of the usual Durbin-Watson statistic in a regression 

between two independent nonstationary fractionally integrated processes 

with MA (1 ) innovations. 
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I. INTRODUCTION 

It is a well known fact that the customary unit root and cointegration tests can be 

affected by size distortions, particularly when the 1( 1) series have large MA error terms 

(see, e.g., Molinas, 1986, Schwert, 1989). This issue has deserved much attention in the 

1( 1)/1(0) literature since such tests do not seem to work well in order to correct this 

model-misspecification problem. This is due to the fact that for any unit root process 

(respectively 1(0)), it can be proved that there exists a stationary process (respectively 

1(1)) which will be impossible to distinguish from the unit root (respectively 1(0)) 

representation for any given sample size. In other words, 1(1) and 1(0) are nearly 

observationally equivalent in Faust's (1993) sense. 

Likewise, there has been an increasing empirical evidence in recent years supporting 

the assumption that many macroeconomic and financial time series achieve stationarity 

after applying a fractional filter. Most important, there are many reasons to believe that 

the paths of some relevant economic series cannot only be well approximated by 

fractionally integrated processes, but also that they do contain moving average 

components. In this respect, several studies have obtained fractionally integrated 

processes with MA components when modelling the behaviour of many important 

economic variables. A partial list of these variables includes the growth rate of US real 

GI\TP (Sowell, 1992), annual real per capita US GDP (Cheung, 1993), annual bond yields 

(Crato and Rothman, 1994), inflation series (Baillie et aI., 1995), Standard & Poor 500 

index series (Hauser and Kunst, 1995) or traded good prices (Barkoulas et aI., 1996). 

How frequently do we observe fractionally integrated processes with large MA 

innovations? For instance, as an empirical illustration, using exact maximum likelihood 

methods, Barkoulas et al. (1996) show that the inflation rates of traded good prices of 

the import series for US (covering the period 1969:1 to 1994:12) and Canada (covering 
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the period 1957:1 to 1994:12) have memory parameters (in parenthesis the standard 

errors) equal to 0.862 (0.046) and 0.645 (0.09), with innovations driving by MA(l) 

processes with parameters -0.635 (0.046) and -0.79 (0.066), respectively. 

Consequently, it appears as a relevant issue to address the question of the existence 

and influence of near observational equivalence in the more general fractional set-up. For 

this, in Section II of the paper we make precise a sense in which data are uninformative 

about the memory parameter of the time series by extending the notion of near 

observational equivalence proposed by Faust (1993) to the fractional framework. In 

Section III we provide an illustration of the pitfalls that can arise in this framework by 

providing some experimental evidence on the behaviour of the Durbin-Watson statistic in 

a linear regression between the levels of two independent nonstationary fractionally 

integrated processes with MA components. Concluding remarks are given in Section IV. 

11. NEAR OBSERVATIONAL EQUIVALENCE WITH 

FRACTIONAL PROCESSES 

In this section, we shall give a precise meaning to the notion of near observational 

equivalence with fractionally integrated processes. As is well-known, a time series Yt is 

said to be fractionally integrated of order d, denoted Yt - Fl(d) if it becomes weakly 

stationary after differentiating d times, and the degree of differentiation or memory 

parameter, d, is a real number. 

Throughout the paper we shall assume that the senes of interest, Y t' follows a 

fractionally integrated process with Wold representation 

(1) 
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where d> -I, c(L) = ,",,00 Cl. Li is I-summable so that c(l) = ,",,00 c. is well-defined L..J ,=0 L..J ,=0 , ' 

et is white noise with zero mean and E( e1
2

) = u; < 00 and where, without loss of 

generality, the initial conditions are set equal to zero. 

Under these assumptions, to each c(L) it can be associated the infinite sequence 

~ = {co, Cl , c2 , ... } E £ I , where £ I denotes the space of absolutely summable sequences. 

Following Faust (1993), we shall refer to ~ as the MA representation of the process with 

lag polynomial c(L). Thus, the parameters of our model are given by 

e = (~, u; ) E 0, 0 = £ I X in +. Given this parameterization, for each sample size T and 

each e E 0 and with :s(.le) denoting the corresponding distribution function, following 

Faust (1993), we say that the sequence of structures parameterized by {ek } has nearly 

observationally equivalent members to a structure er if for any fixed T, 

:s(Wk) => k :s(Wr), where "=>" means convergence is distribution of the underlying 

random variables. Hence, with continuous distributions, near equivalence of members of 

the sequence {ek } to er implies that for any e> 0 we can find a k such that 

:s(r I ek ) - :S(r I er ) < e for all r . Thus, the corresponding underlying processes are said 

to be nearly observationally equivalents in the previous sense. 

Proposition 1. For any sample size, if there exists values of the sequence of 

coefficients in ~ making c(l) be arbitrarily close to zero, then the fractionally 

integrated process Yt of Equation (1) with memory parameter d is nearly 

ohsermtionally equivalent to a fractionally integrated process with memory parameter 

d - 1 alld fag polynomial eeL) = ,",,00 eL', with e = - ,",,00 . C k , ,",,00 le I < 00 • L..J]=0 , ,L..Jk= ,+1 L..J ,=0 , 
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Proof: Under the assumption of l-summability, we know that 

c(L) = c(l) + (1- L)c(L) , 

where c(L) = 'L.7=ocl D, cl = - 'L.:=l+1 C k , 'L.7=olcl l < 00 and ic(l)1 < 00. Thus, 

/:).d Y/ = c(l)&/ + (I - L)c(L)&/, 

so that 

(2) 

(3) 

say, with y;/, y;/ denoting fractionally integrated processes of order d and d - 1 , 

respectively. Notice that if c(l) = 0 then Yt becomes equal to Y;I' a fractionally 

integrated process of order d - 1 with MA representation R = {co, Cl' c2 , ... } E i . Thus, 

assuming the existence of a sequence of coefficients in t-\ such that c( 1) be arbitrarily 

close to zero (in the £2 norm), then the proof of the proposition follows directly from 

the denseness of sequences with any sum in £1 and Proposition 1 given in Faust (1993). 

Q.ED. 

Proposition 1 shows how the possible existence of near observational equivalence 

problems in the 1(1)/1(0) literature are not exclusive of this family of processes but also 

extends to the fractionally integrated case. Notice, however, that by imposing the 

closeness of c(l) to zero, which is a convenient and logical assumption in order to study 

size problems, we are constraining the class of fractionally integrated models under 

consideration. Thus, for example, in the particular F1MA(d,1) case, 

(4) 
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where eeL) = 1-.9L and eeL) =.9 , expression (3) becomes 

(5) 

and for large T, the dynamics of the Y 1 series is dominated by that of the fractional 

component (1- .9)Ylt, a fractionally integrated noise with the same memory parameter 

d times the constant (1-.9) . However, if.9 is close to 1, then in any finite sample, YI 

behaves essentially like the Y 21 series, a fractionally integrated noise process with 

memory parameter d - 1. Hence, the FlMA(d,l) process is nearly observationally 

equivalent to a fractionally integrated noise process with memory parameter d - 1 . 

Notice that in the particular case where d = 1 we have the classical identification 

problems between an IMA(l,l) and a white noise process. 

Consider now the ARFlMA(I,d,O) process 

(6) 

In this case, the MA representation is given by 

so that e(I)=(I-pf
l
, e(L)=-p(l-pt(l-pLfl and expression (3) becomes equal 

to 

(7) 

For large T, the dynamics of YI is now dominated by that of the fractional component 

(1 - pr YII' a fractionally integrated noise with the same memory parameter d times 

the constant (1 - p) -}. However, in this case, there is no value of p for which Y 1 

behaves essentially like the Y21 series. Consequently, the ARFlMA(I,d,O) process is not 
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nearly observationally equivalent to a fractionally integrated process with memory 

parameter d-1 and lag polynomial given by c(L)=-p(l-prl (l-pLt. This is 

because in the ARFlMA(l,d,O) case, c(l) is uniformly bounded below by + so that 

Proposition 1 does not applies. 

Finally, it is direct to show that the general ARF1MA(p,d, q) family of processes, with 

q > 0, satisfies Proposition 1, since there always exists values of the coefficients in the 

MA( q) polynomial such that c(l) can be made (in e sense) arbitrarily close to zero. 

Ill. TESTING FOR FRACTIONAL CO INTEGRATION BY MEANS 

OF THE CRDW TEST 

In the context of testing for cointegration within the 1(1)/1(0) framework, one of the 

most popular test in the literature has been the so-called Co integrating Regression 

Durbill-Wafson (CRDW) test, first suggested by Sargan and Bhargava (1983). Assuming 

that the cointegrating regression of interest is composed by 1( 1) processes, this test has 

as null hypothesis no cointegration, that is, that the innovation process follows also an 

1( 1) process against the alternative of cointegration with the innovations now evolving as 

weakly stationary or 1(0) processes. 

Under the null of spurious regression, Phillips (1986) proved that the Durbin-Watson 

(DW) statistic converges in probability to zero, whereas under the alternative of 

cointegration, it is well-known that such statistic weakly converges to 2(1 - PI)' with PI 

denoting the first-order autocorrelation of the innovations. 

This dissimilar behaviour of the Durbin-Watson statistic, both under the null and under 

the alternative, forms the basis of the CRDW test. See, for instance, Engle and Granger 
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(1987). At an experimental level, however, Granger and Newbold (1986, Table 6.4) and 

Molinas (1986) showed, by means of a small sample regression between two independent 

IMA (1,1) series, that for large values of the MA parameters of the dependent variable the 

number of rejections approaches 100. 

In a similar manner, one could propose the use of the CRD W test for testing for 

cointegration among nonstationary (d > + ) fractionally integrated processes. The idea of 

the test would be as follows. Consider, without loss of generality, the simplest case 

where we want to test for cointegration between two non stationary fractionally 

integrated processes of order d. The null hypothesis, as in the standard CRDW test, is no 

cointegration. Under this null, Marmol (1998a) proves that the DW converges in 

probability to zero for all d > +. On the other hand, consider the alternative hypothesis 

of fractional cointegration with the innovation series following a stationary fractionally 

integrated process of order 5, 151 < +. Under this alternative, Marmol (1998b) proves 

that the DW statistic weakly converges to 2(1- PI (5)), where PI (5) stands for the first­

order autocorrelation coefficient of the stationary fractionally integrated of order 5 

innovations. Notice that in the particular case where d = 1,5 = 0 we recover the 

standard CRD W cointegrating test. 

Indeed, in the light of the results obtained in the preceding section, it appears of 

interest to perform a Monte Carlo study about the finite sample properties of such 

fractional CRDW test when the data generating process is assumed to be composed by 

a bivariate system of independent nonstationary FlMA(d,l) processes. For this, consider 

the linear regression model YI = jJxI + ut> where {YI r=1 and {XI r=1 are two 

independent nonstationary FlMA(d,l) processes, where jJ and Ut denote the OLS 
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estimator of the slope coefficient and the corresponding OLS residuals, respectively. The 

sample size considered was set equal to 100 and the number of replications was 10,000. 

The main results obtained for the empirically relevant case where 1 < d < + are 

summarized in Tables 1 and 2. A further more complete set of experiments is available 

upon request. Table 1 shows the mean, range and standard deviation of the D W statistic 

in the Monte Carlo simulations. Table 2 shows the percent of times the proposed 

fractional eRD W test rejects the null hypothesis of no cointegration. 

TABLE 1 

Rangc, mcan an d stan ar CYlatIOn 0 t c cmplrIca d dd·· rh .. IDW statIstIc 

Value of () d=0.51 d=0.6 d= 0.8 d=l d= 1.2 

range 
0.4 0.91-2.54 0.50-2.41 0.18-1.74 0.05-1.47 0.03-1.52 
0.6 1.32-2.83 0.99-2.58 0.33-2.25 0.09-2.01 0.06-1.87 
0.8 1.85-3.03 1.70-2.95 0.75-2.59 0.32-2.23 0.21-2.24 
0.9 2.08-3.11 2.00-3.02 1.42-2.73 0.68-2.59 0.72-2.42 

mean 
0.4 1.6809 1.4057 0.7952 0.4526 0.4136 
0.6 2.1356 1.9158 1.2810 0.8072 0.7397 
0.8 2.4914 2.3630 1.8976 1.3404 1.3135 
0.9 2.5969 2.4990 2.1785 1.7557 1. 7075 

std error 
0.4 0.2850 0.3112 0.3062 0.2404 0.2309 
0.6 0.2372 0.2657 0.3523 0.3191 0.3327 
0.8 0.1838 0.1950 0.2746 0.3596 0.3657 
0.9 0.1656 0.1731 0.2033 0.2721 0.2834 

Estimated model: Y t = j3xt + res. t . T = 100. 

9 



TABLE 2 

Percentage of CRDW rejections of the null hypothesis of no cointegration 

Value of [} d= 0.51 d=0.6 d=0.8 d=l d= l.2 

0.4 93.9 87.2 63.3 56.5 54.9 
0.6 100 99.8 96.5 91 87.9 
0.8 100 100 100 99.9 99.9 
Q.9 100 100 100 100 100 

5% critical values 1.2407 1. 0519 0.6554 0.3763 0.3420 

Estimated model: Yt = fJx t + res. t' T = 100. 5 % critical values for each d obtained from Monte 

Carlo simulation. 

Looking at these tables and having in mind the theoretical results developed in Section 

II, the following comment clearly shows up. When t < d < t it follows from Proposition 

1 that the Yt series (and hence, under the null of independence, the Ut series) will be 

nearly observationally equivalent to a stationary fractionally integrated process of order 

-+ < J * < t . In this case, and following Marmol (1998b), we know that the D W statistic 

weakly converges to 2(1- PI (d*)). Thus, when t < d < t the near observational 

equivalence leads the DW statistic to belong to the rejection region of the test implying 

the rejection of the null hypothesis in virtually all cases. This conclusion is clear when 

comparing the 5% critical values in the last row of Table 2 with the range and mean 

values of the empirical DW statistic in Table 1. 

IV. CONCLUSIONS 

It is a well established result in the unit root literature that the so-called near 

observational equivalence causes very important size distortions in the unit root tests. In 

this paper we have proved, both at a theoretical level and through Monte Carlo 
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simulations, how these identification problems also extend to the class of the fractionally 

integrated processes. 

Theoretically, we prove the existence of near observational equivalence in fractionally 

integrated processes for which the long-run impact multiplier c(l) in the corresponding 

MA representation can be made arbitrarily close to zero. At the simulation level, we have 

illustrated this claim by studying the finite samples properties of the CRDW test in a 

simple regression model between two independent nonstationary FlMA(d,l) processes 

with large MA parameters. The experiments fully agree with the theoretical findings and 

illustrate the importance of carefully considering the specific nature of the short-run 

components of the processes of interest. 
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