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Abstract 
 
 
 
 
 

Although solids and fluids can be conceived as continuum media, applications of solid and 

fluid dynamics differ greatly from each other in their theoretical models and their physical 

behavior. That is why the computer simulators of each turn to be very disparate and case-

oriented.  

 

The aim of this research work, captured in this thesis book, is to find a fluid dynamics model 

that can be implemented in near real-time with GPU processing and that can be adapted to 

typically large scales found in robotic devices in action with fluid media. More specifically, the 

objective is to develop these fast fluid simulations, comprising different solid body dynamics, to 

find a viable time kinematic solution for robotics. The tested cases are: i) the case of a fluid in a 

closed channel flowing across a cylinder, ii) the case of a fluid flowing across a controlled profile, 

and iii), the case of a free surface fluid control during pouring. The implementation of the former 

cases settles the formulations and constraints to the latter applications. The results will allow the 

reader not only to sustain the implemented models but also to break down the software 

implementation concepts for better comprehension.  

 

A fast GPU-based fluid dynamics simulation is detailed in the main implementation. The 

results show that it can be used in real-time to allow robotics to perform a blind pouring task 

with a conventional controller and no special sensing systems nor knowledge-driven prediction 

models would be necessary.  

 
Keywords: physics engines, smoothed particle hydrodynamics, GPU fast processing, real-time 
robot kinematics, computational fluid dynamics 
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Resumen 
 
 
 
 Aunque los sólidos y los fluidos pueden concebirse como medios continuos, las 

aplicaciones de la dinámica de sólidos y fluidos difieren mucho entre sí en sus modelos teóricos y 

su comportamiento físico. Es por eso que los simuladores por computadora de cada uno son 

muy dispares y están orientados al caso de su aplicación. 

 
El objetivo de este trabajo de investigación, capturado en este libro de tesis, es encontrar 

un modelo de dinámica de fluidos que se pueda implementar cercano al tiempo real con 

procesamiento GPU y que se pueda adaptar a escalas típicamente grandes que se encuentran en 

dispositivos robóticos en acción con medios fluidos. Específicamente, el propósito es desarrollar 

estas simulaciones de fluidos rápidos, que comprenden diferentes dinámicas de cuerpos sólidos, 

para encontrar una solución cinemática viable para robótica. Los casos probados son: i) el caso de 

un fluido en canal cerrado que fluye a través de un cilindro, ii) el caso de un fluido que fluye a 

través de un alabe controlado, y iii), el caso del control de un fluido de superficie libre durante el 

vertido. La implementación de estos primeros casos establece las formulaciones y limitaciones de 

aplicaciones futuras. Los resultados permitirán al lector no solo sostener los modelos 

implementados sino también desglosar los conceptos de la implementación en software para una 

mejor comprensión. 

 
En la implementación principal se consigue una simulación rápida de dinámica de fluidos 

basada en GPU. Los resultados muestran que esta implementación se puede utilizar en tiempo 

real para permitir que la robótica realice una tarea de vertido ciego con un controlador 

convencional sin que sea necesario algún sistema de sensado especial ni algún modelo predictivo 

basados en el conocimiento. 

 
Palabras clave: simulador físico, hidrodinámica suavizada de partículas, procesamiento rápido con 
GPU, cinemática robótica en tiempo real, dinámica de fluidos computacional 
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Chapter 1 

1. Introduction 

 

1.1. Thesis motivation 

The motivation of this work is based in the fact that currently insufficient model simulation 

is involved when robotics manages fluids in general. Furthermore, no model descriptor 

implementations are available to describe robot kinematics and fluid dynamics as an entity in the 

same domain of occurrence. Modern complexity models need to be developed to bring this to 

light leveraged by high-end computational technologies.  

 

Fast computing based on graphical processing units (GPU) is now very popular and can be 

found in supercomputers, computers and mobile devices, enabling them to process high 

demanding data loads like those found in physics engines. Motivated by this progress and 

meanwhile the GPU parallel processing becomes the right arm of the physics engines, 

simulations of robotic kinematics should not be left behind to explore this potential in new 

applications like in those where robotic agents interact with fluids in free surface or underwater.  

 

Motivated by GPU potential, robot kinematic and fluid dynamics can be coupled together 

allowing the users to interact in real-time with coupled simulations and apply possible control 

algorithms. 
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1.2. Main objective and challenges 

The main objective of this work is, thus, to find a fluid dynamics model that can be 

implemented with GPU processing for studying robotic devices in fluid media. For this 

objective, the following individual goals have been proposed for the development of the thesis: 

 

- To study the possibilities and underline the limitations of one modern fluid simulation: in 

particular, the smoothed particle hydrodynamics (SPH) model with fast graphical unit processing 

(GPU). 

 

- To develop a fluid-solid interaction model: a solid-fluid real-time interaction simulator for 

testing possible robotic kinematic control models, developing these fast fluid simulations and 

comprising different solid body dynamics to find a viable time kinematic solution for robotics.  

 

-  To find a fluid dynamics model implemented with GPU processing that allow fluid-robot 

model descriptors to be designed and conducted in further work with tested accuracy and well-

known dependencies, having applications to validate the simulator model implementation. 

 

- To implement a software simulator that allows coupling with kinematic structures for fluid-

robot interaction.  

 

Extensive research on the field of computational fluid dynamics (CFD) has been performed 

during the last decade using GPU parallel processing, especially in the field of computer graphics 

and scientific simulations. Yet, applications have not reached full potential in adding these fluid 

models into the robotic modelling to facilitate fluid-robot interaction. So, based on this, two main 

challenges are regarded: 

 

- An initial challenge comes from the computational cost, where complexity of most fluid 

models is a relevant drawback for fast or real-time simulations. Although many fluid model 

implementations are available these days, low computational cost and accurate models are to be 

found and adapted to the robot time and space domains to enable kinematic control. 

 



  1.3. Main objective and challenges 

 

 

3 

- A secondary challenge consists in building a simulator for motion kinematics that process 

data in real-time with no batch or offline preprocessing. In computer graphics, the fluid model 

works around simplification and visual effect, and no real physical data is engaged while the 

motion remains “realistic” to the viewers. In scientific simulations, though, kinematic requires to 

match physics reality. So, any motion performance will require special attention to find the best 

programming tools to implement real-time kinematic models of fluid-robot interaction. Data 

needs to be traceable in time in order to be able to compare results with literature data. 

1.3. Contributions 

The primary outcome of this work is to provide the resources to facilitate the development 

of a simulation software tool to couple mechanical components with fluid models, adding a 

contribution to the state-of-art in the field of fluid-robot control applications. 

 

Robot kinematics involved in this work has no demanding computational cost requirements, 

but when this is coupled with fluid dynamics applications, this requirement turn to be of high-

demand. Thus, the GPU is a base requirement for such applications. A secondary outcome of 

this work is to provide test cases of computational fluid dynamics coupled with solid kinematics 

using an interactive real-time feedback model based on GPU to match or enhance time response 

and performance of the equivalent stationary simulated cases.  

 
In particular, a liquid pouring case is treated in detail to support the intended contribution. 

Here, a coupled fluid-solid model has been designed and implemented to finally provide a fine 

control on the liquid surface to avoid sloshing. This work has been finally published in 

MDPI Applied Science. Also, the study of the GPU programming that is developed in 

this thesis work allowed to contribute with two articles in related conferences. These 

published content can be found in INTED and ICERI conferences. 
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1.4. Thesis structure and outline 

This thesis work, as mentioned earlier, is the conjunction and application of two 

computational simulators; one, the fluid dynamics simulator and, the other, the robotic (solid) 

kinematics simulator. The State-of-art, captured in Chapter 2, Section 2.1, studies the evolution of 

the two types of simulators, into what research and software industry have converged and unified 

with the name of physics engines with GPU processing and its latest applications in the field of 

robotics. Section 2.2 covers the fluid dynamics theory fundamentals of the models to develop in 

the following chapters.  

 

In Chapter 3, SPH model and proposed implementations, the fluid dynamics model used in this 

work is extensively described. This description allows the reader to differentiate the model from 

the particularities of its posterior GPU implementation. Section 3.1 defines the constitutive 

equations that covers the fluid dynamics model employed. Section 3.2 provides the details of the 

CFD model: the smoothed particle hydrodynamics, including its principle, advantages and 

limitations. Sections 3.3 and 3.4 deal with the specific treatment of the boundary conditions and 

the chosen algorithm for time integration. Section 3.5 describes the particular implementations of 

the GPU processing structures (or Kernels) to solve the SPH formulation used in this work. 

Final implementations, in Section 3.6, will allow to find the software specifics that embrace all the 

model concepts into a final simulator. 

 

Chapter 4, Coupling robotics and fluids, describes the three cases tested in this work with real-

time implementation and control design. Figure 1.1. shows the methodology of the proposed 

simulator; initially domain (geometric) model specifications are provided, then, these are fed as 

input into a coupled/uncoupled fluid dynamics and robot kinematics processing engine, and 

finally an expected design and control settings are obtained. A redesign feedback is use to 

redefine robot kinematics and/or fluid dynamics on the fly by allowing the user to interact in 

real-time with the simulation process. 
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Figure 1.1. Robot kinematics and fluid dynamics block diagram  

for a closed-loop design system. 

 

In Chapter 4, Section 4.1 presents the benchmark case used for static solids validation of 

fluid motion. This case tests the well-studied development of the von Karman vortex street 

(KVS) formation in a closed channel and compares results with abundant literature data. In 

Section 4.2, a flapping underwater airfoil -or hydrofoil- (NACA profile) is simulated in a closed 

channel flow. The profile is first modeled in free rotation and later as a controlled agent. The 

positive results found in this simulation allow to develop a third and final case of a coupled fluid-

solid simulation. The third simulation case, in Section 4.3, describes a pouring control model in 

free surface and the resulting kinematics using closed loop control approach. A resulting final 

time response of the pouring action is provided. 

 

Results and discussion for each individual case are included at the end of each case Section 

of Chapter 4. The discussion offers a detailed debate on the overall research throughput. 

Nonetheless, a special interest is placed in the pouring case results as it provides the performance 

of the implemented simulator including partial results of the former cases and their fluid and 

solid models. 

 

Conclusions of this thesis are drawn in Chapter 5, that also offers some lines of further work 

to follow and deepen the research work to develop new coupling models to validate physics for a 

robot-fluid ecosystem.  
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Chapter 2 

2. State of  the art 

 

A motion simulator models kinematics of objects to obtain numerical results that can 

describe their behavior in real physical world. This type of simulators add knowledge to different 

applications such as, robotics, skill training, scientific exploration, visualization, mechanical 

prototyping, and medical diagnosis, to name a few. Although the applications are extensive, to 

match real experiment data, the simulation cases are simplified. This is especially true for real-

time applications or in objects with complex geometries, where massive data is processed and the 

physical modelling adds relevant computational cost. Such is the case of the simulation of 

computational fluid dynamics.  

 

On the other hand, the interaction in 3D virtual scenarios of computer simulators, that are 

employed in game applications, provided live user experience featuring the user to guide and 

redefine the game behavior on the fly. A key feature not only for games engines but also for 

scientific purposes in physics engines. In many ways, the computer game industry leads the state 

of the art of computer interaction and continues to evolve quickly due to the improvement of 

fast parallel computing using graphic processing units (GPU). This GPU technology allows to 

process intensive data loads even in today standard computers and mobile devices. There are 

some limitations on regard to GPU usage though; like the memory block exchange speed [1]. 

However, while this technology continues expanding, the possibilities in using it in computational 

physics engines are increasing widely. The GPU capabilities in simulators are the massive data 

processing, the remote and mobile usage, and the real-time graphical user interaction. These 
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capabilities are precisely the required computing features of this work application: a solid-fluid 

real-time interaction simulator for testing robotic kinematic control models. 

 

In the next Section 2.1, a brief description of the background of interactive simulators that 

make use of GPU computing to solve physical models are described, just as in the aim of this 

work. In the Section 2.2, theoretical and numerical computational fluid dynamics (CFD) methods 

typically used in fluid simulators with fast computing are described, dividing them in those with 

eulerian and those with lagrangian formulations.   

2.1. Physics engines 

The term used to describe the computer software employed to simulate dynamics in physics 

has been commonly accepted as “physics engines”. To avoid misunderstanding, the reference 

terms used in this work will be physics engines or physics simulators indistinctly, such as those 

employed within the robot kinematics described in [2]. Many physics engines have been 

developed in the field of computer graphics, leading to contribute in the engineering 

experimentation, design and research. Such is the case of the computer aided design (CAD) 

software, where computational fluid dynamics methods, like the finite element method (FEM), 

have been used to simulate the stress regions of designed geometries that are subject to 

mechanical loads [3].  

 

CAD-based physics engines have been the foundation of the real-time physics simulators. 

The "real-time" term in simulation usually refers to the property of conducting simulation tests 

on a time dependent scale or timeline that allows to run the simulation seamlessly along the user 

interaction. Physics game engines are the result of the concurrency of CAD, CFD and GPU 

technologies for real-time and interactive systems. Actually, the game industry is one of the most 

advanced in applying physics where many state-of-the-art CFD methods are implemented [4, 5]. 

Nonetheless, the target of game engines is the user perception experienced throughout the 

development of a scene reality and not the motion kinematics aligned to real world physics. Such 

target can be found in the engineering software architectures. Blender [6] is an enhanced 

engineering simulator framework where motion kinematics and CFD implementations for fluid 

and solids allow for game development as well for engineering simulations. This type of hybrid 
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system is formed by a framework core and a set of code layers that are bonded together in a 

timeline so motion kinematics for solids and fluids can be tested in a 3D scene. [6] and other 

similar commercial systems allow the user to carry out physics simulations with simple parameter 

configuration or by adding programming (scripting) functionality. 

 

In robotics, the kinetic and dynamic simulations have a wide range of computer tools that 

can be found depending on the application. Despite of how heterogeneous robotics applications 

are, it is commonly simulated in the numerical computer software [7] for its motion kinematics 

and dynamics study. Other simulations are coded from the ground up though. That is the case of 

robotics applications like ours where robotics handle fluid volumes for pouring liquid. Such 

application has been studied from different approaches. One approach consisting in tracking the 

flow trajectory by computer vision [8]. CFD is used as action constrains but it is an uncoupled 

model yet, where fluid and solids kinematics work separately. Another model-free approach in [9] 

uses deep learning techniques based on computer vision to perform liquid pouring. Davis in [10] 

provides a commonsense study of liquid pouring where the study suggests the development of 

different theories that will integrate a reasoning to apply artificial intelligence algorithms. And 

last, the model-based approaches [11, 12] where pouring kinematics is driven by a fluid model, 

including the free surface model or the volume model. As the pouring task suggests, a free of 

error control performance is required, thus, as the approach is fully deterministic, it is ideal to 

follow a model-based one for such applications. In this work, the intended pouring case is based 

on this approach that includes the selection of a CFD method and a free surface model to fully 

couple with the pouring kinematics.  

 

Whether is a game engine, an engineering simulator or a hybrid framework combination of 

both, the application of physics kinematics is a requirement today. Such requirement includes at 

least the usage of a physics engine where solid objects can react to physical collisions between 

each other and between them and the boundaries of the space domain where they are allocated. 

This space domain can be a n-dimensional euclidean representation, most of the time a 

hexahedron or a rectangle space for 3D or 2D respectively. In most of the available physics 

engines there is a force-based scheme where each object body in the scene has a composed n-

dimensional force. This force is composed by the forces of interest. It may be gravity added with 

a collision acceleration for solid body objects [13], or pressure gradient and viscous shear for 

fluids [14]. Because of these body interactions the composed force may change in each discrete 

time step of the simulation as well as the body position. Thus, this scheme requires a discrete 
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integrator that translate driving force into body position and orientation. The study in [15] 

provides an evaluation of real-time physics simulators systems for many aspects such as the 

integration scheme performance. As suggested in [15] and extensively developed in [16], the 

collision force methods require to be as robust as needed in a physics-based simulator. From 

primitive geometry collisions to bounding volume collisions, there are many force compositions 

that can be chosen to fit a desired performance in simulation. 

 

Apart from all-in-one simulation solutions and thanks to software portability, there are 

individual software components, library packages and interfaces that have been developed to 

provide simulation functionality to core systems, and many of them, to plug in to their own code 

for rapid development. For instance, Bullet [17] and ReactPhysics3D [18] are two C++ libraries 

for real-time collision detection of rigid objects including time integration solvers. 

 

Another important feature of physics engines is the real-time performance. The tasks in a 

physics engine include the scene graphics creation, the physics primitives and collision detection 

and the user interaction, all running seamlessly in time. The scene creation or the space domain is 

usually developed under a 3D computer graphics standard for most of the physics engines. 

OpenGL [19] has been the most used application programming interface (API) for scene 

graphics creation in cross-platforms but there are others that have same functionalities [20]. 

Typically, no concerns are related to this task and programmers delegate the computer graphics 

programming to this type of libraries because of their robustness in dealing with graphical 

hardware.  

 

The user interaction task is not of a minor relevance. As mentioned earlier, the user 

interaction defines the real-time feature which allows the user to call events in a discrete time 

running simulation. Such events may come from different computer input sources and will 

trigger programmed or on demand functionalities. Different libraries and APIs [21-23] are 

available depending on the selected operation system and programming language. But for a better 

selection, as timing is crucial in real-time applications, an option with timing control is preferred. 

Timing control will allow to synchronize the time step that the simulation data refresh on the 

screen and the time step for the integration of forces and the position update of the rigid bodies. 

In this work, an API with time control is selected and described. 
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The geometry elements or primitives that constitute a solid body can be selected based on 

the type and complexity of the solid body to simulate. In CAD, triangles are usually the common 

primitives for rigid and flexible bodies because they can be grouped in meshes to form simple 

and complex geometries. Fluid zones, processed with CFD methods, are typically constructed 

with meshes or even particles as their primitives. Those two primitive elements can be used to 

describe the fluid dynamics from two fundamental frames of reference. One, the lagrangian 

frame of reference and, two, the eulerian frame of reference. These two frames of reference on 

which CFD models and ultimately physics engines are developed, will be described in next 

Section 2.2.  

2.2. Computational fluid dynamics 

As mentioned earlier, the aim of this work is to find a fluid dynamics model that can be 

implemented with GPU processing for studying robotic devices in fluid media with a nearly real-

time capacity. Such challenge may force to select a fast model to avoid computational cost issues, 

at a certain expense of precision. GPU technology has quickly improved in fields like computer 

graphical rendering, and, to these days this is no longer a relevant issue in this field for solving 

models based on SPH [14, 24, 25] in comparison with other fluid methods with the same spatial 

resolution. This is an important reason to select a SPH based method in this work. Both Navier-

Stokes equations and SPH formulation are based on the conservation equations that are 

described in the following sections. 

2.2.1. Theoretical models 

In CFD [26], the lagrangian description of the conservation equations defines fluid entities 

or particles that carry their own fluid properties like pressure, temperature, density or 

momentum. Along time, such properties can change and tracking motion of these fluid entities 

will describe the fluid motion itself. Therefore, conservations of mass, momentum and energy 

apply to each individual fluid particle. 
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The other description is the eulerian one. This description allows to find the evolution of the 

fluid properties at every point in space and time. Thus, this is a field descriptor. Such field 

properties of fluid depend on an individual location in space and in time. The following Sections 

provides the notations of the lagrangian and eulerian descriptions specifically for mass and 

momentum. Conservation of energy equation is not included here for clarity purpose for the 

following content that will focus only in isothermal fluids. 

2.2.1.1. Eulerian formulations 

If the viscosity (inviscid flow) and the external forces, like gravity, are neglected, the 

conservation equations in fluid mechanics have the following eulerian notation in Equations (2.1) 

for mass and Equation (2.2) for momentum for incompressible fluid: 

 
𝜕𝜌

𝜕𝑡
+ 𝑣𝛽

𝜕𝜌

𝜕𝑥𝛽
= −𝜌

𝜕𝑣𝛽

𝜕𝑥𝛽
 (2.1) 

 
𝜕𝑣𝛽

𝜕𝑡
+ 𝑣𝛼

𝜕𝑣𝛽

𝜕𝑥𝛼
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝛽
+ 𝜏𝛼,𝛽 + 𝑓𝛽  (2.2) 

𝜌, 𝑡, 𝑣 and 𝑥 are density, time, velocity and position. The superscripts 𝛽 and 𝛼 denote the 

generalized coordinate space directions. The first term to the left in Equations (2.1) and (2.2) 

refers to the fluid acceleration, while the second refers to the convective acceleration. The 

negative term to the right defines, by convention, the direction of the mass or flow. 𝜏𝛼,𝛽  is the 

viscous stress and 𝑓𝛽  the volumetric force. 

2.2.1.2. Lagrangian formulations 

The governing equations of an isothermal fluid in the lagrangian formulation are Equation 

(2.3) for the continuity equation, and Equation (2.4) for the momentum equation. 

 
𝐷𝜌

𝐷𝑡
= −𝜌

𝜕𝑣𝛽

𝜕𝑥𝛽
 (2.3) 

 
𝐷𝜌𝑣𝛽

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝛽
+ 𝜏𝛼,𝛽 + 𝑓𝛽  (2.4) 
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Notice the right term from the eulerian and lagrangian equations that change by applying the 

material derivative relation 
𝐷𝜑𝛽

𝐷𝑡
=

𝜕𝜑𝛽

𝜕𝑡
+ 𝑣𝛼

𝜕𝜑𝛽

𝜕𝑥𝛼
, where 𝜑 is a conservative quantity. It is worth 

to notice that the lagrangian formulation presents the advantage of eliminating the non-linear 

term of the convective acceleration. 

 

Water is assumed as an incompressible Newtonian fluid, and this is the type of fluid of 

interest for robotics applications like in this work. The elemental fluid forces involved in such 

type of fluid are the viscous stress and gravity. Many other forces may arise as well, like the 

surface tension, but those can either be included or not depending on the fluid model of interest.  

So, if the former terms are added to the momentum formulation in Equation (2.4) and 

rearranging 𝜌, Equation (2.5) is obtained.  

 𝜌
𝐷𝑣𝛽

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝛽
+ 𝜇

𝜕2𝑣

𝜕𝑥2(𝛽)
+ 𝑓𝜷   (2.5)  

 𝜌
𝐷𝒗

𝐷𝑡
= −𝛁𝑝 + 𝜇𝛁2𝒗 + 𝜌𝒈   (2.6)  

Equation (2.5) is rewritten in Equation (2.6) by substituting the partial derivatives by their 

equivalent gradient (∇) and laplacian (∇2) operators described in Equations (2.7) and (2.8).  

 ∇𝑝 ≡ [
𝜕𝑝

𝜕𝑥
,
𝜕𝑝

𝜕𝑦
,
𝜕𝑝

𝜕𝑧
] (2.7) 

 ∇2𝒗 ≡

[
 
 
 
 
 
𝜕2𝑣𝑥

𝜕𝑥2
+
𝜕2𝑣𝑥

𝜕𝑦2
+

𝜕2𝑣𝑥

𝜕𝑧2

𝜕2𝑣𝑦

𝜕𝑥2
+
𝜕2𝑣𝑦

𝜕𝑦2
+
𝜕2𝑣𝑦

𝜕𝑧2

𝜕2𝑣𝑧

𝜕𝑥2
+
𝜕2𝑣𝑧

𝜕𝑦2
+

𝜕2𝑣𝑧

𝜕𝑧2 ]
 
 
 
 
 

 (2.8) 

Equation (2.6) includes three terms to the right: the pressure term −∇𝑝, the viscosity term 

𝜇∇2𝑣, and the gravity term 𝜌𝑔. The viscosity term is given by the dynamic viscosity, 𝜇, and the 

laplacian operator of velocity ∇2𝑣.  
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2.2.2. Numerical models 

Based on the former theoretical formulations, two numerical solvers for NSE can be 

classified. One class based in meshes (finite volume method), and the other based in particles 

(mesh-free or mesh-less methods) [27]. In the following Sections, the two are described to allow 

the reader a broad background of the selected numerical model employed in this work for the 

robotics application. 

 

In the space domain (dimension scale), a full tracking of the fluid properties that act within 

and/or around the solids is required; usually to track the force vectors or the velocity field of the 

fluid. By dismissing the group of eulerian methods that use the GPU acceleration [28, 29] because 

of its remeshing computational cost, a lagrangian method has to be selected to the application of 

this work. 

 

Nevertheless, in the following two sections some of the numerical methods within the two 

formulations of their frame of reference are described to highlight the advantages of lagrangian 

formulation in the context of complex and moving solid bodies. 

2.2.2.1. Numerical methods based on eulerian formulations 

As mentioned earlier, the eulerian formulation provides a field description of the fluid. In 

many cases, this field is represented by a grid spatially fixed in space and no motion of the grid 

nodes is used to improve computational cost of remeshing. The mass, momentum and energy are 

computed across the grid on the fluid volume boundaries. The advantage of the eulerian grid 

computation is that no deformation is presented to the simulated fluid (or matter for the general 

case), and thus, numerical issues are minimized.  

 

Although, apparently simple, constitutive equations are not linear and continuity and 

momentum equations are coupled. When the flow is laminar, the computational cost is not so 

important, but the requirements grow quickly as Reynolds number, 𝑅𝑒,  increases. In order to 

handle turbulence effects, these models need more and more computational nodes (in proportion 

of 𝑅𝑒9/4) and smaller time steps. In that sense, Direct Numerical Simulation (DNS) can describe, 
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in a deterministic form, all the turbulence scales for accurate results, at the expense of a 

tremendous computational cost. 

 

Aiming at reducing the requirement in terms of calculation nodes (mesh size), the Reynolds-

average Navier-Stokes method (RANS) is an example of a numerical eulerian method used to 

model turbulent flows [30]. It proposes an approximation of NSE to have a relative small 

computational cost compared with the direct numerical simulation (DNS) where NSE are 

numerically solved including the complete range of spatial and temporal scales of turbulence. 

Such computational advantage in RANS is found by permitting a solution of NSE decomposing 

the variables in a mean part and a fluctuating part. The mean quantities remain and the 

fluctuating quantities vanishes except for the viscous turbulent tensor which is modelled. For 

steady flows, RANS equations do not contain time derivatives and the solutions is even less 

costly.  

 

Large eddy simulation (LES) is a numerical eulerian method too [31]. It is well used to 

describe a good fraction of the turbulence in flows. It uses a low filter approach to ignore the 

small length scales of turbulence that generates high computational cost. It can produce as much 

information as required in the small scale of turbulence allowing to reduce the induced error by 

passing only large eddy formations. From this attribute its name. In contrast with RANS, LES is 

more accurate and numerically expensive. However, nowadays with novel computer 

performance, more useful to describe detail in the turbulent regime. For such differences, the 

applications range between both models and its selection depends upon the case of study.  

 

Another eulerian mesh-based numerical method is the volume of fluid method (VoF) [32]. 

VoF is a modelling method for free surface tracking. It is very useful for incompressible multi-

phase simulations of fluids, specially, to model air-liquid interfaces. However, the more detail in 

free surface deformation is demanded, the more complex and finer the mesh should be. This 

produces a high computational cost and for this reason real-time applications could be out of its 

scope.  
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2.2.2.2. Numerical methods based on lagrangian formulations 

Numerical method based on lagrangian formulation can be set on a grid (mesh-based) or on 

independent nodes or particles (free-mesh method). Finite element model (FEM) is an example 

of a mesh-based method, but its applications to fluids is limited. Its potential lies in simulating 

stress regions in mechanical parts during dynamic tests.  

 

Lattice-Boltzmann method (LBM) is another example of lagrangian formulation method 

commonly used in CFD applications [33] using particles in a free-mesh method. LBM does not 

solve NSE, instead, it applies the mesoscopic kinetic equations on particles to obey the 

macroscopic behavior of a fluid, in other words, the NSE behavior. The main advantages of 

LBM to be considered towards the point of view of this work are the direct arithmetic 

calculation, the ideal disposition for parallel processing and the ability to simulate complex solid 

geometries and multi-phase flows. Two important weaknesses are that it is based on squared or 

cubic grids (lattice grids) and it is difficult to simulate curved grids, and that it is numerically not 

stable for small viscosity values. In robotics and specially in this work, some very useful 

applications are the free surface simulations. In LBM, free surface applications can be adapted by 

relabeling and reconstructing incomplete lattice cells to fulfil mass and density distributions [34]. 

Such tasks generate moderate overhead to the algorithm implementation and discourages to be 

used indistinctly between closed channel and free surface simulations. 

 

There are other lagrangian numerical methods to mention from their importance in different 

fluid applications, like the moving particle semi-implicit method or the discrete lagrangian 

method. However, to keep the list consistent with this thesis work, the last lagrangian method to 

mention is the SPH method. As mentioned earlier, this is the selected method in this work. It was 

first introduced by Gingold and Monaghan [35] and Lucy [36] in 1977 for astrophysics problems. 

The principle, formulation and implementation will be provided in depth in Chapter 3, however, 

our choice is based in three key strengths.  

 

• First, the ease to parallelize the implementation using adopted Kernels and parallel-based 

particle search algorithms. A very useful advantage for real-time and interactive application.  

• Second, the minimum or null requirements to implement the SPH method when switching 

between free surface and closed channel applications. In distinction to eulerian methods, 

lagrangian one do not need to track in time the free surface nor to mesh at each time step 
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close to this interface. The importance of not having to compute a mesh allows to process 

conveniently faster for real-time simulation. This is also true when a solid moves into the 

fluid.  

• And third, since SPH depends on NSE, fluid-solid interface forces, like the adhesion force or 

others, can be included to the method with relative ease.  

 

One important limitation in SPH is the formulation of boundary conditions. In general, 

boundary handling algorithms are not totally aligned to physics. Another limitation is that 

incompressibility needs to be imposed. Such limitations would not limit the computational 

performance though, and for robotics applications the dimensions allow to disregard the impact 

of boundary conditions to some extent. Finally, weakly compressibility approach is commonly 

adopted in SPH for being very efficient computationally and for providing accurate numerical 

results.  

2.2.3. CPU vs GPU implementations in CFD 

Graphics cards were introduced back in the 80's, but the GPU term became popular in the 

late 90's. Graphics cards are made of GPUs, video memory and peripherals, and historically the 

first to use them extensively was the game industry while other sectors started to find its potential 

later when the GPU evolved from only a video processing device to a general purpose intensive 

processing device. Such more recent definition of the GPU is defined by the parallel architecture 

that constitutes its concept where data can be transferred and processed in parallel operations. 

Contrary to the conventional central processing unit (CPU) where parallel processing is 

intrinsically related to the software implementation. However, as far as the algorithm 

implementation is parallelizable, the GPU architecture will enhance the processing time over the 

CPU computation. If the algorithm implementation is purely sequential (meaning that each 

operation in the algorithm depends form its previous one), despite the great potential of the 

GPU, both, the CPU and the GPU will offer similar performance. This underlines the parallel 

characteristic of the algorithm to be implemented by the GPU to allow parallel shortcuts and 

time cost enhancements. It is also important to mention that CPU technology join parallel 

programming libraries like OpenMP [37] which also provide fast processing through parallelized 

algorithms. There are also libraries that combine CPU and GPU processing providing the best 
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from both worlds, fast sequential and fast parallel computations. This processing mode is also 

known as heterogeneous computing or general purpose computing on GPU (GPGPU).  

 

In CFD methods, the common denominator is the intensive processing of data, mainly 

because of the computation of discretized partial differential equations that constitute theoretical 

formulations. For this reason, GPU processing is a perfect fit for CFD when the 

implementations can be parallelized. Such is the case of LBM which was initially tested on GPU 

(Nvidia GeForce FX 5900 Ultra with 256 MB of video memory) by Li et al. [38] where the speed 

was 8 to 15 times faster than in the CPU (Intel Pentium IV 2.56GHz with 1GB of RDRAM) 

computation. In more recent investigations and with recent GPU technology, Marsh [39] found 

the speed much faster for the LBM with a 50 to 75 factor of improvement, having an Intel 2.5 

GHz Core 2 Duo CPU vs a NVIDIA state-of-the-art GPU.  

 

Initial research using GPU for a fluid particle method, not SPH per se, can be found in [40] 

from Kipfer et al. in 2004. There, the main topics of a lagrangian discrete method is provided: 

particle emission, sorting, collision and rendering, to name a few. Kolb and Cuntz in [41] describe 

the SPH method using the GPU and contribute with the parallel data structures to be used by the 

GPU. They provide initial SPH simulations with fluid filling a cup, and the results are compared 

in term of number of particles vs frames per second. Other visible pioneers were Harada et al. 

[42] who formally describe SPH tasks in parallel structures to be processed by the GPU. One 

interesting contribution from [42] was the parallelized neighbor search algorithm that was fully 

processed on the GPU.  

 

In conclusion, the dominance of the GPU over the CPU programming in the SPH 

implementation is the possibility of the CPU to delegate parallel tasks to the GPU decreasing the 

computational overhead and the direct bounding to the video memory. 

 

From these contributions, in a short period of time, many improvements have been made to 

parallel SPH [14, 24, 43, 44]. Specially because of the interest in the target application of 

visualization and graphics where time performance is critical. Hoetzlein and Höllerer in [45] 

provide a performance study of different SPH implementations comparing their efficiency by 

number of particles, frame per seconds and GPU hardware.  
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Scientific computing applications where modelling and simulation is involved is less visible 

than computer graphics in SPH, but equally important. SPH simulation cases like the dam brake 

study for free surface flows [46] or the Karman vortex street effect in closed channel flows [47] 

have effectively simulated and studied. Many other science applications can be found as well, like  

the study of snow avalanche with SPH [48]. In robotics, the SPH method has not been 

developed as an application field yet, however, the interest to simulate fluid volumes behavior in 

moving reservoirs is a common application [49] very interesting to migrate to one or two degrees 

of freedom motion kinematic in an automatic liquid pouring controller.  

 

In fact, the liquid pouring simulation is the final test case implemented in this research work 

which in different model properties and implementation details contributes to this state of the art 

in the field of applied robotics. 
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Chapter 3 

3. SPH model and proposed implementation 

 

 

 

In this Chapter, the SPH fluid method is developed, giving to the reader a clear description 

of this fundamentals. The selected variants and possible issues risen in such concepts are adapted 

to the final application within this work, and a clear explanation of the separation of 

conceptualized theory and its implementation structure is provided. Section 3.1 describes the 

constitutive equations that formulates the Navier-Stokes lagrangians equation in fluid flows. 

Section 3.2 provides the basic idea of the SPH method by using interpolations and also provides 

the relation between spatial resolution and the length of influence of such interpolants. 

Section 3.3 deals with the spatial domain characteristics and the boundary conditions used in this 

work. Section 3.4 describes the time integration schemes typically used in the SPH method and 

the selected one for this work. Section 3.5 offers the detailed GPU implementations of each 

parallel task. Finally, Section 3.6 provides the final thoughts and software structures that 

constitute the real-time system proposed in this thesis objectives and contributions.  

3.1. Constitutive equations 

As mentioned earlier, the lagrangian description of matter is based on particles that are able 

to transit in space, each of them carrying the properties of the matter such as, for instance, the 

pressure and density of the fluid matter. Such description allows to track conceived fluid volumes 
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in domains defined by boundaries that may change over time without much concern about 

domain constrains like it would in the eulerian description. This advantage is key to study fluids 

with moving solids in real-time simulations. In the next section, the lagrangian formulation of the 

NSE is presented, giving continuation to the theoretical model described in Section 2.2.1.2 that 

will provide the fundamentals of the selected SPH method. 

 

Next sections are dedicated to the particular lagrangian formulation of the equations of 

conservation; mass, momentum and energy. However, this thesis is restricted to isothermal and 

incompressible flows so the energy equation is not required to be developed further.  

3.1.1. Continuity formulation 

The continuity equation represents the mass conservation. Then, the lagrangian formulation 

for individual particles is Equation (3.1): 

 
𝐷𝑚

𝐷𝑡
= 0 (3.1) 

In SPH, each simulated fluid particle is given a mass 𝑚𝑖, so that the mass conservation is 

intrinsically granted. However, incompressibility condition has to be treated with care (Section 

3.1.3).  

3.1.2. Navier-stokes lagrangian equations 

Assuming that the fluid can be described by a group of discrete particles, the momentum 

equation applied to such particles will be,  

 𝜌𝑖
𝐷𝒗𝒊

𝐷𝑡
= −∇𝑝 + 𝜇∇2𝒗 + 𝜌𝑖𝒈  (3.2) 
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This lagrangian formulation in Equation (3.2) has the advantage of cancelling non-linear 

terms denoted in the eulerian formulation of the momentum Equations (2.2) also described as 

the convective term along the three dimensions (𝑥, 𝑦, 𝑧): 

 𝑣𝛼
𝜕𝑣𝛽

𝜕𝑣𝛼
≡  𝑣 ∙ ∇𝑣 =

(

 
 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧

𝑣𝑥
𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑦

𝜕𝑧

𝑣𝑥
𝜕𝑣𝑧

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑧

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧 )

 
 

 (3.3) 

Such term involves calculation of partial derivatives that increase the computation cost for 

the numerical model. This cancellation become especially relevant for real-time implementations 

using lagrangian formulation.  

 

If, density 𝜌𝑖  is isolated in Equation (3.2), a clear acceleration notation of particle 𝑖 can be 

described as,  

 𝑎𝑖 = −
1

𝝆𝑖
∇𝒑 +

𝜇

𝝆𝑖
∇2𝒗 + 𝑔 (3.4) 

Equation (3.4) provides a direct form to calculate the particle acceleration, but pressure 

needs to be found before. The following Section provides the details to solve the pressure 

variable. 

3.1.3. State equations for weakly compressible fluids: pressure-

density formulations 

For incompressible fluids, the Poisson equation can be derived from continuity equation, 

leading to: ∆𝑝 = 𝛁 · (𝜌𝒈 − (𝒗 · 𝛁)𝒗). 

 

However, the integration of the Poisson equation is time costly due to the double integration 

of the pressure that requires a stable numerical integration scheme where the solution needs to 

converge with minimal error. That implies a fine spatial discretization requiring a large number of 

particles with a high computational cost [50].  

 



Chapter 3  SPH model and proposed implementation  

 

 

22 

This is the reason why, instead of solving the Poisson equation, a weakly compressible state 

equation is widely used in the SPH methodology [51]. It simply relates pressure 𝑝 and densit 𝜌 

with the equation of state of an isothermal ideal gas denoted in Equation (3.5) and used by Müller 

et al. [24].  

 𝑝 − 𝑝0 = 𝑘𝑝(𝜌 − 𝜌0) (3.5) 

𝜌0 is the rest density of the fluid (for water 1000 kg/m3). 𝑝0 is the reference pressure. 𝑘𝑝 ≈

𝑐𝑠
2, being 𝑐𝑠 the speed of sound. After Morris [52], …["The sound speed must be chosen carefully to 

ensure both an efficient and accurate solution of a given problem. The value of c must be large enough that the 

behavior of the corresponding quasi-incompressible fluid is sufficiently close to that of the real fluid, yet it should not 

be so large as to make the time step prohibitively small. Using a scale analysis, Monaghan [3](external 

reference) argued that, for density to vary by at most 1%, the Mach number of the flow should be 0.1 or 

less"]… That means 𝑐𝑠 should be at least 10 times larger than the velocity scale of the flow, 𝑐𝑠 =

10𝑈0 or 𝑘𝑝 = 100𝑈0
2. As this is a very restricting condition for 𝑘𝑝, Morris in [52] found less 

restrictive value by considering a balance of forces in the momentum equation, leading to 𝑐𝑠
2 =

𝑘𝑝 = 𝑈0
2 𝛿⁄ , when pressure forces dominate over viscous or body forces. Where 𝛿 = ∆𝜌 𝜌0⁄  is 

the allowable relative density fluctuation (fraction of compressibility). As 𝛿 < 3% is an 

acceptable value according to Morris [52]. 

 

Equation (3.5) of state is widely used in closed channel with good results [52]. However, in 

free surface simulations at low Reynolds number, Tait's equation [53], in Equation (3.6), is more 

appropriate because it enforces incompressibility [43].  

 𝑝 = 𝑝0 ((
𝜌

𝜌0
)
𝛾
− 1) (3.6) 

Where 𝛾 is an index constant defined to a value of 7. Notice that in Equation (3.5) 𝛾 = 1. 

High values of 𝛾 make the fluid more incompressible due to the exponent but any error in 

density computation leads to large inaccuracies in the pressure field. Thus, conditioning the 

computational time step to be very small. In Sections 4.1 and 4.2 cases, Equation (3.5) of state is 

applied, while in Section 4.3 case, Equation (3.6) of state is applied. 

 

There are pros and cons when dealing with equivalent solid-fluid coupling models. One 

important issue is the volume transfer in free surface. SPH method is well known from its 
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compressibility nature so fluid incompressibility needs to be imposed to the method itself. This 

need of incompressibility in several free surface applications, like the final third case in this work 

(Section 4.3), has led to develop different methods to improve incompressibility, such as the 

weak-compressibility method [43] or the enforced-incompressibility method [52] for SPH.  

 

As mentioned, incompressibility in free surface fluids is directly enforced by solving a time-

consuming derivative Poisson equation. This negatively affects real-time applications like the one 

presented in this work, so, with a real-time performance approach in mind, the Tait’s equation is 

used instead, just as in [53]. In Figure 3.1, two vessels filled up with fluid particles using different 

pressure equation are shown using the simulator of this work. To the top-left, using the ideal gas 

equation (compressible fluid), and to the top-right using the Tait equation (weakly-compressible 

fluid). To the bottom, a number of particles vs. liquid depth graph is displayed. It is clear how far 

the ideal gas equation implementation is from the ideal incompressibility where filled height ℎ 

proportionally increases as a linear function of the number of particles within the vessel. Tait's 

equation provides a much closer performance to the ideal incompressibility. 

 

Figure 3.1. (Top) Hydrostatic equilibrium simulation, (left) with ideal gas pressure equation, and 

(right) with Tait’s equation. (Bottom) Graph comparison between (a), (b) and the ideal 

incompressibility. 
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The importance of using Tait’s equations allow to maintain liquid height quasi-linear with 

respect to volume height (ℎ). Recall from Equation (4.21) that this coupling model equation 

depends on  ℎ = 𝐴, so it is fundamental to minimize compressibility.  

 

An issue widely discussed in SPH modeling is the physical inconsistency of particle densities 

where low pressures (in vortices for instance) generate voids (or agglomerations) in the domain. 

This particle density inhomogeneities is a non-physical effect in nearly incompressible SPH that 

has been discussed in the literature. This is the consequence of choosing an inappropriate 

equation of state or a too small value of  𝑘𝑝. In Figure 3.2, the evidence of this issue is provided 

in preliminary work of this thesis (Section 4.1 case). 

 

         

Figure 3.2. (Left) Formation of voids during KVS effect.  

(Right) Running simulation with 𝑝0 adjustment. 

 

Morris in [54], followed by Marrone [47], minimizes the formation of voids by adding a 

background pressure 𝑝0. Such reference pressure 𝑝0 is recommended to be 𝑝0 = 3𝜌0𝑈𝑚𝑎𝑥
2 . 

3.2. SPH formulation 

SPH was first developed by Lucy (1977), and Gingold and Monaghan (1977) to solve 

astrophysical problems in 3D spaces. Its possibilities to be applied in a wide range of problems 

led to multiple improvements to the original method. The essential idea of SPH is the integral 
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representation of field functions. The concept comes from the integral representation of a 

function in a volume Ω, 𝑓(𝐫) = ∫ (𝑓(r′)𝛿(𝐫 − 𝐫′, ℎ))dr′
Ω

, where, an integral approximation of 

𝑓 is given by replacing the Dirac delta function by a smoothing function 𝑊. Equation (3.7) is this 

integral representation and the generalized form of the SPH method that describes the force in a 

given particle at position 𝐫. 𝑓 denotes the function to approximate at position vector 𝐫. 𝜌 is the 

fluid density, and 𝑊 denotes a weighted function from where the “smoothed” term comes from. 

𝑊 is the result of generalizing a trivial delta function with a characteristic width of two times ℎ, 

also known as the smoothing length in the SPH formulation. Section 3.2.2 provides an illustrated 

description of this smoothing length. 𝑊 also allows to obtain a continuous field of flow 

properties. 

 𝑓(𝐫) = ∫
𝑓(r′)

𝜌(r′)
𝑊(𝐫 − 𝐫′, ℎ)dr′

Ω
 (3.7) 

Equation (3.8) is the discrete version of the SPH interpolation in Equation (3.7) where 𝑖 

ranges over all particles within the smoothing length. 

 𝑓(𝐫) ≈ ∑
𝑚𝑖

𝜌𝑖
𝑓(𝐫𝑖)𝑊(𝐫 − 𝐫𝒊, ℎ)𝑖  (3.8) 

3.2.1. Governing equations: gradient and laplacian interpolants 

One of the greatest advantages of the SPH method consists in using the analytical derivative 

𝑊 instead of evaluating the derivatives of the fluid properties, saving calculation time.  

 

For density 𝜌, required by Equation (3.4), SPH interpolant Equation (3.8) is applied by 

simply particularizing 𝑓 = 𝜌 to have, 

 𝜌(r) ≈ ∑ 𝑚𝑖
𝜌𝑖

𝜌𝑖
𝑊(r − r𝑖 , ℎ) ≈𝑖 ∑ 𝑚𝑖𝑊(r − r𝑖 , ℎ)𝑖  (3.9) 

Equation (3.4) requires the first derivative of the pressure, then, if using the definition of the 

SPH interpolant and deriving 𝑓, a gradient interpolant can be expressed as in Equation (3.10). 
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 ∇𝑓(r) ≈ ∑
𝑚𝑖

𝜌𝑖
𝑓(r𝑖)∇𝑖𝑊(r − r𝑖 , ℎ)𝑖  (3.10) 

Equation (3.10) has a gradient notation where ∇≡ 𝜕 𝜕r⁄ . From the first term of the right 

hand of Equation (3.4), the pressure term, −
1

𝝆𝑖
∇𝒑, is the gradient term that is developed using 

SPH gradient interpolant in Equation (3.10). The mathematical details on how, making 𝑓 = 𝑝, 

turns Equation (3.10) into Equation (3.11) is fully developed in Appendix A.1. 

 
∇𝑝(r)

𝜌𝑖
≈ ∑ 𝑚𝑖 [

𝑝(r𝑖)

𝜌(r𝑖)2
+

𝑝(r)

𝜌(r)2
] ∇𝑖𝑊(r − r𝑖 , ℎ)𝑖  (3.11) 

For the laplacian operator, needed in Equation (3.4) for the middle term of the right hand 

side, the viscous stress term, 
𝜇

𝝆𝑖
∇2𝒗, is derived from SPH formulation in [24], resulting in 

Equation (3.12), 

 ∇2𝑓(r) ≈ ∑
𝑚𝑖

𝜌𝑖
𝑓(r𝑖)∇𝑖

2𝑊(r − r𝑖 , ℎ)𝑖  (3.12) 

This last equation is applied to the laplacian and developed, such as it can be found in 

Appendix A.2, yielding to Equation (3.13),  

 ∇2𝑣(r) ≈ ∑ 𝑚𝑖 [
𝑣(r𝑖)−𝑣(r)

𝜌
] ∇𝑖

2𝑊(r − r𝑖 , ℎ)𝑖  (3.13) 

In summary, Equations (3.9), (3.11), and (3.13) complete the three terms needed to obtain 

the acceleration of particle 𝑖 from Equation (3.4).  

3.2.2. The smoothed function 

The SPH method obtains smoothed approximations of forces, that is, it estimates by 

interpolation a particle force from the sum of forces of the nearest-length surrounding particles 

(by two times the smoothing length ℎ), see Figure 3.3. Typically, 𝑊 from Equation (3.8) is a 

distributive and smoothed function, also known as kernel in SPH terminology, where the nearest 

points have more influence in the interpolated function than the most remote ones.  

 



  3.2. SPH formulation 

 

 

27 

So, basically this is a sampling function of spatial neighborhood where particles get 

continuous flow properties based in the surrounding set of particles. Different 𝑊 smoothed 

functions are described in literature and have the form of the gaussian, cubic spline, quintic spline 

and other types of distribution functions with compact support. The kernel must comply with 

the general criteria of normalization of a 𝛿-function, this is: 

 ∫ W(r − ri, h)driΩ
= 1 (3.14) 

In order to have the area under the curve equaled to one for the 2D case or the sphere 

volume equaled to one for the 3D case as described in Equation (3.14). 

 
Figure 3.3. Example of the used kernel distribution function 𝑊. 

 

In terms of computational cost, a gaussian-formed kernel like 𝑊(r − r𝑖 , ℎ) =

1

ℎ3𝜋3/2
𝑒−((𝐫−𝐫𝐢)/ℎ)

2
 of Equation (3.11) has a complexity of 𝑂(𝑁𝑁ℎ) ≈ 𝑂(𝑁

2), being 𝑁 the 

number of particles during simulation and 𝑁ℎ the number of particles within the range of ℎ. The 

issue with a single gaussian kernel is that it evaluates along 𝐫 giving a compact function when 𝐫 

approaches to infinity, far beyond ℎ x 2 range. ℎ is the radious of the supporting kernel, and 2ℎ 

is the range where kernel function should act through. So, the force contribution of the particle 

that are far beyond 2ℎ are considered negligible. For this reason, in literature many kernel 

functions have been proposed, but particularly, functions with limiting values.  

 

Typically, the cubic spline function is recommended in literature [50] because it provides 

limited response, compact support in the range of ℎ, and handy computational cost. Cubic spline 
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fits well for incompressible fluids as mentioned in [55] and supported by experimental data in 

[56], despite of the non-smoothed form of its laplacian required for the viscosity, see Figure 3.4. 

 

Figure 3.4. 2D cubic spline function, its gradient and laplacian. 

 𝑊(r − r𝑖 , ℎ) = 𝛼𝐷 {

1 −
3

2
𝑞2 +

3

4
𝑞3

1

4
(2 − 𝑞)3

0

        
0 ≤ 𝑞 ≤ 1
1 ≤ 𝑞 ≤ 2
𝑞 ≥ 2

 (3.15) 

Equation (3.15) defines the cubic spline function that is used in the implementations of this 

work, where 𝑞 =
|r−ri|

ℎ
;  r − ri is the distance between particle of interest 𝐫 and particle 𝐫𝑖, and 

𝛼𝐷 is a dimensional factor which is 
1

𝜋ℎ3
 for the 3D case.  

 

This cubic spline kernel is recommended based on the computer processing performance of 

a state-of-the-art GPU device. It is expected to have more complex kernels implementations 

where no computational cost is compromised in other real-time applications. 

3.2.3. Spatial resolution and kernel size 

In this work, the kernel size is selected based on the domain dimensions and the number of 

particles to simulate. For the same number of particles, the larger the kernel size is, more 

computational cost is involved, but, a small kernel size would not smooth well enough the fluid 

properties if a minimum number of particles is not included within the kernel. That is why, a rule 

of thumb has gain popularity [14, 57] in the SPH method to select the kernel size (smoothing 

length) based on the spatial dimensions and the maximum number of particles. For this, the 

input constant values are a selected normalized domain volume 𝑉𝑓 (width * height * depth) and a 
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maximum number of particles 𝑁𝑚𝑎𝑥 . The normalization is required by OpenGL data types. 

Having such inputs, the rule [14, 57] uses the following relations expressed in Equations (3.16), 

(3.17) and (3.18) to find the smoothing length.  

 𝑉𝑝  =  𝑉𝑓  / 𝑁𝑚𝑎𝑥 (3.16) 

 𝑑𝑟𝑒𝑠𝑡 =  0.87 √𝑉𝑝
𝑑𝑖𝑚  (3.17) 

The rest distance 𝑑𝑟𝑒𝑠𝑡 in the distance between particles in hydrostatic equilibrium, where 𝑑𝑖𝑚 

is the number of the space dimension of the simulator, and 0.87 is a "magic" number found 

experimentally and recommended in [57]. It has been demonstrated by Moulinec at el. [25] that 

the number of neighbor particles to include within the kernel can be limited to 32, (Liu in [27] 

propose 57 particles) regardless to the total number of particles in the domain. This number 

provides good fluid effect but more importantly it improves execution time by limiting the 

number of particles to compute. It has been shown that more particles within the kernel do not 

improve accuracy. Following this rule, the smoothing distance (ℎ) is set to, 

 ℎ =  2 𝑑𝑟𝑒𝑠𝑡 (3.18) 

An important issue is the size of the smoothing length ℎ and how this affects computation 

cost when set constant throughout the entire simulation. Since fluid density may vary along the 

domain, blank voxels may occur. In that case, if ℎ is too small, no forces act in a particle 

computation. On the contrary, if ℎ is too large, local variation of fluid properties (e.g. vortexes) 

are smoothed away. This is why, some authors change ℎ dynamically depending on local 

densities, and others, instead of using spherical kernels, use ellipsoidal kernels to handle force 

effect on a particular direction. For incompressible fluids, there is no density variation to handle. 

In consequence, ℎ will be constant in this work. 

3.3. Boundary conditions 

Within the simulated domain, boundary conditions need to be defined. Those boundaries are 

the space limits of the simulation domain. Such limits include entry and exit of fluid, walls, and 

other possible types.   



Chapter 3  SPH model and proposed implementation 

 

 

30 

 

In Section 3.3.1, the spatial domain including the two configurations developed in Chapter 4. 

Section 3.3.2 provides the details on the type of domain walls the SPH method frequently 

implements and the one used in this work. Section 3.3.3 provides initial setup of the fluid, and 

how particles enter and exit the domain.  

3.3.1. Spatial domain 

The spatial domain consists in a parallelepiped limited by 6 faces. Depending on the 

simulation type, closed channel or free surface, the volume can be arranged in custom 

dimensions. For the former, illustrated in left diagram of Figure 3.5, domain is bounded by 4 

lateral walls and one inlet and one outlet on the flow direction. For the latter, the domain faces 

are only sized to accommodate the solid objects within. Particles only interact with walls of the 

objects that become boundary conditions too.  

 

Figure 3.5. (Left) The infilled domain for closed channel simulations. (Right) Cleared domain for 

free surface simulations. 

 

Any particle that crosses the domain boundary vanishes. Such condition is illustrated in 

Figure 3.5 as vanishing face. In the following Section, the details on these types of walls are 

described.  
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In the simulations of this work, triangles are the geometry primitives of any solids, the 

domain boundaries and solid bodies. The selection of triangles as primitives allows to compute 

collision forces of fluid particles with a very straightforward query of the triangle normal vector 

and the particle trajectory vector. This method, regardless of its pure repulsive nature, is fast and 

convenient for a real-time computation in robotic kinematic control.   

3.3.2. Walls (ghost particles method and reflective walls) 

As presented in Section 3.2.2, the kernel is computed to estimate the total net force of each 

particle. However, the solid boundaries of solid bodies and the domain truncate the kernel in 

locations near boundary limits. This is a common issue in SPH named as particle inconsistency. 

Some, like Chen at al. [58] came up with a partial boundary correction using Taylor expansion 

series.  

 

Others [59] treat boundary conditions with an extended wall of fixed particles (or ghost 

particles) providing a damped nature to the boundary. And others [60] use a normalization 

formulation of a constant pressure to take care of boundaries. Neither of them solve the issue by 

a physical approach, but allow to minimize the issue to some extend depending on their SPH 

application. In our case, this particle inconsistency is not always important because of the 

application dimensions. However some of the boundary treatments are described in the following 

paragraphs.  

 

The two most common type of wall boundaries for collision schemes are the ghost particles 

and the reflective walls:  

 

• Ghost particles: This type of boundary is one of the most common found in literature 

[61]. This scheme efficiently solves the spurious numerical artifact occurring at the solid-

fluid boundary. The model samples solids into fixed particles and adds ghost particles 

into the surface of those solids. The ghost particles provide a kernel integrity so the 

computation of the SPH interpolation equations happens with a complete number of 

particles each time step. These particles are always quiescent. The main disadvantage for 
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real-time simulation is the extra processing of surface sampling of solids. To the left in 

Figure 3.6, the ghost particles are illustrated in a solid boundary.  

 

• Reflective walls: In this type of boundary, the solid primitives are triangles so the 

collision scheme is based on triangle-particle collisions. This is the collision scheme 

implemented in this work, and its first advantage is that no resampling of solids is 

required as in the ghost boundaries. The reflective particles require a scheme of collision 

detection and later a collision reaction. The detection is based on the intersection of the 

triangle normal and the particle position vector just as in [16]. Details on the 

implementation of the detection is provided later in Section 3.5.3. After detection, a 

reaction is implemented by reflecting the collided particle with respect to its original 

trajectory vector. So, the collided particle simply mirrors its trajectory with respect to the 

triangle's normal. A simple but time efficient perfect elastic reflection model. To the 

right in Figure 3.6, the reflective particles are illustrated in a solid boundary. 

 

 

Figure 3.6. (Left) Boundary conditions based on ghost particles of the immersed cylinder 

diagram. (Right) Boundary conditions based on reflective particles of the immersed cylinder 

diagram. 

 

A reflective wall collision scheme disregards other important physical properties of a physical 

collision. Specially the non-slip condition which defines a zero velocity at the fluid-solid 

boundary in a viscous fluid. The main disadvantage is that repulsive walls create artificial barriers 

where particles cannot touch solids. Other physical properties of fluids are available at the fluid-

solid boundary that can be tackled in the implementation. However, for real-time simulations the 

computational cost is privileged, so these reflective walls become an interesting option. 
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3.3.3. Velocity inlet and outlet 

The two cases presented in the previous section are the two setups for the tested cases that 

will be presented in Chapter 4. For the free surface case, no expected velocity criteria for fluid 

particle entry and exit is required. This simulation initiates by arbitrarily locating particles inside 

the vessel. The particles reorganize themselves when the simulation starts due to pressure force 

balance, until reaching rest condition. This moment is considered the initial condition of a free 

surface simulation.  

 

For closed channel simulations, the domain is initially empty of particles, so, a filling phase is 

required to fill up the domain. This phase is implemented as follows: 

 

Particles are injected with constant velocity at the inlet boundary. After fluid particles travel 

along the domain, delimited by repulsive walls, they find the distant vanishing face. Opposite to a 

reflective wall, a vanishing face allows particles to leave the domain and clear them from the 

system. The steady flow condition is reached when the number of particles in the input equals 

the number of particles at the output. To retain the number of particles constant, the entry of 

particles should compensate the exit. For such effect, in the 2D case, a line of particles is 

generated at a constant rate of appearance. For the 3D case, a 𝑦-𝑧 plane of particles is generated 

instead. See Figure 3.7 for reference of the 2D case. Such line or plane is placed right at 𝑥 = 0 

and initiates its travel with a constant 𝑥-velocity.  

 

 

Figure 3.7. (Left) the upstream line of fluid particles. (Center) The upstream line during 

running simulation grossly exhibits the issue of artificial entry distribution. (Right) The corrected 

inflow of particles using stimuli plates. 
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The main issue in the previous described inflow setup is that the artificial distribution of 

injected particles will not converge quickly enough to a uniform density field. Meantime the 

uniform density is reached, a long travel of fluid particles may take place increasing the domain 

size, and the computational cost significantly.  

 

To remediate this issue and reach uniform density fast enough. An inlet of particles is 

stimulated adding disorder in the initial region. Such region includes a pair of stimuli plates (see 

right side of Figure 3.7) that promote the particle interaction to create an uniform field. After 

particles pass through such plates, the fluid forces start acting sooner and the filling process of 

the domain achieve steady flow condition faster. In Section 4.1.2, practical implementations 

include the domain dimensioning including the stimuli plates distance that defines the initial 

region in Section 4.1 and 4.2 cases. 

3.3.4. Conclusions and recommendations 

It is important that the spatial domain and boundary conditions can be implemented with no 

compromised computational cost for real-time simulations. Reflective walls are efficient in such 

effect, allowing the processing load to be related more to fluid force computation than to 

boundary issues related to the kernel integrity.  

 

The velocity inlet of particles is of great importance when closed channel simulation requires 

stable and physical flow conditions. However, it has been noticed that the only available 

approaches of flow inlet are unphysical and have different constrains that drive away the usable 

domain space from the entry and/or have long waiting delays for filling the domain with 

particles. The recommendation is, if no real-time is required, to avoid modelling the fluid inlet 

and setup the domain with an initial fluid distribution. But, as in this work requirement, when 

dealing with real-time processing an inlet model is required and the domain space needs to be 

characterized in two regions. The inlet region where flow have not reach uniform density and no 

simulation should carry on, and the useful region where flow conditions are met and the 

simulation can run as intended. The fluid outlet is of less concern for most of the closed channel 

simulations though, so no issues should be found.  
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3.4. Time integration 

A real-time interactive simulator based on SPH requires a temporal domain to fit user 

interaction events. Section 3.4.1 provides the temporal domain to initiate and setup the 

simulation framework where force integration timing and user interaction work seamlessly for 

interaction purposes.  

 

As part of a SPH method a time integration of forces scheme driven by a time step is 

required. Section 3.4.2 provides the integration scheme selected to work in this work. The time 

step criteria is also discussed in Section 3.4.3.  

3.4.1. Temporal domain and initial conditions 

As it will be described in Section 3.6.1, the simulator is a real-time framework that must 

control execution time. The user events, the window handler and rendering is operated by the 

OpenGL-GLUT library. Using this library, a timer callback is configured to run every update 

loop. In Figure 3.8, an update loop defines the period of time to run every task required to render 

a new system update, including solid and fluid calculations. The purpose of this update loop is to 

process and pass all simulated data, including SPH, to the renderer library which will update data 

on the screen with a graphical frame rate.  

 

During the update loop, a time step 𝛿𝑡 is required as part of the integration scheme. 

Actually, the integration time can match the update loop considering that the OpenGL-GLUT 

task would not cause timing conflict with the update loop.  In next Section, the selected 

integration scheme is provided. To avoid compromising integration stability, 𝛿𝑡 has to be small. 

On the other hand,  𝛿𝑡 cannot be too small to guarantee real-time performance. The smallest 

value of 𝛿𝑡 is 2 milliseconds as the basis to all simulated cases. Such value allows to run multiple 

calls of the update loop before sending to the screen by the OpenGL-GLUT rendering. In 

Section 3.6.1, a detailed description of the involved libraries will be provided to explain the issues 
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of this real-time and interactive simulator. As well as in Appendix B.1, the details on OpenGL-

GLUT usage are presented in regard to the rendering process that improves the data transfer 

between system memory and video memory to shorten rendering times. 

 

 

Figure 3.8. Timeline of the real-time simulation. 

 

Previous approaches, described in Section 3.3.3, use an empty domain with fixed solids that 

is filled with moving particles initialized with constant velocity at the beginning of the simulation 

to reach the desired flow condition. Such approaches require a period of time for filling in the 

domain. Notice the optional domain filling time in Figure 3.8. However, for the experiment 

meant to be simulated in this work (Sections 4.1 case), it can be conceived the opposite 

simulation setup with a fixed fluid and movable solids. This allows to skip the inlet and outlet 

conditions, and particles are just placed within the domain with any distribution. This also 

improves the waiting time required to reach initial flow conditions.  

3.4.2. Force integration 

Equation (3.4) is a summation of the involved forces for particle 𝑖 that needs to be 

transformed into a new position for that particle each time step. This acceleration represented as 

a force vector is processed by numerical integration as a velocity vector following by a position 

vector. This integration is done by using the second order leapfrog explicit integration method. 

Its formulation is in Equation (3.19) and (3.20) using the terms for acceleration 𝑎, velocity 𝑣 and 

position r, all of these variables with respect to time.  
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 r𝑛+1 = r𝑛 + 𝛿𝑡 𝑣𝑛+1 2⁄
 (3.19) 

 𝑣𝑛+3 2⁄
= 𝑣𝑛+1 2⁄

+ 𝛿𝑡 𝑎𝑛+1 (3.20) 

Leapfrog method has been widely used in discrete motion by SPH implementations [62]. Its 

main benefit is that it processes one step integration in two half steps, one half step for position 

and one half step for velocity. Of course, the step count 𝑛 is an integer so (3.19) and (3.20) can 

be rewrite as, 

 r𝑛+1 = r𝑛 + 𝑣𝑛𝛿𝑡 +
1

2
𝑎𝑛𝛿𝑡

2  (3.21) 

 𝑣𝑛+1 = 𝑣𝑛 +
1

2
 (𝑎𝑛 + 𝑎𝑛+1)𝛿𝑡 (3.22) 

Being 𝛿𝑡 a constant time step through all the simulation process, as defined earlier at 2 

milliseconds. Another important benefit of this integration method is the time reversal invariant 

advantage. This is, to keep Newton’s equations of motion invariant, leapfrog method supposes 

the position and velocity trajectories reversible due to the symmetry of its formulation. See 

Equation (3.21) and (3.22), and start with 𝑟0 = 𝑋 and 𝑣0 = 𝑉 and determine 𝑟1 and 𝑣1. Then 

start the time reversed trajectory with 𝑟0
𝑥 = 𝑟1 and 𝑣0

𝑥 = −𝑣1. The steps of Equations (3.21) and 

(3.22) in the reverse trajectory correspond precisely to the steps in the forward trajectory since it 

will find that 𝑟1
𝑥 = 𝑋(= 𝑥0) and 𝑣1

𝑥 = −𝑉(= −𝑣0). 

3.4.3. Time step selection criteria 

Fluid data update is computed based on the integration time step 𝛿𝑡. This time step, used in 

this work for force integration, is constant throughout the entire simulation and defines the limit 

of the update loop period of time. Other integration methods may use a variable time step 

schemes to increase performance using a selective method for active and inactive particles [62]. 

Others, to optimize the real-time performance with a constant time step, use adaptive schemes 

that adjust the time step based on the data motion within the scene [63].  
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For a constant time step, it is a good practice to base this definition on the Courant-

Friedrich-Lewy (CFL) condition [64], which, in plain words, defines the smoothing length as the 

maximum length a particle can travel in one time step. Other criteria can be used like in [52], but 

for simplicity the CFL condition remains dominant. In Equation (3.23), the time step associated 

to CFL relates with the smoothing length ℎ and the characteristic speed 𝑐𝑠. An index 𝜆 between 

0.25 and 1 is been used to constrain CFL condition in literature [50, 52]. Our choice of 𝜆 is 1 

giving the maximum time step value coverage by CFL.  

 𝛿𝑡 ≤ 𝜆
ℎ

𝑐𝑠
 (3.23) 

The characteristic speed 𝑐𝑠 is the maximum velocity a particle can achieve during simulation. 

This value, usually referred in SPH literature as the sound velocity in fluid media, is approximated 

to the pressure constant from the Equation of state (3.5) as follows: 𝑐𝑠 = √𝑘𝑝 . Parametrization 

values selected in this work may be found different for the three simulation cases in Chapter 4. 

3.5. Parallel computing in SPH 

OpenCL is a parallel computing software library for the GPU device, developed by 

Kronos group [65] as an open source and free of use copyright framework. Until now, OpenCL 

has been updated and maintained continuously, giving support to both GPU and CPU parallel 

processing code. This dual benefit is known in parallel computing as heterogeneous computing, 

where parallel coding does not discriminate the processing device, being this a CPU, a GPU or an 

arrangement of both. This is the main justification of using OpenCL library in this work as a 

parallel processing library so further work might be implemented regardless of the processing 

device of interest. 

 

As mentioned earlier in this thesis work, fluid-robot simulation is pretended to work in 

real-time for feedback redesign. So, it is implied that real-time is defined as how the user interact 

with the system, that is, that during the simulation time, the user may dynamically conduct some 

events that could alter the fluid-robot model behavior but observing real-time responses along 

the interaction. The interaction might also be implemented as a redesign loop where the 
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experiment can be designed during the simulation time. As described in Figure 1.1, the user 

interaction may design behaviors of fluid dynamics and/or robotic kinematics on the fly. 

 

The SPH method imposes a numerical algorithm consisting in processing the three terms 

of Equation (3.4) to obtain the particle acceleration, and from this, by numerical integration, the 

speed and position of a given particle in the system. This process is repeated for all fluid particles 

and for each time step in the simulation. This process has quadratic complexity, and the number 

of operations in the smoothed function grows exponentially upon the number of particles. 

 

These processing requirements make the SPH method a high computational cost 

implementation for a real-time application. So, to enhance this performance, many optimization 

techniques have been developed [14, 24, 25]. From these techniques, the basic concepts have 

been selected to define the programming code structures that were implemented with parallel 

processing using OpenCL similarly to what is found in [57]. These OpenCL structures are called 

GPU Kernels in terms of GPU processing. Do not confuse with the term SPH kernel, previously 

used as the smoothed function 𝑊 in SPH. To differentiate them and to keep reference 

consistency in this work, kernel refers to the smoothed function and Kernel refers to GPU 

structures. 

 

Every time step, a computer thread runs the Kernels for each particle. In next sections, 

the four GPU Kernels that were implemented in this work are described; the Kernel of 

voxelization (Section 3.5.1), the Kernel of force integration (Section 3.5.2), and the Kernel of 

collisions (Section 3.5.3).  

 

 The benefit of working with OpenCL Kernels is that those three parallel calls are 

processed at minimum execution time within the GPU, so, particle positions are processed much 

faster and CPU load is reduced allowing to process the user interaction inputs task within the 

main system thread. This Kernel sequence is the minimum sequence needed for a particle 

position to be computed, other Kernels could be introduced to process custom simulations of 

fluids. Interesting task of how to parallelize the SPH method has been widely described by [14, 

24, 25], so, no further detail will be address on how the implementation of SPH is conducted. 

Instead, it is focused in providing the simulation workflow (Section 3.6.1) and the real-time 

processing achieved by the implementation with the selected programming libraries. 
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3.5.1. Kernel of voxelization 

The task of this Kernel is to compute the blocks of data containing the nearest neighbor 

particles within each kernel so this block of neighbor data can pass to the following Kernels. This 

task is done by dividing the simulation domain into fictitious cubic sections (voxels) for 3D 

simulations or squared sections for 2D of the size of two times the length of interaction ℎ of our 

smoothed function 𝑊 in Equation (3.7). This is also known as spatial uniform grid in SPH terms. 

Each particle interacts only with the particles within its voxel and from the next adjacent voxels 

for a group of eight voxels for the 3D domain and a group of four voxels for the 2D domain. 

The voxelization only happens where particles exist. See Figure 3.9 for reference. 

 

 

Figure 3.9. (Left) the group of voxels for 2D domain.  

(Center) the group of voxels for 3D domain. (Right) 2D voxelization of the fluid domain. 

 

When a particle is located at its voxel center, the range of interaction of 𝑊 is contained in 

that voxel and in the part of the other surrounding voxels. But this is not always the case, in 

many cases the particle will be located far from its voxel center, in such way that 𝑊 covers two 

voxels in full; and this is the reason of using voxels grouped by 3d voxels; being d the domain 

dimensions). See left diagram in Figure 3.9.  

 

Particle data needs to be initialized with position, velocity, and acceleration for each particle 

in the system. Depending on the type of simulation, one can add initial velocity or acceleration to 

the entry particles. In this work, the entry and exit of particles and their initialization are 

addressed in Section 4.1.3 where the simulation case involves the study of inflow and outflow 

fluid. In C++ code, it is common to use one four float <float4> buffer to store all particles 
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position. Another identical buffer for velocity and other for acceleration. The four float particle 

data stores the three float coordinates of the euclidian [𝑥, 𝑦, 𝑧] space and one float [𝑤] for the 

voxel ID. This data type is also native for OpenCL 1.0. 

 

To identify particles within each voxel a hash table requires to be computed. A hash table 

maps a 2D or 3D matrix position elements into a 1D no repeated list value vector. For such task, 

a different hash functions can be used for the 2D case and for the 3D case. Equation (3.25) 

shows the hash function for 2D, where [𝑥, 𝑦] are the coordinates of each particle, 𝑣𝑜𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔 

is the ℎ of 𝑊, and, 𝑣𝑜𝑥𝑒𝑙_𝑑𝑒𝑙𝑡𝑎 in Equation (3.24) is the number of voxels in the 𝑥-dimension. 

 𝑣𝑜𝑥𝑒𝑙_𝑑𝑒𝑙𝑡𝑎 = (𝑑𝑜𝑚𝑎𝑖𝑛_𝑚𝑎𝑥 − 𝑑𝑜𝑚𝑎𝑖𝑛_𝑚𝑖𝑛)/𝑣𝑜𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔 (3.24) 

 ℎ𝑎𝑠ℎ_2𝑑(𝑝) = 𝑓𝑙𝑜𝑜𝑟(𝑥/𝑣𝑜𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔) + (𝑓𝑙𝑜𝑜𝑟(𝑦/𝑣𝑜𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔) ∗ 𝑣𝑜𝑥𝑒𝑙_𝑑𝑒𝑙𝑡𝑎)  (3.25) 

Equation (3.27) shows the hash function ℎ𝑎𝑠ℎ_3𝑑 for the 3D domain used in this work. 

𝑝𝑜𝑠(𝑝) required by Equation (3.26) is the position coordinates of particle 𝑝 in [𝑥, 𝑦, 𝑧] 

dimensions, 𝑑𝑜𝑚𝑎𝑖𝑛_𝑚𝑖𝑛 is minimum coordinates of the domain, usually set to zeros, 

𝑣𝑜𝑥𝑒𝑙_𝑑𝑒𝑙𝑡𝑎 is the dimensions of the voxel, 𝑣𝑜𝑥𝑒𝑙_𝑖𝑑 defines the index of each voxel in the 3D 

space, 𝑑𝑖𝑚_𝑣𝑜𝑥 is the number of cells in each dimension.  

 𝑣𝑜𝑥𝑒𝑙_𝑖𝑑(𝑝) = (𝑝𝑜𝑠(𝑝) − 𝑑𝑜𝑚𝑎𝑖𝑛_𝑚𝑖𝑛) ∗ 𝑣𝑜𝑥𝑒𝑙_𝑑𝑒𝑙𝑡𝑎 (3.26) 

 ℎ𝑎𝑠ℎ_3𝑑(𝑝) = (((𝑣𝑜𝑥𝑒𝑙_𝑖𝑑. 𝑧 ∗ 𝑑𝑖𝑚_𝑣𝑜𝑥. 𝑦) + 𝑣𝑜𝑥𝑒𝑙_𝑖𝑑. 𝑦) ∗ 𝑑𝑖𝑚_𝑣𝑜𝑥. 𝑥) +  𝑣𝑜𝑥𝑒𝑙_𝑖𝑑. 𝑥 (3.27) 

Recall that the domain is normalized and these two hash functions are not. So, it is 

mandatory for these functions to pass particle position and domain dimensions in proper integer 

values. In SPH literature, this hashing process is indicated as uniform grid generation. Here, a 

linear voxel index is used as the hash indexing, however, to avoid flow inconsistencies, other 

voxel indexing can be made like the z-order indexing [66] first described by Morton G. in [67].  

 

Now that the hash value for each particle has been calculated, a sorting process requires to 

order the hashed particles according to the voxel where they belong. Actually, this process has 

become a performance differentiating feature in SPH implementations. Some SPH 

implementations use atomic operations and others a sorting algorithm for ordering particles [68] 

for the sake of the speed. Since sorting particles is one bottleneck task when dealing with a real-

time process in SPH, a parallel implementation of sorting is always desired. Radix sorting has 

becoming a popular SPH sorting algorithm due to its fast parallel implementation [69] and also 
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because of the available GPU implementations from GPU manufactures [70, 71]. Speed 

efficiency is achieved in N particles >104 for GPU-based radix sort implementations [72]. The 

counting sorting algorithm [73] is even better in performance than radix sort for larger numbers 

of particles >108. However, the free surface applications where this work is meant to contribute 

requires a number greater than 5k particles. Thus, bitonic or radix sorting are within the 

application range [74] [pp. 95-96]. A GPU based bitonic sorting algorithm has been used in this 

work right from an OpenCL implementation in [75]. This implementation relies on a bitonic 

merge sorting algorithm with a total complexity of 𝑂[N ∙ 𝑙𝑜𝑔2(N) + 𝑙𝑜𝑔(N)] which is lower 

than the brute force sorting case of 𝑂[N2] and that has been improved by parallel GPU 

processing by avoiding data copy operations [76]. 

 

By sorting the hashed particles, a sorted list of all particles in each voxel is now accessible by 

their spatial position. Then, a final list is built with the start of all voxels in the sorted list. The 

way to accomplish this is by comparing the voxel id of the current particle against to the voxel id 

of the previous particle in the sorted list. If the voxel index changes, the voxel start value is 

stored in the particle index of the final list. In [68], Figure 3, a 2D domain example provides an 

illustration of the algorithm. This algorithm, including the hashing, the sorting and the final 

listing, is required to be computed each time step that the particle position is updated. 

3.5.2. Kernel of force integration 

At this point a new re-indexed particles list is ready to be relocated accordingly to the fluid 

force model described by the momentum Equation (3.4). As described in Section 3.4.2, the 

selected integration method used is the leapfrog. This has the benefit of time reversal that is 

especially useful for back and forth running simulations, and, also for live recording interactive 

simulations. In this work, it is desirable to have a reversible kinematic simulation for real-time 

experiment redesign. Another benefit of using leapfrog method is the conservation of angular 

momentum and area preservation (symplectic). Being such important benefits in terms of physics 

robustness, further details can be found in [77]. 

 

This Kernel is very straightforward to implement. It basically consists in implementing first 

Equation (3.22) and, from the resulting velocity, Equation (3.21) to find the new position of each 
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particle. From Equation (3.4), notice the gravity vector force. This force is included depending on 

the simulation case. For closed channel simulations, this is not included, but for free surface cases 

is demanded and it is typically the most dominant force of all when dealing with fluid in the 

laminar regime as in this work simulations.  

3.5.3. Kernel of collisions 

The idea of having a system where fluid interact with robot mechanisms, requires to apply a 

motion handling scheme where the fluid (a particle based system), get in physical contact with 

two elements; one, the static surroundings or domain, and two, with the moving robot agent. 

These two elements are built with the same solid primitive: the triangle. Static triangles for the 

domain and moving tringles for the robotic agent tested in this work.  

 

Robot mechanism and domain borders are solid parts that are build out of triangles for 

simplification in this work. So, all what collide are triangles, defined by three vertices, against 

particles. Particle-particle collision is driven by the SPH forces (density, pressure, viscosity), 

triangle-particle collision is handle in this Kernel of collisions, and triangle-triangle collision 

(collisions between solid bodies) is not in the interest of this work. Remember that particles have 

an implicit mass (in density formulation) which helps to compute SPH method, however the 

geometry of particles is null, in the sense that this is only defined by a point in the 3D space. 

 

 

Figure 3.10. Particle-triangle collision detection scheme. 
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Figure 3.10 defines the trajectory for a particle vector 𝐱 that travels from position 𝐚 to 

position 𝐛. If a solid triangle happens to be across this trajectory, a collision test against the 

triangle with vertices v0, v1, and v2 is performed considering the condition in Equation (3.28), 

where 𝐧 is the normal vector of the triangle. If such condition is true then a collided particle is 

identified. 

 (x − v0) ∙ ((v2 − v0)  ×  n) > 0 (3.28) 

Although the number of triangles that represent solid objects and all six domain walls are 

less in proportion to the number of particles, one of the issues here is to test all triangles for each 

particle within the Kernel during each time step, making this very computationally expensive. For 

this reason, this Kernel only tests collisions on each time step with not all the triangles in the 

domain, but only with those included in the set of voxels of the particle of interest (27 voxels for 

the 3D domain). In this fashion, the execution time is optimized. 

 

In our case, the reaction to a collision is a trajectory change (inversion or reflection) of the 

particle where acceleration and velocity magnitudes of the colliding particle never gets affected 

but only by its trajectory angle.  In such way that, when a collided particle is detected, this particle 

will change its trajectory with opposite angle with respect to the collision angle, estimated with 

the normal vector like in Figure 3.10 the final vector 𝐜. The weighted force or acceleration of 

particle 𝑖 in Equation (3.4) is then updated in sign by the collision algorithm.  

 

The datatype for triangles in C++ is not native, then, a triangle class is added to the system. 

In this implementation, the Triangle class is the structure containing the triangle data which 

includes an array of three float4 variables to store the three vertices of the triangle, and one 

float4 variable to store the triangle normal vector. All vectors in the simulation scene are 

referenced from the simulation domain origin that is in the left-top-front location. 

 

There are many issues involved in the effect of physical collisions, and many primitive 

elements to assume in a complex simulation environment, like those described in [16]. For 

instance, the elastic and/or inelastic energy and the friction, and therefore, further work may 

include these ones for different application cases. There is another issue to take care in collision: 

the time of collision. While collisions of particles against fixed triangles required certain time step 



  3.5. Parallel computing in SPH 

 

 

45 

to compute, the collisions of particles against moving triangles required a smaller time step to 

avoid particles to penetrate triangles (tunneling effect).  

 

Another issue involved in collision is the sliding effect. In a pure dissipative collision 

approach particles sliding on a tilted solid wall is impossible to have, while it is a valid from the 

physical perspective. This could be handle by adding a contact model of partial friction where 

particles can rest in solid surfaces by making zero their velocity when this velocity approaches to 

a minimum threshold. 

3.6. Final implementations 

The software implementation of the simulator engine needs to take care of two parts. One, 

related to the logic process of the simulator including the usage of the code, libraries and 

frameworks. This involves the parallel and sequential blocks that run in synchrony. The other 

part to take care of is the real-time processing, in other words, the time rate needed to preserve 

the same overall time of the simulation with the real physics experiment time. In control 

kinematics, the output usually is expressed as a discrete time response to be used by any robotic 

actuator; that is why the time rate specification is important.  

 

The idea of breaking apart the SPH fundamentals in the previous Sections of this Chapter 3 

is to provide the mathematical background so, when the following implementation Section was 

described, a clear understanding of the simulator parts can be obtained. The main objective of 

this work is not the simulator implementation itself, but the robot-fluid coupling modelling and 

its implementation. Nonetheless, the simulator requires to be properly described and the 

following two subsections helps for such goal. 

3.6.1. Simulator structure 

The simulator structure is divided in two parts; from Figure 3.11, to the left, the update loop 

controlled by CPU processing running each simulation update cycle, and to the right, the parallel 
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tasks or Kernels processed by the GPU. In each function of the CPU a sequential task calls the 

GPU Kernels passing the kinematic data of particles and triangles for parallel processing. After 

initializing the N-size float4 particle arrays (position, velocity and force), a nearest neighbor 

search algorithm is computed using the Kernel of voxelization described in Section 3.5.1. Being 

N the number of particles. OpenCL, as the parallel processing library, computes in threads of 

execution each particle property. Advanced parallel programming allows to optimize the local 

and global GPU memory transfers for multithreaded tasks [1].  

 
The following block in Figure 3.11 calculates fluid density. This density needs to be 

precomputed first to allow the following function block to compute each individual particle force 

of pressure and viscosity, and accumulate them with the gravity vector (in the free surface case) 

in a weighted force vector. Next CPU task passes this force vector of each particle and the GPU 

for double integration in time so a new particle position can be found. The resulting new position 

vector finally is computed by the Kernel of collision. As described in Section 3.3.3, the Kernel of 

particle-triangle collision computes the collision occurrence and change the new position into the 

normal-inverted vector when collision occurs. As mentioned earlier, the solid bodies and the 

domain contain colliding triangles to be processed as purely reflective. But there are vanishing 

walls in the domain built by colliding triangles. In this special case, if a colliding particle happens 

to collide against a domain vanishing wall, a marker will be included in its force vector and the 

particle will be deleted in the updating/adding/deleting CPU task.  
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Figure 3.11. One time step CPU-GPU cycle implementation of SPH fluid motion. (Left) The 

sequential CPU routine tasks. (Right) the GPU parallel Kernels. 

 

The quantity of motion of a solid includes the motion effect of its kinematics and the 

motion effect due to the fluid mass interacting on its boundaries. In many cases, those two 

motion forces are opposite and, depending on a desired control action, a resulting weighted force 
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vector will determine the motion of the solid and the fluid mass. In Chapter 4, the addressed 

cases offer two possibilities; the motion of solids due to the fluid mass and the opposite. In 

Figure 3.11, the CPU task of rigid body motion in the scene is always a function of free 

translation and rotation of triangles following certain rules of real-time processing that will be 

mentioned in next section. 

 

Rendering, the last CPU task to compute in the update loop, is a time-consuming task for 

the GPU. However, OpenGL, as the drawing library in this work, allows the concurrency of the 

threads (multithreading), meaning that the rendering can be processed in parallel with other CPU 

tasks or GPU threads without blocking the GPU when rendering. This feature of OpenGL is 

extremely powerful in terms of the real-time performance, and it has gained to OpenGL its 

popularity. 

3.6.2. Real-time processing 

An unwanted issue in real-time simulation is the penetration of particles into triangles. 

Usually expressed in literature as the tunneling effect. This issue appears when the computation 

of collisions fails and particles penetrate triangles. This effect especially occurs with moving 

triangles in time steps that does not produce large enough distance to contain the motion step of 

triangles. Figure 3.12 illustrates the penetration effect; where a is the minimum distance between 

particles in rest (hydrostatic equilibrium), b the distance between times 𝑡0 and 𝑡1 of the same 

moving triangle within a valid range, and, c the same as b but in an invalid distance range. Notice 

that hydrostatic equilibrium is only possible in a free surface case; for the closed channel case, the 

pressure force between particles can increase to the point of reducing the space between particles 

to very low limits and then not allowing to meet the CFL condition. 
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Figure 3.12. Spacing between particles to meet CFL condition. 

 

Despite that the subject of this work is not related to the code programming, there is always 

need to provide the programming base reference of the implementations. In actual object 

programming, it is practical to adopt a dedicated library as an update loop structure. In our case, 

GLUT (OpenGL Utility Toolkit) [21] is employed as a dedicated C++ library for the software 

update loop structure. GLUT is cross-platform and provides full coverage for the window 

handles, the input events and the OpenGL context. It also provides the programming logic to 

run a real-time simulation loop with less effort and implication of programming low level 

window handles and input callbacks. Latest releases of GLUT have been developed under the 

name of freeGLUT [21].  

3.6.3. Final formulation 

To provide the sequence of the equations that were implemented through the list of tasks in 

Figure 3.11, the following Table 3.1 is provided. In the Section of Abbreviations. nomenclature 

and notation, one can find all the included variables in Table 3.1 as well as the mathematical 

notation.  

 

No. Equation 

3.4 𝑎𝑖 = −
1

𝝆𝑖
∇𝒑 +

𝜇

𝝆𝑖
∇2𝒗+ 𝑔 

3.5 𝑝 − 𝑝0 = 𝑘𝑝(𝜌 − 𝜌0) 
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3.6 𝑝 = 𝑝0 ((
𝜌

𝜌0
)
𝛾

− 1) 

3.11 
∇𝑝(r)

𝜌𝑖
≈∑ 𝑚𝑖 [

𝑝(r𝑖)

𝜌(r𝑖)2
+
𝑝(r)

𝜌(r)2
]∇𝑖𝑊(r − r𝑖 , ℎ)

𝑖
 

3.13 ∇2𝑣(r) ≈∑ 𝑚𝑖 [
𝑣(r𝑖) − 𝑣(r)

𝜌
]∇𝑖

2𝑊(r − r𝑖 , ℎ)
𝑖

 

3.15 𝑊(r − r𝑖 , ℎ) = 𝛼𝐷

{
 
 

 
 1 −

3

2
𝑞2 +

3

4
𝑞3

1

4
(2 − 𝑞)3

0

        

0 ≤ 𝑞 ≤ 1
1 ≤ 𝑞 ≤ 2
𝑞 ≥ 2

 

3.16 𝑉𝑝  =  𝑉𝑓  / 𝑁𝑚𝑎𝑥 

3.17 𝑑𝑟𝑒𝑠𝑡 =  0.87 √𝑉𝑝
𝑑𝑖𝑚  

3.18 ℎ =  2 𝑑𝑟𝑒𝑠𝑡 

3.21 r𝑛+1 = r𝑛 + 𝑣𝑛𝛿𝑡 +
1

2
𝑎𝑛𝛿𝑡

2 

3.22 𝑣𝑛+1 = 𝑣𝑛 +
1

2
 (𝑎𝑛 + 𝑎𝑛+1)𝛿𝑡 

3.23 𝛿𝑡 ≤ 𝜆
ℎ

𝑐𝑠
 

3.24 𝑣𝑜𝑥𝑒𝑙_𝑑𝑒𝑙𝑡𝑎 = (𝑑𝑜𝑚𝑎𝑖𝑛_𝑚𝑎𝑥 − 𝑑𝑜𝑚𝑎𝑖𝑛_𝑚𝑖𝑛)/𝑣𝑜𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔 

3.25 
ℎ𝑎𝑠ℎ_2𝑑(𝑝) = 𝑓𝑙𝑜𝑜𝑟(𝑥/𝑣𝑜𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔) + (𝑓𝑙𝑜𝑜𝑟(𝑦/𝑣𝑜𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔)

∗ 𝑣𝑜𝑥𝑒𝑙_𝑑𝑒𝑙𝑡𝑎) 

3.28 (𝐱 − 𝐯𝟎) ∙ ((𝐯𝟐 − 𝐯𝟎) ×  𝐧) > 0 

Table 3.1. Employed equations in SPH implementation.  

 

So far, Chapter 3 provides the theoretical basis of the fluid model and its implementation 

details. This fundamentals define the required fluid dynamics block in Figure 1.1. The following 

Chapter 4 will provide the solid (robot) kinematics of three main cases that operate together with 

the fluid dynamics model, described in this Chapter, to define the real-time and interactive 

experimentation.  
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Chapter 4 

4. Coupling robotics and fluids 

 
 
 
 
 
 
In Chapter 3, full detail has been provided on how to implement a real-time and interactive 

SPH framework for a concrete fluid dynamics model. Now, in Chapter 4, this simulation 

foundation and framework is used to set the first motion kinematics primitives that will allow to 

test a benchmark case for validation purposes, a rotational profile case for kinematics study, and a 

liquid pouring case for free surface modelling and control. 

4.1. Benchmark case  

In CFD, a classic case of study is the downstream vortex analysis in a flow through a static 

cylinder. This case allows to investigate the behavior of flow in the laminar and turbulent 

regimes. The Reynolds number (𝑅𝑒), which is the ratio of inertial forces over viscous forces, 

helps to define the influence of these two types of forces for a given flow condition.  

 

To deliver in this work a validation model of SPH vs. real physics of the flow, the flow 

around a cylinder case is presented, which is a very well-studied case, not only by 

experimentation, but also by simulation using the SPH method [78]. This is the main reason for 

choosing this kind of flow.  
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4.1.1. Flow around a Cylinder 

In this Section, the benchmark case fundamentals are presented in order to define a 

comparison reference. The general flow topologies for different ranges of 𝑅𝑒 are presented to 

compare the reference topologies vs the simulated ones in next sections. The flow separation in 

theory based on the drag coefficient curve is also presented. Here, since further experiments 

(Sections 4.2 and 4.3) are considered purely laminar, the requirement to the SPH flow is to find 

the transition from pure laminar to flow separation regions and provide to these cases a proper 

limit of flow regimes. And, finally, the Karman Vortex Street (KVS) effect as a reference guide, 

that is defined by characteristic vortex spacing and frequency, needs to be simulated to identify 

the equivalence fluid model.  

4.1.1.1. General flow topologies depending on Reynolds number 

Equation (4.1) describes 𝑅𝑒 in terms of fluid density 𝜌𝑖 , fluid velocity 𝑣𝑖, cylinder diameter 

𝑑, and dynamic fluid viscosity 𝜇. This is the theoretical function of 𝑅𝑒 which will be used in 

further validation of theoretical vs simulated data. 

 𝑅𝑒 =
𝜌𝑖𝑣𝑖𝑑

𝜇
 (4.1) 

Figure 4.1 shows the 𝑅𝑒 intervals by going from low values (laminar) to high values 

(turbulent) in real flows. In diagram 1, from top to bottom, the pure laminar region behavior of 

flow is shown having 𝑅𝑒 < 5. In diagram 2, the vortex separation region behavior of flow is 

shown for  5 < 𝑅𝑒 < 40. In diagram 3, there is a laminar separated periodic behavior of the flow 

known as the Karman Vortex Street effect. This effect is a repeating pattern of swirling vortices 

caused only at the range of 40 < 𝑅𝑒 < 250K-300K, where the wake behind the cylinder is still 

laminar. 𝑅𝑒 can go up to 200K-300K and continue to show similar KVS effects but with a 

turbulent wake (but boundary layer is still laminar in the separation point). Transition between 

laminar to turbulent boundary layer regime goes from around 200-350K and so on. 
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Figure 4.1. Reynolds number effect on flow around a cylinder. Blue dots represent flow 

separation point. 

 

KVS effect is supposed to happen in our SPH simulation so fluid would be modeled within 

the laminar boundary layer regime (diagram 1-3), but with boundary layer separation and vortex 

street in the wake (diagram 3), as sketched in Figure 4.1. No turbulence model is used in this SPH 

work, but the focus is set on the ability of the methodology to capture complex phenomenon, 

such as flow separation and KVS. 

4.1.1.2. Flow separation and drag coefficient 

The drag coefficient is a dimensionless value defined to quantify the resistance of an object 

in motion in a fluid domain. Drag coefficient 𝐶𝑑 equation used for a cylinder is written in 

Equation (4.2), where  𝐹𝑥 denotes the force of a cross-section of the closed channel in 𝑥- 
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direction (streamwise), 𝜌𝑖  is the initial or inflow density, 𝑣𝑖 is the inflow velocity, and 𝑑 the 

cylinder diameter. 𝑖 denotes the inflow condition.  

 𝐶𝑑 =
𝐹𝑥

𝜋

4
𝜌𝑖𝑣𝑖

2𝑑2
 (4.2) 

Figure 4.1 shows the range of Re where KVS effect is comprised; in this range dragging 

forces become higher for the cylinder. 𝐶𝑑 and 𝑅𝑒 are typically related in literature as the model 

curve for the 2D cylinder case, here illustrated in Figure 4.2.  This relation between 𝐶𝑑 and 𝑅𝑒 

should comply with our SPH simulations in order to validate the correctness of the numerical 

model and to proceed with further model couplings.  

  

Figure 4.2. 𝐶𝑑 vs. 𝑅𝑒 graph. Region 2 defines steady flow, region 3.I defines KVS with 

laminar wake, region 3.II defines laminar separation with turbulent wake, and region 4 defines 

turbulent boundary layer separation. 

 

It could be interesting to fully simulate all regions of 𝑅𝑒 vs. 𝐶𝑑 graph with SPH. Regions 3 

and 4 are possible regions to implement in SPH, but Region 4, the region of turbulence, is not 

straightforward to simulate under standard SPH methods, as mentioned by Bauer and Springel in 

[79] and Adami et al. in [80], where at large values of Reynolds artificial viscosity vanish and 

simulations produce purely noisy particle motion.  
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4.1.1.3. Von Karman Vortex street characteristics 

The KVS effect, illustrated in Diagram 3 of Figure 4.1, is characterized by vortex shedding. 

This is a sequence of vortexes generated by unsteady boundary layer separation when steady flow 

hits a bluff body. The main characteristic of this vortex shedding is the frequency of the vortex 

generation. The relation that describes the vortex frequency is given by the Strouhal number 𝑆𝑡. 

Equation (4.3) denotes 𝑆𝑡 as a function of the vortex frequency 𝑓𝑟𝑒𝑞, the cylinder (or circle) 

diameter 𝑑 and the initial flow velocity 𝑣𝑖.   

 𝑆𝑡 =
𝑓𝑟𝑒𝑞 ∙ 𝑑

𝑣𝑖
 (4.3) 

It has been experimented that the vortex frequency depends lineally with the initial flow 

velocity 𝑣𝑖. As 𝑅𝑒 equally depends on 𝑣𝑖, it has been estimated that 𝑆𝑡 depends on 𝑅𝑒 [81]. For 

this reason, 𝑅𝑒 and 𝑆𝑡 have been related by the graph presented in Figure 4.3. In this graph, two 

curves are presented, one for a smooth solid cylinder and one for the rough solid cylinder. Both 

only diverge in the extreme high values of 𝑅𝑒, so both can find a constant mean value of 𝑆𝑡 of 

0.2 where, for a large interval of 𝑅𝑒 (5x102 < 𝑅𝑒 < 105), this value set the operation range of 

the vortex shedding. 

 

Figure 4.3. 𝑆𝑡 vs. 𝑅𝑒 graph. Mean value of 𝑆𝑡 at 0.2 defines the KVS effect interval of 𝑅𝑒. 

 

One important application of 𝑆𝑡 is to find the vortex frequency of the fluid so the natural 

frequency of the solids hit by the flow should not match together. If this occurs, resonance of the 

entire system can be achieved and unwanted effects may happen. But for this fluid simulations, 
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the importance of 𝑆𝑡 is to match the KVS interval in the 𝑆𝑡 vs. 𝑅𝑒 graph so the resulting 

numerical fluid behavior is similar to the experimental observations. 

4.1.2. Practical implementations 

Typically, the flow-around-a-cylinder simulations are made in 2D space for symmetry 

reason, also offering an easier visual interpretation. Even though the SPH model is programmed 

in a 3D space, it has been restricted to 2D for the same reason using a third zero-dimension for 

particle positions, velocities and forces. Although data structures remain in 3D format.  

 

The schematic setup of the 3D domain for the benchmark case is illustrated in Figure 4.4. 

It is a parallelepiped channel where 2D flow enters as a line of particles from inlet 𝑈 and exits 

through outlet 𝑈′. The outlet 𝑈′ is defined as a vanishing wall. 𝑈 is the entry port of particles as 

described in Section 3.3.3. This entry of particles is configured with certain particle velocity in 

order to fill up the domain. Flow behavior is studied from the entry stimuli plates located at 𝐿𝑆𝑖 

and to the exit stimuli plates located at 𝐿𝑆𝑜 . 

 

 

Figure 4.4. 3D domain setup for benchmark case. 

 

Table 4.1 shows four groups of parameters that setup the simulation domain. First group 

includes the fluid constants; these constants are used to compute the Kernel of force integration 

(see Section 3.5.2) that obtains particle velocities and positions by leapfrog integration scheme. 

Second group includes the three forces in momentum Equation (3.4); note that gravity is not 
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included in this case. In Section 4.3 case, the gravity term is included as a volumetric force. The 

third group is the domain specifications that defines the domain dimensions and scale. The 

simulation scale needs to set a floating normalized computation scheme so particle velocities and 

accelerations converge numerically. 

 

Parameter Value 

Fluid Constants 

Density (𝜌) 1000 (kg/m3) 

Dynamic viscosity (𝜇) 1.05x10-3 (Ns/m2) 

Inflow port position (𝑈) Line up with Y-axis at x=0 

Particle initial velocity at 𝐿𝑆𝑖 (𝑣𝑖) 0.022 (m/s) 

Particle mass (𝑚) 0.5 (gr) 

NSE forces used in Equation (3.4) 

Gravity force (𝒈) Not used 

Pressure force (∇𝑝) Used 

Viscosity force (∇2𝒗) Used 

Domain Specifications 

Domain dimensions (𝐿 x 𝐻 x 𝑊) 0.83x0.279x0.056 (m) 

Simulation scale  

(e.g. screen dimension x simulation scale 

= dimension in meters) 

0.0111818 

Domain volume (𝑉𝑑) 0.01296 (m3) 

Cylinder diameter (𝑑) From 0.05 (m) to 0.06 (m) 

Cylinder position (𝐷 x 𝐿𝑖) 0.13977x0.313 (m) 

Stimuli size (𝑊 x 𝐻𝑠) 0.056x0.053 (m) 

Entry stimuli position (𝐿𝑆𝑖) 0.078 (m) 

Exit stimuli position (𝐿𝑆𝑜) 0.78 (m) 

Simulation specifications 

Time step (𝛿𝑡) 0.002 (s) 

Maximum number of particles 50,000 

Particle space motion 2D (acceleration in z-axis is zero) 

Table 4.1. Fluid constants, NSE forces, domain dimensions 

and simulation specifications.  

 

In Figure 4.4, four stimuli plates are placed within the domain, two next to the entry of 

particles and two reaching the end of the domain. These first two entry stimuli are placed to set a 

proper fluid-like entry of particles. Particles enter the domain in line formation for a convenient 

computational arrangement, however in this formation fluid forces are not acting yet. So, in order 
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to present a more likely fluid behavior at the beginning of the domain, these first two stimuli 

plates, located at 𝐿𝑆𝑖, cause particles to hit between each other and fill faster the domain, before 

reaching the vicinity of the cylinder. In Section 3.3.3, full details have been provided to describe 

the purposes of having entry plates to reach a uniform density field. 

4.1.3. SPH results 

In the following three subsections, the results of simulating the benchmark case are 

presented. First, the flow pattern found with the KVS effect is presented. Second, the velocity 

profiles during running simulations are presented at different domain heights. And third, two 

flow simulations are offered with two different 𝑅𝑒. 

4.1.3.1. Flow pattern 

The simulation time is divided into three phases; phase 1, the domain filling, described in 

Section 3.3.3; phase 2, the adjustment; and phase 3, the proper simulation. The filling is the initial 

preparation phase that goes from the time of the entry of particles to the moment of time when 

the domain saturates (filled up with particles). The adjustment is the following preparation phase 

of reducing the inflow velocity (inflow particle velocity 𝑣𝑖) so the incoming number of particles 

equals the outgoing number of particles, having a stable number of particles of 50,000 

approximately for 2D for the sample simulation presented in Figure 4.5. And finally, the 

simulation stage itself where vortex shedding develops along the flow direction. 

 

Figure 4.5 illustrates frames of the running simulator in 2D for each of the stages. In blue 

the cylinder and the stimuli plates, in yellow the domain boundary lines, in magenta the particle 

flow, and in green the metering sections. From second 2 to 57 the particle filling stage, from 

second 57 to 90 the velocity adjustment stage where inflow equals outflow, and from second 96 

to 132 and beyond the KVS effect. Notice that between the simulation frame at 96 second and at 

108.8 seconds a full KVS cycle is presented. Then, a period of time of 12.8 seconds and a KVS 

frequency of 0.078 hertz. The metering sections are 𝑥-planes that cuts the flow to find the 
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average pressure and velocity of the flow. Please refer to Video [4.1], to illustrate the KVS effect 

in a running timed simulation. 

 

 

Figure 4.5. KVS effect during running simulations. 

4.1.3.2. Velocity profiles 

To investigate and validate the convection of the vortexes during KVS and how these 

vortexes dissipate as a function of distance, simulations have been performed to find crests of 
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maximum velocities at four different distances of measurement. In Figure 4.5, four horizontal 

green lines shows the capturing heights used to meter velocities along four sections of the 

domain space. The first capturing line is the domain from top to bottom in Figure 4.6 and so on 

for the following lines. Each line captures velocity data of particles nine times every 2.13 seconds. 

 

Figure 4.6. In-line particle velocities along x-axis at different domain distances during KVS.  

 

Opposite to simple inspection of Figure 4.5, results from Figure 4.6 allows to find with 

more precision the frequency of the vortex shedding by finding the maximum velocity values. 

From Figure 4.6, between first sample data (top-left) to the sixth sample date (in the same line) a 

full KVS cycle is shown. A value of 2.13 seconds multiplied by 6 data captures gives a 12.78 

seconds of period and a value of 0.078 hertz for the KVS frequency.  

 

Using the parameters in Table 4.1, a 𝑅𝑒 value of 1,047 is found using Equation 4.1. This is 

not a low value of 𝑅𝑒 yet for a full laminar KVS effect, but valid in the transition regime of KVS 

according to [82]. Such validation allows to proceed with other closed channel simulations. 

 

Figure 4.7 illustrates the findings of the KVS effect in Region 3 of the 𝐶𝑑 vs. 𝑅𝑒 graph 

(Figure 4.2). The vortex separation initiates in 𝑅𝑒 = 2.5x102 and full KVS can be appreciated at 

𝑅𝑒 = 1,047 aprox. 
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Figure 4.7. KVS effect findings in the 𝐶𝑑 vs. 𝑅𝑒 graph.  

4.1.3.3. Reynolds number effect 

As mentioned earlier, 𝑅𝑒 is an indicator of how laminar or turbulent a given flow is. 

Moreover, it can be set to figure out a parameter range where certain flow effect is expected, like 

the KVS effect. In this work, the intension is to provide evidence on which is the analogous 

parametrization that our SPH implementation can employ to match a conventional KVS 

experiment of fluids in typical clear water flow conditions where robotic mechanisms may act. 

 

In simulations, illustrated in Figure 4.5, it is shown that, at Table 4.1 conditions, KVS effect 

is achieved approximately at 50,000 particles. 𝑅𝑒 value is 1,047. In Figure 4.8, from left to 

right, the first two simulations show a half cycle of KVS effect with a smaller cylinder diameter 

than the next two. The latter two simulations show the same noticeable KVS effect than the 

former two even by increasing 𝑅𝑒 number. These results demonstrate theoretical value ranges of 

𝑅𝑒 shown in Figure 4.1. 
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Figure 4.8. KVS effect during running simulations with different cylinder diameter. 

 

The running simulation in Figure 4.8 shows that KVS effect can be achieved at low 

number of particles with our SPH implementation. This is a promising result for real-time 

experimental purposes using a user interaction scenario. Now, it has been physically tested fluids 

with proper flow and vorticity timing, not only from the visual perspective but also from its own 

theoretical physics. To be clear from this point and so on, since complexity of fluid physics is 

extensive, our work only studies fluids from its SPH motion dynamics based on parameters 

evaluated from NSE forces. Different parametrization would derive into different results though. 

4.1.4. Conclusions 

As far as the case of this Section 4.1, the flow domain has been especially designed and 

implemented successfully to simulate a flow passing a cylinder. This aim includes the domain 

dimension setup and filling, the implementation of the inlet and outlet of particles, and the KVS 

effect finding with different cylinder sizes.  

 

Another remarkable data obtained with the simulations carry out in this section is the 

Strouhal number value at which KVS is noticeable. From Figure 4.3, this value is around 0.2 
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along 102 to 105 of 𝑅𝑒 values. By using Equation (4.3), the vortex frequency findings from Figure 

4.6 (0.078 hertz), the cylinder diameter (0.05) and the initial flow velocity 𝑣𝑖 (0.022 m/s), a 

Strouhal number value of 0.177 is calculated. This value confirms the proximity to the 0.2 value 

where KVS effect is expected.  

 

The conducted simulations show promising results in the number of particles and time step 

that have been used.  Marrone et al. [47] had similar results in the development of the initial KVS 

effect (vortex wake) right behind the cylinder face but with 𝑅𝑒 = 150. Ours had a theoretical 

value of 𝑅𝑒 = 200 during vortex wake and a simulated value of 𝑅𝑒 = 1,047 during full 

development of the KVS effect. Not to mention that, in [47], the ghost technique is used to 

handle particle-solid collisions, allowing to have better no-slip boundary conditions. Contrary to 

our simulations where a reflective wall technique has been used and no-slip condition is 

simulated. As a conclusion, the interval found of 𝑅𝑒 seems to match theoretical values properly 

and fluid vorticity works within the expected limit of the laminar to transitional regimes. 

4.2. Profile case 

Hydrodynamics of profiles is a very well-studied subject for both navigation (hydrofoils or 

flaps) and propulsion (propellers) both in CFD and experimentally. Yet, it is an open subject in 

underwater locomotion simulation to develop comparative models [83]. Flaps and propellers are 

one of the basic means of motion in underwater domains, so, the purpose of this Section 4.2 is to 

test rotation motion of a typical profile for underwater domain where fluid forces generate a 

proportional torque that can be controlled to follow an angular reference. In the following 

Section 4.2.1, the basic theory involved in a rigid body profile dynamics for angular motion is 

described. 

4.2.1. Profile Rotation 

Simulation of rigid body dynamics involves all the concepts of motion equations, from 

position/orientation to angular momentum. That being said, in next sections, the definitions and 
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the implementation logic of these concepts are described to form the proposed motion system. 

In particular, using the case of an underwater profile that rotates in a closed channel without 

involving free surface gravity. 

 

Propulsion or navigation profile model are designed by airfoil profiles. These profiles are 

classified in NACA series based on their application [84]. Our choice is a general-purpose airfoil 

(typically used for horizontal tails in navigation), the NACA-0006 model. The first two digits (00) 

in this model represent an airfoil with symmetrical faces and the last two digits (06) the 

percentage of thickness to chord. The 3D model was obtained from a 2D NACA profile of 400 

datasets. As mentioned in Section 2.3.4, the rigid body primitives are triangles so the 3D profile 

model is shaped by 800 triangles. Figure 4.9 shows the NACA-0006 model in 2D and 3D space. 

 

 

Figure 4.9. 2D and 3D NACA-0006 model designed and employed as rigid body. 

 

The study of flow for different profile models is not going to be investigated, but only the 

fluid effect and the forces to which this selected NACA airfoil profile interacts with. Future work 

could easily follow the testing profiles (NACA-00XX Series) for underwater propulsion 

applications like in [85]. For sizing the profile according to the space domain, a chord length 

(line) has been adapted to a value of 151.25 mm. Thus, a profile width of 4.5 mm for the NACA-

0006 model. 

4.2.1.1. Rotation in the space 

From a 3D motion point of view, simulation of solid bodies can be modelled equally to the 

simulation of particles because solid bodies are made from triangle vertices in the 3D space. 

However, particles do not have orientation but only location in the domain, while a solid body of 
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n vertices is described by its position and orientation. Equation (4.4) describes the composition of 

a vertex 𝑝𝑜 of a rigid body by a function of time. 

 𝐩(𝑡) = R(𝑡)𝐩0 + 𝐱(𝑡) (4.4) 

 R(𝑡) = (

𝑟𝑥𝑥 𝑟𝑦𝑥 𝑟𝑧𝑥
𝑟𝑥𝑦 𝑟𝑦𝑦 𝑟𝑧𝑦
𝑟𝑥𝑧 𝑟𝑦𝑧 𝑟𝑧𝑧

) (4.5) 

𝐩(𝑡) is the location and orientation of 𝐩0, where R(𝑡) the matrix of rotation defined in 

Equation (4.5) and 𝐱(𝑡) the linear traslation vector of 𝐩0 with respect to the origin. For the 

profile rotation case, the translation motion of the profile is not of interest, so 𝐱(𝑡) is cancelled 

out, and only the changes of the profile spin are processed by computing the rotation motion. 

This matrix changes accordingly to internal or external forces such as collisions, inertia, and 

control actions. 

 

It is always important to notice that object position and orientation in 3D space can be 

described locally (object space coordinates) or global/absolute (scenery space coordinates). In the 

implementation of this work, the computation by default is global and only local if specified. So, 

when an object is away from the global coordinates this is located it into the global center and its 

new matrix of rotation R(𝑡) is processed. For this reason, Equation (4.4) includes the translation 

variable 𝐱(𝑡) for the same rotation purpose. 

 

Linear velocity 𝐱̇(𝑡) = 𝐯(𝑡) describes how the position of a vertex changes over time due 

to translation. In the profile rotation case, again, the rotational motion is of interest, so linear 

velocity is not computed as mentioned before. Then, the only motion dynamics left of the solid 

body is a rotation degree of freedom (DoF). In many cases a given angle of rotation requires to 

be reached or maintained as a signal reference in a control task. This can be achieved by applying 

an angular velocity 𝛚(𝑡) to the solid body vertexes. Figure 4.10 shows the composition vectors 𝐚 

and 𝐛 of a particular vertex defined by vector 𝐩(𝑡), and its angular velocity given by 𝛚(𝑡) in one 

axis.  𝛚(𝑡), the spinning velocity in revolutions/time, is a vector velocity while R(𝑡) is a matrix 

of rotation that defines the orientation of the vertex so it is needed to relate these two variables 

into a Ṙ(𝑡) variable.  
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Figure 4.10. Vector of rotation 𝐫(𝑡) and angular velocity 𝛚(𝑡) relation.  

 

A matrix of rotation velocity Ṙ(𝑡) is obtained due to an angular velocity 𝛚(𝑡) by Equation 

(4.6) relation from [13]. The symbol ∗ does not define product but a matrix-vector operation 

expressed in Equation (4.7) is  

 Ṙ(𝑡) = 𝛚(𝑡) ∗ R(𝑡) (4.6) 

 Ṙ(𝑡) = (𝛚(𝑡)(

𝑟𝑥𝑥
𝑟𝑥𝑦
𝑟𝑥𝑧
) 𝛚(𝑡)(

𝑟𝑦𝑥
𝑟𝑦𝑦
𝑟𝑦𝑧
) 𝛚(𝑡)(

𝑟𝑧𝑥
𝑟𝑧𝑦
𝑟𝑧𝑧
)) (4.7) 

If motion dynamics involves forces like in this case, there is need to compute mass. It is 

common to assume a body volume made of many particles, each of these particles can be set to 

be a vertex of the rigid body geometry. So, the total mass 𝑀 of a body is the summation of the all 

our vertices masses 𝑚𝑖 as 𝑀 = ∑ 𝑚𝑖
𝑁
𝑖=1 . 

 

The center of mass in symmetrical profiles may vary upon their geometry, but all have the 

same definition shown in Equation (4.8); where 𝑀 is the object mass, 𝑚 the vertex mass and, 𝐩0, 

the location vector where the center of mass in the object become zero. 

 
∑𝑚𝑖𝐩0𝑖
𝑀

= 0 (4.8) 

Neither linear momentum nor linear velocity take place in this profile simulation case, 

however, angular momentum does. Angular momentum 𝐿𝑚(𝑡) is important because, as 

Equation (4.9) describes, a tensor of inertia 𝐼(𝑡) is needed to know how mass is distributed 
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around the axis of rotation. Profiles may or may not be shaped symmetrically so the angular 

momentum would change depending on the selection of the center of rotation.  

 𝐿𝑚(𝑡) = 𝐼(𝑡) 𝛚(𝑡) (4.9) 

Linear momentum is defined by the product of the object body mass with the linear 

velocity. The object mass is a scalar so linear momentum is simple to compute. However, the 

angular momentum, which is of our interest, requires to define a matrix term of the inertia 

tensor.  

 

Tensor of inertia calculation is not trivial to compute, since, during rotation motion, the 

tensor of inertia evolves according to the axis of rotation. The way to computationally handle this 

issue is by using object space coordinates for the calculation instead of using the scenery space 

coordinate as usual. This assumption sets a constant value to the inertial tension, and allow us to 

compute it once and for all the simulation time steps. Of course, this lowers the simulation 

accuracy in terms of the small rotational velocity changes that take place during neglected angular 

momentum changes. Parallel work may go through the study of rigid body shapes and their 

moments of inertia in SPH, but for this work the motion of rigid bodies is attached to basic 

symmetrical rotational motion. 

 

The constant value for the tension of inertia was approximated using the case of a solid 

cylinder section and the theorem of perpendicular axis. This defines in 2D that, if a planar object 

has rotational symmetry such that 𝐼𝑥 and 𝐼𝑦 are equaled, then 𝐼𝑧 = 2𝐼𝑥 = 2𝐼𝑦, having an 

approximated inertial tensor for the profile of 𝐼𝑧 =
𝑚∙𝑝𝑟𝑤

2

2
 and 𝐼𝑥 = 𝐼𝑦 =

𝑚∙𝑝𝑟𝑤
2

4
, where 𝑚 is the 

profile mass and 𝑝𝑟𝑤 is the profile width (or profile thickness) in 𝑦 direction. Simulation scale is 

applied to radius length so inertia tensor is expressed consistently to the domain. 

 

A more accurate definition of the inertia tensor can be found in [13] where 𝐼(𝑡) =

R(𝑡)𝐼𝑏𝑜𝑑𝑦R
𝑇(𝑡). In such case, 𝐼𝑏𝑜𝑑𝑦 is constant during the simulation but 𝐼(𝑡) is not, it changes 

as the matrix orientation R(𝑡) changes each time step providing a more proper angular 

momentum calculation but with a larger and sequential processing cost. 
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4.2.1.2. State equations of motion 

Now that all needed motion dynamics concepts have been described in section 4.2.1.1, the 

state equations of motions for profile case can be described for fluid and solid coupling. For a 

rigid body, 𝑌(𝑡) is defined in Equation (4.10) as a set of the state variables that defines the 

orientation and torque applied to the profile. 

 𝑌(𝑡) = (
𝜃(𝑡)
𝜏(𝑡)

)
→  𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
→  𝑡𝑜𝑟𝑞𝑢𝑒                     

 (4.10) 

It cannot be ignored, that in a 2D closed channel the Kutta-Joukowski theorem allows to 

find theoretically the force that experience a solid body in a uniform flow. This exerted force f, 

expressed in Equation (4.11), is the product of the fluid density 𝜌, the upstream (initial) flow 

velocity 𝑣⃑, and the line integral of the velocity field or circulation Γ.  

 f = 𝜌𝑣⃑Γ (4.11) 

Equation (4.11) allows to validate the conservation of motion based on circulation. But for 

this work, as a time and space discrete model of the fluid is provided by SPH, a solid-fluid 

coupling model based on the net force is used. Besides that Equation (4.11) only works for 2D 

scenes while a net force model would work for 3D too.  

  

The mass of the rigid body profile and its inertia tensor are assumed constants throughout 

the simulation. Each time step, the calculation problem is centered in obtaining the angular 

position of the profile from the fluid force. For continuous systems, fluid flowing around the 

body generates a local net force f on each infinitesimal region of the body. This is an exception in 

particle-based fluids, where fluid is not in continuous contact with the body due to space 

discretization but only at certain discrete time steps and at certain particle-to-body collision range. 

Anyhow, a resulting force 𝐟 is obtained by vector addition of all particles forces 𝐟𝑖⃑⃑⃑ during 

collision detection. See central diagram in Figure 4.11 for better illustration. 
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Figure 4.11 Resulting force 𝑓 and torque 𝜏 from particle collision. 

 

The resulting net force 𝐟 is converted into a resulting torque 𝝉⃑⃑ by cross product with the 

distance 𝐫⃑ of the point of rotation, as in 𝝉⃑⃑ = 𝐟 × 𝐫⃑, and converted to angular acceleration 𝛂(𝑡) by 

Equation (4.12). Notice that 𝐼 is required to compute angular acceleration. 𝐼 is precomputed in 

the initialization block for a constant moment of inertia as well as the initial vectors of orientation 

(matrix of rotation) and angular velocity and acceleration.  

 𝛂 = 𝛕⃑⃑ 𝐼⁄  (4.12) 

Now, from acceleration, the final angle of rotation 𝜃(𝑡) can be found by the Euler 

integration method defined in Equation (4.13) for angular velocity and in Equation (4.14) for 

angular position. Notice the scalar indication of variables; this comes from vectors magnitudes. 

By final angle, the next time step angle is 𝜃𝑜 = 𝜃(𝑡) and 𝜃𝑓 = 𝜃(𝑡 + ∆𝑡).  

 𝜔(𝑡 + ∆𝑡) = 𝜔(𝑡) + 𝛼(𝑡)∆𝑡 (4.13) 

 𝜃(𝑡 + ∆𝑡) = 𝜃(𝑡) + 𝜔(𝑡) ∆𝑡 (4.14) 

Recall that the collision approach is purely dissipative where no spring nor damper 

elements actuate in the collision region. By using Equations (4.13) and (4.14), the angular 

acceleration is been approximated to be constant each time step that is only valid for small 

rotational steps.  

 

𝜃 would be needed to be translated to a rotational matrix R(𝑡) if 3D flow modeling is 

involved. However, since the airfoil rotation is developed under one axis for this model case, 

instead of using unit quaternion operations to find the new R(𝑡), this matrix can be simplified to 
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a rotation vector and computed using Rodrigues formulae defined in Equation (4.15). That way it 

can be modelled under the angle 𝜃 rather than in quaternions where normalization must be 

processed each computation of R to avoid numerical drift. In Rodrigues formulae, 𝐱′ is the 

rotated version of vector 𝐱, 𝐧 is the normal vector of the rotation plane, and 𝜃 the angle of 

rotation, see Figure 4.10 for reference. 𝐱′ is used to situate the new position of that solid vertex in 

the 3D space.  

 𝐱′ = 𝐱 + (sin𝜃)(𝐧 × 𝐱) + (1 − 𝑐𝑜𝑠𝜃)(𝐧 × (𝐧 × 𝒙)) (4.15) 

To the right in Figure 4.11, a collision range is illustrated. Only the particles within this 

region are tested for collision with the solid. There is no need to process a particle search process 

since the process used in Section 3.5.1 for closest neighbor search, where the collision particle 

voxels are listed in a proximity order and ready to be iterated, can be employed. 

4.2.2. Profile rotation control 

Coupling forces could be used to orient a profile for free spinning, but for this work a 

controlled profile requires to use the resulting torque for navigation or vortex motion. For 

instance, to control the profile with a reference angle. That reference angle could be provided by 

a cruise control in a navigation application. This is the test case for profile rotation control 

developed in this work.  

 

The profile must be conceived as an attached mechanism of rotation, may be a shaft on a 

bearing support, so there will be a spring element and occasionally a damping element in any real 

profile rotation system. To provide a generic mechanical model that fits this profile motion case 

of rotation, a second order system has been adopted given by the greatest order of 𝜃(𝑡). The 

diagram to the left in Figure 4.11 describes the motion elements of the employed mechanical 

system. Equation (4.16) provides the canonical form of such second order system (SOS). Where 

𝐾 is the torsional spring element (stiffness) and 𝐼 the moment of inertia or inertia tensor, both 

represent the coefficient in the SOS. Notice that the point of rotation is right at the center of 

gravity. As mentioned earlier, collision with particles is purely dissipative so no viscous effect in 

the boundary layer is observed and, then, no friction (damping) element is offered. 𝜏(𝑡) is the 
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calculated torque, described in Figure 4.11 and previously mentioned, using the net force that is 

the summation of all forces of collided particles. 

 𝐼
𝑑2𝜃(𝑡)

𝑑𝑡2
+𝐾𝜃(𝑡) = 𝜏(𝑡) (4.16) 

Equation (4.16) defines the plant function in a closed loop feedback system. SOS of the 

form of Equation (4.16) in principle has an undamped transient time response (𝜁 = 0). This 

means that at the minimum torque stimuli, the plant will oscillate indefinitely. For such unstable 

behavior, a control gain is required to be applied. In Section 4.2.2.1 this control gain is designed 

and explained. 

4.2.2.1. Proportional control  

Figure 4.12 shows the closed loop feedback block diagram for PID control with 

proportional filtering. 𝜃0 defines the angle reference where the system should reach in and 

maintain as a target angle. An undamped system has two conjugate pole roots on the imaginary 

axis of the Real-Imaginary plane, so, in order to add real and negative values to this transfer 

function a controller should provide a dominant pole with a real part. This is frequently done by 

using a proportional, integral and derivative (PID) controller gain. PID control reduces the steady 

state error of the undamped nature and adds complex roots to translate the response from 

undamped to underdamped. In Section 4.3, a PID controller is processed for the free surface 

flow case. 

 

 

Figure 4.12. Proportional closed loop control of a profile rotation SOS  

with undamped plant response. 

 

𝐾P, 𝐾I, 𝐾D and 𝑁 in Figure 4.12, are the PID constants of the PID controller and 𝑁 the 

filter coefficient, and the proposed values for constant values of the plant in Figure 4.12 come 
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from the testing values used by Woods et al. in [86]: 𝐼 = 1.73𝑥10−4 kg ∙ m2 and 𝐾 =

0.3832 N ∙ m rad⁄ . It has been used the Matlab Control System Toolbox to tune the PID 

constants that turn the undamped oscillatory respond of the plant into an overdamped respond. 

Figure 4.13 provides the Matlab result of tuning PID including the root values in the complex 

plane and the transient time respond. 
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Figure 4.13. (Top) Poles and zeros in the complex plane. (Bottom) Time respond of the PID 

control system. 

 

The requested respond is overdamped with little overshoot. So far, a usable respond for an 

undamped rotational system of the profile. In next section, the discussion of this results are 

provided. 

4.2.2.2. Results and discussion 

It is clear how PID can solve the undamped respond. But, so far, a pure rotational 

mechanic system has been addressed. The system needs to play its role in the requested fluid-

solid coupling system. As mentioned earlier, the task of the profile is to control the rotation to 

follow a reference angle. Fluid in closed channel flows exactly in the same direction than in the 

benchmark case. In Video [4.2], the running simulation illustrates the time performance of the 

controlled profile. In that test, the user defines the reference angle to 180 degrees, and the torque 

produced by the particles net force. It is clear the efficiency of the applied control to the profile. 

In the following Figure 4.14, a sequence of three sample image from Video [4.2] is presented. 

The sequence shows the effect of the control action avoiding undamped oscillation. The running 

simulation includes 12,000 fluid particles, real-time calculation of the angular step, angular 

velocity, torque and reference angle to follow.  
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Figure 4.14. Three sample image sequence of running simulation of the controlled profile using a 

reference angle of 180. 

 

A constant upstream velocity of the flow is provided over time, however, a time 

performance test for the suggested controller could be a variation of the upstream velocity to 

find the flow velocity limit where the profile to cannot follow the reference angle anymore by the 

effect of a maximum torque. The parametrization of the plant, the controller and the particle 

engine suggests that with fair modification of the any of these values, the system will remain valid 

for control purposes.   

4.3. Pouring case 

SPH model has been widely used to simulate dam brake cases [87] and other free surface 

flows [88]. As well as in interactive simulations where solid body collision forces act to shape free 

surface water volumes [89]. Now that closed channel flow has been tested and proved useful for 
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the two initial cases, the goal in this section case is to simulate a free surface fluid with pouring 

kinematics control where the final pouring curvature of fluid flow can be modelled and estimate 

for the application of liquid transfer between vessels. A mathematical coupled model of the 

pouring kinematics is provided and a new approach of tilting is introduced. 

 

By considering a liquid in hydrostatic equilibrium with gravity-orthogonal free surface, a 

discharge of this fluid in open space can be analogously modelled as a free fall of solid body 

motion dynamics for stationary conditions [87]. However, this is valid if outflow velocity remains 

in a laminar regime range. Case (a), in Figure 4.15, illustrates the effect of free fall fluid motion 

with predictable curvature over time. Vessel 1, the pouring vessel, has one DoF of rotation on 

the 𝑧-axis, while vessel 2, the catching vessel, has one translation DoF along 𝑥-axis. 

 

 

Figure 4.15. (Left) Case a: Expected laminar flow with free fall trajectory slope.  

(Right) Case b: Unexpected no-slope turbulent fall trajectory. 

 

In contrast, unpredictable fluid curvature (trajectory) will happen in a free surface 

undergoing motion that is not orthogonal to the gravity vector. Case (b) in Figure 4.15 illustrates 

such curvature. Even when initial conditions in hydrostatic equilibrium are met, turbulent 

outflow may occur during pouring at particularly low flow velocity, 𝑣, values. The most typical 

causes of turbulence at low 𝑣’s are the border pattern or shape of the vessel and the acting 

surface tension force.  
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Solid body and fluid motion models can merged together and controlled with a closed loop 

model to effortless transfer liquid volume from one vessel to the other at a constant outflow 

velocity using free fall parabolic trajectories [90] (Figure 4.15, Case a). However, maintaining 

constant outflow requires a dedicated control especially in the initial phase of pouring where flow 

is inherently non-stationary. Another aspect to consider is the liquid adhesion to the vessel crest 

and walls. This issue can be avoided by using a sharp spilling edge and/or guaranteeing a 

marginal velocity at the outlet crest or edge. In this work, the selection of the vessel type is not 

meant to be restricted at least from its edge form but only by its interior volume, so, the control 

action will be focused on the outflow velocity and not in the vessel edge type. This outflow 

velocity is controlled by maintaining a constant liquid elevation over the vessel’s crest, which is 

especially relevant during the initial surface oscillation (slosh). The interior volume of the vessels, 

here tested, have planar vertical and semi-vertical walls parallel to the y-plane. Such type of 

vessels are common in domestic/unconstrained scenarios. Also, the vessel edge is considered not 

to add significant level suppression on the outflow curvature, a dominant parabolic based 

discharge (sharp crested) over a coefficient based discharge (broad crested).  

4.3.1. Free surface fluid in free fall 

The relevant parameters of pouring liquid in free surface fluids are the pouring velocity and 

the height of the pouring liquid over the vessel edge (ℎ𝑞 in Figure 4.15). The faster the pouring is, 

the faster SPH needs to estimate fluid data at a shorter timestep. But also, too low ℎ𝑞 will 

compromise the outflow trajectory due to fluid viscosity [91]. There is also a subcritical regime to 

take care of when height increases drastically in no-linear slopes and then excite possible 

hydraulic jumps [92]. Thus, a minimal value of ℎ𝑞 must be studied based on the minimal 

expression of the fluid in the SPH lagrangian method; and, this is, the particle itself. 

 

Particle have a range of influence. That range is the smoothing length in SPH, ℎ in 

Equation (3.7), defined by a spatial range where only neighbor particles within that range 

influence the given particle’s dynamics. By defining the minimum size of ℎ𝑞 equaled to the size 

of the smoothing length ℎ, the particles are allowed to carry, along the outflow, the added forces 

of its nearby particles. This diminishes the sources of turbulence and provides added forces to 
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the outflow every time step of the fluid outflow. In the simulation of this work, a scaled 

smoothing length of 10 mm is used, and a radius of interaction of 5mm as the minimum value 

for ℎ𝑞. This values are set constant throughout the entire simulation. 

 

Out of vessel 1, the characteristic dimension of the liquid jet (~ℎ𝑞) is generally small so 

that neither boundary conditions nor fluid intrinsic forces has great contribution in open space 

free fall. As mentioned earlier, a sharp crested parabolic discharge. Under these assumption fluid 

flow of particles will describe a quadratic trajectory defined by Equations (4.17) and (4.18). 

 𝐲(𝑡) = 𝐲𝟎(𝑡) −
1

2
𝐠𝑡2 (4.17) 

 𝐱(𝑡) = 𝐱𝟎(𝑡) + 𝐯𝐨𝐱𝑡 (4.18) 

In Equation (4.17), 𝐠 is the gravity vector force [0 9.81 0], the initial flow velocity 𝐯𝐨𝐲 in 𝑦-

axis equaled to zero, the initial flow position 𝐲𝟎 that gradually changes in time, and vessel 2, the 

catching vessel, at 𝐲 = 0 position. For coordinate axis reference please refer to Figure 4.15. Time 

𝑡𝑦 can be calculated at the time the fluid particles enter vessel 2. Assuming a null horizontal 

acceleration (𝐚𝐱 = 0), Equation (4.18) is reduced to 𝐱𝐜𝐚𝐭𝐜𝐡 = 𝐱(𝐲 = 0) = 𝐯𝐪𝑡𝑦; where 𝐯𝐨𝐱 = 𝐯𝐪 

is the bulk velocity right at the vessel outlet. This velocity can be determined analytically as 𝑣𝑞 =

2

3
𝐶𝑑√2𝐠ℎ𝑞 for an open channel flow, where 𝐶𝑑 is an empirical discharge coefficient (~0.6 

approx.). However, 𝐯𝐪 is rather obtained by averaging SPH particle velocities in the outflow 

plane at each timestep. So 𝐱𝐜𝐚𝐭𝐜𝐡, in Equation (4.18), is computed to calculate the ending 𝑥-axis 

position at which vessel 2 will be translated to. 

This pouring model based on free fall of particles, is valid for a pouring stage with constant 

outflow, in this work named as the constant flow stage (CFS) for further reference. However, the 

initial pouring stage imposes an increasing outflow at the vessel edge, and, thus, an incremental 

acceleration in the 𝑥-axis of the flow. So, here is why it is required to consider with much care an 

initial pouring stage. The approaching flow stage (AFS) is described as the initial pouring stage in 

this work. AFS happens when vessel 1 initiates the tilting to reach the window level ℎ𝑞, see 

Figure 4.16. From this moment, CFS takes place to conclude the pouring task. In next Section 

4.3.2, the modelling and control solution of AFS is described.  
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Figure 4.16. Stages of pouring. (Left) AFS going from the initial time to 𝑡𝐴𝐹𝑆. (Right) The 

subsequent CFS going from time 𝑡𝐴𝐹𝑆 to 𝑡𝐶𝐹𝑆 . 

CFS aims to pour the largest amount of liquid volume because constant outflow can be 

processed with less discrete error than in an outflow with variable outflow velocity, like in AFS. 

A volume limit to pour is set so the largest amount of liquid to pour remained in CFS rather than 

in AFS. To achieve this, a window level ℎ𝑞 should be as short as possible, and just to clear the 

SPH smoothing length tolerance mentioned before. Tilting vessel 1 can be conducted by 

controlling the angle 𝜃 of vessel 1 as a proportional function of the linear decrease of ℎ𝑞 in time 

(Δℎ𝑞). 

 𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
2

𝐵
(ℎ𝑞(𝑡) + ℎ𝑒)) (4.19) 

Equation (4.19), the trigonometric relation of the angle and dimensions of vessel 1, can be 

used to reach 𝜃. However, this will not offer a linear step on the wanted center of rotation, so, 

instead, as Figure 4.17 illustrates, a Δℎ𝑞 is first measured at certain timestep during CFS, then this 

height is assumed as the magnitude of a vertical vector (vector 𝐛) with origin coordinates on the 

pouring edge of vessel 1. Then find vector 𝐜 from vector difference of 𝐚 and 𝐛. Vector 𝐚 is the 

vector from the center of rotation to the pouring edge in vessel 1. Finally, an angle 𝜃′ between 

the vectors 𝐚 and 𝐜 is calculated with the scalar product, and vessel 1 tilts at that angle in constant 

angular steps. 
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Figure 4.17. Vertical step of tilting in CFS. 

In simulations of this work, the pouring of the full liquid volume is developed. No pouring 

of partial volumes is intended to be developed. So, as the liquid volume ceases, ℎ𝑞 will drop 

down. The free fall curvature has no flaws over the course of the CFS end. For that ending flow, 

there has been tried different tilting functions to handle the angle of pouring, not only as a 

function of ℎ𝑞 but also as a function of time with relatively the same positive results. Bauer in 

[92] implement the free fall motion of fluids as a measuring device for free surface flow. In 

further work, partial pouring will require to drive the outflow velocity slowdown and the free 

surface back elevation derive from tilting back action. 

During CFS, the catching motion of vessel 2 will be simplified to translate the vessel on 𝑥-

axis component of the particle flow curvature. It is not required to offer a special treatment to 

the catching task, but only to limit large translation steps during filling up in order to prevent 

sloshing and eventual spill. In the simulations of this work, the update of solids positions take 

place each particle’s position update (timestep of 0.002 seconds). A fairly small discrete spatial 

step for a smoothed motion of vessel 2. 

In Figure 4.18, a simile of the outflow trajectory is presented between the analytical 

solution expressed in Equations (4.17) and (4.18) (red dots) and the result of the SPH particle 

flow (grey color particles). As seen in Figure 4.18, analytical curves are fairly followed by the 

outflow particles at certain 𝑣. The fall of particles at 𝑥-axis position along all the 𝑦-axis positions 

has been validated. This allows to confirm a quadratic outflow curvature of the SPH method in 

free surface using our simulation context, and also to confirm how to determine and track an 

outflow target during CFS. For all the following test, the following 2D vessel’s dimensions are 
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used: width=height=0.191 meters. If not indicated different, please assume a liquid level height 

of ℎ=0.1591 meters. The scales in 𝑥 and 𝑦-axis in Figure 4.18 are designed in Matlab and only 

adapted to illustrate dimensioning. 

 
Figure 4.18. SPH outflows (grey particles) vs. analytic curvatures (red dots). (Left) a narrow 

outflow. (Right) a broad outflow. 

4.3.2. Fluid-solid coupling model 

For high values of 𝑣𝑞 , the outflow follows a free-falling motion, but for low values of 𝑣𝑞 

the flow may be attached to the external vessel walls, causing the fluid to drip through these 

walls, case b in Figure 4.15 illustrates this effect. Other factors that may cause this effect is the 

shape of the vessel tip (Coanda effect) and the air-fluid boundary conditions. However, most of 

these factors can be prevented by guaranteeing a minimum value of 𝑣𝑞 at the vessel edge. 

 

To overcome this issue of dripping and considering that a proper pouring task should 

transfer the entire volume with no fluid leakage, inspired by human intuitive pouring action, a 

Slosh Induction Method (SIM) is proposed during AFS. SIM consists in generating an anti-

symmetrical oscillation of the fluid free surface such that the tilting angle 𝜃 of vessel 1 produces 

an equal angle 𝜃1 of the free surface at certain liquid level condition. This condition defines the 
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usage of SIM and is set when the liquid level ℎ𝑒 is equal or lower than the window level ℎ𝑞 at an 

arbitrary angle of 𝜃 = 20°. Figure 4.19 diagram illustrates this SIM condition. Video [4.3] 

provides the simulation of the free surface oscillation. 

 

 

Figure 4.19. Transitions of AFS with SIM. Transition 1 defines initial conditions in hydrostatic 

equilibrium where the angle of the pouring vessel and the angle of the free surface are zero. 

Transitions 2 to 6 define the SIM steps at condition (ℎ𝑒 ≤ ℎ𝑞@ 20°). 

 

From the moment of rotation of 𝜃 and till 𝜃 reaches a conditional value 𝜙, SIM should not 

develop changes in the liquid volume shape. Leaving a free surface inclination of 𝜙 degrees with 

respect to the horizontal and retaining a linear model for the slosh. Transitions 1-2 in Figure 4.19 

illustrate this motion. After 𝜃1 and 𝜃 become 𝜙, free surface will freely return to the horizontal, 

see Figure 4.19 transitions 3-6, allowing the slosh to travel back to the opposite pouring vessel 

wall and run out of the vessel with a velocity closed to the fundamental velocity of the induced 

slosh. This is the methodology of SIM. 

 

There is no need to process AFS control and CFS can be initiated when the liquid level 

condition is not met. In that case, the outflow will follow free fall motion starting from 0° and to 

the ending angle (𝜃 > 90°), the 𝑥-axis position of the fluid fall is predictable since the 𝑥-

component of the outflow velocity (𝑣𝑞) is known by the SPH processing. This is the advantage 

of having SPH method used as the fluid model. Testing walls has been placed in the simulator to 

measure flow velocities of particles at different locations where needed as well as two particle 

indicators of the free surface angle 𝜃1. Two fake particles colored in red are also added to 

measure the angle of the fluid free surface. Figure 4.20 shows these measurement 

implementations.   
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Figure 4.20. Virtual collision planes for flow measurement. 

 

Lee, in [93] (p. 138), studied the moment of inertia of liquid in a vessel, and demonstrate 

that, having a symmetrical fluid area, the moment of inertia is small, and, in the same way, the 

portion of fluid that rotates together with the vessel becomes small too. So, as the moment of 

inertia dictates, with no SIM usage, the location of the center of rotation should be at the center 

of mass making the moment of inertia closed to zero and retaining the free surface orthogonal to 

the gravity vector. In contrast, AFS with SIM uses the 𝑧-axis as the axis of rotation located at the 

middle bottom of vessel 1. This translation of the center of rotation increases the moment of 

inertia to allow the free surface to elevate along the vessel bottom plane. See Figure 4.19, 

transition 2 for reference. 

 

In this work AFS without SIM is not going to be studied, however, there would be two 

steps required to simulate such case: (1) find the center of mass of the fluid volume to locate the 

center of rotation, and (2), rotate the vessel over this center, and reach the proposed outflow 

height ℎ𝑞. Recall that in such case, different scenarios could be found, like the scenario of having 

a low volume to pour with respect to the total vessel volume. Thus, CFS would not begin with 

the proposed initial condition of ℎ𝑞. This is important to remark because the selection of ℎ𝑞 

must be always as short as possible (equal or greater than the smoothing length ℎ of SPH to 

allow simulation comparisons) specially at low pouring volumes. In Video [4.4] a running 

simulation performs AFS without SIM. 
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This reasoning of AFS needs to be declared in a mathematical approach such that a slosh 

control can be applied to a motion kinematics. One mathematical approach used is the solution 

of the boundary condition equations from the velocity potential of the flow [91]. This solution 

will lead to a nonlinear slosh formulation that will require high computational cost, even for 

robotic elements with a single DoF. Instead of this approach, a linear model is preferred and 

planned in different modelling schemes [94-96]. This linear model proves physical equivalence 

for small oscillation amplitudes of the slosh. The slosh in free surface is described as a finite 

number of oscillators using poorly damped second order pendulums that dissipate energy 

according to their order. Each pendulum represents each oscillation component of the surface 

slosh. In the pouring case, since the only variable required is the velocity of the fundamental 

component of the slosh during AFS, this linear model seem to be appropriate. In the graph of 

[93] (pp. 4-135), the fundamental component of the slosh contributes to more than the 80% of 

the total energy of the slosh, and only less than 20% to the rest components, so the processing of 

this 20% will not add a significant intensity to the slosh velocity, having only a one-pendulum 

task to process. Further details on this model can be found in [94]. 

 

Figure 4.21. Pendulum model of the slosh including 𝑛th oscillations of the free surface. 

 

Figure 4.21 diagram describes the employed model with full pendulum components, where 

𝑚0, 𝐿0, and 𝐼0 describe the mass, the height and the moment of inertia of the solid mass; 𝑚𝑛, 

𝐿𝑛, 𝑙𝑛 and 𝜃𝑛 are the mass, height, distance and angle of the 𝑛th pendulum component; being 

𝑛 = 1 the fundamental pendulum component index and 𝑛 > 1 the rest pendulum component 

indexes. 𝐴/𝐿 and 𝐵 are the height and width of vessel 1. 𝑔 is the gravity constant. Notice that 𝜃 

is the tilting angle of vessel 1 while 𝜃𝑛 represents the rotation angles of the slosh components 

represented by 𝑛 pendulums. By solving Lagrange’s equation for lateral and rotational excitations, 

Ibrahim, in [94], provides a slosh equation indicated in Equation (4.20). Notice in this equation 
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the independence of the moment of inertia, 𝐼0, for rectangular and cylindrical vessels having only 

dependence of three state variables, 𝑥, 𝜃 and 𝜃𝑛, everyone as function of time (𝑡).  

 ∑ 𝑚𝑛𝑙𝑛 [(
𝐴

2
− 𝐿𝑛 − 𝑙𝑛) 𝜃̈ + 𝑙𝑛𝜃𝑛̈ + 𝑥̈] + ∑ 𝑚𝑛𝑔𝑙𝑛(𝜃 + 𝜃𝑛)

∞
𝑛=1

∞
𝑛=1 = 0 (4.20) 

Notice in Equation (4.20) that 𝜃 and 𝜃𝑛 have a linear relation. This linearity is typically 

reached by approaching the sine function of the native pendulum equation to only the angle 

(𝑠𝑖𝑛 𝜃 ≈ 𝜃) for small angular displacements. Also, notice that Equation (4.20) lacks angular 

velocity, 𝜃̇𝑛. This corresponds to an undamped time response of the slosh. If our interest is only 

the fundamental oscillation of the slosh and no lateral excitation will be needed (𝑥̈ = 0), then, 

making 𝑛 = 1 and cancelling the lateral motion 𝑥, the slosh Equation (4.20) is simplified to, 

 −𝑙1𝜃̈1 − 𝑔𝜃1 = (
𝐴

2
− 𝐿1 − 𝑙1) 𝜃̈ + 𝑔𝜃 (4.21) 

From Equation (4.21) and using [94], if the pendulum of interest is at index 𝑛 = 1, the 

distances 𝑙𝑛 and 𝐿𝑛 are calculated with Equation (4.22) and (4.23). 

 𝑙1 =
𝐿

𝜋
coth (

𝜋𝐴

𝐿
) (4.22) 

 𝐿1 = −[𝑙1 +
𝐴

2
− (

2𝐿

𝜋
tanh (

𝜋𝐴

𝐿
))] (4.23) 

The timeline designed in this work, where the angles 𝜃 and 𝜃1 relate each other in a AFS 

time response with SIM, is presented in Figure 4.22. 𝑡0 is the period of time where a partial 

sinusoidal input signal of 𝜃(𝑡) is applied to vessel 1 allowing the free surface angle 𝜃1 to elevate 

at the same rotational velocity as 𝜃 and both reaching 𝜙 angle value. This period of time 

corresponds to 𝑡0 in Figure 4.22. In the next period, 𝑡1, 𝜃1 returns to zero by the effect of gravity 

while 𝜃 remains at that initial conditional angle 𝜙. As soon as 𝜃1 yields to zero, 𝑡2 starts the 

control action of the slosh. The goal of this control action is to turn the surface elevation to zero 

avoiding the pure undamped nature of the slosh. Recall that the pendulum model of the slosh 

and its oscillation response will take place if no control action is applied. The optimum control 

action would lead 𝜃1 to oscillate close to zero as fast as possible so the outflow velocity is set at a 

constant ℎ𝑞 that will migrate to CFS with a stable flow and constant pouring. At the beginning of 



  5.1. Results on pouring case 

 

 

85 

𝑡3, where the returning oscillation of the slosh devices free exit to flow out of vessel 1, AFS will 

end and CFS will begin. 

 

Figure 4.22. Proposed timeline of SIM pouring. AFS ranges from the initial tilting to the end of 

the control action. CFS initiates at the end of AFS and continues till the end of pouring. 

 

A control action is proposed based on a proportional-integral-derivative (PID) controller. 

A system transfer function (STF) is given by Equation (4.24) as the plant gain (𝐺𝑝). This 𝐺𝑝 

comes from Equation (4.21) where the input and output of STF are 𝜃 and 𝜃1 respectively. The 

PID control is capable to remove a steady state error from 𝐺𝑝 which in Equation (4.24) is one 

half. From this equation, it is deducted that roots only exist in the imaginary plane having an 

undamped time response, so, a trained proportional-integral-derivative (PID) 

controller/compensator, in closed loop with 𝐺𝑝, can add the additional zeros to dissolve the pure 

undamped system and turn it into a stable damped one. Using the root locus tuning tool in 

Matlab, the PID constants can be easily determined to reach a desired damped response. STF 

equation depends on the vessel dimensions and liquid height, follow Equations (4.22) and (4.23), 

so any further experimentation would have different PID constants at different vessel 

dimensions. The selected values of dimensions in this work, only provides a reference for 

simulation and model testing. Nonetheless, the system will have the same response at different 

dimensioning. For the sample simulation, 𝐺𝑝 is populated with these values: 𝐴 = 𝐵 = 0.159, 

𝐿1 = 0.0207 and 𝑙1 = 0.0615 meters. 
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 𝑆𝑇𝐹(s) = 𝐺𝑝 =
𝜃1(s)

𝜃(s)
=

𝑏2
𝑙1
s2+

𝑔

𝑙1

s2+
𝑔

𝑙1

=
0.6324s2+159.51

s2+159.51
 (4.24) 

 𝐺𝑐 = 𝐾P +
𝐾I

s
+

𝐾D𝑁

1+
𝑁

s

  
𝑁=107

→      
𝐾Ds

2+𝐾Ps+𝐾I

s
=

0.22797s2+0.760269s+20.96905

s
 (4.25) 

The controller gain, 𝐺𝑐, in Equation (4.25), described by the PID control in AFS has the 

same block diagram as the one used in the profile rotation case (Figure 4.12) but cancelling the 

derivative filter by making 𝑁 = 107 ≅ ∞. This controller adds two zeros and one pole to the 

second order 𝐺𝑝. The idea behind this PID controller is to add a dominant pole to the closed 

loop system so this will become stable-damped and with minimum steady state error. The new 

added zeros will affect the amplitude gain of the system, but not the nature of the response 

though.   

4.3.3. Pouring action 

Because forces, velocities and positions of particles and solid bodies are about to be 

controlled, speed calibration of the system is an important issue worth testing to secure the real-

time performance. The sync of the main simulation loop time with the real fluid speed is crucial. 

This time adjustment is conducted by setting a number of calls of the system loop that refresh 

fluid particles so that the simulation of the slosh frequency approximates to its theoretical slosh 

frequency in horizontal motion. 

 

An analytical solution to the slosh frequency of the first oscillation component for squared 

vessel can be found in [95] (p. 59), and it is shown in Equation (4.26), where 𝐹𝑟𝑒𝑞 is the slosh 

frequency in hertz of a free surface elevation cycle during horizontal motion, the vessel width 𝐵 

and the height of fluid at rest 𝐴.  

 𝐹𝑟𝑒𝑞 =
1

2𝜋
√
𝑔𝜋

𝐵
tanh (

𝐴𝜋

𝐵
) (4.26) 
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Figure 4.23 shows the values of 𝐹𝑟𝑒𝑞 for a complete slosh cycle at three values of 𝐴. 

Equation (4.26) has been used as reference to set the main loop system time and to find the 

equivalent time values for the experimental simulations. 

 

Figure 4.23. Free surface elevation for timing calibration. 

Notice that the difference between analytical and simulated values of 𝐹𝑟𝑒𝑞 barely diverges 

when 𝐴 increases. The results, illustrated in Figure 4.23, confirm a maximum value of Δ𝑡 to run 

real-time simulations. However, it is clear that having a smaller Δ𝑡 value, a more accurate result 

will be found. Video [4.5] illustrates lateral excitation of the slosh in a running simulation from 

where Figure 4.23 results are obtained. 

Now that the fluid time respond of the SPH slosh is equivalent to the analytical 

formulation in Equation (4.26), it is time to apply the proposed PID controller to the CLF 

system. By simple inspection in the product of Equation (4.24) and (4.25), 𝐺𝑝𝐺𝑐, zeros and poles 

are added to the closed loop system. As mentioned early, the location of the roots defines the 

stability and time response, so the controller 𝐺𝑐 adds a dominant pole with 0.00 value in the real 

axis to minimize the undamped nature of the system. Two additional zeros are added by 𝐺𝑐 so 
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the gain is modulated to reach certain threshold. In Figure 4.24, the roots of the plant STF and 

the CLF system are plotted in complex plane.  

 

Figure 4.24. (Left) Root locus plots of the plant gain 𝐺𝑝. (Right) The plant-controller gain 𝐺𝑝𝐺𝑐 

(right). 

In Figure 4.25, two step time-response graphs are shown; the one on top, shows the one 

from the 𝐺𝑝 in closed loop and its steady state error; and the one at the bottom, the product of 

𝐺𝑝𝐺𝑐 in closed loop using the PID controller. Notice that the steady state error in 𝐺𝑝 is 

significantly removed in 𝐺𝑝𝐺𝑐. Also, the bias undamped nature of 𝐺𝑝 is corrected by having a 

damped time respond that if, not ideal, it suppresses in a quarter of its magnitude.  

 

Figure 4.25. Step transient response of 𝐺𝑝𝐺𝑐. 
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Figure 4.26 shows the rotational motion traces of 𝜃 and 𝜃1 captured by the running 

simulation. The full kinematics of angles is described including the two stages of motion (AFS 

with SIM and CFS) and the proposed four time lapses. As expected, 𝜃1 will oscillate 

momentarily, but it will settle down to a stable state as a consequence of the control action 

applied to 𝜃. In Video [4.6], full kinematics of the pouring and catching motion is illustrated. 

Considering the outcome of these results, the proposed SIM-based pouring action is a useful 

model to implemented. Modelling and implemention has been developed and proven equivalent.  

 

Figure 4.26. Timeline of Pouring with SIM Control. The trace of 𝜃 to be used by an actuator. 

The final idea of a running simulation with a real-time interactive SPH flow has helped to 

redesign the model by visual feedback rather than in an off-line batched process.  

4.3.4. Results and discussion 

In the cases where SIM is not required, a tilting velocity needs to be constant and the 

center of rotation equaled to the center of mass so the fluid's moment of inertia can be cancelled 

to avoid sloshing. However, tilting velocities during implementation are not perfect due to 

particle distribution in space and slosh elevation would occur. For such reason, a test has been 

performed to find the valid range of tilting velocities in this simulator. Figure 4.27 shows the 

maximum finding of tilting velocities in AFS without SIM. For a better illustration of rotation on 
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the center of mass, Video [4.7] shows a running simulation where poor elevation occurs in this 

center of rotation. 

 

Figure 4.27. Usable full cycle tilting velocities 𝜔 in the case of AFS without SIM. 

The equivalence of the pendulum model for the fluid free surface can be compared with 

the tilting angle symmetry in running simulations. For such comparison, Figure 4.28 illustrates 

the transient respond of angle 𝜃 during the four periods of time described in Figure 4.19.  
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Figure 4.28. Transient time response of the slosh induction method using different vessel angles 

of rotation (7°, 15° and 20°) and at the end of 𝑡0 and 𝑡1. 

It is remarkable to notice the elevation of the slosh as required by SIM in the first (top) 

figure, column 𝑡0. A relaxation of the slosh (𝜃1) occurs during the second, third and fourth 

figure columns where the back elevation diminishes to find the horizontal and induce the 

pouring.  By increasing the angle 𝜃 a decrease in the angular velocity is required. This means that 

there is a valid range of 𝜃 for the transition of 𝑡0 to 𝑡1, but the optimal angle value 𝜙, according 

to our approach, is the one obtained by Equation (4.19) using the smoothing length as ℎ𝑞. 

As described in Figure 4.29, simulations have demonstrated the feasibility of AFS with 

SIM. A running simulation can be found in Video [4.6]. In that video, an evident improvement of 

the free surface control can be appreciated compared with the CFS pouring in Video [4.7]. 

 

Figure 4.29. Comparison between proposed kinematics vs. simulation 

kinematics in AFS with SIM. 

As mentioned earlier, the benchmark case and the profile case constitute the basis that tests 

the fluid properties, the collision scheme, the computational time performance and the coupling 

model for the final target case: the liquid pouring. SPH for free surface has been studied for 

many years, but applications are yet to come. In this work, a simplified fluid-robot model 

description has been studied and implemented using scaled dimensioning sample application of 

pouring liquids between vessels. Such model description can be useful to directly apply this 

kinematics to robot manipulators.  

GPU computing has added computation value to the presented simulations in a way that 

the experiment redesign can be performed in real-time interaction to overcome the training in 
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offline batches. The presented model kinematics of pouring can only be designed in scale for 

different experiment dimensions. A 3D model of the fluid would be desirable but not necessary 

for the linear model of the slosh where flow paths run perpendicular to the 𝑧-axis and never 

diverge from the 2D motion. 

A remarkable contribution in the pouring case is the real-time performance of the coupling 

model, where the AFS+CFS scheme including SIM and a single PID controller will provide full 

control of pouring when the fill heights are critic due to the adhesion forces which, although, 

those are not implemented to the fluid model, they are always present in physics. It is also 

important to emphasize the property of the model to conduct blind motion kinematics, where no 

complex sensing systems are required for feedback. This feature allows to be implemented in 

cross-platforms where the minimum requirement is the GPU capability. By adding filling height 

and vessel dimensions, one can find the time respond using the suggested model and furtherly 

feed a robot manipulator to perform a successful full non-spill pouring action.  
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Chapter 5 

5. Conclusions and further work 

 
 
 
 
 

The implementation of fluid simulations involves many considerations and constrains to 

the discrete model that may yield to considering twice its application to robotics. This can be 

evidenced by the limited number of research publications found in robotics journals. However, 

the application of robotics into the fluids are unquestionable. In the following Section 5.1, a 

broad conclusion to this work is provided, and in Section 5.2 the proposed further work is 

exposed. 

5.1. Conclusions 

In this work organization, the technical conclusions are offered on each section according 

to the achievements of these thesis objectives (Section 4.1.4). However, a general conclusion is 

provided in the following paragraphs to offer a recap of this thesis work.  

The very well documented KVS effect behind a cylinder has been simulated in this work in 

2D. The results found the correctness of the simulated model, not only in the qualitative aspect 

by showing the classical vortex street behind the cylinder, but also in the quantitative aspect by 

predicting the correct Strouhal number in simulations.  
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An angle reference PID control over a profile has been successfully implemented in this 

work as well. This model allowed to transit, from a fluid-solid simulation with static solids, to a 

fluid-solid simulation with solids in motion. Such change allows to confirm, not only the applied 

PID scheme, which is frequently used in the undamped response case to avoid induced and 

unwanted oscillations, but also to confirm the potential and limitations of the particle-solid 

collision scheme.  

Uncoupling models of fluids and robotic elements could require vast number of 

simulations to find a desired response. But coupled models provide a simpler solution where 

simulation can focus on demonstrating the model. This is always desired, but not always 

available. Thankfully, for free surface flows the coupled model has been provided from Ibrahim 

[94] for lineal sloshing. This model provides a method to implement control based on free 

surface. With free surface control the application can include the slosh suppression as in many 

applications of fluid transportation. In this work, a full liquid pouring application between vessels 

has been successfully implemented. The findings during this simulation allowed to apply 

conventional control theory and find a straightforward time respond to the model (Figure 4.26). 

A robust full coupled-model simulation was applied, which allows to develop full liquid pouring 

in a blind process, that did not require special sensing elements nor knowledge-driven system to 

be conducted. 

The lack of validated coupled fluid-solid models is one of the major issues in the field of 

robotics to develop more complex or with higher degree of freedom (DoF) robotic systems in 

the fluid domain. By offering a coupled fluid-robot model descriptors, like the pendulum model 

in Section 4.3, an important contribution to robotics in contact with fluids is proposed in this 

work. Such proposal yielded to develop, from scratch, a simulation framework that allows to add 

solids in motion and control their position and displacement.  

GPU programming has facilitated the real-time implementation in this work. A real-time 

simulator has been implemented with a complex parallel architecture based on CPU/GPU 

programming that allows to test performance of response in time (Figure 5.4). The user 

interaction is another main advantage of using GPU real-time programming, that allows the user 

to perform interaction during time execution. Parallel programming is not an easy topic the study 

or implement, but certainly, the line to follow for the implementation of the SPH method. It is 

also worth mentioning that simulators, similar to this work’s simulator, employ other supporting 

libraries like GLUT and OpenGL that requires special understanding and implementation to 
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build the simulator framework. For this reason, the implementation itself including GPU 

programming structures (Sections 3.5 and 3.6) is also an important asset in this research. 

The two main challenges, described in Section 1.2, were successfully addressed in this 

work. The first one allowed to find a balance between the features of the SPH model and the 

complexity of the collision scheme. The boundary condition complexity requires to be as 

elemental as possible to avoid time lag that would ruin the real-time performance. It is clear, that 

elevating boundary condition complexity will allow to handle other features of fluid-solid 

interaction (e.g. added surface tension) and to approach the model better to real physics. So, the 

proposed simulations set the basic requirements to accomplish real-time performance in fluid-

solid coupled implementation with a proper runtime simulation that match the proposed 

specifications. By focusing on the real-time performance, the second challenge of this work has 

been accomplished. No batch processing was needed to be processed, so further 

implementations of more complex fluid-solid interactions can be performed using this 

implementation model as foundation.  

5.2. Further work 

In the following Subsections, the three main fields that where addressed during this work 

are commented on how to proceed for further work. 

5.2.1. Computational architecture 

The compatibility of a given parallel computing system is sometime puzzling. Basically 

because of the heterogeneous nature of the processing device in GPU hardware these days. 

Parallel processing is a hardware-depending feature, where the adoption of parallel processing 

systems requires a rule of requirements of the processing demand. Some systems use the number 

of GPUs, others, the GPU memory, and others, the manufacturer compatibility with AMD or 

NVIDIA (the largest manufacturers), but, so far, there is no clear rules to measure cross-

platform parallel capabilities in heterogeneous computing. OpenCL-based systems are, may be, 
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the most cross-platform parallel processing available for the GPU. This work relies in such 

library, but in the long term, the usability of OpenCL through manufacturers may be limited or 

disabled and systems will be enforced to migrate or expire. For such reason, the development of 

this work has been as conceptual as possible for a better understanding, rather than in a 

pseudocode or scripting writing fashion.  

Many of them has been explained on GPU performance for simulation of classic physics 

problems. Nowadays, the limits of modern GPUs have been improved significantly for real-time 

interaction on 3D sceneries using the available libraries for the GPU. But these improvements are 

mostly based on graphics and visualization, and less in strengthen the quality in time and/or 

space of the discrete physical model to simulate. This work pursues the implementation of the 

physical model rather than pure visualization of such model, contributing to increase the available 

modelling that can be exploit with GPU potential. Further work will go in this direction to 

develop new physical models with GPU parallel processing, or to improve this model adding 

physical complexity or different pouring modalities (e.g. partial liquid transfer or pouring on 

accelerated motion). 

The technologies used for the purposes of this work are correct in both hardware and 

software. However, all simulations were conducted in 2D in this work, and results are expressed 

in 2D as well. A 3D fluid may enrich these simulations, but that implementation will heavily 

increase the number of fluid particles to simulate. With the hardware technology employed in this 

work, a large 3D real-time simulation was impossible to develop for this reason. Then, further 

work will include the implementation of these simulations in 3D with a much modern GPU 

hardware with higher capabilities. 

5.2.2. Fluid-solid motion model 

There are vast applications for closed channel and for free surface flows, and most of them 

can be modelled with minimum assumptions so a replicable model can be used and adapted to 

robotic motion kinematics. The logic step in modelling is the experimentation of such model so 

the simulation parametrization can be tested on real robotics applications. In the case of the 

profile rotation, the experimentation seems not to be challenging from the setup, but it would if 

the rotation motor does not provide equivalent torque response. That is the potential of 
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simulation that allows, not only to define the response, but also to size the elements that will 

develop the final task for which those were simulated. In fact, a more specific application to 

torque control can be used in further robotics work, like the study of efficient fish propulsion 

that will derive from the profile rotation presented in this thesis. 

In this work, the simulated solids had one DoF to simulate and control. One interesting 

future work, in the robotics field, can include more DoF to the solids to simulate, so a kinematic 

chain could allow more complex control techniques to implement. 

3D modelling, in the cases presented, is expected to be redundant since the simulation are 

limited to the laminar or inviscid regime and then the flow lines are orthogonal to the 𝑥-plane. 

However, in the pouring case, in unconstrained scenarios, vessels are usually cylindrical rather 

than hexahedral. In such cylindrical vessel, the flow curvature can turn from turbulent to laminar 

(free fall) faster than in the hexahedral. This, due to the vessel edge. For such reason, it will be 

interesting the test and compare them between each other in further work. 

5.2.3. Interactive model design 

As mentioned earlier, the industry development of GPU processing is focus on 

visualization specially in interactive games and simulations. Then, further work could improve 

user interaction by adding realistic visualization. This, without compromising the importance of 

focusing on the physical model accuracy. 

Another future improvement to the current simulator could include a graphical user 

interface which could offer to the user more practical interaction within the simulator. Events 

calls and simulation parameters could be stablished by the user in this interface so the redesign 

process (Figure 1.1) could be more robust and practical. 

The user interaction, in this work, has helped to redesign the model parameters by simple 

inspection of the real-time kinematics. However, it would be interesting to use the user 

interaction capability to add different force obstacles and constrains, in such a way that the model 

can respond to its limits in time, frequency and fluid parametrization. That type of user 
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interaction can be powered with haptic forces, where force feedback can be returned to the user 

or another coupled interface. 
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Abbreviations 
 
 
 
 
CFD   Computational Fluid Dynamics 

GPU   Graphic Processing Unit 

CPU   Central Processing Unit 

RANS   Reynolds-average Navier-Stokes equations 

LES   Large Eddy Simulation 

SPH   Smoothed Particle Hydrodynamic 

𝑅𝑒   Reynolds Number 

FDM   Finite Difference Method 

FEM   Finite Element Method 

VoF   Volume of Fluid method 

KVS   Karman Vortex Street 

NSE   Navier-Stokes Equations 

CFL    Courant-Friedrich-Lewy condition 

KJT   Kutta-Joukowski Theorem 

SOS    Second Order System 

CLF   Closed Loop Feedback system 

CFS   Constant Flow Stage 

AFS   Approaching Flow Stage 

SIM   Slosh Induction Method 

PID   Proportional, Integral and Derivative controller 

STF   System Transfer Function 

𝐺𝑝   Plant Gain  

𝐺𝑐   Controller Gain 

DoF   Degree of Freedom 
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Notation 
 
 
Matrix are in uppercase with regular letter format 
 

Vectors are in bold (also indicated with diacritic mark ⇀) 
 
Scalars are in italic, may go in lowercase or uppercase 
 

In continuous time, variables noted in italic as a function of time 𝑡 
 
 
 

Nomenclature 
 
 
 
Variable/symbol Description  
   

𝑣, 𝑣0 fluid velocity, initial fluid velocity    

𝑥, 𝑦, 𝑧  distance in cartesian coordinates 

𝑝, 𝑝0 pressure, reference pressure   

𝜌, 𝜌0 density, rest density  

𝜏 viscous stress   

𝛽 and 𝛼 superscripts generalized space coordinates   

𝑀, 𝑚, 𝑡 total mass, mass, time   

𝜇 dynamic viscosity  

𝑔, 𝐠 gravity constant, gravity vector   

𝑘𝑝, 𝑐𝑠 pressure constant, speed of sound  

𝑈0 maximum flow velocity   

Ω fluid volume  

𝑓 function of the integral approximation  

𝛿, 𝑊 Dirac delta, smoothing function  

𝐫 particle position vector  

ℎ distance (also noted as length or height)  

∇,∇2 gradient operator, laplacian operator 
𝑉𝑝, 𝑉𝑓 particle volume, domain volume 
𝑁𝑚𝑎𝑥 maximum number of particles  
𝑑𝑟𝑒𝑠𝑡 rest distance between particles  

𝛿𝑡 integration time step  

𝑎 particle acceleration force  

𝜆 CFL index  

𝐯𝐨, 𝐯𝟏, 𝐯𝟐 triangle vertices  

𝐚, 𝐛, 𝐜 position vectors 

𝐧 normal vector of triangle 
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𝐹𝑥 force in x-direction 

𝐶𝑑 , 𝑆𝑡 drag coefficient, Strouhal number 

𝑑 cylinder diameter 

𝑓𝑟𝑒𝑞, 𝐹𝑟𝑒𝑞 vortex frequency, free-surface frequency 

𝐩(𝑡) position vector as a function of time 

R(𝑡) rotation matrix 

𝐱, 𝐧 translation vector, normal vector 

𝑟 element of the rotation matrix  

𝐯, 𝛚 linear and angular velocity vectors 

( ), [ ] continuous and discrete function indicators 

𝐿𝑚, 𝐼 angular momentum, tensor of inertia 

𝑝𝑟𝑤 profile width 

𝜃, 𝛕, 𝛂 angular position, torque and acceleration 

𝑌 Set of state variables  

Γ flow circulator 

𝑙, 𝐿, 𝐴, 𝐵 dimensioning constants  

𝐾, 𝑁 Controller constant, derivative filter constant 
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Appendix A  

Mathematical framework of SPH 

 

A.1.  The gradient of pressure force ∇𝑝 

 

The gradient term of Equation (3.5) that turns into Equation (3.10) is developed by 

applying the symmetric gradient approximation formula in [96] which demonstrate symmetric 

forces to fulfill Newton’s law. 

 

Considering the vector calculus identity, 

 

 ∇(𝐴 ⋅ 𝐵) = 𝐴 ⋅ ∇𝐵 + 𝐵 ⋅ ∇A (A.1.1) 

 being 𝐴 ≡ 𝑓 and 𝐵 ≡ 𝜌−1, (A.1.1) yields to, 

 

 ∇ (
𝑓

𝜌
) = ∇(𝑓𝜌−1) = 𝑓 ⋅ ∇(𝜌−1) + 𝜌−1 ⋅ ∇(𝑓) (A.1.2) 

 = −𝑓𝜌−2 ⋅ ∇(𝜌) + 𝜌−1 ⋅ ∇(𝑓) (A.1.3) 

 

 

clearing  
∇(𝑓)

𝜌
  from last equation the following expression is found, 
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∇(𝑓)

𝜌
= ∇ (

𝑓

𝜌
) +

𝑓∇(𝜌)

𝜌2
 (A.1.4) 

 

Now, SPH interpolation of Equation (3.9) can be applied to this last one equation, 

knowing that 𝑓 ≡ 𝑝 and in SPH notation the following is found, 

 

 
∇(𝑝𝑗)

𝜌𝑗
= ∑ [

𝑚𝑖

𝜌𝑖

𝑝𝑖

𝜌𝑖
∇𝑖𝑊(r𝑗 − r𝑖 , ℎ)]𝑖 +

𝑝𝑗

𝜌𝑗2
∑ [

𝑚𝑖

𝜌𝑖
𝜌𝑖∇𝑖𝑊(r𝑗 − r𝑖 , ℎ)]𝑖  (A.1.5) 

 

 = ∑ [𝑚𝑖
𝑝𝑖

𝜌𝑖2
∇𝑖𝑊(r𝑗 − r𝑖 , ℎ)  + 𝑚𝑖

𝑝𝑗

𝜌𝑗2
∇𝑖𝑊(r𝑗 − r𝑖 , ℎ)]𝑖  (A.1.6) 

 

 
∇(𝑝𝑗)

𝜌𝑗
= ∑ 𝑚𝑖 [

𝑝𝑖

𝜌𝑖2
+

𝑝𝑗

𝜌𝑗2
] ∇𝑖𝑊(r𝑗 − r𝑖 , ℎ)𝑖  (A.1.7) 

 

A.2. The laplacian of viscosity force ∇2𝑣 

 

By reference of [96], the Laplacian term of Equation (3.5) that turns into Equation (3.12) 
is developed. 

 
Considering two times the gradient vector identity of the product and one time the 

divergence identity the second order derivative (laplacian) term can be formed as, 
 
 

 ∇2(𝜌 ⋅ 𝑓) = ∇(∇(𝜌 ⋅ 𝑓)) = ∇(𝜌∇𝑓 +  𝑓∇𝜌) = ∇(𝜌∇𝑓) + ∇(𝑓∇𝜌)  

(A.2.1) 

 ∇2(𝜌 ⋅ 𝑓) = ∇𝜌∇𝑓 +  𝜌∇2𝑓 + ∇𝜌∇𝑓 + 𝑓∇2𝜌 (A.2.2) 
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 ∇2(𝜌 ⋅ 𝑓)
 

=
  
𝜌∇2𝑓

∗1
+
 
𝑓∇2𝜌

∗2
+
 
2∇𝜌∇𝑓

∗3
 (A.2.3) 

If 𝑓 ≡ 𝑣𝑖 , and clearing ∗1, yields to, 
 

 ∇2(𝑣) =
∇2(𝜌𝑣)

𝜌
−

𝑣∇2(𝜌)

𝜌
−
2∇(𝑣)∇(𝜌)

𝜌
 (A.2.4) 

 

 The last right term of (A.2.4) can be reduced to 0 since 𝜌 is constant and ∇(𝜌) = 0. So it 
ends being, 

 ∇2(𝑣) =
∇2(𝜌𝑣)

𝜌
−

𝑣∇2(𝜌)

𝜌
 (A.2.5) 

Now, SPH interpolation in Equation (3.11) can be applied to Equation (A.2.5), and, in 

SPH notation, ending as, 

 

  

 𝜌𝑗∇
2(𝑣𝑗) ≈ ∑ [

𝑚𝑖

𝜌𝑖
𝜌𝑖𝑣𝑖∇𝑖

2𝑊(r𝑗 − r𝑖 , ℎ)]𝑖 − 𝑣𝑗∑ [
𝑚𝑖

𝜌𝑖
𝜌𝑖∇𝑖

2𝑊(r𝑗 − r𝑖 , ℎ)]𝑖   

(A.2.6) 

 𝜌𝑗∇
2(𝑣𝑗) ≈ ∑ [𝑚𝑖𝑣𝑖∇𝑖

2𝑊(r𝑗 − r𝑖 , ℎ)]𝑖 − ∑ [𝑚𝑖𝑣𝑗∇𝑖
2𝑊(r𝑗 − r𝑖 , ℎ)]𝑖  (A.2.7) 

 

 ∇2(𝑣𝑗) ≈ ∑ 𝑚𝑖
(𝑣𝑖−𝑣𝑗)

𝜌𝑗
∇𝑖
2𝑊(r𝑗 − r𝑖 , ℎ)𝑖  (A.2.8) 
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Appendix B 

C/C++ programming 

 

 

B.1. Rendering 

OpenGL uses its own custom C programming Shading Language (GLSL). This language is 

used to write scripts called “shaders” that run in the GPU. A render pipeline is used by the GPU 

to run shaders. The purpose of this pipeline is to render native 3D data into a 2D pixel screen. 

There are two modes to render in OpenGL. One, in the immediate mode that writes in GLSL 

the vertices of 3D geometries of the user. This mode make use of the commands glBegin and 

glEnd or glDrawArrays to write the vertex primitives of geometries. The disadvantage of this 

mode is that during the call of these commands the user data is transferred from CPU memory to 

GPU memory blocking the rendering pipeline and the user application until these calls end. This 

mode is only valid for static geometric content that is not called repeatedly, and not for dynamic 

content that needs to be refreshed with the pipeline framerate. 

 

For such dynamic data, the best mode is the retained mode. Under this mode, user data is 

attached to OpenGL buffers and these buffers are directly handle by an OpenGL process. Then, 

the user application only needs to update its data and leaves OpenGL process to handle the 

pipeline update. Also, in this mode, the user can send OpenGL commands to draw different 

geometries without caring much about rendering timing because the OpenGL process will queue 

these commands and handle the rendering itself. This is especially interesting when dealing with a 
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real-time applications where heavy loads of data is intended to be processed seamlessly with the 

rendering. In this type of applications, it is desirable to leave the rendering task to the system and 

focus on data processing, and this is the case of this work simulator. It is an enormous 

enhancement for real-time simulations that reduces computational cost significantly.  

 

In Section 3.6.1, the simulator structure is presented and illustrated in a diagram block. In 

Figure 3.5, a rendering block is presented at the end of the diagram. The rendering task is based 

on the retained mode. Under this mode, the OpenGL rendering process is handled by the 

OpenGL vertex buffer object (VBO). VBO is an OpenGL resource to transfer OpenGL vertex 

data (position and color) to the GPU memory. In the simulator of this work, these vertex data is 

defined by the position vertex of the fluid particles. The color vertex are also considered for the 

color of the fluid particles.  

 

In the following table code a method procedure for the VBO is presented just as it has been 

programmed in the simulator of this work. OpenGL version is 4.5.  

 

No. Retained mode process Sample code 

1 Create a buffer object and return its 

identification integer number (ids) starting 

from 1. 0 is reserved. n is the number of vars 

to be uploaded, e.g. one for vertex data and two 

for color data. 

 

void glGenBuffers(GLsizei n, GLuint* ids) 

//Create a variable to hold the VBO identifier for vertices and colors 

GLuint triangleVBO[2]; 

 

//Define the vertices of a triangle to be loaded to the GPU 

float verts[] = {1.0f, 0.2f, 0.05f, -0.98, -0.6, 1.0, 0.3, 0.2, 7.0}; 

float colors[] = {0.8f, 0.8f, 0.8f}; 

 

//Initialize VBO once at the start of program 

glGenBuffers(2, &triangleVBO); 

2 Activate a previous buffer object. target is the 

OpenGL object type of the buffer the VBO 

identifier. 

 

glBindBuffer(enum target, uint buffer) 

//Make the new buffer object active 

 

glBindBuffer(GL_ARRAY_BUFFER, triangleVBO); 

3 Upload data to the active buffer object. 

Arguments are data, data size. usage 

argument is an memory optimization hint to 

OpenGL.  

 

glBufferData(enum target, sizeiptrARB 

size, const void *data, enum usage) 

//Upload vertex data to the GPU device 

 

glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, 

GL_STATIC_DRAW); 

4 (Optional) Delete a number n of buffer 

objects from data or by VBO identifier. 

 

glDeleteBuffers(sizei n, const uint *buffers) 

//Delete buffer 1 located for verts.  
 
glDeleteBuffers(1, & triangleVBO); 
 

Table B.1. Retained mode process for OpenGL VBO. 
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B.2. OpenCL Scripting 

OpenCL scripting is supported by a derivation of the C language, defined as ISO/IEC 

9899:1999 C, and also known as C99 for short. Yet, there are C++ bindings and C++ Wrapper 

APIs that allow to code in C++ without C99 coding, it is a good practice to know native 

OpenCL code to explode maximum performance.  

 

OpenCL’s language has been selected for maximum portability, and its Kernels (OpenCL 

structures that run in the GPU) are compiled in a just-in-time mode. This means that the Kernel, 

typically written in a separated file with4 distinctive .cl extension, are compiled during the 

execution of the program, at run-time, instead of being previously compiled during the C++ host 

program. This is the intended portability feature of OpenCL that reduces programming overhead 

and allows to use Kernel files in multiple applications. This, by considering that parallel 

programming solves characteristic algorithms that happen to improve computational cost and 

that could be shared in cross-platforms. 

 

One notable disadvantage of C99 OpenCL is code debugging. In fact, debugging is not 

feasible through common C++ debugging tools, only a console output can be implemented. This 

drawback is typically resolved by simple data comparison of CPU processed output vs GPU 

processed output.  

 

Since GPU selection over CPU is based on the computational cost performance, then 

OpenCL profiling is one important test to tack in. But again, the profiling tools depend on the 

available tools developed by each GPU manufacturer. For instance, Intel has its VTune tool, 

NVIDIA its Visual Profiler and AMD its CodeXL. Apparently, this is a common issue in 

heterogeneous computing. Code needs to target specific hardware or provide a limited range of 

graphical boards with previous base software and driver requirements. 

 

As mentioned earlier, Kernels are functional components or structures that run in the GPU. 

These are, in fact, the programming core of OpenCL. There are many other topics regarding 

OpenCL programming flow like context, queues, buffers, programs, groups-items and many 

more, but those topics can be followed according to procedures in literature [97] or by API 

references, so no further detail will be provided on this regard in this thesis book. To abstract all 

this OpenCL programming concepts, as mentioned in Section 3.5, this work simulator adopts the 
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OpenCL wrapper included in [57]. The focus of this appendix, is based on the Kernel coding. 

For such task, a comprehensive description of a Kernel used in this simulator is provided in the 

following Table B.2. 

 

Line Code Comments 
1 __kernel void leapfrog_integration( 

__global float3* pos, 
__global float3* vel, 
__global float3* force, 
float dt 

) 

// Kernel declaration 
// Variables passed to GPU, 
// including memory qualifiers  
// (global, local, constant or  
// private) and data type (float,  
// int, etc.), dt is time step 
 

2 {  
int pk = get_global_id(0); 

// Get global number of items where 
each item is defined by a particle 
kernel, so, pk is the current 
number of particles   

3 float3 p_tmp = pos[pk]; // Temporal particle position 

4 float3 v_tmp = vel[pk]; // Temporal particle velocity 

5 float3 f_tmp = force[pk]; // Temporal particle force 

6 float3 v_next = v + 0.5*dt*f_tmp; // Discrete integration of force in  
// a temporal velocity v_next 

7 p_tmp += dt * v_next; // Discrete integration of velocity  
// in a temporal position v_tmp 

8 vel[pk] = vnext; // Update global vel variable  

9 pos[pk] = (float3)(p.xyz); 
} 

// Update global pos variable 

Table B.2. OpenCL Kernel code of the leapfrog integration process. 

 

Line 1  in Table B.2. defines the Kernel declaration. Each Kernel call computes each fluid 

particle data, in this case, new velocity and position out of the leapfrog integration method. 

Current particle requires its actual force, velocity and position to compute the next step same 

data. The function get_global_id, in line 2, provides the identifier that will index the 

current particle data. The work group model in this script supposes a lineal distribution of 

Kernels, so, no work item counting is required.  
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