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Abstract

Large-scale problems have attracted much attention in the last decades since
they arise from different applications in several fields. Moreover, the matrices that
are involved in those problems are often sparse, this is, the majority of their entries
are zero. Around 40 years ago, the most common problems related to large-scale and
sparse matrices consisted in solving linear systems, finding eigenvalues and/or eigen-
vectors, solving least square problems or computing singular value decompositions.
However, in the last years, large-scale and sparse problems of different natures have
appeared, motivating and challenging numerical linear algebra to develop effective
and efficient algorithms to solve them.

Common difficulties that appear during the development of algorithms for solving
modern large-scale problems are related to computational costs, storage issues and
CPU time, given the large size of the matrices, which indicate that direct methods
can not be used. This suggests that projection methods based on Krylov subspaces
are a good option to develop procedures for solving large-scale and sparse modern
problems.

In this PhD Thesis we develop novel and original algorithms for solving two
large-scale modern problems in numerical linear algebra: first, we introduce the
R-CORK method for solving rational eigenvalue problems and, second, we present
projection methods to compute the solution of T-Sylvester matrix equations, both
based on Krylov subspaces.

The R-CORK method is an extension of the compact rational Krylov method
(CORK) [104] introduced to solve a family of nonlinear eigenvalue problems that can
be expressed and linearized in certain particular ways and which include arbitrary
polynomial eigenvalue problems, but not arbitrary rational eigenvalue problems.
The R-CORK method exploits the structure of the linearized problem by represen-
ting the Krylov vectors in a compact form in order to reduce the cost of storage,
resulting in a method with two levels of orthogonalization. The first level of ortho-
gonalization works with vectors of the same size as the original problem, and the
second level works with vectors of size much smaller than the original problem. Since
vectors of the size of the linearization are never stored or orthogonalized, R-CORK
is more efficient from the point of view of memory and orthogonalization costs than
the classical rational Krylov method applied to the linearization. Moreover, since
the R-CORK method is based on a classical rational Krylov method, the implemen-
tation of implicit restarting is possible and we present an efficient way to do it, that
preserves the compact representation of the Krylov vectors.

We also introduce in this dissertation projection methods for solving the T-
Sylvester equation, which has recently attracted considerable attention as a conse-
quence of its close relation to palindromic eigenvalue problems and other applica-
tions. The theory concerning T-Sylvester equations is rather well understood, and,
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before the work in this thesis, there were stable and efficient numerical algorithms
to solve these matrix equations for small- to medium- sized matrices. However,
developing numerical algorithms for solving large-scale T-Sylvester equations was a
completely open problem. In this thesis, we introduce several projection methods
based on block Krylov subspaces and extended block Krylov subspaces for solving
the T-Sylvester equation when the right-hand side is a low-rank matrix. We also of-
fer an intuition on the expected convergence of the algorithm based on block Krylov
subspaces and a clear guidance on which algorithm is the most convenient to use in
each situation.

All the algorithms presented in this thesis have been extensively tested, and the
reported numerical results show that they perform satisfactorily in practice.
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Chapter 1

Introduction and summary of main
results

In recent years, problems with large-scale matrices have attracted the interest of
many researchers. Several of these problems arise from applications in different
fields, which makes imperative to develop methods to work with large-scale matri-
ces. When a matrix is really large, some problems like the computation of their
eigenvalues or the solution of a linear system associated to the matrix can be a very
challenging problem and, for example, the computation of its complete spectrum is
out of the question. Very large matrices that arise in applications are almost always
sparse. This means, the majority of their entries are zero. The most common issues
with large matrices are related to storage. For example, consider a square tridiag-
onal matrix of size 106. In the conventional way, if all the entries are stored, it is
necessary to store 1012 numbers. If, in order to store these numbers, we consider
double precision real numbers, we need 8× 1012 bytes, this is, 8000 gigabytes. How-
ever, if we consider a special data structure that only stores the nonzero entries of
the matrix, only 3 × 106 − 2 numbers need to be stored. Then, we have to store
only about 24 megabytes. However, these are not all the numbers that need to be
stored, for each entry that we store, we have to store its row and column position,
in order to know where the number belongs in the matrix. Multiplying by two, we
can see that we will need around 48×106 bytes or 48 megabytes to store the matrix
with this special data structure, which results in an improved and manageable file.

Direct methods can not be used for large-scale and sparse matrices for two main
reasons, first, these methods usually need to store the matrices that perform the
transformations at each step, which results impractical since we are storing more
matrices of large size, and, second, since they are usually based on similarity trans-
formations and, as each similarity transformation causes fill-in, the introduction of
nonzeros in positions that previously contained zeros makes that, after few similarity
transformations, the matrix becomes completely full, and hence unstorable.

Thus, similarity transformations can not be performed for large-scale and sparse
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2 CHAPTER 1. INTRODUCTION AND SUMMARY OF MAIN RESULTS

matrices and it is natural to think in other kind of methods. Since the multiplication
of a large-scale and sparse matrix by a vector can be performed very efficiently,
because the amount of work is proportional to the number of nonzeros in the matrix,
it is natural to think in Krylov subspaces. Let A ∈ Cn×n be a large-scale and sparse
matrix, and v ∈ Cn. If we multiply A by v to get Av, and then we multiply A by
this vector to get A2v we can create a Krylov sequence

v,Av,A2v, . . .

using only matrix-vector products.
If we continue this sequence until compute the vector Am−1v, we can define the

Krylov subspace
Km(A, v) = span{v, Av,A2v, . . . , Am−1v}, (1.1)

and then, we can use the subspace Km(A, v) to obtain approximations for a particu-
lar problem. Most of the times, Krylov subspaces are used combined with projection
methods. A projection method consists of approximating the exact solution, by a
solution that belongs to some subspace K. Projection methods that choose Krylov
subspaces as the subspace K to project the problem, are called Krylov subspace
methods or directly Krylov methods.

For the last 50 years, Krylov methods have been developed to solve several
problems in numerical linear algebra. Among these problems, Krylov methods are
used to solve four of the most common problems in this field: linear systems [84, 105],
classic eigenvalue and eigenvector problems [86], [113, Chapter 9], singular values
and SVD decomposition [68], and least square problems [84, Chapter 8]. Also, in the
last two decades, Krylov methods have been developed to solve modern problems in
numerical linear algebra (the adjective “modern” will be used throughout this work
to refer to these recent problems; however, it is not habitual to use it in the common
bibliography), such as nonlinear eigenvalue problems [8, 63, 75, 100, 71, 104] and
matrix equations [89, 90]. In this work, we will focus on two of these problems and
we will develop new, novel, and efficient algorithms to solve them.

1.1 First problem: rational eigenvalue problems
For the first problem, we consider the rational eigenvalue problem (REP)

R(λ)x = 0, (1.2)

where R(λ) ∈ C(λ)n×n is a nonsingular rational matrix, i.e., the entries of R(λ) are
scalar rational functions in the variable λ with complex coefficients and det(R(λ)) 6≡
0 is not identically zero, and x ∈ Cn is a nonzero vector. More precisely, we consider
that R(λ) is given as

R(λ) = P (λ)−
k∑
i=1

fi(λ)

gi(λ)
Ei, (1.3)



1.1. FIRST PROBLEM: RATIONAL EIGENVALUE PROBLEMS 3

where P (λ) ∈ C[λ]n×n is a matrix polynomial of degree d in the variable λ, fi(λ),
gi(λ) are coprime scalar polynomials of degrees mi and ni, respectively, mi < ni
and Ei ∈ Cn×n are constant matrices for i = 1, . . . , k. We emphasize that it is well
known that every rational matrix can be written in the form (1.3) [60, 80] (see also
[4, Section 2]) and that such form appears naturally in many applications [99].

The REP has attracted considerable interest in recent years since it arises in
different applications in some fields such as vibration of fluid-solid structures [108],
optimization of acoustic emissions of high speed trains [72], free vibration of plates
with elastically attached masses [94], free vibrations of a structure with a viscoelas-
tic constitutive relation describing the behavior of a material [76, 77], and electronic
structure calculations of quantum dots [49, 109]. In addition, REPs are often used
to approximate other types of nonlinear eigenvalue problems through rational inter-
polation [45].

A first idea to solve REPs is a brute-force approach, since one can multiply
by
∏k

i=1 gi(λ) to turn the rational matrix (1.3) into a matrix polynomial of degree
d+ n1 + · · ·+ nk. The common approach to solve a polynomial eigenvalue problem
(PEP) is via linearization (see, for instance, [31, 73, 76]), this is, by transforming
the PEP into a generalized eigenvalue problem (GEP) and then applying a well-
established algorithm to this GEP, as for instance the QZ algorithm in the case of
dense medium sized problems [44] or some Krylov subspace method for large-scale
problems. However, this brute-force approach is only useful when n1 +n2 + · · ·+nk
is small compared with d. So, if k or some ni are big, then the degree of the matrix
polynomial associated to the problem is also big, and this makes the size of the
linearization too large, which is impractical for medium to large-scale problems.
This drawback has motivated the idea of linearizing directly the REP [99]. The
linearization for R(λ) in (1.3) constructed in [99] has a size much smaller than
the size of the linearization obtained by the brute-force approach. Nonetheless the
increase of the size of the problem is still considerable, so for large-scale rational
eigenvalue problems, a direct application of this approach, i.e., without taking into
account the structure of the linearization, is also impractical. This idea of taking
advantage of the structure of the linearization for solving large-scale REPs is closely
connected to the intense research effort developed in the last years by different
authors for solving large-scale PEPs via linearizations and that is briefly discussed
in the next paragraph.

Several methods have been developed to solve large-scale PEPs numerically by
applying Krylov methods to the associated GEPs obtained through linearizations
[18, 104, 63]. In this approach, the key issues to be solved for using Krylov me-
thods for large-scale PEPs are the increase of the memory cost and the increase
of the orthogonalization cost at each step, as a consequence of the increase of the
size of the linearization with respect to the size of the original problem. In order to
reduce these costs, different representations of the Krylov vectors of the lineariza-
tions have been developed. First, the second order Arnoldi method (SOAR) [8] and
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the quadratic Arnoldi method (Q-Arnoldi) [75] were developed to solve quadratic
eigenvalue problems (QEP), introducing a new representation of the Krylov vectors.
However, both methods are potentially unstable as a consequence of performing
implicitly the orthogonalization. To cure this instability, the two-level orthogonal
Arnoldi process (TOAR) [100, 71] for QEP proposed a different compact represen-
tation for the Krylov vectors of the linearization and, combining this representation
with the linearization and the Arnoldi recurrence relation, resulted in a memory sav-
ing and numerically stable method. Extending the ideas of a compact representation
of the Krylov vectors and of the two levels of orthogonalization from polynomials of
degree two (TOAR) to polynomials of any degree, the authors of [63] developed a
memory-efficient and stable Arnoldi process for linearizations of matrix polynomials
expressed in the Chebyshev basis. In 2015, the compact rational Krylov method
(CORK) for nonlinear eigenvalue problems (NLEP) was introduced in [104]. CORK
considers particular NLEPs that can be expressed and linearized in certain ways,
which are solved by applying a compact rational Krylov method to such lineariza-
tions. A key feature of the CORK method is that it works for many kinds of
linearizations involving a Kronecker structure, as the Frobenius companion form or
linearizations of matrix polynomials in different bases (as Newton or Chebyshev,
among others [3]). CORK reduces both the costs of memory and orthogonalization
by using a generalization of the compact Arnoldi representation of the Krylov vec-
tors of the linearizations used in TOAR [100, 71], and gets stability through two
levels of orthogonalization as in TOAR.

In this dissertation, we develop a rational Krylov method that works on the
linearization of REPs introduced in [99] to solve large-scale and sparse n×n REPs.
To this aim, we introduce a compact rational Krylov method for REPs (R-CORK).

In the spirit of TOAR and CORK, we will work with two levels of orthogonaliza-
tion, and, as in CORK, we adapt the classical rational Krylov method [82, 83, 104]
on the linearization to a compact representation of the Krylov vectors and to the
two levels of orthogonalization.

One of the advantages of rational Krylov subspace (RKS) methods is that diffe-
rent shifts can be chosen at each iteration, in order to compute eigenvalues close to
these shifts. Therefore, a shift-and-invert step needs to be computed. We can per-
form the shift-and-invert step by solving linear systems of size n. To this purpose,
the linearization introduced in [99] is preprocessed in a convenient way and, then, an
ULP decomposition is used, this is, a decomposition that involves the product of an
upper triangular matrix, a lower triangular matrix and a permutation matrix. This
decomposition is similar to the one employed in [104] directly on the linearizations
of the NLEPs considered there. Once this step is performed, we start with the two
levels of orthogonalization.

The first level involves an orthogonalization process with vectors of size n and
in the second level of orthogonalization we work with vectors of size much smaller
than n, so this level is cheap compared with the first level. As a result, we develop a



1.2. SECOND PROBLEM: T-SYLVESTER EQUATIONS 5

stable method that allows us to reduce the orthogonalization cost and the memory
cost by exploiting the structure of the matrix pencil that linearizes the REP and
using the rational Krylov recurrence relation.

The new method R-CORK for large-scale and sparse REPs is developed in Chap-
ter 4 of this dissertation.

1.2 Second problem: T-Sylvester equations
As we mentioned before, Krylov methods have also been developed to solve large-
scale matrix equations, paying particular attention to the most important among
these equations, the so called Sylvester equation: AX + XB = C, which appears
in many applications where C has low rank [89, 90]. In this context, as a second
problem, we have studied for the first time in the literature the numerical solution
of large-scale real square T-Sylvester equation

AX +XTB = C, (1.4)

where A,B,C ∈ Rn×n are given, C has low rank and X ∈ Rn×n is the unknown.
The study of theoretical properties for this equation goes back to at least 1962, when
Taussky and Wielandt [101] analyzed the linear map X 7→ AX +XTB for the spe-
cial case B = AT . Conditions for the existence of solutions in the general case were
established by Wimmer in the early ’90s [114]. Recently, there has been renewed
interest in studying (1.4) see, e.g., [21, 27, 28, 29, 30, 33, 39]. To some extent, this
has been sparked by the close relation of (1.4) to palindromic eigenvalue problems
of the form G+ λGT . For example, the solution of (1.4) is needed to determine the
first-order perturbation expansion for a deflating subspace of G+λGT [16]. In turn, a
Newton method for computing such a deflating subspace would require the repeated
solution of possibly large T-Sylvester equations, similar to the methods presented
in [19, 25] for standard eigenvalue problems. Equations of the form (1.4) also arise
as auxiliary problems in a structure-preserving QR algorithm [64] for solving palin-
dromic eigenvalue problems. Applications that involve (1.4) with B = ±AT arise
from Hamiltonian systems [15], time-varying singular value decompositions [10], and
quadratic inverse eigenvalue problems [115].

Finding solutions of (1.4) becomes rather simple for the special case B = ±AT ,
C = ±CT [15]. For example, if A is invertible then X = 1

2
A−1C is trivially a

solution. In the general case, however, solutions of (1.4) do not admit such a simple
expression. For small- to medium-sized matrices, extensions of the Bartels-Stewart
algorithm for solving standard Sylvester equations [9] have been proposed for solving
numerically T-Sylvester equations in [28, 21, 107]. A whole class of iterative methods
can be derived by viewing (1.4) as an n2 × n2 linear system in the entries of X and
applying an existing iterative solver for linear systems, see [112] for an example. Still,
the need for storing all entries of the approximate solution limits these methods to
n . 104.



6 CHAPTER 1. INTRODUCTION AND SUMMARY OF MAIN RESULTS

In this work, we develop novel projection methods that iteratively construct
low-rank approximations to the solution of possibly large-scale T-Sylvester equa-
tions with a low-rank right-hand side matrix C. Based on Krylov subspaces, our
methods only require matrix-vector multiplications and the solution of linear sys-
tems with A,B, which makes them applicable to equations with large and sparse
coefficient matrices. Similar projection methods are routinely used for approximat-
ing the solution of large Sylvester and Lyapunov equations [90]. As we will see in
Chapter 5 of this dissertation, the extension of these existing projection methods
to (1.4) is by no means straightforward.

Throughout this dissertation, we restrict our attention to T-Sylvester equations
with real coefficient matrices. However, our results and numerical methods can be
easily adapted to complex coefficients, for which the transpose in (1.4) is replaced
either by the complex transpose or by the conjugate transpose, see [28] and the
references therein.

We emphasize that, to the best of our knowledge, the algorithms presented in
Chapters 4 and 5 of this dissertation, dealing respectively with large-scale rational
eigenvalue problems and T-Sylvester matrix equations, are completely new contri-
butions that solve for the first time these problems in a reliable way without using
previous approximations. Moreover, these results can be seen as new contributions
to the broad literature on Krylov methods for modern problems in numerical linear
algebra.

1.3 Structure and organization of the thesis

This dissertation is organized as follows. Chapter 2 presents some preliminary con-
cepts and it is divided in four parts. Section 2.1 is devoted to summarize matrix
eigenvalue problems and it covers from the classic eigenvalue problem up to the two
most important nonlinear eigenvalue problems, i.e., polynomial and rational, which
share the key property that both can be linearized. So, in this section we also intro-
duce the concept of linearizations for polynomial and rational matrices, and some
of the most important properties and examples of these linearizations. In Section
2.2, basic concepts on Krylov methods are presented. Particularly, we introduce the
Arnoldi method [7, 86] and the rational Krylov method [82, 83, 104] for solving stan-
dard eigenvalue problems (SEPs) and GEPs, respectively. These procedures have
allowed to develop memory-efficient algorithms to solve several kind of large-scale
problems among the last twenty years. In Section 2.3 we present a brief survey of
numerical methods to solve QEPs based on the Arnoldi method. As we mentioned
before, we detail some modern methods presented recently in the literature: SOAR
[8], Q-Arnoldi [75] and TOAR [100, 71] to solve quadratic eigenvalue problems.
TOAR is a method based on the Arnoldi method applied to a linearization and it
represents the Krylov vectors in a different way than SOAR and Q-Arnoldi (which
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is also based on linearizations), which allows to develop a stable and efficient algo-
rithm. Since the representations of the Krylov vectors in Q-Arnoldi or TOAR can
be generalized to linearizations of matrix polynomials of any degree, we present in
Section 2.4 the P-Arnoldi method and the TOAR method for polynomial eigenvalue
problems, both generalized for matrix polynomials expressed in the Chebyshev ba-
sis in [63]. Finally, we present the CORK method [104] for polynomial eigenvalue
problems, which is based on the classical rational Krylov method and a compact
decomposition of the Krylov vectors.

In Chapter 3 we discuss about matrix equations and we present some basic
concepts related to both the Sylvester equation and the ?-Sylvester equation, and
the conditions for existence and uniqueness of solution for both equations. Section
3.1 presents the most important aspects of the Sylvester equation, and also presents
the well-known Bartels-Stewart algorithm [9] to solve the Sylvester equation for
small to medium size matrices. Section 3.2 summarizes the most important results
for the ?-Sylvester equation and presents the algorithm introduced in [28] to solve
the ?-Sylvester equation, which is based on the generalized Schur decomposition and
it is developed (as the Bartels-Stewart algorithm) for small to medium size matrices.
Finally, in Section 3.3, we present some extensions of Krylov subspaces: the block
and the extended Krylov subspaces, and a brief summary of Krylov methods for
solving the Sylvester equation [53, 90].

Chapter 4 is devoted to present our R-CORK method for large-scale and sparse
rational eigenvalue problems. R-CORK is a novel method based on the CORK
method for polynomial eigenvalue problems and, as CORK, works with a compact
representation for rational Krylov subspaces of a linearization which in our case is
associated to the rational matrix [99]. In particular, Section 4.1 presents a compact
decomposition of the Krylov vectors of this linearization in order to save memory
and orthogonalization costs. In this section, we also introduce a ULP decomposition
of a preprocessing of the linearization of the rational matrix, and, by using the ULP
decomposition, we can perform efficiently the shift-and-invert step in the rational
Krylov method. Many of the results presented in this section are closely related to
the CORK method, however, some important differences appear from the presence
of the strictly rational part in the rational matrix.

Section 4.2 explains in detail the R-CORK method, and we show in this section
the development of the so-called two levels of orthogonalization [100, 71, 63, 104].
The first level works with vectors of the same size as the original problem, and the
second level works with vectors of a size smaller than the original problem. Also
in this section we discuss about computational costs, particularly orthogonalization
and memory costs. The implementation of the two levels of orthogonalization is
a considerable improvement since the orthogonalization cost of the second level is
negligible compared with the cost of the first level while simultaneously avoiding
the loss of orthogonality observed in methods like SOAR [8] or Q-Arnoldi [75]. In
Section 4.3 we will also show that in terms of memory storage, the R-CORK method
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is much more efficient than the classic rational Krylov method applied directly to
the linearization. Section 4.4 presents the implementation of implicit restarting for
the R-CORK method, which is possible since the R-CORK method is based on a
rational Krylov method [32], but require some effort in order to preserve the compact
representation of the Krylov vectors after the restarting. The implicit restarting
follows the spirit of the Krylov-Schur procedure [98] (see also [97, Section 5.2])
that is used for the TOAR method in [63]. Finally, in Section 4.5, some numerical
tests are presented, in order to show the efficiency of the R-CORK method. These
tests conclude that, indeed, the R-CORK method is a memory saving method that
converges satisfactorily in practice to the targeted eigenvalues. All the original
results in this chapter are included in [34].

The goal of Chapter 5 is to present the results obtained for solving the ?-Sylvester
equation, with ? = T , and where A, B in (1.4) are large, sparse, and real coefficient
matrices. Section 5.1 presents a general projection framework for the T-Sylvester
equation, and, in our case, we suppose that the right-hand side matrix C in (1.4)
has low-rank since otherwise is not possible to store the solution. This framework
is based on the approach for large-scale Sylvester equations, however, a Petrov-
Galerkin condition is considered on a tensor product of low-dimensional subspaces
instead of the classic Galerkin condition that is considered for Sylvester equations
[13, 55, 87], [90, Section 4.4.1]. Section 5.2 presents the specific block Krylov sub-
spaces we use for solving the T-Sylvester equation. In this section we also bring the
algorithmic details of the block Krylov subspace method (BK) and some important
details in the implementation that makes that the BK method works efficiently.
Since this is a projection method, and at some point of the algorithm we solve a
projected reduced T-Sylvester equation, a brief discussion of the solvability of the
reduced equation is also presented in this section. Section 5.3 presents a projec-
tion method to solve the T-Sylvester equation based on extended Krylov subspaces.
Since extended Krylov methods (EK) are used in modern algorithms for solving
large-scale Sylvester equations [89], [90, Section 4.4.1], it is natural to extend this
idea for the T-Sylvester equation. This section presents the details of the algorithm
and develops some important results to implement it in an efficient way. In both
methods (block Krylov and extended Krylov) we compute the Frobenius norm of
the classic residual matrix, and we show an efficient way to compute it that works
only with matrices of a size much smaller than the size of the original problem,
reducing in this way the computational costs of the algorithm. In Section 5.4, we
present a relation between a T-Stein equation and a fixed point iteration that offers
a motivation for choosing the appropriate Krylov subspaces we use, and also proves
some convergence results that we expected. These results are confirmed in Section
5.5, which is the section for numerical tests. Since we establish a relation between a
certain standard Sylvester equation and the T-Sylvester equation we study, in Sec-
tion 5.5, we compare our algorithms for the T-Sylvester equation with the extended
block Krylov subspace method applied to this standard Sylvester equation [90, Sec-
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tion 4.4.1] in several numerical tests. The results obtained in these numerical tests
show the good performance of our algorithms, as well as the poor performance of
the method based on transforming the problem into a standard Sylvester equation.
The original results introduced in this chapter are included in [35].

Chapter 6 discusses the main conclusions and novel results introduced in this
PhD Thesis (see Section 6.1), a list of publications that contains the main con-
tributions summarized in this dissertation (see Section 6.2), a list of contribution
to conferences where our results were presented (see Section 6.3) and some open
problems motivated by the results obtained in this thesis (see Section 6.4).

1.4 Notation and list of acronyms

1.4.1 Notation

We denote vectors by lowercase characters, u, and matrices by capital characters,
A. Block vectors and block matrices are denoted by bold face fonts, u, and A,
respectively, and the i-th block of u is represented by u(i). The conjugate transpose
of A is denoted as A∗. The i × j matrix with the main diagonal entries equal to 1
and the rest of entries equal to zero is represented by Ii×j. In the particular case
of i = j this matrix is the identity matrix and is denoted by Ii. The vector ej
represents the canonical vector associated to the j-th column of the identity matrix
and 0i×j represents the zero matrix of size i× j, which in the particular case i = j
is denoted simply by 0j. The matrix Uj represents a matrix with j columns and ui
represents the i-th column of Uj. We omit subscripts when the dimensions of the
matrices are clear from the context. We consider the usual Euclidean vector norm

‖v‖2 :=

(
n∑
i=1

|vi|2
)1/2

where v ∈ Cn and vi denotes the i-th coordinate of v, and the spectral and Frobenius
matrix norms [51, Ch. 5]:

‖A‖2 = (ρ(A∗A))1/2 = σmax(A), ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√

trace(A∗A),

where A = [aij] ∈ Cm×n, and, for any square matrix B, ρ(B) denotes the spectral
radius of B, i.e.,

ρ(B) = max{|λ| : λ is an eigenvalue of B},

and σmax(A) denotes the largest singular value of A.
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The Kronecker product of two matrices is denoted by A ⊗ B and its definition
can be found in [52]. The set of n×n complex rational matrices in the variable λ is
denoted by C(λ)n×n and the set of n×n complex polynomial matrices in the variable
λ (or, equivalently, matrix polynomials) is denoted by C[λ]n×n. Also, given a matrix
G, the subspace spanned by the columns of G is denoted by range(G). For any
subspace V ⊆ Rn and any matrix A ∈ Rn×n, we set AV := {Ax : x ∈ V} ⊆ Rn.
The field of values of a matrix A is given by F(A) := {x∗Ax : x ∈ Cn , x∗x = 1},
where x∗ is the conjugate-transpose vector of x.

Standard MATLAB notation for submatrices is used, i.e., given a matrix M ∈
Rm×n, the expression M(i : j; k : l), where 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤
n, denotes the submatrix of M consisting of the intersection of rows i up to and
including j of M and of columns k up to and including l of M .

1.4.2 List of abbreviations

The following table describes the significance of various abbreviations and acronyms
used throughout the thesis. The page on which each one is defined is also given.

Abbreviation Meaning Page
BK Block Krylov Subspace 71
CGS Classical Gram-Schmidt 22
CORK Compact Rational Krylov 46
EK Extended Krylov Subspace 72
GEP Generalized Eigenvalue Problem 11
HQR Householder QR 22
MGS Modified Gram-Schmidt 22
NLEP Nonlinear Eigenvalue Problem 46

P-Arnoldi Polynomial Arnoldi 38
PEP Polynomial Eigenvalue Problem 13

Q-Arnoldi Quadratic Arnoldi 29
QEP Quadratic Eigenvalue Problem 25

R-CORK Compact Rational Krylov method for REPs 75
REP Rational Eigenvalue Problem 17
RKS Rational Krylov Subspace 23
SEP Standard Eigenvalue Problem 11
SOAR Second Order Arnoldi 26
TOAR Two-level Orthogonal Arnoldi 32

Table 1.1: List of abbreviations and their meanings



Chapter 2

Preliminaries on eigenvalue problems
and Krylov methods

In this chapter, we present a brief summary on eigenvalue problems and also, the
most modern methods based on Krylov subspaces to solve them when they are very
large.

Section 2.1 introduces some preliminaries concepts related to matrix eigenvalue
problems, starting with the standard eigenvalue problem (SEP), which is a parti-
cular case of the generalized eigenvalue problem (GEP), and finalizing with two of
the most studied problems in linear algebra during the last decades: the polynomial
eigenvalue problem (PEP) and the rational eigenvalue problem (REP), which are
particular cases of nonlinear eigenvalue problems (NLEP). In this section we also
present the most common way for solving numerically PEPs and REPs, which is via
linearization. This process constructs a GEP with the same eigenvalues and multi-
plicities of the original problem. Several linearizations for PEPs have been developed
during the past decade [31, 72, 73], and also, more recently, many linearizations for
REPs have been studied [2, 4, 36, 99].

In Section 2.2 some basic concepts on Krylov methods are presented. In parti-
cular, the Arnoldi method and the rational Krylov (RKS) method are addressed.
Both methods compute an orthonormal basis of a Krylov subspace, and then, solve
a projected problem which is usually of much smaller size than the original pro-
blem. In this section, we are focused on using Krylov methods for solving matrix
eigenvalue problems, computing approximate eigenvalues and eigenvectors (usually
called Ritz pairs in the literature) of a given problem.

However, the structure of the Krylov vectors computed by either Arnoldi or RKS
can be exploited in order to obtain efficient representations of these vectors, which
allows to develop memory saving algorithms. Sections 2.3 and 2.4 are devoted to
solve numerically QEPs and PEPs, respectively, by exploiting the structure of the
Krylov vectors and the structure of the matrices involved in the original problem,
resulting in memory efficient procedures.

11
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2.1 Basics on eigenvalue problems

2.1.1 The generalized eigenvalue problem (GEP)

In this section, we consider the GEP

Ax = λBx, x 6= 0

where A, B ∈ Cn×n, λ ∈ C and x ∈ Cn. First, we give some basic concepts for the
standard eigenvalue problem (SEP), which is the case when B = In, and then some
concepts related to GEPs are introduced.

Definition 2.1. Let A ∈ Cn×n. If a scalar λ ∈ C and a nonzero vector x ∈ Cn
satisfy the equation

Ax = λx, x 6= 0,

then λ is called an eigenvalue of A and x is called an eigenvector of A associated with
λ. The pair (λ, x) is an eigenpair for A. The set of all λ ∈ C that are eigenvalues
of A is called the spectrum of A and it is denoted by Λ(A).

An important concept related to eigenvalue problems is the characteristic poly-
nomial of a matrix A.

Definition 2.2. Let A ∈ Cn×n. The characteristic polynomial of A is

pA(λ) = det(A− λIn) ∈ C[λ].

It is important to remark that the characteristic polynomial pA(λ) of each matrix
A ∈ Cn×n has degree n, and also, pA(λ) = 0 if and only if λ ∈ Λ(A).

Given A,B ∈ Cn×n and λ ∈ C we define the matrix A − λB, which is called a
matrix pencil. Definition 2.3 introduces the concept of regularity for matrix pencils.

Definition 2.3. Let A− λB be a matrix pencil with A,B ∈ Cn×n. If det(A− λB)
is not identically zero, the pencil A− λB is said to be regular; otherwise, it is said
to be singular.

Throughout this work, we will only focus on regular matrix pencils.

Definition 2.4. A nonzero vector x ∈ Cn is a generalized eigenvector of the pair
(A,B) with A,B ∈ Cn×n if there exists a scalar λ ∈ C, called a generalized eigen-
value, such that

Ax = λBx, x 6= 0. (2.1)

The set of all λ ∈ C that satisfy (2.1) is denoted by Λ(A,B).
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When the context is such that no confusion can arise, the adjective "generalized"
is usually dropped. Equation (2.1) can be rewritten as

(A− λB)x = 0, x 6= 0, (2.2)

a square system of homogeneous linear equations. It is immediate to see that if the
system (2.2) has a nontrivial solution, then λ is an eigenvalue of (2.1) and the matrix
pencil A − λB is singular in that particular λ. Therefore, λ is an eigenvalue of a
regular matrix pencil A− λB if and only if det(A− λB) = 0. As with the standard
eigenvalue problem, we can define the characteristic polynomial of the pair (A,B)
in terms of the determinant of the associated pencil A− λB.
Definition 2.5. Let A,B ∈ Cn×n. The characteristic polynomial of the matrix
pencil A− λB is defined by

pA,B(λ) = det(A− λB) ∈ C[λ],

and the roots of pA,B(λ) are the finite eigenvalues of the pair (A,B).
Remark 2.6. In general, when B is nonsingular, pA,B(λ) is a polynomial of degree
n, and hence there are n finite eigenvalues associated with the pencil A− λB.

Remark 2.6 shows that, unlike the SEP, a regular matrix pencil A−λB can have
k < n finite eigenvalues, with k = 0, . . . , n−1. Example 2.7 illustrates this situation
[65, Chapter 12].
Example 2.7. [65, Chapter 12] Suppose

A =

[
1 0
0 α

]
, B =

[
1 0
0 β

]
where α, β ∈ C. Then, the characteristic polynomial of A− λB is

pA,B(λ) = (1− λ)(α− βλ),

and, by using pA,B(λ), we can compute the eigenvalues of the pair (A,B), and there
are different cases to consider:
Case 1: α 6= 0, β 6= 0. There are two finite eigenvalues, 1 and α

β
.

Case 2: α = 0, β 6= 0. There are two finite eigenvalues, 1 and 0.

Case 3: α 6= 0, β = 0. There is only 1 finite eigenvalue, 1. In this situation it is
said that A− λB has also 1 eigenvalue at ∞.

Case 4: α = 0, β = 0. In this case the pencil is said to be singular and the
eigenvalues cannot be defined through the characteristic polynomial. In fact,
the only eigenvalue of A − λB is λ = 1, since rank(A − B) < rank(A − λB)
for λ 6= 1. Singular pencils are not considered in this work.

Case 3 in Example 2.7 has helped us to introduce the concept of eigenvalue at
∞. However, this concept, among others, can be generalized for PEPs, and they
will be summarized in Section 2.1.2.
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2.1.2 The polynomial eigenvalue problem (PEP)

In this section, we study n× n matrix polynomials written in the form

P (λ) =
d∑
i=0

λiPi, Pi ∈ Cn×n, Pd 6= 0n, (2.3)

where d is called the degree of P . In particular, if det(P (λ)) is not identically zero for
all λ ∈ C, P (λ) is called a regular matrix polynomial, otherwise, is called singular.
In this thesis, we only consider regular matrix polynomials.

Definition 2.8. If λ ∈ C and a nonzero vector x ∈ Cn satisfy

P (λ)x = 0, (2.4)

where P (λ) ∈ C[λ]n×n is a matrix polynomial, then x is said to be an eigenvector of
P corresponding to the eigenvalue λ.

In this thesis, we only consider regular matrix polynomials, for such polynomials
the finite eigenvalues are precisely the roots of the scalar polynomial det(P (λ)).
Sometimes, it is also useful to consider ∞ as an eigenvalue of P , to understand this
notion it is necessary to introduce the concept of reversal of matrix polynomials.

Definition 2.9. For a matrix polynomial P (λ) of degree d as in (2.3), the reversal
of P (λ) is the matrix polynomial

revP (λ) := λdP (1/λ) =
d∑
i=0

λiPd−i.

Observe that the nonzero finite eigenvalues of revP are the reciprocals of those
of P . Definition 2.10 is based on the relation between 0 and ∞ as reciprocals.

Definition 2.10. Let P (λ) be a regular matrix polynomial of degree d ≥ 1. Then
P (λ) is said to have an eigenvalue at ∞ with eigenvector x if revP (λ) has the
eigenvalue 0 with eigenvector x.

The classical approach to solve the polynomial eigenvalue problem (PEP) (2.4),
where P (λ) is a regular matrix polynomial, is via linearization, this is, the matrix
polynomials are converted into matrix pencils (via unimodular matrices) with the
same eigenvalues and multiplicities [41, 73], and then, one works with these pencils.

Definition 2.11. Let E(λ) be an n×n matrix polynomial. E(λ) is called a unimo-
dular matrix polynomial if det(E(λ)) is a nonzero constant.
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Definition 2.12. Let P (λ) be an n × n matrix polynomial of degree d ≥ 1 and
L(λ) = A−λB be an nd×nd matrix pencil. The pencil L(λ) is called a linearization
of P (λ) if there exist unimodular matrix polynomials E1(λ), E2(λ) such that[

P (λ) 0
0 I(d−1)n

]
= E1(λ)(A− λB)E2(λ).

Some linearizations of matrix polynomials of degree d and size n×n, very useful
in practice, are called structured linearizations pencils [104, Definition 2.2] and they
have the form as the pencils in Definition 2.13.

Definition 2.13. [104, Definition 2.2] Let P (λ) ∈ C[λ]n×n be a regular matrix
polynomial, i.e., det(P (λ)) does not vanish identically, of degree d ≥ 2 and size
n× n. A dn× dn matrix pencil L(λ) of the form

L(λ) = A− λB, (2.5)

where
A =

[
A0 A1 · · · Ad−1

M ⊗ In

]
, B =

[
B0 B1 · · · Bd−1

N ⊗ In

]
(2.6)

and Ai, Bi ∈ Cn×n, i = 0, 1, . . . , d− 1, and M , N ∈ C(d−1)×d, is called a structured
linearization pencil of P (λ) if the following conditions hold

1) L(λ) is a linearization of P (λ),

2) M − λN has rank d− 1 for all λ ∈ C, and

3) (A− λB)(f(λ)⊗ In) = e1 ⊗ P (λ) for some function f : C→ C[λ]d, f(λ) 6= 0
for all λ ∈ C, where e1 ∈ Cd is the first vector of the canonical basis of Cd.

Throughout this work, the adjective "structured" refers to matrix pencils with
the Kronecker structure that appears in (2.6) and it is used for the CORK method
[104], and, then, for the R-CORK method [34]. However, in the literature, this
adjective can be used to refer other structures or properties related to the matrix
polynomial and/or the associated linearization.

The matrices Ai and Bi that appear in the first block rows in (2.6) are related
to the matrix polynomial P (λ) and the matrices M and N correspond to the linear
relations between the basis functions used in the representation of the matrix poly-
nomial. Some examples for different basis are presented in Table 2.1 [104, Table
1]. Note that in Table 2.1 the function f(λ) = [f1(λ)T , . . . , fd(λ)]T satisfies 3) in
Definition 2.13 and that M and N do not appear explicitly since they are any two
matrices that satisfy 2) in Definition 2.13 and (M−λN)f(λ) = 0 for 3) in Definition
2.13.

The identity (A − λB)(f(λ) ⊗ In) = e1 ⊗ P (λ) generalizes the identity used
in [73] to define certain vector spaces of linearizations. An important property of
structured linearization pencils is that their eigenvectors are closely related to the
eigenvectors of the matrix polynomial as we can see in Theorem 2.14.
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(a) Matrix polynomials of degree d
Basis P (λ) Basis functions

Monomial
∑d

i=0 λ
iPi λi

Orthogonal
∑d

i=0 pi(λ)Ci
λpi(λ) = αipi+1(λ) + βipi(λ) + γipi−1(λ),

with αi 6= 0, γi > 0

Newton
∑d

i=0 ni(λ)Di n0(λ) := 1, ni(λ) :=
∏i−1

k=0 (λ− σk) for i > 0

Lagrange
∑d

i=0 li(λ)Fi
li(λ) := l(λ)

wi
λ− σi

,

with l(λ) = (λ− σ0)(λ− σ1) · · · (λ− σd)
(b) Ai and Bi for the matrix pencil A− λB in the form (2.6)

Basis Ai Bi

Monomial Pi, i = 0, 1, . . . , d− 1

{
0 i < d− 1
−Pd i = d− 1

Orthogonal


Ci i < d− 2

Cd−2 − γd−1

αd−1
Cd i = d− 2

Cd−1 − βd−1

αd−1
Cd i = d− 1

{
0 i < d− 1

− 1
αd−1

Cd i = d− 1

Newton
{

Di i < d− 1
Dd−1 − σd−1Dd i = d− 1

{
0 i < d− 1
−Dd i = d− 1

Lagrange
{

σi+1Fi i < d− 1
σdFd−1 + σd−1

wd

wd−1
Fd i = d− 1

{
Fi i < d− 1

Fd−1 + wd

wd−1
Fd i = d− 1

(c) fi and its linear relations between A− λB and P (λ)
Basis fi(λ) Linear relations

Monomial λi fi+1(λ) = λfi(λ)

Orthogonal pi(λ) αifi+1(λ) = (λ− βi)fi(λ)− γifi−1(λ)

Newton ni(λ) fi+1(λ) = (λ− σi)fi(λ)

Lagrange −li(λ)/(λ− σi+1) wi(λ− σi+2)fi+1(λ) = wi+1(λ− σi)fi(λ)

Table 2.1: Transformation of matrix polynomials of degree d into the form of Defi-
nition 2.6

Theorem 2.14. ([104, Corollary 2.4]) Let L(λ) be a structured linearization pencil
of P (λ) as in Definition 2.13 and let (λ?,x) be an eigenpair of L(λ). Then, the
eigenvector x has the following structure

x = f(λ?)⊗ x,

where x ∈ Cn is an eigenvector of P (λ) corresponding to λ?.

The Kronecker structure of A and B in (2.6) can be exploited to factorize the
matrix pencil L(λ) in (2.5) in a way that allows us to solve efficiently linear systems
whose coefficient matrix is L(µ) for different values of µ. This factorization is in-
troduced in Theorem 2.15 and will be used in the future to perform the shift and
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invert step in CORK method, and we will adapt it in order to develop the R-CORK
method.

Theorem 2.15. ([104, Theorem 2.3]) Let A and B be defined by (2.6). Then,
for every µ ∈ C there exists a permutation matrix P ∈ Cd×d such that the matrix
(M1 − µN1) ∈ C(d−1)×(d−1) is invertible with

M =: [m0 M1]P , N =: [n0 N1]P .

Moreover, the matrix L(µ), i.e., the pencil L(λ) in (2.5) evaluated at µ, can be
factorized as follows

L(µ) = A− µB = U(µ)L(µ)(P ⊗ In),

where

L(µ) =

[
P (µ) 0

(m0 − µn0)⊗ In (M1 − µN1)⊗ In

]
,

U(µ) =

[
α−1In (Ā1 − µB̄1)((M1 − µN1)

−1 ⊗ In)
0 I(d−1)n

]
,

with the scalar α = eT1Pf(µ) 6= 0 and

[A0 A1 · · · Ad−1] =: [Ā0 Ā1](P ⊗ In),

[B0 B1 · · · Bd−1] =: [B̄0 B̄1](P ⊗ In).

2.1.3 The rational eigenvalue problem (REP)

In this section, we introduce some basic concepts related with the rational eigenvalue
problem

R(λ)x = 0, x 6= 0, (2.7)

where R(λ) ∈ Cn×n is a regular rational matrix, i.e., det(R(λ)) 6≡ 0, written as

R(λ) = P (λ)−
k∑
i=1

fi(λ)

gi(λ)
Ei, (2.8)

where P (λ) ∈ C[λ]n×n is a matrix polynomial of degree d in the variable λ, fi(λ),
gi(λ) are coprime scalar polynomials of degrees mi and ni respectively, mi < ni and
Ei ∈ Cn×n are constant matrices for i = 1, . . . , k. With a slight lack of rigor, we can
say that if the matrices Ei in (2.8) are linearly independent, then the roots of the
denominators gi(λ) are the poles of R(λ) and that R(λ) is not defined in these poles.
We emphasize that it is well known that every rational matrix can be written in the
form (2.8) [60, 80] (see also [4, Section 2]) and that such form appears naturally in
many applications [99].
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Definition 2.16. Let R(λ) be a regular rational matrix with the structure of (2.8).
A scalar λ ∈ C that is not a pole of R(λ) such that

det(R(λ)) = 0,

is referred to as an eigenvalue of R and a corresponding nonzero vector x satisfying
(2.7) is called an eigenvector of R. The pair (λ, x) is referred to as an eigenpair of
R.

Let us denote the matrix polynomial P (λ) of degree d in the variable λ as in
(2.3)

P (λ) = λdPd + λd−1Pd−1 + · · ·+ λP1 + P0,

where Pi ∈ Cn×n, i = 0, . . . , d are constant matrices. From now on, we assume the
generic condition that the leading coefficient matrix Pd is nonsingular in (2.3). As we
explained before, we assume that fi(λ) and gi(λ) in (2.8) are coprime, this is, they do

not have common factors, and that the rational functions
fi(λ)

gi(λ)
are strictly proper,

this is the degree of fi(λ) is smaller than the degree of gi(λ), for i = 1, . . . , k. Under
these assumptions, in [99], Su and Bai proposed a linearization to solve the rational
eigenvalue problem. With this aim, they first showed that one can find matrices E,
F of size n × s, and matrices C, D of size s × s with s = r1n1 + r2n2 + · · · + rknk
with ri=rank(Ei) in (2.8), such that

R(λ) = P (λ)− E(C − λD)−1F T . (2.9)

It is important to remark that the representation (2.9) has been previously developed
in the literature, also, the manner presented in [99] to express R(λ) in the form
(2.9) is not the only one, and the interested reader can find more information in
[4, 5, 60, 80].

Once the representation (2.9) for the REP is available, the REP R(λ)x = 0 can
be linearized according to [99] as follows

(A− λB)z = 0, (2.10)

where

A =


P0 P1 · · · Pd−1 E
0 · · · 0 −In
... . .

.
. .
.

0 −In
F T C

 , B = −


Pd

In

. .
.

In
−D

 (2.11)
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and

z =


x
...

λd−2x
λd−1x
y

 . (2.12)

Denoting by A and B the upper left nd× nd submatrices of A and B, we can write
A− λB as follows

A− λB =

[
A− λB e1 ⊗ E
eT1 ⊗ F T C − λD

]
, (2.13)

where e1 is the first column of Id.
It is important to remark that in many applications, the first step in the process

above, i.e., transforming (2.8) into (2.9), is not necessary, since the structure (2.9)
appears in a natural way. The size of the matrices A and B is nd+s and very often,
in practice, s� n [99].

The precise definition of linearizations for rational matrices can be found in [4]
(see also [2]) and requires the mild assumption that −E(C−λD)−1F T is a minimal
state-space realization of the strictly proper part of R(λ). However, we do not need
in this thesis all the developments contained in [4]. Theorem 2.17 summarizes the
main results that we need for our work.

Theorem 2.17. ([99, Theorem 3.1]) Let λ ∈ C be such that det(C−λD) 6= 0. Then
the following statements hold:

a) If λ is an eigenvalue of the REP (2.9), then it is an eigenvalue of the GEP
(2.10).

b) Let λ be an eigenvalue of the GEP (2.10) and z = [zT1 , z
T
2 , · · · , zTd , yT ]T be a

corresponding eigenvector, where zi are vectors of length n for i = 1, 2, . . . , d.
Then z1 6= 0 and R(λ)z1 = 0, namely, λ is an eigenvalue of the REP (2.9)
and z1 is a corresponding eigenvector. Moreover, the algebraic and geometric
multiplicities of λ for the REP (2.9) and GEP (2.10) are the same.

2.1.4 Some applications of REPs

In this section, we present some representative examples of REPs that arise from
different applications.

• Loaded elastic string [14, 94, 99]. The following REP arises from the finite
element discretization of a boundary value problem describing the eigenvibra-
tion of a string with a load of mass attached by an elastic spring:(

A− λB +
λ

λ− σ
E

)
x = 0,
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where A and B are n × n real, tridiagonal and symmetric positive definite
matrices, E = ene

T
n , where en is the last column of the identity matrix of size

n and σ > 0 is a parameter.

• Vibration of a fluid-solid structure [4, 74, 76, 99, 108]. In this example,
the REP arises from the simulation of mechanical vibrations of fluid-solid
structures. It is of the form(

A− λB +
k∑
i=1

λ

λ− σi
Ei

)
x = 0, (2.14)

where the poles σi, i = 1, . . . , k are positive, the n× n real matrices A and B
are nonzero symmetric positive definite and Ei = CiC

T
i , where Ci ∈ Rn×ri has

rank ri for i = 1, 2, . . . , k.

• Damped vibration of a structure [4, 76, 99]. This is a REP arising from
the free vibrations of a structure if one uses a viscoelastic constitutive relation
to describe the behavior of a material. The REP has the form(

λ2M +K −
k∑
i=1

1

1 + biλ
∆Gi

)
x = 0, (2.15)

where the n×n real matrices M and K are symmetric positive definite, bj are
relaxation parameters over the k regions, and ∆Gj is an assemblage of element
stiffness matrices over the region with the distinct relaxation parameters.

• Approximation of NLEPs by REPs [45, 46]. Consider the NLEP

A(λ)x = 0, (2.16)

where λ ∈ Σ with a compact target set Σ ⊂ C, x ∈ Cn\{0} , and a family of
matrices A(λ) : Σ → Cn×n depending analytically on λ, i.e., each component
of A(λ) is an analytic function of λ. In order to solve the NLEP (2.16), the
matrix A(λ) is approximated by a rational function RN(λ), resulting in a
REP. The approximation is constructed with a linear rational interpolation
procedure.
Given a sequence of interpolation nodes σ0, σ1, . . . , and another sequence of
nonzero poles ξ1, ξ2, . . . ,, the sequence of rational basis functions

bj(λ) =
1

β0

j∏
k=1

λ− σk−1
βk(1− λ/ξk)

, for j = 0, 1, . . . ,

is considered, where β0, β1, . . . , are nonzero scaling parameters. Then, a se-
quence of matrices Dj ∈ Cn×n, j = 0, 1, . . . , is constructed such that for each
N = 0, 1, . . . , the rational eigenvalue problem

RN(λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN(λ)DN
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interpolates A(λ) in Hermite’s sense, i.e., counting multiplicities, at the nodes
σ0, σ1, . . . , σN . The matrices Dj are called rational divided difference matrices
and they can be computed, when all the interpolation nodes σj are distinct,
by the recursion

Dj =
A(σj)− b0(σj)D0 − · · · − bj−1(σj)Dj−1

bj(σj)
=
A(σj)−Rj−1(σj)

bj(σj)
.

2.2 Basics on Krylov methods
In this section, we introduce some basic concepts on Krylov methods. We start in
Section 2.2.1 with the well-known Arnoldi method and its shift-and-invert variant
[86] and we present in Section 2.2.2 the rational Krylov procedure [82, 83]. As we
mentioned in Chapter 1, in (1.1), a Krylov subspace is a vector subspace of the form

Km(A, v1) = span{v1, v2, v3, . . . , vm}, vi+1 = Avi, for i = 1, . . . ,m− 1,

where A ∈ Cn×n and v1 ∈ Cn. These methods are used for solving, for example,
matrix equations and matrix eigenvalue problems, and, in this section, we will focus
on the latter.

2.2.1 The Arnoldi method

One of the most important method based on Krylov subspaces is the Arnoldi me-
thod. This procedure was introduced in 1951 [7] as a way to reduce a dense matrix
into Hessenberg form. Arnoldi introduced this method precisely in this manner and
he suspected that his process could approximate some eigenvalues if stopped before
completion, which is the way is currently used. The procedure starts building an
orthogonal basis of the Krylov subspace Km(A, v1). The classical Arnoldi method
is presented in Algorithm 2.1, which computes an orthonormal basis of a Krylov
subspace. Algorithm 2.1 is combined in Algorithm 2.2 with the computation of Ritz
pairs for getting approximations of certain eigenvalues of A.

It is important to remark that Algorithm 2.1 is based on the classical Gram-
Schmidt (CGS) orthogonalization process. The reader can see that a new vector v̂
is constructed and then orthogonalized against all the previous vi vectors in each
step.

Note that in step 2 of Algorithm 2.1, we have used MATLAB notation for sub-
matrices through block indices. From now on, we introduce the standard notation

hj := Hj(1 : j, j), hj := Hj(1 : j + 1, j). (2.17)

to define the Hessenberg matrices Hj and Hj, respectively, obtained by the Arnoldi
method.
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Algorithm 2.1 Classical Arnoldi method
Input: A ∈ Cn×n and a unit vector v1 ∈ Cn.
Output: The matrix Vm+1 whose columns are an orthonormal basis for Km+1(A, v1)
and the Hessenberg matrix Hm in Proposition 2.20.
Initialize V1 = [v1].
for j = 1, 2, . . . ,m do

1. Perform matrix-vector multiplication v̂ = Avj.
2. Compute hj = V ∗j v̂, where hj = Hj(1 : j, j).
3. Compute ṽ = v̂ − Vjhj.
4. Compute the coefficient hj+1,j = ‖ṽ‖2.
if hj+1,j = 0 then

stop the procedure
end if
5. Compute the next vector vj+1 = 1

hj+1,j
ṽ.

6. Update Vj+1 = [Vj vj+1].
end for

Proposition 2.18. ([86, Proposition 6.5]) The vectors v1, v2, . . . , vm obtained by
Algorithm 2.1 form an orthonormal basis of the subspace Km(A, v1).

Remark 2.19. Since the classical Arnoldi method is based on the classical Gram-
Schmidt process, it is natural to think that this procedure can be implemented in
different ways. There are several alternatives to implement the Arnoldi process, for
example, the modified Gram-Schmidt process (MGS) can be used instead of CGS,
and then the modified Arnoldi method is obtained [86, Section 6.2]. There is no
difference in exact arithmetic between CGS and MGS, both algorithms produce the
same orthonormal basis, however, the formulation for the modified Arnoldi method is
numerically superior than the classical Arnoldi method because (as occurs for MGS
with respect to CGS) with the classical Arnoldi method, the created basis {vi}mi=1 loses
orthogonality in finite arithmetic. However, if the reorthogonalization technique is
applied, both CGS and MGS algorithms will have a similar performance. Therefore,
in practice, it is enough to apply CGS algorithm with reorthogonalization for the
Arnoldi procedure (as in ARPACK [67]), and here, by reorthogonalization, we refer
to repeat the Gram-Schmidt algorithm one more time. A summary for this technique
and its rounding error analysis can be found in [1, 24, 40].

Another alternative is to perform the Arnoldi method via Householder QR (HQR)
algorithm [86, Section 6.2]. HQR is the best of the three options to produce the basis
{vi}mi=1 with high orthogonality, but it is also computationally more expensive.

An important result obtained from the Arnoldi process is the well-known Arnoldi
recurrence relation. This relation is summarized in Proposition 2.20.

Proposition 2.20. ([86, Proposition 6.6]) Denote by Vm the n × m matrix with
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columns vectors v1, v2, . . . , vm obtained by Algorithm 2.1 and by Hm the m × m
Hessenberg matrix (2.17) whose nonzero entries are defined by Algorithm 2.1. Then
the following relations hold:

AVm = VmHm + hm+1,mvm+1e
T
m, (2.18)

V ∗mAVm = Hm, (2.19)

where em represents the m-th column of Im.

In Algorithm 2.1, if hj+1,j = 0 occurs, then the norm of ṽ vanishes at some step
j. In this situation, the vector vj+1 can not be computed and Algorithm 2.1 stops.
In this case, we say that the algorithm breaks down. Proposition 2.22 determines
the conditions under which this situation occurs.

Definition 2.21. The minimal polynomial of a vector v ∈ Cn associated to A ∈
Cn×n is the nonzero monic polynomial p of lowest degree such that p(A)v = 0.

Proposition 2.22. [86, Proposition 6.7] The Arnoldi algorithm breaks down at step
j (i.e., ṽ = 0 in step 3 of Algorithm 2.1) if and only if the minimal polynomial of
v1 associated to A is of degree j. Moreover, in this case the subspace Kj(A, v1)
is invariant for A and the approximate eigenvalues and eigenvectors computed in
Algorithm 2.2 are exact.

For simplicity, it is assumed in this chapter that breakdown does not occur in the
Arnoldi method for all j = 1, . . . ,m, and, in this case, the matrix Hj is unreduced.
In each iteration of the Arnoldi method, we can compute j approximate eigenvalues
and eigenvectors of A by solving the small eigenvalue problem

Hjti = λiti, i = 1, . . . , j, (2.20)

where Hj is the j × j upper Hessenberg matrix obtained by removing the last row
of Hj. Then, we call (λi, xi = Vjti) a Ritz pair of A. It is necessary to emphasize
that the vectors xi are not computed in each iteration, because this would be a very
expensive step, since Vj is a large dense matrix.

Another important aspect to analyze is a convergence criterion. Since we are
projecting our problem into a problem of smaller dimension, it is natural to expect
the existence of an inexpensively way to compute the residual norm. For most of
the Krylov methods, a cheap residual norm can be computed, and particularly, for
the Arnoldi method, this result is summarized in Proposition 2.23.

Proposition 2.23. [86, Proposition 6.8] Let Hj be the upper j×j Hessenberg matrix
obtained by the Arnoldi method in Algorithm 2.1 after j iterations and by removing
the last row of Hj. Let ti be an eigenvector of Hj associated with the eigenvalue λi
and xi the Ritz approximate eigenvector of A with xi = Vjti. Then,

(A− λiIn)xi = hj+1,je
∗
j tivj+1,
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and, therefore,
‖(A− λiIn)xi‖2 = hj+1,j|e∗j ti|. (2.21)

Proposition 2.23 states that the residual norm is equal to the modulus of the last
component of the eigenvector ti multiplied by hj+1,j. This residual norm brings a
helpful and inexpensive way to derive a stopping criterion. The Arnoldi method to
compute approximate eigenvalues of a matrix A is presented in Algorithm 2.2.

Algorithm 2.2 Arnoldi method for solving SEPs
Input: A ∈ Cn×n and a unit vector v1 ∈ Cn.
Output: A matrix Vm+1 whose columns form an orthonormal basis for Km+1(A, v1)
and the Ritz pairs (λ, x) of A corresponding to Km(A, v1).
Initialize V1 = [v1].
for j = 1, 2, . . . ,m do

1. Perform Algorithm 2.1 until step 5 obtaining hj and vj+1.
2. Compute the eigenpairs (λi, ti) of Hj and test for convergence (2.21).
3. Update Vj+1 = [Vj vj+1].

end for
4. Compute the eigenvectors xi = Vjti.

The Arnoldi method tends to produce good approximations of the eigenvalues of
A with largest absolute values, then it can be improved by introducing the idea of
shift-and-invert. Suppose we must compute the p eigenvalues of A closest to θ ∈ C.
In order to obtain the required eigenvalues, a Krylov subspace for (A − θIn)−1 is
constructed and denoted by Km(A, v1, θ), where

Km(A, v1, θ) := span{v1, (A−θIn)−1v1, (A−θIn)−1v2, . . . , (A−θIn)−1vm−1}, (2.22)

A ∈ Cn×n and vi+1 = (A − θIn)−1vi, for i = 1, . . . ,m − 1. The shift-and-invert
Arnoldi algorithm is detailed in Algorithm 2.3. Note that for the shift-and-invert
Arnoldi process it is necessary to solve a linear system of size n in step 1 of Algorithm
2.3, usually by a LU decomposition. Since the shift θ is fixed, the LU decomposition
is computed just once at the beginning. The remaining steps proceed as the Arnoldi
method.

Several techniques can be implemented to improve the Arnoldi method. When
m gets large, the storage cost and computational cost of the orthogonalization of
the Arnoldi method can become unacceptably high. For this reason, some form of
reduction of the basis is desirable. To achieve this goal, different techniques have
been developed. The most important one is called implicit restarting and it appeared
for the first time in [95]. That implementation of implicit restarting uses QR steps
to reduce the basis and throw away a part of the spectrum we are not interested in.
A different way to reduce the subspace dimension is purging [96]. Here, the idea is:
first, consider the Schur factorization of Hm and then purge the undesired part of
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Algorithm 2.3 Shift-and-invert Arnoldi method
Input: A ∈ Cn×n, a unit vector v1 ∈ Cn and a shift θ ∈ C.
Output: The matrix Vm+1 whose columns are an orthonormal basis for Km(A, v1, θ)
and the corresponding Hessenberg matrix Hm.
Initialize V1 = [v1].
for j = 1, 2, . . . ,m do

1. Compute v̂ = (A− θIn)−1vj by solving a linear system.
2. Compute hj = V ∗j v̂.
3. Compute ṽ = v̂ − Vjhj.
4. Compute hj+1,j = ‖ṽ‖2.
if hj+1,j = 0 then

stop the procedure
end if
5. Compute the next vector vj+1 = 1

hj+1,j
ṽ.

6. Update Vj+1 = [Vj vj+1].
end for

this factorization. Finally, another technique is locking [57]. The idea of locking is to
set some small elements explicitly to zero assuming that the Schur vectors are exact.
These techniques can be implemented in methods based on the Arnoldi method (or
the rational Krylov method) by adapting the procedure to the representation of the
Krylov vectors.

Finally, the Arnoldi method can be improved in order to solve GEPs instead
of SEPs and also, several shifts can be incorporated instead of just one. These
improvements are developed in the rational Krylov method, which is presented in
the next section.

2.2.2 The classical rational Krylov method

We revise in this section the rational Krylov method (RKS) for GEPs since the
algorithm R-CORK presented in this PhD Thesis is based on this method. The
rational Krylov method [82, 83] is a generalization for computing eigenvalues of
matrices and of matrix pencils of the shift-and-invert Arnoldi method. The main
differences between these methods are basically two: in rational Krylov methods we
can change the shift θj at each iteration instead of fixing the shift as in the shift-
and-invert Arnoldi method. Also, the information of the approximate eigenvalues
is contained in two upper Hessenberg matrices Hj and Kj instead of in only one
matrix. In Algorithm 2.4 we present a basic pseudocode of the rational Krylov
method that summarizes its main steps and guides the developments in the rest of
this subsection, which are a very brief sketch of the rational Krylov method. The
reader can find more details in [82, 83, 104]. This method produces an orthonormal
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Algorithm 2.4 Rational Krylov method for solving GEPs
Input: A and B square matrices of size n and an initial vector u1 with ‖u1‖2 = 1.
Output: The matrix Um+1 whose columns are an orthonormal basis of
Km+1(A,B, u1, θ1,...,m), and the Ritz pairs (λ, x) of A − λB, corresponding to
the rational Krylov subspace Km(A,B, u1, θ1,...,m−1).
Initialize U1 = [u1].
for j = 1, 2, . . . ,m do

1. Choose the shift θj.
2. Set the continuation combination zj.
3. Compute û = (A− θjB)−1Bwj, where wj = Ujzj.
4. Compute hj = U∗j û.
5. Compute ũ = û− Ujhj.
6. Get the new vector uj+1 = ũ/hj+1,j with hj+1,j = ‖ũ‖2.
7. Update Uj+1 = [Uj uj+1].
8. Compute the eigenpairs (λi, ti) of (2.27) and test for convergence.

end for
9. Compute the eigenvectors xi = Uj+1Hjti, i = 1, . . . , j.

basis for the subspace

Km(A,B, u1, θ1,...,m−1) := span{u1, (A− θ1B)−1Bw1, . . . , (A− θm−1B)−1Bwm−1}
(2.23)

with A, B ∈ Cn×n, u1 ∈ Cn and wi = Uizi, for i = 1, 2, . . . ,m− 1, where wi is called
a continuation vector, and Ui denotes the matrix formed by the vectors ui, this is,

Ui = [u1 u2 . . . ui] ∈ Cn×i, (2.24)

where ui+1 = (A−θiB)−1Bwi for i = 1, 2, . . . ,m−1 and zi ∈ Ci. Usually, the vector
zi is chosen as the canonical vector ei, and then wi = ui.

Remark 2.24. Note that the Krylov vectors in Algorithm 2.4 are represented by
uj, whereas that the Krylov vectors for Arnoldi are represented as vj in Algorithm
2.1. From now on, we will represent by vj the Krylov vectors obtained by the Arnoldi
method (or its variants) and by uj the Krylov vectors obtained by the rational Krylov
method (or its variants).

By using the equalities for û and ũ from steps 3 and 5 in Algorithm 2.4 we obtain
at the i-th iteration:

(A− θiB)−1Bwi = Ui+1hi,

with hi = [h∗i h∗i+1,i]
∗. After j steps of the rational Krylov method, we obtain the

classic rational Krylov recurrence relation [83]:

AUj+1Hj = BUj+1Kj, (2.25)
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where Hj, Kj ∈ C(j+1)×j are upper Hessenberg matrices and

Kj = Hjdiag(θ1, θ2, . . . , θj) + Zj. (2.26)

with the triangular matrix

Zj =

[
z1 z2 . . . zj

0j×1 0(j−1)×1 . . . 01×j

]
built up from the continuation combinations used in step 2 in Algorithm 2.4.

For simplicity, we assume that breakdowns do not occur in the rational Krylov
method, this is, hj+1,j 6= 0 for all j = 1, . . . ,m, and in this case the upper Hessenberg
matrix Hj is unreduced. We can approximate in each iteration of Algorithm 2.4 the
corresponding j eigenvalues and eigenvectors of the pencil A − λB by solving the
small generalized eigenvalue problem:

Kjti = λiHjti, ti 6= 0, (2.27)

where Hj and Kj are the j× j upper Hessenberg matrices obtained by removing the
last rows of Hj and Kj, respectively. Then, we call (λi, xi = Uj+1Hjti) a Ritz pair
of (A,B). We emphasize that the approximate eigenvectors xi are not computed in
each iteration, since this would be very expensive, and that the test for convergence
in step 8 of Algorithm 2.4 can be performed in an inexpensive way by using only
the small vectors ti, as it is done in most Krylov methods.

2.3 Krylov methods for quadratic eigenvalue pro-
blems

In this section, we introduce three Krylov methods to solve the quadratic eigenvalue
problem (QEP):

(λ2M + λC +K)x = 0, x 6= 0, (2.28)

where M , C, and K are square, large-scale and sparse matrices of size n× n and x
is an eigenvector of size n. These methods are presented in three subsections.

In Section 2.3.1 we introduce the SOAR method [8], which projects the QEP
(2.28) into a QEP of smaller size, and then solves the reduced problem via lin-
earization. It is important to remark that the SOAR method considers the matrices
M , C and K as real matrices, and it computes a real Krylov subspace. However,
since sometimes, the matrices M , C and K arise from applications as the Fourier
transformation of the spatial discretization by finite elements of the equation of
motion, it is natural to consider these matrices with complex entries. The other
methods described in this section, i.e., Q-Arnoldi and TOAR, construct complex
Krylov subspaces to solve the problem (2.28) for complex M , C, and K.
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In Section 2.3.2 the Q-Arnoldi method [75] is summarized. In this procedure,
a new representation for the Krylov vectors of a linearization of the large QEP
is presented, resulting in a memory saving method. However, this representation
makes the algorithm potentially unstable, and this instability disappears with the
representation for the Krylov vectors given in the TOAR method [100, 71], which is
presented in Section 2.3.3. Both Q-Arnoldi and TOAR can be generalized for PEPs
of any degree, and we will discuss about this in Section 2.4. It is important to remark
than SOAR, Q-Arnoldi, and TOAR follow the spirit of the Arnoldi method. From
now on, we assume that the leading coefficient M in (2.28) is nonsingular. Also,
since both Q-Arnoldi and TOAR are often interested in solving the QEP (2.28) for
small eigenvalues, we assume that the matrix K is invertible.

Since both SOAR and Q-Arnoldi are potentially unstable, the TOAR method
is preferred in the literature for solving QEPs. The key idea of a compact repre-
sentation for the Krylov vectors results in a numerically stable and memory saving
procedure which can be generalized for PEPs (see Section 2.4) and REPs (see Chap-
ter 4).

2.3.1 The SOAR method

In order to introduce the second-order Arnoldi method (SOAR) it is necessary to
define a m-th second order Krylov subspace.

Definition 2.25. Let A and B be square matrices of size n × n and let u be a
nonzero vector of size n. Then, the sequence

r0, r1, . . . , rm−1, (2.29)

where

r0 = u, r1 = Ar0,

rj = Arj−1 +Brj−2 for 2 ≤ j ≤ m− 1, (2.30)

is called a second-order Krylov sequence based on A,B, and u. The space

Gm(A,B, u) = span{r0, r1, . . . , rm−1}

is called an m-th second order Krylov subspace.

Remark 2.26. The subspace Gm(A,B, u) generalizes the standard Krylov subspace
Km(A, u) in the way that when B is a zero matrix, the second-order Krylov subspace
is a standard Krylov subspace, this is,

Gm(A, 0n, u) = Km(A, u).
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Note that the j-th vector rj defined in (2.30) can be written as

rj = pj(A,B)u,

where u is the starting vector and pj(α, β) are polynomials in α and β, defined by
the recurrence

pj(α, β) = αpj−1(α, β) + βpj−2(α, β),

with p0(α, β) = 1 and p1(α, β) = α. As we mentioned in Section 2.1.2, the problem
(2.28) can be converted into an equivalent GEP

ASy = λBSy, (2.31)

with
AS =

[
−C −K
In 0

]
, BS =

[
M 0
0 In

]
, y =

[
λx
x

]
, (2.32)

and also, the equation (2.31) can be solved as the standard eigenvalue problem

GSy = λy, (2.33)

where
GS = B−1S AS =

[
−M−1C −M−1K

In 0

]
. (2.34)

For simplicity, consider

AS := −M−1C, BS := −M−1K, and u = [uT1 0Tn×1]
T , (2.35)

with u1 ∈ Rn, then we can derive immediately that, the second-order Krylov vectors
rj associated to Gm(AS, BS, u1) defined in (2.29), and the standard Krylov vectors
(GS)ju associated to Km(Gs,u) of length 2n are related as follows:[

rj
rj−1

]
= (GS)ju, for j ≥ 1.

By this representation, we can conclude that the generalized Krylov sequence rj
defines the entire standard Krylov sequence based on GS and u. For this rea-
son, the authors of [8] preferred to work with the subspace Gj(AS, BS, u1) ∈ Rn

instead of Kj(GS,u) ∈ R2n, since the vectors in Gj(AS, BS, u1) have smaller size
than those in Kj(GS,u). In order to develop a practical method, the authors of [8]
created the SOAR procedure, which constructs an orthonormal basis {q1, q2, . . . , qj}
for Gj(AS, BS, u1). The SOAR procedure is presented in Algorithm 2.5. Note that
the matrices AS and BS defined in (2.35) that appear in step 3 of Algorithm 2.5
are not constructed explicitly. The vector q̂ in step 3 of Algorithm 2.5 is computed
first by multiplying by the matrices C and K and then, a linear system that in-
volves the matrix M is solved. Lemma 2.27 proves that Algorithm 2.5 generates an
orthonormal basis of the second-order Krylov subspace Gj(AS, BS, u1).
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Lemma 2.27. [8, Theorem 2.3] Let Qj be the matrix obtained in Algorithm 2.5,
with Qj = [q1 q2 · · · qj]. If hj+1,j 6= 0 in Algorithm 2.5 then the columns of Qj form
an orthonormal basis of the second-order Krylov subspace Gj(AS, BS, u1), i.e.,

span{Qj} = Gj(AS, BS, u1).

Algorithm 2.5 SOAR procedure
Input: Coefficient matricesM,C,K ∈ Rn×n that define P (λ) in (2.28) and u1 ∈ Rn,
with u1 6= 0.

Output: The matrix Qm+1 whose columns are an orthonormal basis for
Gm+1(AS, BS, u1) with AS and BS defined as in (2.35).
1. Normalize q1 = u1/‖u1‖2, and initialize Q1 = [q1].
2. Set p1 = 0n×1, and initialize P1 = [p1].
for j = 1, 2, . . . ,m do

3. Compute q̂ = ASqj +BSpj as q̂ = −M−1(Cqj +Kpj).
4. Set p̂ = qj.
5. Compute hj = QT

j q̂.
6. Compute q̃ = q̂ −Qjhj.
7. Compute p̃ = p̂− Pjhj.
8. Compute hj+1,j = ‖q̃‖2.
if hj+1,j = 0 then

stop the procedure
end if
10. Compute the new vectors qj+1 = q̃/hj+1,j, pj+1 = p̃/hj+1,j.
11. Update Qj+1 = [Qj qj+1], Pj+1 = [Pj pj+1].

end for

Some basic relations between the matrices produced by Algorithm 2.5 can be
considered in order to develop a memory saving SOAR process. If Pj, Qj ∈ Rn×j

denote the matrices with column vectors p1, . . . , pj and q1, . . . , qj, respectively, where
pi, qi ∈ Rn for i = 1, . . . , j, and Hj ∈ R(j+1)×j denotes the upper Hessenberg matrix
defined in the algorithm, the following relations hold

ASQj +BSPj = Qj+1Hj, (2.36)
Qj = Pj+1Hj. (2.37)

Equations (2.36)-(2.37) can be written in the compact form[
As Bs

I 0

] [
Qj

Pj

]
=

[
Qj+1

Pj+1

]
Hj. (2.38)

Relations (2.36)-(2.37) allow to develop a SOAR procedure that reduces the
memory cost by almost half.
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From now on, some MATLAB notation will be used. Note that, by (2.37) and
nothing that p1 = 0 in Algorithm 2.5, we have

Qj = Pj+1Hj = Pj+1(:, 2 : j + 1)Hj(” : j + 1, 1 : j).

Then, (2.36) can be rewritten as

AsQj +BsQjSj = QjHj, (2.39)

where Sj is an j × j strictly upper triangular matrix of the form

Sj =

[
0 (Hj(2 : j, 1 : j − 1))−1

0 0

]
.

Equation (2.39) suggests a method for computing qj+1 from q1, . . . , qj without
constructing the vectors p1 . . . , pj explicitly. This improvement leads to Algorithm
2.6, which reduces the memory cost of the SOAR procedure in Algorithm 2.5 about
a half.

Algorithm 2.6 Memory saving SOAR procedure
Input: Coefficient matricesM,C,K ∈ Rn×n that define P (λ) in (2.28) and u1 ∈ Rn,
with u1 6= 0.

Output: The matrix Qm+1 whose columns are an orthonormal basis for
Gm+1(AS, BS, u1) with AS and BS defined as in (2.35).
1. Normalize q1 = u1/‖u1‖2, and initialize Q1 = [q1]. Set f = 0.
for j = 1, 2, . . . ,m do

2. Compute q̂ = ASqj +BSf as q̂ = −M−1(Cqj +Kf).
3. Compute hj = QT

j q̂.
4. Compute q̃ = q̂ −Qjhj.
5. Compute hj+1,j = ‖q̃‖2.
if hj+1,j = 0 then

stop the procedure
end if
6. Compute the new vector qj+1 = q̃/hj+1,j.
7. Update f = Qj(Hj(2 : j + 1, 1 : j))−1ej
8. Update Qj+1 = [Qj qj+1].

end for

More improvements, as deflation, were developed for the SOAR procedure and
a detail discussion can be found in [8, pp. 647 - 650].

The SOAR orthogonalization procedure in Algorithm 2.6 can be applied com-
bined with a projection method to solve the QEP (2.28), by using the orthogonal
Rayleigh-Ritz approximation procedure. This method approximates a large-scale
QEP by a small-scale QEP.
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To apply the Rayleigh-Ritz approximation technique based on the subspace
Gm(AS, BS, u1) where AS, BS are defined as in (2.35), and u1 ∈ Rn, we seek an
approximate eigenpair (λ, x), where λ ∈ C and x ∈ Gm(AS, BS, u1), by imposing the
orthogonal condition, also called the Galerkin condition:

(λ2M + λC +K)x ⊥ Gm(AS, BS, u1),

which is equivalent to

vT (λ2M + λC +K)x = 0, for all v ∈ Gm(AS, BS, u1). (2.40)

Since x ∈ Gm(AS, BS, u1), x can be expressed as

x = Qmz, (2.41)

whereQm is an n×mmatrix whose columns form an orthonormal basis of Gm(AS, BS, u1)
generated by the SOAR procedure in Algorithm 2.6 and z ∈ Rm. By (2.40) and
(2.41), it yields that λ and z must satisfy the reduced QEP

(λ2Mm + λCm +Km)z = 0, (2.42)

with
Mm = QT

mMQm, Cm = QT
mCQm, Km = QT

mKQm. (2.43)

The eigenpairs (λ, z) define the Ritz pairs (λ, x). It is important to remark that by
the definition of the matrices Mm, Cm and Km, the possible structures of M , C and
D appearing in practice (symmetry, positive definite, etc) are preserved. Algorithm
2.7 presents the complete SOAR method for solving QEPs.

Algorithm 2.7 SOAR procedure to solve QEPs
Input: M , C, and K from the QEP (2.28) and u1 ∈ Cn.
Output: Approximate eigenpairs (λ, x) of the QEP (2.28).
1. Run the SOAR procedure (Algorithm 2.6) with AS, BS defined as in (2.35) and
the starting vector u1 to generate a n×m orthogonal matrix Qm whose columns
span an orthonormal basis of Gm(AS, BS, u1).
2. Compute Mm, Cm, and Km as in (2.43).
3. Solve the reduced QEP (2.42) for (λ, z) via linearization, and obtain the Ritz
pairs (λ, x) where x = Qmz/‖Qmz‖2.
4. Test the accuracy of the Ritz pairs (λ, x) by using the relative residual [103]:

‖(λ2M + λC +K)x‖2
|λ|2‖M‖2 + |λ|‖C‖2 + ‖K‖2

. (2.44)
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Arnoldi method SOAR method
Orthogonalization cost (4j2 + 10j)n (2j2 + 5j)n

Memory cost 2n(j + 1) n(j + 2)

Table 2.2: Asymptotic orthogonalization and memory costs for classical Arnoldi
method and SOAR method after j iterations.

Now, we discuss memory and orthogonalization costs for Algorithm 2.6 and we
compare them with the costs obtained by applying Arnoldi to a generic 2n × 2n
matrix. Since, in practice, n � j, where j is the counting iteration, we disregard
those terms not containing n. The orthogonalization process is performed in steps 3-
4-5-6 of Algorithm 2.6 for SOAR and, in steps 2-3-4-5 of Algorithm 2.1, for Arnoldi.
It is well-known that the orthogonalization cost of Arnoldi applied to a generic
2n × 2n matrix at iteration j is 8nj + 6n flops, whereas for Algorithm 2.6 the
orthogonalization costs for the j-th iteration are: 2nj flops for step 3 and 4 each
one, 2n flops for step 5 and n flops for step 6, resulting in 4nj+ 3n flops. Therefore,
the SOAR method in Algorithm 2.6 reduces the orthogonalization cost in almost
a half. Table 2.2 summarizes the orthogonalization cost for each method. It is
important to remark that Algorithm 2.6 requires the extra cost of computing f in
step 7, which results in 2nj flops. However, even considering this computation,
Algorithm 2.6 reduces the computational costs with respect to Arnoldi.

In terms of memory cost, Algorithm 2.6 is more efficient than Algorithm 2.1.
Arnoldi requires to store 2n(j+ 1) numbers after j iterations, whereas SOAR stores
roughly n(j+2) numbers after j iterations (see Table 2.2), reducing in almost a half
the storage requirements.

2.3.2 The Q-Arnoldi method

In this section, we present the quadratic Arnoldi algorithm (Q-Arnoldi) [75], which is
a Krylov method for the solution of the quadratic eigenvalue problem. This method
exploits the structure of the Krylov vectors of a linearization of (2.28), which results
in a method that reduce the memory requirements by about a half.

From now on, note that we will change the notation that involves the matrices
that contains in their columns the orthonormal Krylov vectors, these matrices will
be represented as bold characters and they will be partitioned as follows:

Vj+1 = [Vj vj+1] =

[
V

(1)
j v

(1)
j+1

V
(2)
j v

(2)
j+1

]
.

Consider the QEP (2.28) where M , C and K ∈ Cn×n. In order to solve (2.28),
the standard procedure is followed, first, an appropriate linearization is constructed
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for solving the PEP (2.28)

AQ

[
λx
x

]
= λBQ

[
λx
x

]
, (2.45)

and then, by multiplying by the inverse of AQ or BQ, a standard eigenvalue problem
is solved. However, since the Q-Arnoldi method is interested in the eigenvalues near
to zero, the reversed problem is solved, this is,

GQz = θz, (2.46)

where
GQ := A−1Q BQ, θ = λ−1 and z :=

[
x
θx

]
. (2.47)

Since K is invertible, a natural choice for AQ and BQ is

AQ =

[
D 0
0 K

]
, BQ =

[
0 D
−M −C

]
, (2.48)

where D can be any nonsingular matrix. By using (2.48), we obtain the SEP (2.46)
where

GQ =

[
0 In
G1 G2

]
, G1 := −K−1M, G2 := −K−1C. (2.49)

The use of AQ and BQ is justified by Lemma 2.28.

Lemma 2.28. [75, Lemma 2.1] The pencil AQ − λBQ is a linearization for (2.28)
if and only if D is nonsingular.

As we mentioned in Section 2.2.1, the problem (2.46) can be solved by using the
Arnoldi method with GQ and an initial vector v1. However, given the structure of
GQ and the Arnoldi recurrence relation (2.18), a new particular representation for
the Krylov vectors can be developed.

Let vj ∈ C2n be the j-th vector produced by the Arnoldi method (Algorithm
2.1) applied to GQ and Vj ∈ C2n×j the matrix that stores the first j Arnoldi vectors
in its columns, and consider a partition for vj and Vj as follows

Vj+1 = [Vj vj+1] =

[
V

(1)
j v

(1)
j+1

V
(2)
j v

(2)
j+1

]
(2.50)

with V (1)
j , V (2)

j ∈ Cn×j and v(1)j+1, v
(2)
j+1 ∈ Cn. The Arnoldi recurrence relation (2.18)

for the matrix GQ can now be written as[
0 In
G1 G2

][
V

(1)
j

V
(2)
j

]
−

[
V

(1)
j

V
(2)
j

]
Hj = hj+1,j

[
v
(1)
j+1

v
(2)
j+1

]
eTj , (2.51)
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from which we deduce that
V

(2)
j = V

(1)
j+1Hj. (2.52)

This implies that only V (1)
j , v(1)j+1, and v

(2)
j+1 need to be stored to evaluate the recur-

rence relation. Storing only these vectors results in an important reduction of the
memory costs compared with the Arnoldi method applied to a general matrix of size
2n× 2n. Based on this key idea, Algorithm 2.8 implements the Q-Arnoldi method.

Algorithm 2.8 Q-Arnoldi method
Input: The matrices M , C and K from (2.28) and an initial vector v1.
Output: The matrix V

(1)
m+1 defined in (2.50) and the Hessenberg matrix Hm ob-

tained by the Arnoldi method.
1. Compute v1 = v1/‖v1‖2 and partition v1 as in (2.50), obtaining v

(1)
1 and

y = v
(2)
1 . Initialize V1 = [v1].

for j = 1, 2, . . . ,m do
2. Set v̂(1) = y and compute v̂(2) = G1v

(1)
j +G2y, with G1, G2 as in (2.49)

3. Compute the Arnoldi coefficients

hj =

[
(V

(1)
j−1)

∗v̂(1) +H∗j−1((V
(1)
j )∗v̂(2))

(v
(1)
j )∗v̂(1) + y∗v̂(2)

]
.

4. Update

ṽ(1) = v̂(1) − V (1)
j hj,

ṽ(2) = v̂(2) − [V
(1)
j y]

([
Hj−1 0

0 1

]
hj

)
.

5. Compute hj+1,j =
√
‖ṽ(1)‖22 + ‖ṽ(2)‖22 and normalize v

(1)
j+1 = ṽ(1)/hj+1,j,

y = ṽ(2)/hj+1,j.
6. Update V (1)

j+1 = [V
(1)
j v

(1)
j+1].

end for

Note that the computation of v̂(1) and v̂(2) is a common step for both Arnoldi
and Q-Arnoldi, and v̂(2) is computed by solving a linear system that involves the
matrix K, which results in the most expensive step for both algorithms. Now, we
compare the costs of the orthogonalization steps for both methods, this is, steps
2-3-4-5 in Algorithm 2.1 applied to a 2n× 2n matrix, and steps 3-4-5 in Algorithm
2.8. Since in practice n � j, we may disregard those terms not containing n. For
the j-th iteration of Algorithm 2.1, it is well-known that the cost of steps 2-3-4-5
of Arnoldi applied to a 2n × 2n matrix is 8nj + 6n flops. For the j-th iteration of
Algorithm 2.8 we have: the cost of step 3 and 4 is 4nj + 2n flops each one, and
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for step 5 the cost is 6n flops, therefore, the cost of iteration j for Algorithm 2.8
is 8nj + 10n flops. These costs are summarized in Table 2.3. As we can see, the
computational costs of the Q-Arnoldi method are slightly more expensive than the
costs for the Arnoldi method.

However, there is an important improvement in terms of the storage cost. Since
only v(1)1 , v

(1)
2 , . . . , v

(1)
j+1 and v

(2)
j+1 need to be stored on iteration j in the Q-Arnoldi

method, the memory requirements for the storage of the Arnoldi vectors for k iter-
ations is n(k + 2) numbers, versus the 2n(k + 1) numbers that need to be stored in
the Arnoldi method.

Arnoldi method Q-Arnoldi method
Orthogonalization cost (4j2 + 10j)n (4j2 + 14j)n

Memory cost 2n(j + 1) n(j + 2)

Table 2.3: Asymptotic orthogonalization and memory costs for classical Arnoldi
method and Q-Arnoldi method after j iterations.

Since the matrix Hj appears in the representation of the orthonormal matrix Vj,
it introduces potential instability in finite precision arithmetic, which makes the Q-
Arnoldi method potentially unstable. In [75], a complete analysis of the numerical
stability is presented. Also, a detailed development of the Q-Arnoldi method for
other linearizations and implementation of shifts for this method are included in
[75].

After j iterations of the Q-Arnoldi method, and assuming that breakdown does
not occur, the Ritz vectors corresponding to the Ritz value θ have the form

x =

[
x1
x2

]
=

[
V

(1)
j z

V
(1)
j+1Hjz

]
,

where
Hjz = θz,

with Hj the upper Hessenberg matrix obtained by removing the last row of Hj.
When (θ, x) is an eigenpair of GQ, x2 = θx1. As a Ritz vector of (2.28), the vector
x2/θ or x1 can be returned. We refer to [75] for a discussion of the best choice of
these vectors.

2.3.3 The TOAR method

The TOAR method introduced in [100, 71], where TOAR stands for two-level or-
thogonal Arnoldi, follows the spirit of Q-Arnoldi in the sense that develops a new
representation for the Krylov vectors of a linearization of (2.28). However, this
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new representation is more stable than the one presented in the Q-Arnoldi method.
The initial steps for the TOAR method are very similar to those of Q-Arnoldi and
consider the linearization for the QEP (2.28)

ATz = λBTz, (2.53)

where
AT =

[
In 0
0 K

]
, BT =

[
0 In
−M −C

]
, z =

[
λx
x

]
. (2.54)

Note that the matrices AT and BT are particular cases of AQ and BQ in (2.48) for
D = In. Then, we solve the standard eigenvalue problem (2.47)

GQz = θz,

with GQ partitioned as in (2.49). Consider Vj+1 obtained by the Arnoldi method
applied to GQ and partitioned as in (2.50), and the Arnoldi recurrence relation
(2.51). Then, a direct implication of (2.52) is

span{V (1)
j , V

(2)
j } = span{V (1)

j+1}. (2.55)

Suppose that Qj ∈ Cn×(j+1) is an orthonormal basis for the space spanned by V (1)
j+1,

which is assummed to have dimension j + 1. It follows from (2.55) that

span{Qj} = span{V (1)
j , V

(2)
j }. (2.56)

From (2.56) we can represent

Vj =

[
V

(1)
j

V
(2)
j

]
=

[
QjR

(1)
j

QjR
(2)
j

]
=

[
Qj

Qj

][
R

(1)
j

R
(2)
j

]
, (2.57)

for some matrices R(1)
j , R(2)

j ∈ C(j+1)×j. Note that Rj :=

[
R

(1)
j

R
(2)
j

]
has orthonormal

columns because Vj and Qj have both orthonormal columns. By using (2.57), the
Arnoldi recurrence relation (2.18) can be written as[

0 In
G1 G2

][
QjR

(1)
j

QjR
(2)
j

]
=

[
QjR

(1)
j

QjR
(2)
j

]
Hj + hj+1,j

[
Qj+1r

(1)
j+1

Qj+1r
(2)
j+1

]
e∗j . (2.58)

where r(1)j+1 and r
(2)
j+1 denote the last column of R(1)

j+1 and R
(2)
j+1, respectively. The

relation (2.58) is called the compact Arnoldi decomposition (CARD) of order j, for
which only Qj+1, Rj+1 and Hj need to be stored. In order to develop a memory effi-
cient procedure, Qj+1, Rj+1 and Hj should be computed without explicitly forming
Vj+1. The TOAR algorithm is developed to achieve this goal. The TOAR method
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is based on two levels of orthogonalization and it will be explained in the following
paragraphs.

Consider an initial unit vector v1 ∈ C2n partitioned as in (2.50)

v1 =

[
v
(1)
1

v
(2)
1

]
, v

(1)
1 , v

(2)
1 ∈ Cn, (2.59)

and the QR decomposition

[v
(1)
1 v

(2)
1 ] = Q1[r

(1)
1 r

(2)
1 ], (2.60)

with Q1 ∈ Cn×2, r(1)1 , r(2)1 ∈ C2.
It follows that, by considering the Arnoldi recurrence relation (2.58) and assum-

ing that breakdown does not occur,

span{Qj+1} = span{Qj, v̂j}, with v̂j = G1v
(1)
j +G2v

(2)
j . (2.61)

Since v̂j can be written as
v̂j = Qjxj + αjqj+1. (2.62)

where qj+1 is a unit orthogonal vector to Qj, we have

Qj+1 = [Qj qj+1]. (2.63)

This implies that it is better to compute Qj+1 before Rj+1. This process is called
the first level of orthogonalization and it is summarized in Algorithm 2.9.

Algorithm 2.9 First level of orthogonalization for TOAR method
Input: The matrix Qj with orthonormal columns such that span{Qj} =

span{V (1)
j , V

(2)
j }, and v̂j defined in (2.61).

Output: The matrix Qj+1, xj and αj defined in (2.62).
1. Compute xj = Q∗j v̂j.
2. Compute q̃j = v̂j −Qjxj.
3. Compute αj = ‖q̃j‖2.
4. Reorthogonalize q̃j if necessary.
if αj = 0 then

5. Keep Qj+1 = Qj.
else

6. Compute qj+1 = q̃j/αj.
7. Extend Qj+1 = [Qj qj+1].

end if

In order to develop the rest of the TOAR method, the Arnoldi procedure is
followed to compute vj+1 expressed in the compact form:

vj+1 =

[
v
(1)
j+1

v
(2)
j+1

]
=

[
Qj+1r

(1)
j+1

Qj+1r
(2)
j+1

]
. (2.64)
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From now on, and w.l.o.g, we consider αj 6= 0 in Algorithm 2.9 (as it is considered
in [71]). The first step in the Arnoldi method (Algorithm 2.1) is to compute the
vector v̂ which can be computed as

v̂ = GQvj =

[
0 I
G1 G2

][
v
(1)
j

v
(2)
j

]
=

[
v
(2)
j

v̂j

]
, (2.65)

and then, by (2.62) and the compact representation for v(2)j ,

v̂ =

[
Qjr

(2)
j

Qjxj + αjqj+1

]
. (2.66)

Then, the coefficients hj can be computed as

hj = V∗j v̂ = (R
(1)
j )∗r

(2)
j + (R

(2)
j )∗xj =

[
R

(1)
j

R
(2)
j

]∗ [
r
(2)
j

xj

]
. (2.67)

Continuing with the Arnoldi method,

ṽ = v̂ −Vjhj =

[
Qjr

(2)
j

Qjxj + αjqj+1

]
−

[
QjR

(1)
j

QjR
(2)
j

]
hj,

=

[
Qj+1 0

0 Qj+1

]
s̃(1)

0
s̃(2)

αj

 , (2.68)

where
s̃(1) = r

(2)
j −R

(1)
j hj, s̃(2) = xj −R(2)

j hj. (2.69)

By (2.68), the blocks of vj+1 can be computed as

v
(1)
j+1 = Qj+1

[
s̃(1)/hj+1,j

0

]
, v

(2)
j+1 = Qj+1

[
s̃(2)/hj+1,j

αj/hj+1,j

]
(2.70)

with

hj+1,j = ‖ṽ‖2 =

∥∥∥∥∥∥∥∥

s̃(1)

0
s̃(2)

αj


∥∥∥∥∥∥∥∥
2

. (2.71)

With this, we can form R
(1)
j+1 and R(2)

j+1 as

R
(1)
j+1 =

[
R

(1)
j s̃(1)/hj+1,j

0 0

]
, R

(2)
j+1 =

[
R

(2)
j s̃(2)/hj+1,j

0 αj/hj+1,j

]
(2.72)
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that satisfies [
V

(1)
j+1

V
(2)
j+1

]
=

[
Qj+1R

(1)
j+1

Qj+1R
(2)
j+1

]
=

[
Qj+1 0

0 Qj+1

] [
R

(1)
j+1

R
(2)
j+1

]
. (2.73)

Since Rj has orthonormal columns, the resulting hj and s̃ :=

[
s̃(1)

s̃(2)

]
will satisfy

[
r
(2)
j

xj

]
=

[
R

(1)
j

R
(2)
j

]
hj +

[
s̃(1)

s̃(2)

]
, (2.74)

where s̃ :=

[
s̃(1)

s̃(2)

]
is orthogonal to Rj. This procedure is exactly the classic Gram-

Schmidt algorithm without the normalization step. The process of getting s̃ is the
so-called second level of orthogonalization and it is summarized in Algorithm 2.10.

Algorithm 2.10 Second level of orthogonalization for TOAR method
Input: The matrix Rj defined in (2.57) and xj obtained in step 1 of Algorithm 2.9.
Output: The vectors s̃ and hj.

1. Compute hj =

[
R

(1)
j

R
(2)
j

]∗ [
r
(2)
j

xj

]
.

2. Compute
[
s̃(1)

s̃(2)

]
=

[
r
(2)
j

xj

]
−

[
R

(1)
j

R
(2)
j

]
hj.

3. Reorthogonalize s̃ if necessary.

Finally, the complete two-level orthogonal Arnoldi process (TOAR) for the QEP
(2.28) is summarized in Algorithm 2.11.

Now we discuss the computation and memory costs of TOAR and compare them
with the costs of Arnoldi applied to an arbitrary 2n × 2n matrix. As occurs for
previous methods, the computational costs of Algorithms 2.1 and 2.11 are the sum
of the costs for computing v̂ and the orthogonalization steps. The major cost for
both methods is the computation of v̂ which requires the solution of a linear system
and for Arnoldi is a bigger cost than for TOAR if the structure of the matrix is not
considered. If the structure of the 2n× 2n matrix is considered then a linear system
of size n× n need to be solved as for TOAR.

For Arnoldi, the orthogonalization is performed in steps 2-3-4-5 of Algorithm
2.1 which requires at iteration j, as we mentioned in previous section, 8nj + 6n
flops. Note that we are disregarding the terms that do not contain n since n � j
for large scale problems. The orthogonalization process for TOAR is performed in
steps 3-4-5-6 of Algorithm 2.11. At iteration j, the first level of orthogonalization
performed in step 3 costs 4nj+ 7n flops. Since the second level of orthogonalization



2.3. KRYLOV METHODS FOR QUADRATIC EIGENVALUE PROBLEMS 41

Algorithm 2.11 Two-Level Orthogonal Arnoldi method (TOAR) for the QEP

Input: An initial vector v1 = [v
(1)
1

∗
v
(2)
1

∗
]∗ ∈ C2n, with ‖v1‖2 = 1, and the matrix

GQ partitioned as in (2.49).
Output: The matrices Qm+1 and Rm+1 defined in (2.57), and Hm+1.
1. Generate Q1,R1 by QR decomposition

[Q1, [r
(1)
1 r

(2)
1 ]] = qr([v

(1)
1 v

(2)
1 ]).

for j = 1, 2, . . . ,m do
2. Compute v̂ = G1v

(1)
j +G2v

(2)
j .

3. Run Algorithm 2.9 with inputs Qj, v̂ and outputs Qj+1, xj and αj.
4. Run Algorithm 2.10 with inputs Rj, xj and outputs s̃ and hj.
5. Normalization

hj+1,j =

∥∥∥∥[ s̃
αj

]∥∥∥∥
2

,

[
s(1)

s(2)

]
=

1

hj+1,j

[
s̃(1)

s̃(2)

]
.

6. Update Rj+1 by

R
(1)
j+1 =

[
R

(1)
j s(1)

0 0

]
, R

(2)
j+1 =

[
R

(2)
j s(2)

0 βj

]
, with βj =

αj
hj+1,j

.

8. Generate the new Krylov vector

v
(1)
j+1 = Qjs

(1), v
(2)
j+1 = Qj+1

[
s(2)

βj

]
.

end for
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Arnoldi method TOAR method
Orthogonalization cost (4j2 + 10j)n (2j2 + 9j)n

Memory cost 2n(j + 1) n(j + 2)

Table 2.4: Asymptotic orthogonalization and memory costs for classical Arnoldi
method and TOAR method after j iterations.

computed in step 4 involves matrices of dimension j, the computational step is
negligible to the whole process, and the same is true for steps 5 and 6. Then, the
total orthogonalization cost is carried out by the first level of orthogonalization.
The orthogonalization costs for both methods are summarized in Table 2.4. A final
important remark is that TOAR involves the overhead cost of constructing v(1)j+1 and
v
(2)
j+1 in step 8 of Algorithm 2.11. This step costs 4nj+ 4n flops at iteration j, which
added to the orthogonalization cost of TOAR discussed below would give a cost of
the same order of the orthogonalization cost of the Arnoldi method.

In terms of memory cost, TOAR results in a memory efficient algorithm. Since
only Qj+1 ∈ Cn×(j+2) and Rj+1 ∈ C2(j+2)×(j+1) need to be stored, the storage re-
quirement is roughly (j + 2)n floating point numbers, when n � j as happens in
large scale problems. Therefore, the compact representation of the Krylov vectors
reduces the storage requirement by about a half (as the Q-Arnoldi method) with
respect to classical Arnoldi applied to an arbitrary matrix of size 2n× 2n (see Table
2.4).

The representation of the Krylov vectors for both the Q-Arnoldi method and the
TOAR method can be used to solve PEPs, and the following section deals with this
problem.

2.4 Krylov methods for polynomial eigenvalue pro-
blems

In this section, we present Krylov methods to solve PEPs. As we mentioned in
Section 2.3, Q-Arnoldi and TOAR can be generalized for PEPs of any degree. Sec-
tion 2.4.1 presents a generalization of Q-Arnoldi and this new method is called the
P-Arnoldi method. Section 2.4.2 summarizes a generalization of TOAR, resulting in
the TOAR method for PEPs. Both methods are developed for matrix polynomials
expressed in the Chebyshev basis, which is more stable if the eigenvalues are located
in or close to an interval I ⊂ R [92]. As occurs for Q-Arnoldi for QEPs, P-Arnoldi
presents some instabilities, in particular for Ritz values not close to the interval I
which makes it unsuitable for matrix polynomials of larger degree. On the other
hand, TOAR for PEPs seems to be numerically stable even for large degrees. The
numerical experiments presented in [63] show that both methods are more efficient
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in terms of memory requirements and CPU time with respect to the Arnoldi method
applied to an arbitrary matrix of the size of the associated linearization.

In Section 2.4.3 we introduce the CORK method for PEPs which is based on
the rational Krylov method (see Section 2.2.2). The CORK method works with
many other linearizations apart from the Frobenius form or its comrade general-
ization to the Chebyshev basis and it also follows the spirit of the two levels of
orthogonalization.

Since the CORK method have been developed for several linearizations, included
the one for matrix polynomials expressed in the Chebyshev basis, and it is based on
the rational Krylov method, which allows to choose different shifts at each iteration,
it is preferred in the literature for solving large-scale and sparse PEPs. However,
keep in mind that all methods presented in Section 2.4 result in efficient memory
saving algorithms.

It is usual to express a matrix polynomial in the monomial basis, this is

P (λ) = λdPd + · · ·+ λP1 + P0, Pi ∈ Cn×n, i = 0, . . . , d

and then, solve the PEP: P (λ)x = 0. This representation leads to severe numerical
difficulties for high degrees, unless the eigenvalues are (nearly) distributed along a
circle [92]. In the case when the required eigenvalues are on or close to an interval
I ⊂ R, a non-monomial representation is numerically much more suitable. If we
consider w.l.o.g. I = [−1, 1] then a numerically reliable representation [102] is given
by

PCh(λ) = τd(λ)Pd + · · ·+ τ1(λ)P1 + τ0(λ)P0, (2.75)

where τ0, τ1, . . . , τd denote the Chebyshev polynomials of the first kind, defined by
the recurrence

τ0(λ) = 1, τ1(λ) = λ

τj+1(λ) = 2λτj(λ)− τj−1(λ), j = 1, . . . , d− 1. (2.76)

A linearization for the polynomial eigenvalue problem

PCh(λ)x = 0 (2.77)

is

ACh =


0 I
I 0 I

. . .
. . .

. . .

I 0 I
−P0 · · · −Pd−3 Pd − Pd−2 −Pd−1

 , BCh =


I

2I
. . .

2I
2Pd

 ,
(2.78)
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which yields the generalized eigenvalue problem

AChyCh = λBChyCh. (2.79)

If (λ, x) is an eigenpair of the polynomial eigenvalue problem (2.77) then

yCh =


τ0(λ)x
τ1(λ)x
...

τd−1(λ)x

 . (2.80)

2.4.1 The P-Arnoldi method

In this section, the P-Arnoldi method for matrix polynomials in the Chebysehv basis
is developed [63]. P-Arnoldi stands for the extension of the Q-Arnoldi method [75]
presented in Section 2.3.2 to polynomials of higher degree. This method basically
consists of applying the classical Arnoldi method to the matrix

GCh = BCh
−1ACh =

1

2


0 2I
I 0 I

. . .
. . .

. . .

I 0 I
−P−1d P0 · · · −P−1d Pd−3 I − P−1d Pd−2 −P−1d Pd−1


(2.81)

implicitly, such that the Krylov vectors can be represented in a memory-efficient way.
In order to develop a compact representation for the Krylov vectors, the partition

Vj+1 = [Vj vj+1]


V

(1)
j v

(1)
j+1

...
...

V
(d)
j v

(d)
j+1

 (2.82)

is considered, where V (i)
j ∈ Cn×j and v

(i)
j+1 ∈ Cn for i = 1, . . . , d. The goal of the

P-Arnoldi method is to perform all computations without explicit reference to the
V

(2)
j , . . . , V

(d)
j blocks, so that only the n× j matrix V (1)

j and the nd× 1 vector vj+1,
which is updated at each iteration, need to be stored.

By using the structure of GCh and the Arnoldi decomposition (2.18) we obtain

V
(2)
j = [V

(1)
j v

(1)
j+1]Hj,

V
(i)
j = 2[V

(i−1)
j v

(i−1)
j+1 ]Hj − V

(i−2)
j , i = 3, . . . , d. (2.83)

Lemma 2.29 shows that we can reconstruct all V (i)
j blocks from V

(1)
j , vj+1, and

Hj.
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Lemma 2.29. [63, Lemma 1] Given an Arnoldi decomposition (2.18) for the matrix
in (2.81), with Vj+1 partitioned as in (2.82), the relation

V
(i)
j = V̌

(i)
j W

(i)
j (2.84)

holds for all i = 2, . . . , d, where V̌ (i)
j = [V

(1)
j , v

(1)
j+1, . . . , v

(i−1)
j+1 ] and Wj is defined by

the recurrence

W
(1)
j = Ij, W

(2)
j = Hj, W

(i)
j = 2

[
W

(i−1)
j 0
0 1

]
Hj −

 W
(i−2)
j

0
0

 , i = 3, . . . , d.

(2.85)

Since for the Arnoldi method in Algorithm 2.1 the operations that need to be
performed involved either Vj or V∗j , Lemma 2.29 implies that these operations can
be computed for the matrix (2.81) without storing V (2)

j , . . . , V
(d)
j and only computing

the matrices W (i)
j . However, this computation yields an additional cost of order

O(dj3) which can be avoided as a consequence of Lemma 2.30.

Lemma 2.30. [63, Lemma 2] Given an Arnoldi decomposition (2.18) for GCh, with
Vj+1 partitioned as in (2.82), the relation

V
(i)
j = V

(1)
j τi−1(Hj) + hj+1,jv

(1)
j+1e

∗
j τ̃i−1(Hj) + 2hj+1,j

i−1∑
k=2

v
(k)
j+1e

∗
j τ̃i−k(Hj), (2.86)

holds for all i = 2, . . . , d, where τ̃0, . . . , τ̃d−1 denote the Chebyshev polynomials of
second kind, defined by the recursion

τ̃0(λ) = 0, τ̃1(λ) = 1, τ̃j+1(λ) = 2λτ̃j(λ)− τ̃j−1(λ), (2.87)

and Hj is the Hessenberg matrix obtained by removing the last row of Hj.

Step 1 in Arnoldi method (see Algorithm 2.1) is a matrix-vector multiplication,
which can be performed as in Algorithm 2.12.

Step 2 in Algorithm 2.1 consists in computing the coefficients

hj =


V

(1)
j
...

V
(d)
j


∗  v̂(1)

...
v̂(d)

 =
d∑
i=1

(V
(i)
j )∗v̂(i). (2.88)

By using Lemma 2.30 we have

hj =
d∑
i=1

τi−1(H
∗
j )V

(1)
j

∗
v̂(i) + hj+1,j

d∑
i=1

(v
(1)
j+1)

∗
v̂(i)τ̃i−1(H

∗
j )ej
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Algorithm 2.12 P-Arnoldi: Matrix-vector product with GCh

Input: Matrices P0, P1, . . . , Pd ∈ Cn×n that define GCh as in (2.81) and a vector v
partitioned as in (2.82).

Output: The vector p = GChv partitioned as in (2.82).
1. Set p(1) = v(2).
for j = 2, . . . , d− 1 do

2. Compute p(j) = 1
2

(
v(j−1) + v(j+1)

)
.

end for
3. Compute p(d) = 1

2
v(d−1) − 1

2
P−1d

∑d
i=1 Pi−1v

(i).

+ 2hj+1,j

d∑
i=1

i−1∑
k=2

(v
(k)
j+1)

∗v̂(i)τ̃i−k(H
∗
j )ej. (2.89)

The first sum in (2.89) can be computed by using the Clenshaw’s algorithm [23] for
evaluating polynomials in the Chebyshev basis and it requires the computation of d
matrix-vector products V (1)

j

∗
û(i), which can be organized as a single matrix-matrix

product V (1)
j

∗
[û(1), . . . , û(d)]. The last two sums in (2.89) amount to a matrix-matrix

multiplication with the j × (d− 1) matrix

T = hj+1,j[τ̃d−1(H
∗
j )ej, . . . , τ̃2(H

∗
j )ej, τ̃1(H

∗
j )ej],

which can be computed recursively from right to left by using (2.87). An efficient
algorithm to compute the coefficients hj is presented in [63, Algorithm 3] which uses
(2.89) and the recurrence relation (2.87).

Finally, step 3 in Algorithm 2.1 requires the matrix-vector multiplication (V
(i)
j hj)

which can be also computed by using Lemma 2.30, obtaining

V
(i)
j hj = V

(1)
j τi−1(Hj)hj + hj+1,jv

(1)
j+1e

∗
j τ̃i−1(Hj)hj + 2hj+1,j

i−1∑
k=2

v
(k)
j+1e

∗
j τ̃i−k(Hj)hj.

(2.90)
In [63, Algorithm 4] an efficient algorithm is presented to compute V (i)

j hj. Finally,
the P-Arnoldi method is summarized in Algorithm 2.13.

Now, we compare Arnoldi and P-Arnoldi in terms of orthogonalization and me-
mory costs. First, as we mentioned in previous section, it occurs that n � j and
then we do not consider the computations that do not involve matrices or vectors of
size n. Also, in practice, d < j, where d represents the degree of the matrix polyno-
mial. Second, the most expensive step for both methods is given by the computation
of v̂. If an unstructured solver is used for step 1 in the Arnoldi method instead of
Algorithm 2.12, then the computational cost of Arnoldi is much larger than the cost
of P-Arnoldi, which solves a linear system of size n× n instead of size nd× nd.



2.4. KRYLOV METHODS FOR POLYNOMIAL EIGENVALUE PROBLEMS 47

Algorithm 2.13 The P-Arnoldi method
Input: The coefficient matrices P0, P1, . . . , Pd defining the matrix GCh in (2.81)
and an initial vector v1 partitioned as in (2.82).

Output: Matrices V (1)
m , Hm and vectors v(1)m+1, . . . , v

(d)
m+1 that define implicitly the

vectors of an orthonormal basis of Km(GCh,v1) by the recurrence relation (2.83).

for j = 1, . . . ,m do
1. Compute v̂ = GChvj via Algorithm 2.12.
2. Compute hj via [63, Algorithm 3].
3. Compute the matrix-vector products V (i)

j hj via [63, Algorithm 4].
4. Compute ṽ = v̂ −Vjhj.
5. Compute hj+1,j = ‖ṽ‖2.
if hj+1,j = 0 then

stop the procedure
end if
6. Compute the next vector vj+1 =

1

hj+1,j

ṽ.

7. Update V (1)
j+1 = [V

(1)
j v

(1)
j+1].

end for

The P-Arnoldi method results in a memory-efficient procedure that reduces the
storage costs from dnj to (jn+dn) numbers with respect to Arnoldi applied directly
on GCh. These memory costs are shown in Table 2.5.

Now we compare the orthogonalization costs for both methods at iteration j,
which are steps 2-3-4-5 in Algorithm 2.1 for Arnoldi and steps 2-3-4-5-6 in Algorithm
2.13 for P-Arnoldi. For Arnoldi applied directly on the nd × nd matrix GCh in
Algorithm 2.1 we have the well-known cost of O(njd) flops for the orthogonalization
steps. P-Arnoldi requires in Algorithm 2.13: O(nd(d + j)) flops for step 2, O(ndj)
flops for step 3 and O(nd) flops for steps 4, 5 and 6. Therefore, at iteration j,
the orthogonalization cost of P-Arnoldi is O(nd(d + j)) flops. Orthogonalization
costs are summarized in Table 2.5. Note that the orthogonalization cost of P-
Arnoldi is slightly more expensive than the cost of Arnoldi, however, since in practice
d < j � n [14, 63], this difference of cost is usually small.

Arnoldi method P-Arnoldi method
Orthogonalization cost O(ndj2) O(ndj2 + nd2j)

Memory cost ndj (d+ j)n

Table 2.5: Asymptotic orthogonalization and memory costs for classical Arnoldi
method and P-Arnoldi method after j iterations.
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Techniques like implicit restarting and locking can be implemented and we refer
to [63] for more details.

Although P-Arnoldi can be formulated in an elegant way, its instability for Ritz
values not close to [−1, 1] makes it unsuitable for solving PEPs with matrix polyno-
mials of large degree. In the next section, we discuss the TOAR method for PEPs
which appears to be stable even for comparably large degrees.

2.4.2 TOAR method for polynomial eigenvalue problems

As we mentioned before, it is common that the eigenvalues of interest are close
to a given target θ, which is typically in the interior of the spectrum. The shift-
and-invert technique addresses this problem by applying the Arnoldi method to the
matrix (GCh− θI)−1, where GCh is the matrix defined in (2.81). In this section, we
focus on this problem for the particular case θ = 0. The interested reader can find
the general case θ 6= 0 in [63].

If we consider j steps of the Arnoldi method applied to G−1Ch, we obtain the
Arnoldi recurrence relation

(GCh)
−1 Vj = VjHj + hj+1,jvj+1e

∗
j , (2.91)

which is equivalent to

GChVj = VjH
−1
j + hj+1,jv̆j+1ĕ

∗
j , (2.92)

where v̆j+1 = −GChvj+1 and ĕj = H−∗j ej. The equation (2.92) has a similar form
than the Arnoldi recurrence relation (2.18), therefore, an extension of Lemma 2.30
can be developed. Thus, the relation (2.92) makes it possible to extend the P-
Arnoldi method to this situation. However, some difficulties appear due to the fact
that the norms of τj(H−1j ) grow quickly if H−1j has eigenvalues too far away from
the interval [−1, 1] for larger degree d [63].

This instability is due to the presence of τj(H−1j ) in the representation of the
orthonormal Arnoldi basis Vj and motivates the development of a version of TOAR
for matrix polynomials with arbitrary degrees expressed in the Chebyshev basis [63].

For TOAR, we use the following representation, that is possible as a consequence
of a version of (2.83) adapted to (2.92)

Vj =


V

(1)
j

V
(2)
j
...

V
(d)
j

 =


QjR

(1)
j

QjR
(2)
j
...

QjR
(d)
j

 =


Qj

Qj

. . .

Qj



R

(1)
j

R
(2)
j
...

R
(d)
j

 = (Id ⊗Qj)Rj,

(2.93)
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where V (i)
j ∈ Cn×j for i = 1, 2, . . . , d, Qj ∈ Cn×(d+j) is a matrix with orthonormal

columns and

Rj :=


R

(1)
j

R
(2)
j
...

R
(d)
j

 , (2.94)

for some matrices R(i)
j ∈ C(d+j)×j. Note that R∗jRj = Ij and that the number of

columns of Qj could be less than d + j in the course of the method. However,
in [63] this case is neglected and this possibility is considered in both CORK and
R-CORK methods. Observe that Vj has ndj entries that can be represented by
(n + dj)(d + j) parameters. Thus, considering that the dimension j of the Krylov
subspace is much smaller than the dimension n of the large-scale problem, and
that the degree d of PEPs in applications is a low number [14, 63], we obtain that
j + d < jd� n, obtaining a compact representation for the Krylov vectors.

As for the TOAR method for QEPs, the information needed for the expansion
of the basis Qj is contained in the vector v̂(1). Theorem 2.31 summarizes this result.

Theorem 2.31. [63, Theorem 4] Suppose that Vj+1 satisfies the Arnoldi decompo-
sition (2.18) for G−1Ch and is partitioned as in (2.82). Let Qj be an orthonormal basis
of span{V (1)

j , V
(2)
j , . . . , V

(d)
j }, this is span{Qj} = span{V (1)

j , V
(2)
j , . . . , V

(d)
j }. Then,

span{Qj+1} = span{V (1)
j , v

(1)
j+1, V

(2)
j , v

(2)
j+1, . . . , V

(d)
j , v

(d)
j+1} = span{Qj, v̂

(1)}. (2.95)

Next we discuss the implementation of the Arnoldi method applied to G−1Ch de-
fined in (2.81) by using the representation (2.93).

First, in step 1 of Algorithm 2.3, it is necessary to compute the vector v̂ = G−1Chvj,
which can be computed by solving a linear system involving GCh. Consider the
vectors v̂ and vj partitioned as in (2.82). Then, for the even superscripts, we obtain
the recurrence:

v̂(2) = Qjr
(1)
j , v̂(2i) = 2Qjr

(2i−1)
j − v̂(2(i−1)), i = 2, 3, . . . (2.96)

where r(i)j ∈ Cd+j denotes the last column of R(i)
j for i = 1, 2, . . . , d, while for odd

superscripts
v̂(2i+1) = y2i + (−1)iv̂(1), i = 1, 2, . . . (2.97)

with
y2 = 2Qjr

(2)
j , y2i = 2Qjr

(2i)
j − y2(i−1), i = 2, 3, . . . (2.98)

and v̂(1) is obtained by solving the linear system

(−P0+P2−P4+ . . . )v̂(1) = (P1v̂
(2)+P3v̂

(4)+P5v̂
(6)+ . . . )+(P2y2+P4y4+P6y6+ . . . ).

(2.99)
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Therefore, the LU decomposition of N = −P0 +P2−P4 + . . . , can be precomputed
once and for all and to use it in each iteration to solve (2.99), although other methods
can be also used to solve (2.99). Since only the first block v̂(1) of v̂ is needed for the
following steps in the Arnoldi method, it is necessary to save it. The details for the
computation of v̂(1) are given in Algorithm 2.14.

Algorithm 2.14 TOAR: Matrix-vector product with G−1Ch

Input: The coefficients P0, P1, . . . , Pd defining the matrix GCh in (2.81), Qj ob-
tained by the compact representation of Vj, and vector rj = [(r

(1)
j )T , . . . , (r

(d)
j )T ]T ,

which is the last column of Rj.
Output: First component v̂(1) of v̂ = (GCh)

−1vj where vj = (Id ⊗Qj)rj.
1. Set Y = [r

(1)
j , 2r

(2)
j ].

for i = 3, . . . , d− 1 do
2. Update Y = [Y, 2r

(i)
j − yi−2].

end for
3. Compute Z = QjY .
4. Compute w̄ = −Pdzd−1 +

∑d−1
i=1 Pizi.

if d is even then
Update w̄ = w̄ + Pd(2PdQjr

(d)
j − zd−2).

end if
5. Solve the linear system Nv̂(1) = w̄ with N =

∑b(d−2)/2c
i=0 (−1)(i+1)P2i.

The next step in the shift-and-invert Arnoldi method consists of computing the
coefficients hj = V∗j v̂ = R∗j(Id⊗Q∗j)v̂. Lemma 2.32 shows analogous recurrences for
the block components p = (Id⊗Q∗j)v̂ by using the presence of Qj in the recurrences
(2.96), (2.97) and (2.98).

Lemma 2.32. [63, Lemma 3] For given r(1)j , . . . , r
(d)
j and p(1) = Q∗j v̂

(1) ∈ Cd+j, let
the vectors p(i), i = 2, . . . , d be defined by the recurrences

p(2) = r
(2)
j , p(2i) = 2r

(2i−1)
j − p(2(i−1)), i = 2, 3, . . . , (2.100)

p(2i+1) = x2i + (−1)ip(1), i = 1, 2, . . . , (2.101)

x2 = 2r
(2)
j , x2i = 2r

(2i)
j − x2(i−1), i = 2, 3, . . . . (2.102)

Then, the relations

1. v̂(i) = Qjp
(i) and yi = Qjxi hold for all even i;

2. v̂(i) = Qjp
(i) + (−1)(1+i)/2(I −QjQ

∗
j)v̂

(1) holds for all odd i:

where v̂(i) and yi are defined by the recurrences (2.96), (2.97) and (2.98). In parti-
cular, p(i) = Q∗v̂(i) for i = 2, . . . , d.
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After v̂(1) has been computed by Algorithm 2.14, the recurrences (2.100)-(2.102)
of Lemma 2.32 allows to develop a cheap way to compute the coefficients hj by
computing the product:

hj = R∗j

 Qj

. . .

Qj


∗  v̂(1)

...
v̂(d)

 = R∗j

 p(1)

...
p(d)

 . (2.103)

From Theorem 2.31, we see that Qj can be expanded with a new vector qj+1

computed as

αqj+1 = v̂(1) −Qjp
(1), where p(1) = Q∗j v̂

(1), and α = ‖v̂(1) −Qjp
(1)‖2. (2.104)

Step 3 in Algorithm 2.3 consists in computing the vector ṽ:

ṽ = v̂ −Vjhj =

 v̂(1)

...
v̂(d)

−
 Qj

. . .

Qj



R

(1)
j
...

R
(d)
j

hj. (2.105)

In order to compute this vector efficiently, we first compute the vector s obtained
from the Gram-Schmidt orthogonalization of p = (Id ⊗Q∗j)v̂ against Rj:

s =

 s(1)

...
s(d)

 =

 p(1)

...
p(d)

−

R

(1)
j
...

R
(d)
j

hj. (2.106)

By using the relations of Lemma 2.32, the blocks with odd superscripts of ṽ in
(2.105) can be represented by

ṽ(2i−1) = [Qj qj+1]

[
s(2i−1)

(−1)(1+i)/2α

]
. (2.107)

while the blocks with even superscripts satisfy

ṽ(2i) = Qjs
(2i), for i = 1, 2, . . . (2.108)

Therefore, Rj can be expanded by using the vector

r̃ = [(s(1))∗, α, (s(2))∗, 0, (s(3))∗,−α, (s(4))∗, 0, . . . , ]∗ (2.109)

after normalization. Note that, in particular, ‖ṽ‖2 = ‖r̃‖2 = hj+1,j. The TOAR
method for PEPs of degree d represented in the Chebyshev basis is summarized in
Algorithm 2.15.
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Algorithm 2.15 Two-level orthogonalization Arnoldi (TOAR) method for G−1Ch.

Input: Coefficient matrices P0, P1, . . . , Pd defining GCh in (2.81) and a starting
vector v1.

Output: Matrices Qm+1, Rm+1 such that the matrix Vm+1 defined in (2.93) is an
orthonormal basis for Km+1(G

−1
Ch,v1, 0).

1. Normalize v1 =
v1

‖v1‖2
.

2. Compute a QR factorization

[v
(1)
1 , v

(2)
1 , . . . , v

(d)
1 ] = Q1R1, with R1 = [r

(1)
1 , r

(2)
1 , . . . , r

(d)
1 ] ∈ Rd×d.

3. Set r1 = [(r
(1)
1 )∗, (r

(2)
1 )∗, . . . , (r

(d)
1 )∗]∗.

for j = 1, 2, . . . ,m do
4. Compute v̂(1) by using Algorithm 2.14.
5. Compute p(1) = Q∗j v̂

(1) and q̃ = v̂(1) −Qjp
(1).

6. Normalize α = ‖q̃‖2 and compute qj+1 = q̃/α.
7. Expand Qj+1 = [Qj, qj+1].
8. Compute p(i) for i = 2, . . . , d using the recurrences (2.100)-(2.102) and set
p = [(p(1))∗, (p(2))∗, . . . , (p(d))∗]∗.
9. Compute hj = R∗jp and s = p−Rjhj.

10. Update R(i)
j =

[
R

(i)
j

0j×1

]
.

11. Set r̃ = [(s(1))∗, α, (s(2))∗, 0, (s(3))∗,−α, (s(4))∗, 0, . . . ]∗.
12. Normalize rj+1 = r̃/hj+1,j with hj+1,j = ‖r̃‖2, and expand Rj+1 =
[Rj, rj+1].

end for
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The first and second level of orthogonalization are presented in steps 5 and
9 of Algorithm 2.15, respectively. If it is necessary, reorthogonalization can be
implemented.

Now we analyze orthogonalization and memory costs. As for the TOAR method
for QEPs, the main orthogonalization cost is concentrated in the first level, which
involves only the matrix Qj, while the cost for the second level is negligible when
n� m. The costs of steps 5-6 in Algorithm 2.15 at iteration j are O(n(d+j)) flops,
whereas the orthogonalization cost for Arnoldi is O(ndj) flops. As occurs for TOAR
for QEPs, the TOAR method for PEPs requires the construction of vj to perform
the shift-and-invert step, and if we add this extra cost to the orthogonalization cost
of TOAR for PEPs we would obtain a cost of the same order of the orthogonalization
cost of the Arnoldi method. The orthogonalization cost for each method is presented
in Table 2.6.

However, the significant reduction of storage requirements, compared to the clas-
sic Arnoldi method applied to the linearization, makes the TOAR method a suitable
and efficient method since the generated basis consists of vectors of length n instead
of the vectors of full length nd, where d represents the degree of the polynomial.
Memory costs for both methods are summarized in Table 2.6.

Arnoldi method TOAR method for PEPs
Orthogonalization cost O(ndj2) O(n(d+ j)j)

Memory cost ndj n(d+ j)

Table 2.6: Asymptotic orthogonalization and memory costs for the Arnoldi method
and TOAR for PEPs after j iterations.

2.4.3 The CORK method for polynomial eigenvalue problems

Van Beeumen, Meerbergen, and Michiels in [104] proposed a method based on a
compact rational Krylov decomposition, extending the two levels of orthogonaliza-
tion idea of TOAR from the quadratic eigenvalue problem [100, 71] to arbitrary
degree polynomial eigenvalue problems and to other nonlinear eigenvalue problems
(NLEPs) that can be linearized similarly to PEPs, including many other lineariza-
tions apart from the Frobenius one used in [100, 71], and using the rational Krylov
method instead of the Arnoldi method. This method was baptized as CORK in
[104] and for simplicity we described it particularized to PEPs of degree d. The key
idea in [104] is to apply the rational Krylov method in Algorithm 2.4 to a struc-
tured linearization pencil of a matrix polynomial P (λ) of degree d (recall Definition
2.13) taking into account that the special structure of these pencils imposes a special
structure on the bases of the corresponding rational Krylov subspaces. By using this
structure, the authors of [104] reduced both the memory cost and the orthogonali-
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zation cost of the classical rational Krylov method applied to an arbitrary pencil of
the same size. Considering the matrices A and B in (2.6) and the rational Krylov
recurrence relation (2.25) for A and B, the authors of [104] partitioned conformably
the matrix Uj+1, that stores the first j + 1 orthonormal “rational” Krylov vectors,
as follows

Uj+1 = [Uj uj+1] =


U

(1)
j u

(1)
j+1

U
(2)
j u

(2)
j+1

...
...

U
(d)
j u

(d)
j+1

 ,
and then, they constructed a matrix Qj ∈ Cn×rj with orthonormal columns such
that

span{Qj} = span{U (1)
j , U

(2)
j , . . . , U

(d)
j } (2.110)

and rank(Qj) = rj. By using the matrix Qj, the blocks U (i)
j for i = 1, 2, . . . , d can

be represented as follows

U
(i)
j = QjR

(i)
j , i = 1, 2, . . . , d,

for some matrices R(i)
j ∈ Crj×j. Then,

Uj =


QjR

(1)
j

QjR
(2)
j
...

QjR
(d)
j

 =


Qj

Qj

. . .

Qj



R

(1)
j

R
(2)
j
...

R
(d)
j

 = (Id ⊗Qj)Rj, (2.111)

where

Rj :=


R

(1)
j

R
(2)
j
...

R
(d)
j

 .
By using this representation, the rational Krylov recurrence relation (2.25) can be
written as follows [104, eq. (4.3)]

A(Id ⊗Qj+1)Rj+1Hj = B(Id ⊗Qj+1)Rj+1Kj. (2.112)

Observe that Uj has ndj entries while the representation in (2.111) involves (n+jd)rj
parameters. Therefore, taking into account that in the solution of large-scale PEPs
the dimension j of the rational Krylov subspaces is much smaller than the dimension
n of the problem and that the degree d of applied PEPs is a low number (for sure
smaller than 30, see [63], and often much smaller than 30 [14]), we get that jd� n
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and that the representation (2.111) of Uj stores approximately nrj numbers. The
fundamental reason why the representation of Uj in (2.111) is of interest and is
indeed compact is because rj is considerably much smaller than jd for the matrices
A and B in (2.6). More precisely, the following result is proved in [104].

Theorem 2.33. [104, Theorems 4.4 and 4.5] Let Qj be defined as in (2.110). Then

span{Qj+1} = span{Qj, u
(p)
j+1}, (2.113)

where u(p)j+1 represents the block of the vector uj+1 in a certain p-th position deter-
mined in [104]. Also,

rj < j + d. (2.114)

Note that Theorem 2.33 shows that Qj can be expanded to Qj+1 by orthogonal-
izing only one vector of size n at each iteration. Also, Rj+1 can be expanded in an
easy way, if u(p)j+1 /∈ span{Qj} then the blocks R(i)

j+1, i = 1, . . . , d, can be written as

R
(i)
j+1 =

[
R

(i)
j

01×j

∣∣∣∣ r(i)j+1

]
, i = 1, . . . , d,

and, if u(p)j+1 ∈ span{Qj}, then R
(i)
j+1 =

[
R

(i)
j r

(i)
j+1

]
, i = 1, . . . , d. Based on these

ideas, the authors of [104] developed CORK, splitting the method into two levels of
orthogonalization: the first level is to expand Qj into Qj+1 and the second level is
to expand Rj into Rj+1. We can see a basic pseudocode for the CORK method in
Algorithm 2.16, whose complete explanation can be found in [104]. For simplicity,
we assume that breakdown does not occur in Algorithm 2.16, i.e., hj+1,j 6= 0 for
all j. Note that the continuation vector zj in step 2 of Algorithm 2.4 is implicitly
considered in step 2 of Algorithm 2.16, where û(p) is the p-th block of û obtained by
solving the linear system (A− θjB)û = B(Id⊗Qj)Rjzj via the ULP decomposition
presented in Theorem 2.15.

From the discussion above, it is clear that CORK reduces significantly the storage
requirements with respect to a direct application of the rational Krylov method to
the (nd) × (nd) GEP A − λB, since essentially CORK represents Uj in terms
of n(j + d) parameters and, in addition, n(j + d) ≈ nj for moderate values of
d. Therefore, the memory cost of CORK is approximately the cost of any Krylov
method applied to an n× n GEP. The memory cost of each method is summarized
in Table 2.7.

Moreover, it can be seen in [104, Section 5.4] that the orthogonalization cost
of CORK is essentially independent of d for moderate values of d, and, so, much
lower than the orthogonalization cost of a direct application of rational Krylov to
A−λB, and they are presented for both methods in Table 2.7. With respect to the
comparison of the costs of the shift-and-invert steps in CORK (included in step 2 of
Algorithm 2.16) and in rational Krylov (step 3 in Algorithm 2.4), we can say that in
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Algorithm 2.16 Compact rational Krylov method (CORK)

Input: Q1 ∈ Cn×r1 and R1 ∈ Cdr1×1 with Q∗1Q1 = Ir1 and R∗1R1 = 1, where r1 ≤ d.
Output: Approximate eigenpairs (λ,x) associated to A − λB, with A, B as in
(2.6).
for j = 1, 2, . . . do

1. Choose shift θj.
First level of orthogonalization:
2. Compute û(p) by using the ULP decomposition in Theorem 2.15 with µ = θj
(see [104] for details).
3. Orthogonalize: q̃ = û(p) −QjQ

∗
j û

(p).
4. If q̃ 6= 0 then compute next vector: qj+1 = q̃/‖q̃‖2 and Qj+1 = [Qj qj+1].
Otherwise Qj+1 = Qj.
Second level of orthogonalization:

5. If rj+1 > rj then update matrices: R(i)
j =

[
R

(i)
j

01×j

]
for i = 1, . . . , d.

6. Compute: r̂ by using the ULP decomposition in Theorem 2.15 (see [104] for
details).
7. Compute: r̃ = r̂−Rjhj, where hj = R∗j r̂.
8. Next vector: rj+1 = r̃/hj+1,j, where hj+1,j = ‖r̃‖2 and Rj+1 = [Rj rj+1].
9. Compute eigenpairs: (λi, ti) of (2.27) and test for convergence.

end for
10. Compute eigenvectors: xi = (Id ⊗Qj+1)Rj+1Hjti.
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CORK the particular structure of the pencil A−λB together with the fact that only
one block of the vector û is needed allow us to perform this step very efficiently by
essentially solving just one “difficult” n×n linear system (see [104, Algorithm 2]). In
contrast, in rational Krylov the whole vector û must be computed and there is some
extra cost with respect to CORK even in the case the structure of A− λB is taken
into account for solving the linear system (A − θjB)û = Buj. On the other hand,
there is some overhead cost involved in step 2 of Algorithm 2.16, since, in CORK,
the actual vector uj has to be constructed before solving the linear system associated
to the shift-and-invert step. Fortunately, according to (2.111), this computation can
be arranged as the single matrix-matrix product Qj[r

(1)
j · · · r

(d)
j ], where r(1)j , . . . , r

(d)
j

are the blocks of the last column of Rj, which allows optimal efficiency and cache
usage on modern computers (see [63, p. 577]).

Rational Krylov method CORK method
Orthogonalization cost O(ndj2) O(n(d+ j)j)

Memory cost ndj n(d+ j)

Table 2.7: Asymptotic orthogonalization and memory costs for RKS and CORK
method after j iterations.

Inspired in CORK, we will develop in Chapter 4 the new algorithm R-CORK to
solve large-scale and sparse rational eigenvalue problems by using a decomposition
similar to (2.111) for the bases of the rational Krylov subspaces associated to the
linearization (2.10) of the REP and by working in the spirit of the two levels of
orthogonalization originally introduced in TOAR [100, 71, 63]. We will see that
R-CORK has memory and computational advantages similar to those discussed for
CORK in the previous paragraph.





Chapter 3

Preliminaries on matrix equations

3.1 The Sylvester equation

The matrix equation
AX +XB = C, (3.1)

where A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n and the unknown matrix X ∈ Cm×n is
called the Sylvester equation. This equation is considered the most important matrix
equation in linear algebra and it has been studied in both pure and applied mathe-
matics, having several applications in different fields as control theory [5, 26], signal
processing [50], model reduction [5, 106], image restoration [17], decoupling tech-
niques for ordinary and partial differential equations [37], implementation of implicit
numerical methods for ordinary differential equations [38], block-diagonalization of
matrices [44, Chapter 7] and Newton methods for solving NLEPs [46].

A Sylvester equation is called stable when both Λ(A) and Λ(B) lie in the open
left half plane. If Λ(A) and Λ(B) are contained in the open right plane, we say that
the Sylvester equation is anti-stable.

In order to solve the Sylvester equation (3.1), we introduce some previous results
related to the Kronecker product of matrices. The goal is to transform the matrix
equation (3.1) into a standard system of linear equations. It is important to remark
that the results presented in Section 3.1.1 follow for matrices with entries in any
field F but, for simplicity, we state them for F = C.

3.1.1 Existence and uniqueness of solutions

In the study of matrix equations, it is often convenient to consider matrices in Cm×n
as vectors by ordering their entries in a conventional way. Definition 3.1 introduces
the common convention of stacking columns, left to right.

59
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Definition 3.1. With each matrix A = [aij] ∈ Cm×n, we associate the vector
vec(A) ∈ Cmn defined by

vec(A) := [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]T . (3.2)

Definition 3.2. [52, Definition 4.2.1] Let A = [aij] ∈ Cm×n and B = [bij] ∈ Cp×q.
The Kronecker product of A and B is denoted by A⊗B and defined to be the block
matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Cmp×nq.
Theorem 3.3 determines the eigenvalues of the Kronecker product of two square

complex matrices.

Theorem 3.3. [52, Theorem 4.2.12] Let A ∈ Cm×m and B ∈ Cn×n. If λ ∈ Λ(A)
and x ∈ Cm is a corresponding eigenvector of A, and if µ ∈ Λ(B) and y ∈ Cn is a
corresponding eigenvector of B, then λµ ∈ Λ(A⊗ B) and x⊗ y ∈ Cmn is a corres-
ponding eigenvector of A⊗ B. Every eigenvalue of A⊗ B arises as such a product
of eigenvalues of A and B. If Λ(A) = {λ1, . . . , λm} and Λ(B) = {µ1, . . . , µn}, then
Λ(A⊗ B) = {λiµj : i = 1, . . . ,m, j = 1, . . . , n} (including algebraic multiplicities in
all three cases). In particular, Λ(A⊗B) = Λ(B ⊗ A).

As we mentioned before, the Kronecker product can be used to obtain a con-
venient representation for many linear matrix transformations and linear matrix
equations. A key representation is given in Lemma 3.4.

Lemma 3.4. [52, Lemma 4.3.1] Consider the matrix equation

AXB = C, (3.3)

where A ∈ Cm×n, B ∈ Cp×q, and C ∈ Cm×q are given, and X ∈ Cn×p is the unknown
matrix. Then, the equation (3.3) is equivalent to the linear system of qm equations
in np unknowns given by

(BT ⊗ A)vec(X) = vec(C), (3.4)

this is, vec(AXB) = (BT ⊗ A)vec(X).

Now, the equation (3.1) can be written by using the Kronecker product and the
vec(·) notation (3.2), obtaining the system:

[(In ⊗ A) + (BT ⊗ Im)]vec(X) = vec(C), (3.5)

where In and Im represent the identity matrices of sizes n and m, respectively. The
matrix

A⊕S B := (In ⊗ A) + (BT ⊗ Im) (3.6)
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is called the Kronecker sum of A and B. Since the Kronecker product of A and B
has as eigenvalues all possible pairwise products of the eigenvalues of A and B, it
is natural to think that the eigenvalues of the Kronecker sum of A and B satisfy a
similar relation. This result is summarized in Theorem 3.5.

Theorem 3.5. Let A ∈ Cm×m and B ∈ Cn×n be given. If λ ∈ Λ(A) and x ∈ Cm is
a corresponding eigenvector of A, and if µ ∈ Λ(B) and y ∈ Cn is a corresponding
eigenvector of BT , then λ+µ is an eigenvalue of A⊕SB and y⊗x ∈ Cmn is a corres-
ponding eigenvector. Every eigenvalue of the Kronecker sum arises as such a sum
of eigenvalues of A and B. If Λ(A) = {λ1, . . . , λm} and Λ(B) = {µ1, . . . , µn}, then
Λ(A⊕SB) = {λi+µj : i = 1, . . . ,m, j = 1, . . . , n} (including algebraic multiplicities
in all three cases). In particular, Λ(A⊕S B) = Λ(B ⊕S A).

Roth proved in 1952 [81] necessary and sufficient conditions for the existence of
solution of the Sylvester equation (3.1). The unicity of solution for (3.1) is deter-
mined by the eigenvalues of A and B.

Theorem 3.6. [81, Theorem II] Let A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n. The
Sylvester equation AX +XB = C has solution, if and only if, the matrices

M1 =

[
A −C
0 −B

]
, M2 =

[
A 0
0 −B

]
(3.7)

are similar.

Theorem 3.7. [52, Theorem 4.4.6] Let A ∈ Cm×m and B ∈ Cn×n. The Sylvester
equation AX + XB = C has a unique solution X ∈ Cm×n for each C ∈ Cm×n, if
and only if, Λ(A) ∩ Λ(−B) = ∅.

In the following section we present the Bartels-Stewart algorithm to solve the
Sylvester equation (3.1) for small to medium size matrices A, B and C.

3.1.2 The Bartels-Stewart algorithm

The Bartels-Stewart algorithm [9] was introduced in 1972 to solve the Sylvester
equation (3.1) when the matrices A, B and C are real, dense and have small to
medium size. This method is based on the Schur reduction to quasi-triangular form
by orthogonal similarity transformations. For historical reasons, we discuss the
Bartels-Stewart algorithm for real matrices as appears in [9], however, it is easy to
extend the procedure for complex matrices.

Consider the Sylvester equation (3.1) and reduce A to a lower real Schur form
A′ by an orthogonal similarity transformation U , this is,

A′ = UTAU =


A′11
A′21 A′22
...

...
. . .

A′p1 A′p2 · · · A′pp

 (3.8)
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where the matrices A′ii, i = 1, . . . , p are square of size at most 2. In a similar way,
B is reduced to upper real Schur form by an orthogonal matrix V

B′ = V TBV =


B′11 B′12 · · · B′1q

B′22 · · · B′2q
. . .

...
B′qq

 (3.9)

where the matrices B′ii, i = 1, . . . , q are also square of size at most 2. If we consider

C ′ = UTCV =

 C ′11 · · · C ′1q
...

. . .
...

C ′p1 · · · C ′pq

 (3.10)

and

X ′ = UTXV =

 X ′11 · · · X ′1q
...

. . .
...

X ′p1 · · · X ′pq

 ,
partitioned according to the partitions of A′ and B′, the equation (3.1) is equivalent
to

A′X ′ +X ′B′ = C ′. (3.11)

Then, if the partitions of A′, B′, C ′ and X ′ are conformal, we have

A′kkX
′
kl+X

′
klB

′
ll = C ′kl−

k−1∑
j=1

A′kjX
′
jl−

l−1∑
i=1

X ′kiB
′
il, k = 1, . . . , p; l = 1, . . . , q. (3.12)

These equations are solved successively for X ′11, X ′21, . . . , X ′p1, X ′12, X ′22, . . . , X ′p2, . . .
and the solution X of (3.1) is given by X = UX ′V T .

Although the solution for X ′kl in (3.12) requires to solve a Sylvester equation, the
sizes of the matrices A′kk and B′ll are of order at most two, therefore, the solution of
(3.12) is obtained by solving a linear system of order at most four. For example, if
A′kk = [a′ij] and B′ll = [b′ij] are both of order two, then the system that needs to be
solved is given by

a′11 + b′11 a′12 b′21 0
a′21 a′22 + a′11 0 b′21
b′12 0 a′11 + b′22 a′12
0 b′12 a′21 a′22 + b′22



x′11
x′21
x′12
x′22

 =


d11
d21
d12
d22

 (3.13)

where x′ij denotes the elements of X ′lk and dij denotes the elements of the right-hand
side of (3.12). The Bartels-Stewart algorithm is summarized in Algorithm 3.1.
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Algorithm 3.1 Bartels-Stewart algorithm
Input: Coefficient matrices A ∈ Rm×m, B ∈ Rn×n and right-hande side C ∈ Rm×n.
Output: The solution X of the Sylvester equation AX +XB = C.
1. Compute a lower triangular Schur form A′ = UTAU partitioned as in (3.8).
2. Compute an upper triangular Schur form B′ = V TBV partitioned as in (3.9).
3. Compute C ′ = UTCV partitioned as in (3.10).
for l = 1, . . . , q do
for k = 1, . . . , p do

4. Solve the Sylvester equation for X ′kl

A′kkX
′
kl +X ′klB

′
ll = C ′kl −

k−1∑
j=1

A′kjX
′
jl −

l−1∑
i=1

X ′kiB
′
il

by solving a linear system of size at most 4.
end for

end for
6. Compute X = UX ′V T .

The Bartels-Stewart algorithm requires O(m3 + n3) flops and the detailed code
appears in [9]. This cost is expensive if m and/or n are large, for this reason, Krylov
methods have been developed to solve large-scale Sylvester equations and a brief
summary is presented in Section 3.3.

Different direct methods that improve the Bartels-Stewart algorithm at some
extent have been developed for solving the Sylvester equation and the interested
reader can find more information in [42, 58, 59, 96]. Note that the development
of the Bartels-Stewart algorithm for complex A, B and C is analogous to the one
presented in this section, with the main difference that the diagonal blocks of the
matrices A′ and B′ are always square of size 1× 1.

The Bartels-Stewart algorithm inspired the development of algorithms to solve
other matrix equations, and in particular, we present in Section 3.2.2 an extension
for solving the ?-Sylvester equation presented in [28].

3.2 The Sylvester equation for ?-congruence

In this section, we consider the matrix equation

AX +X?B = C, (3.14)

where A ∈ Cm×n, B ∈ Cn×m, C ∈ Cm×m and the unknown is X ∈ Cn×m and the
operator (·)? denotes either the transpose (·)T or the conjugate transpose (·)∗ of a
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matrix. The matrix equation (3.14) is called the ?-Sylvester equation or Sylvester
equation for ?-congruence.

Since one of the goals of this thesis is to solve numerically the Sylvester equation
for T-congruence when the rank of C in (3.14) is low, some applications of this
matrix equation are discussed. As we mentioned in Section 3.1, it is well-known
that standard Sylvester equations with low-rank right-hand sides appear very often
in linear system theory and control theory, in particular in the context of model
order reduction and as intermediate steps in the solution of continuous-time alge-
braic Riccati equations (CARE) by iterative methods in linear-quadratic optimal
control problems [5, 12]. Analogously, some particular non-standard problems in
optimal Hankel-norm model reduction and H2/H∞ controls related to nonstandard
J-spectral factorization problems lead to T-CARE whose nonlinear and constant
terms both have low rank, under the natural assumption that the numbers of inputs
and outputs are much smaller than the number of internal states of the system (see
[61, 62] and the references therein). For instance the T-CARE appearing in [61, 62]
is

ATX +XTA+XTRX +Q = 0, (3.15)
ETX −XTE = 0, (3.16)

where E,A,Q,R ∈ Rn×n, E may be singular, Q = QT , R = RT , Q and R are
indefinite, and the ranks of Q and R are much smaller than n under the conditions
mentioned above. The problem of interest in applications is to compute a stabiliz-
ing solution X of (3.15)-(3.16), which roughly speaking is a solution such that the
corresponding close-loop matrix has its eigenvalues in the left-hand plane including
the extended imaginary axis. Conditions for the existence of such solutions have
been established in [62], and their numerical computation is a nontrivial problem
considered in [61] and solved satisfactorily in [22] for small- to medium-size matrices.
However, the solution of (3.15)-(3.16) for large-scale matrices remains an open pro-
blem. The efficient solution of this problem will require iterative methods that will
need efficient solvers of large-scale T-Sylvester equations with low-rank right-hand
sides, similarly to the solution of large-scale standard CAREs, which requires solvers
of large-scale Sylvester equations with low-rank right-hand sides [12]. To realize this
point, note that the two equations (3.15)-(3.16) are equivalent to:

(AT + ET )X +XT (A− E) +XTRX +Q = 0, (3.17)

because the sum of (3.15) and (3.16) yields (3.17), while (3.17) plus and minus
its transpose yields (3.15) and (3.16), respectively [21, Section 2.3]. Clearly, any
fixed point iteration or any Newton-based method for solving (3.17) would need
the solution of T-Sylvester equations with low-rank right-hand sides. Variants of
equations (3.15)-(3.16) where Q and R are low-rank positive semidefinite matrices
have also appeared in applications [111], and they can be connected to T-Sylvester
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equations exactly in the same way. Finally, the T-Sylvester equation is also used
in [56] for the development of a new algorithm for the solution of delay Lyapunov
equations.

3.2.1 Existence and uniqueness of solutions

In order to state necessary and sufficient conditions for the existence and uniqueness
of a solution X of (3.14), we need to introduce the following notion.

Definition 3.8. A set of numbers {λ1, λ2, . . . , λn} ⊂ C∪ {∞} is ?-reciprocal free if
λi 6= 1/λ?j for any 1 ≤ i, j ≤ n.

Note that Definition (3.8) admits 0 and/or∞ as elements of the set {λ1, λ2, . . . , λn}
and by convention 1/0 = ∞ and 1/∞ = 0 in Definition 3.8. Also, in the case of
? = T , λTi = λi and for ? = ∗, λ∗i = λi.

The uniqueness of the solution of the matrix equation (3.14) is discussed in [64,
Lemma 8] and presented in Lemma 3.9. In particular, if A and B in (3.14) are
both complex square matrices of size n, Lemma 3.9 gives necessary and sufficient
conditions for the existence of a unique solution for every right-hand side C in the
complex field. Note that if A ∈ Cm×n and B ∈ Cn×m are rectangular matrices
in (3.14), then X ∈ Cn×m while AX + X?B ∈ Cm×m. Therefore, the operator
X 7→ AX + X?B is never invertible, and then, the equation (3.14) never has a
unique solution for every right-hand side C.

Lemma 3.9. [64, Lemma 8] The ?-Sylvester equation AX +X?B = C with A,B ∈
Cn×n has a unique solution X for every right-hand side C ∈ Cn×n if and only if the
following two conditions hold:

1. The pencil A− λB? is regular, and

2a. if ? = T , Λ(A,BT ) \ {1} is T -reciprocal free and if 1 ∈ Λ(A,BT ), then it has
algebraic multiplicity 1, or

2b. if ? = ∗, Λ(A,B∗) is ∗-reciprocal free.

In the past, some references erroneously replaced condition 2 in Lemma 3.9
simply by Λ(A,B?) is “reciprocal free” which requires that 1 /∈ Λ(A,B?) (see for
example [54, Theorem 3] for the case ? = T ). It is easy to construct examples
showing that this requirement is not needed. Consider, for instance, n = 1, A = B =
1 and ? = T . In this case, the only eigenvalue of A− λB? is 1, but AX +X?B = C
has the unique solution X = C/2.

The consistency of (3.14) is related to the concept of congruence introduced in
Definition 3.10.

Definition 3.10. Two matrices A,B ∈ Cn×n are ?-congruent if there exists a non-
singular matrix P ∈ Cn×n such that B = P ?AP .
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Theorem 3.11 extends the equivalence of conditions (a) and (b) in [114, Theorem
2] which is stated only for matrices over the complex field C and for the case ? = ∗.
Theorem 3.11 establishes a necessary and sufficient condition for the consistency of
the Sylvester equation for ?-congruence for rectangular matrices with entries in any
field of characteristic different from two.

Theorem 3.11. [28, Theorem 2.3] Let F be a field of characteristic different from
two and let A ∈ Fm×n, B ∈ Fn×m, C ∈ Fm×m be given. There is some X ∈ Fn×m
such that

AX +X?B = C

if and only if [
C A
B 0

]
and

[
0 A
B 0

]
are ?-congruent. (3.18)

In Chapter 5, we focus in solving numerically the Sylvester equation for T-
congruence for square invertible large-scale real matrices A,B and C. With this
goal, we present the following theorem, which reveals a relationship between (3.14)
for ? = T and a standard Sylvester equation under certain assumptions, and also,
for the same case, between (3.14) and a generalized Sylvester equation. To the best
of our knowledge, these relations are an original contribution of this PhD Thesis
and they appear in [35, Theorem 2.3].

Theorem 3.12. [35, Theorem 2.3] Let A,B,C ∈ Rn×n and assume that A and B
are nonsingular. Consider the matrix equations

AX +XTB = C, (3.19)(
B−TA

)
X −X

(
A−TB

)
= B−TC −B−TCTA−TB, (3.20)

AXAT −BTXB = C − CTA−TB, (3.21)

for the unknown X ∈ Rn×n. Then the following statements hold.

(a) If X0 is a solution of the T-Sylvester equation (3.19) then X0 is also a solution
of the Sylvester equation (3.20).

(b) If the Sylvester equation (3.20) has a unique solution X0 then the T-Sylvester
equation (3.19) has also a unique solution, which is equal to X0.

(c) rank
(
B−TC −B−TCTA−TB

)
≤ 2 rank(C).

(d) X0 is a solution of the generalized Sylvester equation (3.21) if and only if
(X0A

T ) is a solution of the Sylvester equation (3.20), i.e., there is a bijection
between the sets of solutions of (3.21) and (3.20).
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Proof. (a) If X0 satisfies (3.19), then

AX0 = C −XT
0 B,

X0 = A−1C − A−1XT
0 B,

XT
0 = CTA−T −BTX0A

−T .

Inserting this expression for XT
0 into AX0 +XT

0 B = C, we obtain

AX0 + CTA−TB −BTX0A
−TB = C,

AX0 −BTX0A
−TB = C − CTA−TB.

Multiplying the latter equation with B−T on the left yields that X0 satisfies (3.20).
(b) Assume that (3.20) has a unique solution, which is equivalent to assuming that

Λ
(
B−TA

)
∩ Λ

(
A−TB

)
= ∅. (3.22)

Note that

Λ
((
B−TA

)−1)
= Λ

((
A−1BT

)T)
= Λ

(
BA−T

)
= Λ

(
A−TB

)
.

This shows that (3.22) is equivalent to

Λ
(
B−TA

)
∩ Λ

((
B−TA

)−1)
= ∅.

In other words, Λ
(
B−TA

)
= Λ

(
A,BT

)
is T-reciprocal free. Thus, Lemma 3.9 shows

that (3.19) has a unique solution.
So far, we have established that the unique solvability of (3.20) implies the

unique solvability of (3.19), but not yet that the solutions of both equations are the
same. This, however, follows directly from part (a), which states that the solution
set of (3.19) is included in the solution set of (3.20). Therefore both sets must be
identical when they only have one element.
(c) Elementary results on ranks [51, p. 13] yield

rank
(
B−TC −B−TCTA−TB

)
≤ rank

(
B−TC

)
+ rank

(
B−TCTA−TB

)
≤ 2 rank(C).

(d) If we multiply equation (3.20) on the left by BT , then we get the equivalent
equation A(XA−T )AT −BT (XA−T )B = C − CTA−TB and the result follows.

Note that from Theorem 3.12(c), if the right-hand side of (3.19) has low rank,
then the right-hand side of (3.20) has low rank too. Also note that the converse of
Theorem 3.12(b) does not hold. The T-Sylvester equation (3.19) may have a unique
solution when the Sylvester equation (3.20) does not. To see this, consider again
the case n = 1 with A = B = 1 and arbitrary C ∈ R. Then (3.19) has the unique
solution X = C/2, while (3.20) reads X−X = 0 and thus every X ∈ R is a solution
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of (3.20). In addition, note that also every X ∈ R is a solution of the generalized
Sylvester equation (3.21) in this example. It follows from the proof of Theorem 3.12
that such a situation can only occur when (3.19) has a unique solution and 1 is a
simple eigenvalue of A− λBT .

In Section 3.2.2 we discuss a numerical method to solve (3.14), when it has a
unique solution for every right-hand side, for small to medium size matrices A, B
and C based on the generalized Schur decomposition of a regular matrix pencil.
This method can be seen as an extension of the Bartels-Stewart algorithm.

3.2.2 Numerical solution of the ?-Sylvester equation via the
generalized Schur decomposition

This section is devoted to solve the equation (3.14) for A,B,C ∈ Fn×n with F = R or
C. We will assume that the conditions of Lemma 3.9 hold, that is, we are assuming
that the equation (3.14) has a unique solution for every right-hand side C. Note
that if F = R, then the unique solution of (3.14) is real, both for ? = T and ? = ∗.
For ? = T this result is trivial, since nonsingular linear systems with real matrix
coefficient and real right-hand side vector have a unique real solution. For ? = ∗, if
X is a solution of (3.14), then X is also a solution and therefore X = X, implying
that X is real. Thus, if F = R, then we only need to consider ? = T .

Using Lemma 3.4, we can write the matrix equation (3.14) for ? = T as a
standard linear system for the unknown vec(X) ∈ Fn2 , obtaining[

(In ⊗ A) + (BT ⊗ In)Π
]
vec(X) = vec(C), (3.23)

where Π ∈ Rn2×n2 is a permutation matrix, that satisfies vec(XT ) = Πvec(X)
for every X ∈ Fn×n [52, Theorem 4.3.8]. If we use directly Gaussian elimina-
tion with partial pivoting to solve (3.23), the cost is O(n6) flops, which is pro-
hibitive, except for very small n. Similar techniques allow us to write AX +
X∗B = C, in the complex case, as a standard real linear system for the unknown[

(vec(ReX))T (vec(ImX))T
]T
∈ F2n2 , where ReX and ImX are the real and

imaginary parts of X. Gaussian elimination with partial pivoting on this linear
system leads again to a prohibitive cost of O(n6) flops.

De Terán and Dopico in [28] developed an algorithm to compute the unique
solution of (3.14) with a cost of O(n3) flops. This algorithm is based on the ge-
neralized Schur decomposition of the pair (A,B?) and it follows the spirit of the
Bartels-Stewart algorithm for the standard Sylvester equations.

First, the generalized Schur decomposition of the pair (A,B?) is computed by
using the QZ algorithm [44, Section 7.7] obtaining

A = URV, B? = USV, (3.24)
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where U , V ∈ Cn×n are unitary matrices and R, S ∈ Cn×n are upper triangular
matrices. In particular, if A and B are real matrices, then a real generalized Schur
decomposition can be computed, for which U , V ∈ Rn×n are real orthogonal matri-
ces, S ∈ Rn×n is upper triangular, but R ∈ Rn×n is upper quasi-triangular, that is,
block upper triangular with 1× 1 or 2× 2 diagonal blocks. Defining

E := U∗C (U?)∗ (3.25)

we have that equation (3.14) is equivalent to

RW +W ?S? = E (3.26)

where W = V X (U?)∗. Note that the pencils R − λS and A − λB? are strictly
equivalent, so Lemma 3.9 guarantees that the ?-Sylvester equation (3.26) has a
unique solution W for every right-hand side E.

The transformed equation (3.26) can be solved in an efficient way proposed in
[28]. To cover the possible case of generalized real Schur decompositions in (3.24)
when F = R (recall that in this case ? = T ), we consider R and S partitioned into
p× p blocks as

R =


R11 R12 · · · R1p

R22

...
. . . Rp−1,p

Rpp

 , S =


S11 S12 · · · S1p

S22

...
. . . Sp−1,p

Spp

 , (3.27)

where Rij, Sij ∈ Fni×nj for 1 ≤ i, j ≤ p, and nk = 1 or 2 for 1 ≤ k ≤ p. The diagonal
blocks Sii are always upper triangular matrices, but the diagonal blocks Rii may be
not if A,B ∈ Rn×n. If complex generalized Schur decompositions are computed in
(3.24), then p = n and nk = 1 for 1 ≤ k ≤ n. The matrices W and the right-hand
side E are also partitioned into p× p blocks as

W =


W11 W12 · · · W1p

W21 W22 W2p

...
...

. . .
...

Wp1 Wp2 · · · Wpp

 , E =


E11 E12 · · · E1p

E21 E22 E2p

...
...

. . .
...

Ep1 Ep2 · · · Epp

 , (3.28)

where the sizes of the blocks are Wij, Eij ∈ Fni×nj , that is, the same sizes as in the
partitions (3.27).

The authors of [28] propose to determine first simultaneously the last block
column and the last block row ofW , then to determine simultaneously the last block
column and the last block row ofW (1 : p−1, 1 : p−1) := [Wij]

p−1
i,j=1, then to determine

simultaneously the last block column and the last block row ofW (1 : p−2, 1 : p−2),
and, so on until we determine W11. Observe that we have extended in the previous
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discussion standard MATLAB notation for submatrices from indices of entries to
block-indices, since W (1 : p − 1, 1 : p − 1) denotes the submatrix of W consisting
of block rows 1 through p− 1 and block columns 1 through p− 1. Using this idea,
and developing a similar process than the Bartels-Stewart algorithm, they obtain
Algorithm 3.2 to solve the matrix equation (3.26).

Algorithm 3.2 Solution of RW + W ?S? = E for (quasi) triangular coefficient
matrices
Input: Matrices R, S ∈ Fn×n with F = R or C obtained in (3.24) and E obtained
in (3.25).

Output: W ∈ Fn×n, which is the unique solution of RW +W ?S? = E.
for j = p : −1 : 1 do

1. Get Wjj by solving RjjWjj +W ?
jjS

?
jj = Ejj.

for i = j − 1 : −1 : 1 do

2. Get Wij and Wji by solving
{
SiiWij +W ?

jiR
?
jj = E?

ji −
∑j

k=i+1 SikWkj

RiiWij +W ?
jiS

?
jj = Eij −

∑j
k=i+1RikWkj

}
end for
3. Update the right-hand side E

E(1 : j − 1, 1 : j − 1) = E(1 : j − 1, 1 : j − 1)−R(1 : j − 1, j)W (j, 1 : j − 1)

−(S(1 : j − 1, j)W (j, 1 : j − 1))?

end for

Note that in step 3 of Algorithm 3.2, we have used again MATLAB’s notation
for submatrices through block indices. Algorithm 3.3 summarizes the process to
solve the Sylvester equation for ?-congruence (3.14).

Algorithm 3.3 Algorithm to solve AX +X?B = C

Input: A,B,C ∈ Fn×n with F = R or C, such that A and B satisfy the conditions
1 and 2 in Lemma 3.9.

Output: The unique solution X ∈ Fn×n of AX +X?B = C.
1. Compute the generalized Schur decomposition of the pair (A,B?), A = URV ,
B? = USV .
2. Compute E = U∗C (U?)∗.
3. Use Algorithm 3.2 to solve the transformed equation RW +W ?S? = E.
4. Compute X = V ∗WU?.

Now, we analyze the computational costs of Algorithms 3.2 and 3.3. If we assume
that F = R, the cost of Algorithm 3.2 is 2n3+O(n2) flops, if Rii ∈ R1×1 for all i. The
cost of the QZ algorithm in Step 1 of Algorithm 3.3 is 66n3 +O(n2) flops (see [44, p.
385]). In addition, Steps 2 and 4 in Algorithm 3.3 amount to 4 matrix multiplications
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of n×n matrices. Therefore the total cost of Algorithm 3.3 is 76n3 +O(n2) flops. If
F = C, this cost is multiplied by a factor up to 6. This cost implies that Algorithm
3.3 can only be used for matrices A,B,C ∈ Cn×n for small to medium size n. In
Chapter 5 we propose a new method to solve Sylvester equations for T -congruence
when the matrices A, B and C are large-scale and sparse and the right-hand side
matrix C has low rank, based on Krylov methods.

3.3 Galerkin projection methods for the Sylvester
equation

In this section, we discuss Galerkin projection methods for solving the Sylvester
equation. These methods use Galerkin conditions on the residual to compute an
approximate solution of the Sylvester equation and the approximate solution is com-
puted in terms of the solution of a reduced problem. In particular, direct methods
are used to solve these reduced problems. As we discussed before, since the original
problem is projected into a problem of small size, Krylov methods are used for large-
scale coefficient matrices A, B and C in the Sylvester equation. In particular, for
Sections 3.3.1 and 3.3.2, we consider the case A,B,C ∈ Cn×n for historical reasons.
Also note that in both sections m denotes the dimension of the Krylov subspace.

In the literature, a first approach that was used for solving large-scale Sylvester
equations was to apply a projection method on the linear system (3.5) which is equi-
valent to solve (3.1). In order to present this idea, we first introduce in Section 3.3.1
the full orthogonalization method [85] (FOM) which is based on Arnoldi for solving
general linear systems of equations. However, FOM does not take into account the
structure of the matrix involved in the linear system (3.5), and it results impractical
a direct application for large-scale and sparse problems, specially in terms of stor-
age and computational costs. To address this issue, an improved algorithm based
on FOM is presented in Section 3.3.2 that replaces the Krylov subspace considered
originally in FOM by a new one, which allows to work with the matrices A and B
of size n× n instead of (3.6) of size n2 × n2, obtaining a memory saving procedure.

The Sylvester equation arises in several applications, where the right-hand side
matrix C has low rank [5]. When this happens, another class of Krylov methods
has been developed to project the large-scale Sylvester equation onto another one of
smaller size [90]. In Section 3.3.3 we present a brief summary on projection methods
for Sylvester equations with low-rank right-hand side. These algorithms are based
on the Arnoldi method and they approximate the solution by a low rank matrix.
The implementation of these methods depends on the type of Krylov subspace that
have been chosen, as block Krylov or extended Krylov, and it allows to develop
memory efficient algorithms.
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3.3.1 The full orthogonalization method

In this section we discuss the full orthogonalization method (FOM) introduced in
[85] which is a method developed for solving general linear systems of equations.
Also, a summary of this method is presented in [53, Section 2].

Consider a square linear system

Gx = b (3.29)

where G ∈ Cn×n is invertible and b ∈ Cn.
The purpose of the full orthogonalization method is to construct an orthonormal

basis of a certain Krylov subspace Km(G, u1) by using the Arnoldi method, and
then, compute an approximation to the solution of (3.29) by solving a linear system
of equations of smaller size by a direct method.

Let x0 ∈ Cn be a given initial approximation of the solution of (3.29), and define
the residual vector

r0 := b−Gx0. (3.30)

FOM requires to determine a correction z0 ∈ Km(G, r0) of x0 that satisfies G(x0 +
z0) ≈ b, or equivalently, Gz0 ≈ r0.

In order to determine a convenient representation of z0, the Arnoldi process is
applied to generate an orthonormal basis of Km(G, r0). Consider the first j iterations
of the Arnoldi process for Km(G, r0), and recall the Arnoldi recurrence relation
introduced in Proposition 2.20:

Hj = V ∗j GVj, GVj = Vj+1Hj, (3.31)

where Vj+1 = [v1, v2, · · · vj+1] ∈ Cn×(j+1) contains the orthonormal Krylov vectors
as columns, and Hj ∈ C(j+1)×j is an upper Hessenberg matrix. Then, we can write

z0 = Vjy0 (3.32)

for some y0 ∈ Cj. Since the full orthogonalization method is a Galerkin method,
the vector y0 is required to be such that the residual error

r1 = r0 −GVjy0 (3.33)

is orthogonal to Km(G, r0), i.e.,

V ∗j (r0 −GVjy0) = 0. (3.34)

By using (3.31) and the fact that the first column of Vj is a scaling of r0, the equation
(3.34) can be rewritten as

Hjy0 = ‖r0‖2e1, (3.35)
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where e1 ∈ Rj represents the first canonical vector. Then, the system (3.35) is
solved for y0, and z0 can be determined from (3.32). Thus, the new approximate
solution can be computed as

x1 = x0 + z0, (3.36)

and the corresponding residual error as

r1 = r0 − Vj+1Hjy0, (3.37)

whose norm can be cheaply computed as ‖r1‖2 = ‖‖r0‖2e1 − Hjy0‖2, and so, the
convergence can be cheaply tested. The full orthogonalization method is summarized
in Algorithm 3.4.

Algorithm 3.4 Full orthogonalization method for solving general linear systems of
equations
Input: G ∈ Cn×n with det(G) 6= 0, b ∈ Cn and x0 ∈ Cn an initial approximation of
(3.29).

Output: An approximation for the unique solution x ∈ Cn of Gx = b.
1. Compute r0 = b−Gx0.
for j = 1, 2, . . . ,m do

2. Use the Arnoldi method (Algorithm 2.1) to compute Vj+1 whose columns
form an orthonormal basis of Kj+1(G, r0) and the upper Hessenberg matrix Hj.

3. Solve the small linear system Hjy = ‖r0‖2e1.
4. Compute x0 = x0 + Vjy and test for convergence.

end for

Convergence properties of this method can be found in [85]. If ‖r1‖2 is not
sufficiently small for a reasonably small j, we can repeat the computations with
x0 = x1 and r0 = r1. This process is known as the restarted full orthogonalization
method [85].

If FOM wants to be applied for solving the linear system (3.5), the size of A⊕SB
in (3.6) turns into an issue since we need to store at each iteration a Krylov vector
of size n2. For this reason, it is attractive to replace the Krylov vectors by vectors
of smaller size. This technique is developed in Section 3.3.2

3.3.2 An algorithm based on the tensor product of Krylov
subspaces for solving the Sylvester equation

In this section we discuss a Krylov method for the unique solution of the Sylvester
equation (3.1) with A,B,C ∈ Cn×n, which consists into project the original problem
(3.1) into a Sylvester equation of reduced size, and use the solution of this reduced
equation to approximate the solution of the original problem [53].
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The full orthogonalization method is not attractive when the matrix (A ⊕S
B) is large, since it is very expensive to store a basis of the Krylov subspace
Km(A⊕S B, r0). In order to reduce the memory cost, the Krylov subspace Km(A⊕S
B, r0) is replaced by the subspaceKm(BT , g)⊗Km(A, f), for certain vectors f, g ∈ Cn
where the tensor product of these subspaces is defined by

Km(BT , g)⊗Km(A, f) := span{w ⊗ v : w ∈ Km(BT , g), v ∈ Km(A, f)},

and, as we will discuss later in this section, f and g are related to r0.
Suppose, for the moment, f and g arbitrary but fixed vectors in Cn, and use the

Arnoldi method in Algorithm 2.1 to generate orthonormal bases {v1, v2, . . . , vm+1}
and {w1, w2, . . . , wm+1} of Km+1(A, f) and Km+1(B

T , g), respectively. Using the
usual notation Vm := [v1, v2, . . . vm] and Wm := [w1, w2, . . . wm] we obtain from
the Arnoldi recurrence relation:

H(A)
m = V ∗mAVm, H(B)

m = W ∗
mB

TWm, (3.38)
AVm = Vm+1H

(A)
m , BTWm = Wm+1H

(B)
m . (3.39)

Since the columns of Vm and Wm are orthonormal, the columns of Wm⊗ Vm are
also orthonormal and they form a basis of Km(BT , g)⊗Km(A, f).

Consider the linear system

(A⊕S B)vec(X) = vec(C), (3.40)

and let x0 ∈ Cn
2 be an approximate solution of (3.40), and consider the residual

vector r0 as in (3.30) with G := A⊕S B. As for the full orthogonalization method,
we want to compute a correction z0 ∈ Km(BT , g)⊗Km(A, f) of x0 and obtain a new
approximate solution x1 = x0 + z0 for (3.40) such that the residual vector in (3.33)
is orthogonal to Km(BT , g)⊗Km(A, f). Then, the correction z0 can be written as

z0 = (Wm ⊗ Vm)y0, (3.41)

for some vector y0 ∈ Cm
2 . Substituting (3.41) in

r1 = r0 − (A⊕S B)z0 (3.42)

and requiring that (Wm ⊗ Vm)∗r1 = 0, the linear system

(Im ⊗H(A)
m +H(B)

m ⊗ Im)y0 = r̄0 (3.43)

is obtained, where H(A)
m , H

(B)
m ∈ Cm×m are defined in (3.38) and r̄0 := (Wm ⊗

Vm)∗r0 ∈ Cm
2 . Note that the system (3.43) is equivalent to the Sylvester equation

H(A)
m Y0 + Y0

(
H(B)
m

)T
= R̄0, (3.44)
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where vec(Y0) = y0 and vec(R̄0) = r̄0. Since the size of the Sylvester equation (3.44)
is small, it can be solved by using a direct method as the Bartels-Stewart algorithm.

When y0 is computed, the correction z0 is computed by using (3.41). Then,
x1 = x0 + z0 can be computed, and with this, the residual vector r1 in (3.42). The
computation of r1 can be expensive if A and B are not sparse, for that reason, the
residual r1 can be computed as

r1 = r0 − (Wm ⊗ Vm+1H
(A)
m )y0 − (Wm+1H

(B)
m ⊗ Vm)y0. (3.45)

The implementation of the Galerkin algorithm is summarized in Algorithm 3.5.

Algorithm 3.5 Tensor product of Krylov subspaces for solving the Sylvester equa-
tion
Input: A, B, C ∈ Cn×n, such that the Sylvester equation AX + XB = C has a
unique solution, f, g ∈ Cn with ‖f‖2 = ‖g‖2 = 1, and x0 an initial approximation
of the solution of (3.40)

Output: The unique solution X ∈ Cn×n of AX +XB = C.
1. Compute r = vec(C)− (A⊕S B)x0.
for j = 1, 2, . . . ,m do

2. Use the Arnoldi method (Algorithm 2.1) to compute Vj+1 whose columns
form an orthonormal basis of Kj+1(A, f) and the upper Hessenberg matrixH(A)

j .

3. Use the Arnoldi method (Algorithm 2.1) to compute Wj+1 whose columns
form an orthonormal basis of Kj+1(B

T , g) and the upper Hessenberg matrix
H

(B)
j .

4. Compute r̄ = (Wj ⊗ Vj)∗r.
5. Solve the reduced Sylvester equation H

(A)
j Y + Y

(
H

(B)
j

)T
= R̄, where

vec(R̄) = r̄ via the Bartels-Stewart algorithm (Algorithm 3.1).
6. Compute x0 = x0 + (Wj ⊗ Vj)y where y = vec(Y ) and test for convergence.
7. Compute r = r − (Wj ⊗ Vj+1H

(A)
j )y − (Wj+1H

(B)
j ⊗ Vj)y.

end for
8. Define X such that vec(X) = x0.

If the approximations are not good enough, the Galerkin method can be applied
again with new vectors f and g. This process is usually called the restarted Galerkin
algorithm. For the selection of the vectors f and g, a brief discussion is presented
[53, Section 5]. An ideal option for f and g would be to choose them such that
r0 ∈ K(BT , g)⊗Km(A, f). However, such vectors are difficult to determine. Then,
the vectors f, g ∈ Rn can be determined so that ‖r0−g⊗f‖2 is small, or equivalently,
if ‖R0 − fgT‖F is small, where r0 = vec(R0) with R0 ∈ Rn×n.

If σmax denotes the largest singular value of R0, and let ql and qr be the associated
left and right unit singular vectors, then
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minf,g∈Rn‖R0 − fgT‖F = ‖R0 − σmaxqlqTr ‖F . (3.46)

However, the solution of (3.46) requires an extra cost that makes this solution
unattractive. Then, an approximate solution is proposed in [53] for computing the
vectors f and g. Let f = [f1, . . . , fn]T , g = [g1, . . . , gn]T and assume that f 6= 0,
g 6= 0. Introduce the functional

T (f, g) = ‖R0 − fgT‖2F .

Then

∂T

∂fj
= 0 ∀j ⇔ f =

R0g

‖g‖22
, (3.47)

∂T

∂gj
= 0 ∀j ⇔ g =

RT
0 f

‖f‖22
. (3.48)

Therefore, given a vector g, f can be computed by (3.47) that minimizes f →
T (f, g), or conversely, given a vector f , the vector g can be computed from (3.48)
such that minimizes g → T (f, g). Thus, we can summarize that, if ‖R0‖1 ≥ ‖R0‖∞
then, choose f as the column with largest norm of R0, and determine g from 3.48.
If ‖R0‖1 ≤ ‖R0‖∞, choose g as the row with largest norm of R0 and then, determine
f by using (3.47).

Now, we discuss and compare the computational and memory costs of Algorithm
3.4 and 3.5, with G := (A ⊕S B) in Algorithm 3.4. In practice, the dimension n is
usually much greater than the iteration number j, so when counting the flops number
we may disregard those terms not containing n. First, it is important to remark
that multiplications that involve Kronecker products of matrices can be performed
without explicitly construct the matrix, for example, consider the matrix-vector
multiplication

(A⊕S B)c

where (A ⊕S B) ∈ Cn2×n2 and c ∈ Cn2 which can be computed as follows: If we
partition c as c = [c(1)

T
, c(2)

T
, . . . , c(n)

T
]T with c(i) ∈ Cn, for i = 1, 2, . . . , n and we

consider B = [bij]1≤i,j≤n then

(A⊕S B)c = (In ⊗ A+BT ⊗ In)c

=


Ac(1) + b11c

(1) + b21c
(2) + · · ·+ bn1c

(n)

Ac(2) + b12c
(1) + b22c

(2) + · · ·+ bn2c
(n)

...
Ac(n) + b1nc

(1) + b2nc
(2) + · · ·+ bnnc

(n)

 ,
and this matrix-vector multiplication can be computed with computational cost at
most O(n3) flops but much less if A and B are sparse. Anyway, it requires 2n
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matrix-vector products of size n. Since this multiplication appears in the first step
in both algorithms, it is a common (and expensive) step and we do not consider it
in the computational cost for comparative purposes.

We start with the computational costs for FOM in Algorithm 3.4. Step 2 costs
O(n3 + n2j) flops, where the most expensive step is the computation of v̂ in the
Arnoldi method, which produces the O(n3) cost, but that it can be much less if A
and B are sparse. Anyway, as explain above it, it requires 2n matrix vector products
of size n. The cost of the solution of the linear system in step 3 is O(j3) flops and is
disposable. Finally, the cost for step 4 is O(n2j) flops. Therefore, the computational
cost of the j-th iteration in Algorithm 3.4 is O(n3 + n2j) flops.

The costs of Algorithm 3.5 are summarized in the following lines. For the com-
putation of steps 2 and 3, O(n2 + nj) flops are required for each one. Note that
in this case, the computation of the vectors v̂ and ŵ in steps 2 and 3, respectively,
involves matrix-vector multiplications of size n instead of n2, and, therefore, it costs
at most O(n2) flops. The computation of r in step 4 requires O(n2j) flops. The
cost of step 5 is O(j3) which is negligible. Finally, for steps 7 and 8 the costs
are O(n2j) flops, which results that the computational cost of the j-th iteration is
O(n2 + nj + n2j) ≈ O(n2j).

In terms of memory cost, the bigger cost for Algorithm 3.4 lies in storing the
matrices Vj+1 ∈ Cn

2×(j+1) and the vectors x0, r ∈ Cn
2 . After j iterations, this

requires to store (j + 1)n2 + 2n2 numbers. For Algorithm 3.5, after j iterations we
store the matrices Vj+1,Wj+1 ∈ Cn×(j+1) and the vectors x0, r ∈ Cn

2 , which results
in a storage cost of 2nj + 2n+ 2n2 numbers.

In Table 3.1, the comparison of the costs between both algorithms is summarized.
As we commented before, Algorithm 3.5 results in a memory saving method. Also,
without considering the first step of both methods which has the same cost for both
of them, the computational costs are considerably reduced in Algorithm 3.5 with
respect to Algorithm 3.4.

Algorithm 3.4 Algorithm 3.5

Computational cost j× (the cost of 2n matrix- O(n2j2)vector products of size n) +O(n2j2)
Memory cost (j + 1)n2 + 2n2 2nj + 2n+ 2n2

Table 3.1: Computational and memory costs for Algorithms 3.4 and 3.5.

Despite of the relevant improvement of Algorithm 3.5 with respect to Algorithm
3.4, the memory cost of Algorithm 3.5 is very high and it cannot be used to solve
modern large-scale problems. The key reason is the term 2n2 in the memory cost
of Algorithm 3.5, that comes from the fact that Algorithm 3.5 stores the vectors
x0 and r, where x0 = vec(X0) is a full-dense approximation to the solution X. In
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modern large-scale problems, n is very large and a dense matrix of size n×n cannot
be stored in the computer. This motivates the development of projection methods
that approximate the true solution in terms of a number of parameters much less
than n2 for special Sylvester equations that are important in applications. A family
of such projection methods is describe in the next subsection.

3.3.3 Projection methods for the Sylvester equation with a
low rank right hand side

In this section, we consider the Sylvester equation

AX +XB = C1C
∗
2 , (3.49)

where A ∈ Cm×m, B ∈ Cn×n are large and sparse and C := C1C
∗
2 has low rank with

C1 ∈ Cm×r, C2 ∈ Cn×r and r = rank(C), with r � min{m,n}.
An important observation is that, although A and B are sparse, X ∈ Cm×n is

dense, in general, and that for very large values of m and n, a dense matrix of size
m×n cannot be stored in the computer. Then, the distribution of the singular values
of X is a key factor for the development of iterative solution methods. Therefore, a
Sylvester equation having solution with exponentially decaying singular values can
be well approximated by a low rank matrix [90].

In order to solve (3.49), we introduce the block Krylov (BK) subspaces

Kk(G,Z) = span{Z,GZ,G2Z, . . . , Gk−1Z} (3.50)

where G ∈ Cn×n and Z ∈ Cn×s. Note that the Arnoldi method can be straight-
forwardly adapted to compute an orthonormal basis for a block Krylov subspace
Kk(G,Z) [86, Section 6.5].

Let V and W be two subspaces of Cm and Cn respectively, and let the columns
of Vk ∈ Cm×k, Wj ∈ Cn×j be orthonormal bases of V and W respectively, this is,

V = range(Vk), W = range(Wj), (3.51)

such that V is not orthogonal to range(C1) andW is not orthogonal to range(C2). It
is well-known [89, 90] that projection methods for Sylvester equations with low-rank
right-hand side look for an approximation

X̃ = VkYW
∗
j ≈ X (3.52)

for a certain matrix Y ∈ Ck×j with an associated residual

R := C1C
∗
2 − AX̃ − X̃B. (3.53)

Observe that X̃ is represented in terms of nk + mj + kj numbers, and that nk +
mj + kj � mn if max{k, j} � min{m,n}. Then, we have

x̃ = vec(X̃) = (Wj ⊗ Vk)vec(Y ), (3.54)
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where x̃ is an approximate solution of the equivalent linear system (3.5). If a
Galerkin condition is imposed to the vector residual vec(C) − (A ⊕S B)x̃ in (3.5)
with respect to the space spanned by Wj ⊗ Vk we have

(Wj ⊗ Vk)∗(vec(C)− (A⊕S B)x̃) = 0 ⇔ V ∗k RWj = 0. (3.55)

If we substitute the residual matrix (3.53) in (3.55), we obtain the small size Sylvester
equation

V ∗k AVkY + YW ∗
j BWj = V ∗k C1(W

∗
j C2)

∗. (3.56)

The development of the algorithm and the computations of the matrices depend
on the selection of the subspaces V and W . For example, block Krylov subspaces
can be chosen, with V = Kk(A,C1) and W = Kk(B∗, C2) or an attractive choice are
extended Krylov (EK) subspaces, defined as

EKk(G,Z) = Kk(G,Z) +Kk(G−1, G−1Z), (3.57)

where G ∈ Cn×n is an invertible matrix and Z ∈ Cn×s. Then, we can choose
V = EKk(A,C1) and W = EKk(B∗, C2) if we are interested into use extended
Krylov subspaces. A very brief summary of this process with V and W chosen as
block Krylov subspaces is presented in Algorithm 3.6. Note that in Algorithm 3.6 the
notation Vj+1 = [V1, V2, . . . , Vj+1] = [Vj, Vj+1] and Wj+1 = [W1,W2, . . . ,Wj+1] =
[Wj,Wj+1] is used since now we are orthogonalizing blocks of vectors instead of a
single one at each iteration.

A detailed discussion of the selection of different subspaces is presented in [90].
Also, several other methods to compute a numerical solution of the Sylvester equa-
tions, as the ADI iteration, are discussed in [90].

In terms of memory cost, Algorithm 3.6 results in a memory saving procedure.
We consider the case m = n to compare the memory costs of Algorithms 3.4, 3.5
and 3.6. Note that for Algorithm 3.6, after j iterations, only two matrices of size
n(j + 1)r, where r is the rank of the right-hand side C, need to be stored, and one
of size j × j. As occurs in large-scale problems, n � j, thus, roughly 2n(j + 1)r
numbers need to be stored, where usually r < j in applications. The memory cost
for each method is summarized in Table 3.2. Note that the approximate solution
obtained by Algorithm 3.6 depends on a number of parameters much less than n2,
which is a very considerable improvement with respect to Algorithm 3.5 when n is
large.

Algorithm 3.4 Algorithm 3.5 Algorithm 3.6
Memory cost (j + 1)n2 + 2n2 2n(j + 1) + 2n2 2n(j + 1)r

Table 3.2: Memory costs for Algorithms 3.4, 3.5 and 3.6 after j iterations.
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Algorithm 3.6 Block Krylov method for the Sylvester equation with low-rank
right-hand side
Input: A ∈ Cm×m, B ∈ Cn×n, C1 ∈ Cm×r, C2 ∈ Cn×r such that the Sylvester
equation AX +XB = C1C

∗
2 has a unique solution.

Output: Vk, Yk and Wk such that Xk = VkYkW
∗
k is an approximate solution of

the Sylvester equation AX +XB = C1C
∗
2 .

1. Orthogonalize the columns of C1 obtaining V1 ∈ Cm×r and set V1 = [V1].
2. Orthogonalize the columns of C2 obtaining W1 ∈ Cn×r and set W1 = [W1].
for k = 1, 2, . . . , l do

3. Compute Yk, solution of

(V∗kAVk)Yk + Yk(W
∗
kBWk)−V∗kC1C

∗
2Wk = 0.

via the Bartels-Stewart algorithm and test for convergence.
4. Compute V̂ , Ŵ for the chosen approximate space, where V̂ , Ŵ are block
matrices obtained by computing a matrix-matrix multiplication similar to step
1 of Algorithm 2.1 where vj is a block matrix instead of a vector.
5. Orthogonalize V̂ and Ŵ with respect to {V1, V2, . . . , Vk} and
{W1,W2, . . . ,Wk} respectively.
6. Orthogonalize the columns of V̂ to get Vk+1 and columns of Ŵ to get Wk+1.

7. Update Vk+1 = [Vk Vk+1], Wk+1 = [Wk Wk+1].
end for

In Chapter 5, we present a novel projection method to solve the Sylvester equa-
tion for T-congruence with low-rank right-hand side. This method presents some
similarities with the Krylov methods presented in this section, however, the use of
a Galerkin condition is changed by a Petrov-Galerkin condition given the relation
between the matrices A and B in the T-Sylvester equation.



Chapter 4

The R-CORK method

In this chapter, inspired in the methods CORK and TOAR for PEPs explained in
Sections 2.4.3 and 2.4.2, we develop the new method R-CORK for the solution of
large-scale and sparse rational eigenvalue problems. We use the compact rational
Krylov decomposition (2.25) expressed in a compact form (as in (2.112)) for the
bases of the rational Krylov subspaces associated to the linearization (2.10) of the
REP corresponding to the rational matrix (2.9) and we work in the spirit of the two
levels of orthogonalization introduced in [100, 71]. We also discuss the advantages
of the R-CORK method in terms of memory and orthogonalization costs which are
similar to the costs for the CORK method.

The R-CORK method is based on the rational Krylov method, and it follows
the steps introduced in Algorithm 2.4, but exploiting the structure of both the
linearization (2.10) and the Krylov vectors.

From now on, we change slightly the notation used in Algorithm 2.4, we denote
the Krylov vectors uj as uj, this is, we use bold characters and the matrix Uj
that contains the Krylov vectors in its columns as Uj, basically because now they
represent block vectors and block matrices, respectively. Also, for simplicity, we will
consider the continuation vector zj in step 2 in Algorithm 2.4 as the canonical vector
ej ∈ Cj and then, in step 3 in Algorithm 2.4, we have wj = uj and

û = (A− θjB)−1Buj.

The results introduced in Chapter 4 are, as far as we know, novel results that have
been accepted for publication and that they appear in [34].

81
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4.1 A compact decomposition for bases of rational
Krylov subspaces of A− λB

Recall the matrices A and B introduced in (2.11)

A =


P0 P1 · · · Pd−1 E
0 · · · 0 −In
... . .

.
. .
.

0 −In
F T C

 , B = −


Pd

In

. .
.

In
−D


to linearize the REP written as (2.9) and the rational Krylov recurrence relation
(2.25) which is valid for arbitrary pencils.

In this section, we particularize such relation to the matrices A and B in (2.11)
in order to save memory and orthogonalization costs. For this purpose, we consider
a partition of Uj+1 conformable to A and B as follows

Uj+1 = [Uj uj+1] =


U

(1)
j u

(1)
j+1

U
(2)
j u

(2)
j+1

...
...

U
(d)
j u

(d)
j+1

Vj vj+1

 (4.1)

where U (i)
j ∈ Cn×j, u

(i)
j+1 ∈ Cn, for i = 1, . . . , d, Vj ∈ Cs×j, and vj+1 ∈ Cs. Next,

as in CORK for the first d blocks, we define the matrix Qj ∈ Cn×rj such that the
columns of Qj are orthonormal with

span{Qj} = span{U (1)
j , U

(2)
j , . . . , U

(d)
j } (4.2)

and rank(Qj) = rj. Using (4.2) we can express

U
(i)
j = QjR

(i)
j , i = 1, 2, . . . , d, (4.3)

where R(i)
j ∈ Crj×j for i = 1, 2, . . . , d. Then, by using (4.3), we have

Uj =


QjR

(1)
j

QjR
(2)
j
...

QjR
(d)
j

Vj

 =


Qj

Qj

. . .

Qj

Is




R

(1)
j

R
(2)
j
...

R
(d)
j

Vj

 . (4.4)
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By introducing the notation

Qj :=

[
(Id ⊗Qj) 0dn×s

0s×drj Is

]
∈ C(dn+s)×(drj+s) and Rj :=


R

(1)
j

R
(2)
j
...

R
(d)
j

Vj

 ∈ C
(drj+s)×j,

(4.5)
we have Uj = QjRj. Since the columns of Uj and Qj are orthonormal, the matrix
Rj has orthonormal columns too. With this notation, the rational Krylov decom-
position (2.25) can be written as the following compact rational Krylov recurrence
relation

AQj+1Rj+1Hj = BQj+1Rj+1Kj. (4.6)

In order to prove that, as in CORK, we need only one vector to expand Qj

into Qj+1 and that, as a consequence, rj is considerably smaller than jd, i.e., that
QjRj is indeed a compact representation of Uj, we will prove first Lemmas 4.1 and
4.3. We emphasize the relationship between Lemma 4.1 and Theorem 2.15, but
also two differences: the first one is coming from the presence of the strictly proper
part E(C−λD)−1F T of the rational matrix R(λ), which motivates the definition of
the rational matrix A(λ) in Lemma 4.1, and the second one which is related with
the matrices A and B in (2.11). Since the matrices Pi are ordered in increasing
index order in (2.11), it occurs that the permutation P in Theorem 2.15 is not
needed in Lemma 4.1, therefore, we developed a UL decomposition instead of a
ULP decomposition. Apart from these differences, we have stated Lemma 4.1 in
an analogous way to Theorem 2.15, with the purpose of stressing the relation with
CORK, but note that the simple particular structures of M , N ∈ C(d−1)×d, and B
inherited from (2.11)-(2.13) imply that in Lemma 4.1

M := [ m0 M1 ] =

 0 −1
... . .

.

0 −1

 , N := [ n0 N1 ] =

 −1 0

. .
. ...

−1 0


(4.7)

and that B̄1 has only one nonzero block. Therefore, the factors L(µ) and U(µ)
in Lemma 4.1 are simpler than the general ones in Theorem 2.15. Note also that
Lemma 4.3 is related to [104, Lemma 4.3], although again the strictly proper part
of the rational matrix introduces relevant differences.

Lemma 4.1. Consider a rational matrix

R(λ) = P (λ)− E(C − λD)−1F T ∈ C(λ)n×n,

where P (λ) =
∑d

i=0 λ
iPi, Pi ∈ Cn×n for i = 0, . . . , d, E, F ∈ Cn×s, C, D ∈ Cs×s, D

is nonsingular, and E(C − λD)−1F T is a minimal realization. Define the rational
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matrix

A(λ) =

[
P0 − E(C − λD)−1F T P1 · · · Pd−2 Pd−1

M ⊗ In

]
,

and the constant matrix

B =

[
0n 0n · · · 0n − Pd

N ⊗ In

]
,

with M and N defined as in (4.7). Then, for every µ ∈ C which is not a pole of
R(µ), i.e., such that (C−µD) is nonsingular, we can factorize A(µ)−µB as follows

A(µ)− µB = U(µ)L(µ), (4.8)

where

L(µ) =

[
R(µ) 0

(m0 − µn0)⊗ In (M1 − µN1)⊗ In

]
,

U(µ) =

[
In (Ā1 − µB̄1)((M1 − µN1)

−1 ⊗ In)
0 I(d−1)n

]
,

and

[P0 − E(C − µD)−1F T P1 · · · Pd−1] =: [P0 − E(C − µD)−1F T Ā1],

[0n 0n · · · − Pd] =: [0n B̄1].

Proof. Observe first that the definitions of M and N imply that M1 − µN1 is in-
vertible for every µ ∈ C, therefore M1 − µN1 is nonsingular for every µ ∈ C. By a
direct matrix multiplication, we obtain

U(µ)L(µ) =

[
R(µ) + (Ā1 − µB̄1)(((M1 − µN1)

−1(m0 − µn0))⊗ In) (Ā1 − µB̄1)
(m0 − µn0)⊗ In (M1 − µN1)⊗ In

]
=

[
R(µ) + (Ā1 − µB̄1)(((M1 − µN1)

−1(m0 − µn0))⊗ In) (Ā1 − µB̄1)

(M − µN)⊗ In

]
.

Therefore, we only need to prove that

R(µ) + (Ā1 − µB̄1)(((M1 − µN1)
−1(m0 − µn0))⊗ In) = P0 − E(C − µD)−1F T ,

which is equivalent to prove that

P (µ) + (Ā1 − µB̄1)(((M1 − µN1)
−1(m0 − µn0))⊗ In) = P0. (4.9)

The proof of (4.9) is a very simple algebraic manipulation as a consequence of the
extremely simple structures of m0 and n0, M1 and N1 in this case. Another proof
comes from the observation that (4.9) holds because it is proved for proving the
ULP decomposition in Theorem 2.15 (see [104, pp. 823-824]).
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Remark 4.2. Observe that Theorem 2.15 involves the constant α = eT1Pf(µ), which
is not present in Lemma 4.1. The reason is that in Lemma 4.1, this constant is equal
to 1 as a consequence of the structure of (2.12) and that P = Id.

Lemma 4.3. Let A and B be the matrices defined in (2.11). Consider the linear
system

(A− µB)x = Bw, (4.10)

where x = [x(1)
T
, x(2)

T
, · · · , x(d)T , yT ]T and w = [w(1)T , w(2)T , · · · , w(d)T , zT ]T , the

blocks x(i), w(i) ∈ Cn, i = 1, 2, . . . , d, y, z ∈ Cs, and µ is not a pole of R(µ), i.e.,
(C − µD) is nonsingular. Then, the block x(1) of x can be computed by solving the
following n× n linear system whose coefficient matrix is R(µ) in (2.9):

R(µ)x(1) = −Pdw(d)−E(C −µD)−1Dz+ (Ā1−µB̄1)((M1−µN1)
−1⊗ In)w(d−1,...,1),

where the matrices introduced in Lemma 4.1 are used and

w(d−1,...,1) = [w(d−1)T , · · · , w(1)T ]T .

The remaining blocks x(i) for i = 2, · · · , d of x can be obtained as linear combinations
of x(1) and w(i), i = 1, . . . , d−1. Also, x(2,...,d) = [x(2)

T
, · · · , x(d)T ]T satisfies the linear

system

x(2,...,d) = −((M1 − µN1)
−1 ⊗ In) (w(d−1,...,1) + ((m0 − µn0)⊗ In)x(1)) .

In addition, y can be computed by solving the s× s linear system

(C − µD)y = Dz − F Tx(1).

Proof. Rewrite the matrix pencil (2.10) as in (2.13)

A− µB =

[
A− µB e1 ⊗ E
eT1 ⊗ F T C − µD

]
with

A =

[
P0 · · · Pd−2 Pd−1

M ⊗ In

]
, B =

[
0n · · · 0n − Pd

N ⊗ In

]
,

and M and N defined as in (4.7). Then, we can solve the system (4.10) by solving

(A− µB)x(1,2,...,d) + (e1 ⊗ E)y = Bw(1,2,...,d), (4.11)
(eT1 ⊗ F T )x(1,2,...,d) + (C − µD)y = Dz, (4.12)

where x(1,2,...,d) = [x(1)
T
, x(2)

T
, · · · , x(d)T ]T and w(1,2,...,d) = [w(1)T , w(2)T , · · · , w(d)T ]T .

The second equation is the equation for y in the statement. By replacing y =
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(C − µD)−1(Dz − F Tx(1)) from (4.12) in (4.11), and using the notation of Lemma
4.1, we obtain

(A− µB)x(1,2,...,d) − (e1 ⊗ E)(C − µD)−1F Tx(1) = Bw(1,2,...,d) − (e1 ⊗ E)(C − µD)−1Dz,[
P0 − E(C − µD)−1F T · · · Pd−1 + µPd

(M − µN)⊗ In

]
x(1,2,...,d) = −

[
Pdw

(d) + E(C − µD)−1Dz

w(d−1,...,1)

]
,

(A(µ)− µB)x(1,2,...,d) = −
[
Pdw

(d) + E(C − µD)−1Dz

w(d−1,...,1)

]
.

By combining the factorization (4.8) in Lemma 4.1 and the equation above, it is
immediate to see that the blocks x(i) for i = 2, . . . , d of x are linear combinations
of x(1) and the blocks w(i), i = 1, . . . , d − 1. In addition, some elementary matrix
manipulations with the matrices U(µ) and L(µ) in (4.8) lead to the equations for
x(2,...,d) and x(1) in the statement. This finishes the proof.

As we mentioned before, Lemma 4.3 is the key result that allows us to prove
through Theorems 4.5 and 4.6 that only one vector is needed to expand Qj into
Qj+1 and, so, that the representation (4.4) for Uj is indeed compact. Moreover, the
equations for x(1), x(2,...,d), and y deduced in Lemma 4.3 lead to the efficient Algo-
rithm 4.1 for solving the linear system (4.10), which is fundamental for performing
efficiently the shift-and-invert step in the R-CORK method developed in Section
4.2. Observe that in Algorithm 4.1 a notation similar to that in Lemma 4.3 is used.

Algorithm 4.1 Solver for the linear system (A− µB)x = Bw, with A and B as in
(2.11)

Input: A, B ∈ C(nd+s)×(nd+s) as in (2.11), µ ∈ C such that (C − µD)−1 exists and
w ∈ Cnd+s.

Output: The solution x = [x(1)
T
, . . . , x(d)

T
, yT ]T ∈ Cnd+s of the linear system.

1. Compute x = Bw(1,2,...,d) − (e1 ⊗ E)(C − µD)−1Dz as

x = −
[
Pdw

(d) + E(C − µD)−1Dz

w(d−1,...,1)

]
.

Solve the block upper triangular system associated to U(µ) in (4.8):
2. x(1) = x(1) − (Ā1 − µB̄1)((M1 − µN1)

−1 ⊗ In)x(2,...,d).
Solve the block lower triangular system associated to L(µ) in (4.8):
3. x(1) = (R(µ))−1x(1).
4. x(2,...,d) = ((M1 − µN1)

−1 ⊗ In)(x(2,...,d) − ((m0 − µn0)⊗ In)x(1)).
Compute the block y of x
5. y = (C − µD)−1(Dz − F Tx(1)).
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Remark 4.4. The multiplications by inverses in Algorithm 4.1 have to be under-
stood, in principle, in a similar way than for previous algorithms, this is, as solutions
of linear systems and the key observation on Algorithm 4.1 is that all the involved
linear systems have sizes smaller than the size (nd + s) × (nd + s) of (A − µB) as
we discuss in this remark. The only linear system which is always large is the one
in step 3 involving R(µ) which has the size n × n of the original REP. Solving the
system in step 3 may require just the ability of multiplying by R(µ), if an iterative
Krylov method is used, which might be done through the coefficients of P (λ) and the
matrices E,C,D, F in (2.9) without computing R(µ), or may require to compute
R(µ), if a direct method is used. In the case (C − µD) is large and complicated
the computation of R(µ) might be performed more efficiently through (2.8) than
through (2.9), though this depends on each particular problem. However, we empha-
size once again that the matrix (C − µD) ∈ Cs×s is in many applications [76, 99]
very small as we commented in Chapter 2, since s� n, and has in addition a very
simple structure, which imply that it is often possible just to compute (C − µD)−1

and to perform the corresponding matrix multiplications to construct R(µ) through
(2.9). These comments on the size s� n also apply to the linear systems involving
(C − µD) ∈ Cs×s in steps 1 and 5 which are often in practice very small. Finally,
the linear systems involving (M1− µN1)⊗ In have size (d− 1)n× (d− 1)n and look
very large, but they are block linear systems very easy to solve with cost 2n(d − 2)
flops by using a simple two term recurrence relation. More precisely, the solution of
((M1 − µN1)⊗ In)x = b, taking into account that

M1 − µN1 =


µ −1

. .
.
. .
.

µ . .
.

−1

 ∈ C(d−1)×(d−1),

and partitioning the vectors in (d − 1) blocks of size n × 1, can be obtained as
x(1) = −b(d−1) and x(i) = µx(i−1) − b(d−i) for i = 2, 3, . . . , d− 1.

Theorems 4.5 and 4.6 are similar to results obtained in [104, Theorems 4.4 and
4.5].

Theorem 4.5. Let Qj be defined as in (4.2). Then,

span{Qj+1} = span{Qj, u
(1)
j+1}. (4.13)

Proof. From the definition of Qj in (4.2) we have

span{Qj+1} = span{U (1)
j+1, . . . , U

(d)
j+1}

= span{U (1)
j , . . . , U

(d)
j , u

(1)
j+1, . . . , u

(d)
j+1}
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= span{Qj, u
(1)
j+1, . . . , u

(d)
j+1}, (4.14)

and from Algorithm 2.4, with zj = ej ∈ Rj, by combining steps 3, 5 and 6, we
obtain

uj+1 =
1

hj+1,j

(û−Ujhj) .

Then,

u
(i)
j+1 =

1

hj+1,j

(
û(i) − U (i)

j hj

)
, for i = 1, . . . , d.

By replacing the latter expression in (4.14), we have

span{Qj+1} = span{Qj, û
(1), . . . , û(d)}.

Since (A− θjB)û = Buj, by applying Lemma 4.3 with µ = θj and w = uj it follows

span{Qj+1} = span{Qj, û
(1), . . . , û(d)}

= span{Qj, û
(1)}

= span{Qj, u
(1)
j+1}.

Theorem 4.6. Let Qj be defined as in (4.2). Then

rj < d+ j. (4.15)

Proof. We will prove this theorem by induction. From the definition of Qj in (4.2),
we have that

span{Q1} = span{u(1)1 , u
(2)
1 , . . . , u

(d)
1 },

so r1 ≤ d. Assuming that the inequality (4.15) is satisfied until j − 1, then we have
by Theorem 4.5 that rj ≤ rj−1 + 1 < d+ j.

From the fact that rj increases at most by 1 in each iteration and by considering
the inequality (4.15), we show in Lemma 4.7 the possible structures of the expansion
of the first d blocks of the matrix Rj defined in (4.5).

Lemma 4.7. Let Rj ∈ C(drj+s)×j be defined as in (4.5). Then, the first d blocks of
the matrix Rj+1 ∈ C(drj+1+s)×(j+1) can take the following forms:

• if rj+1 > rj

R
(i)
j+1 =

[
R

(i)
j

01×j
r
(i)
j+1

]
, i = 1, 2, . . . , d,

where r(i)j+1 ∈ Crj+1, or

• if rj+1 = rj

R
(i)
j+1 =

[
R

(i)
j r

(i)
j+1

]
, i = 1, 2, . . . , d,

with r(i)j+1 ∈ Crj+1.
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4.2 The two levels of orthogonalization
In this section, we will introduce the method to solve large-scale and sparse rational
eigenvalue problems based on the compact representation presented in Section 4.1 of
the orthonormal bases of the rational Krylov subspaces of the linearization A− λB
in (2.10). First, we consider an initial vector u1 ∈ Cnd+s with ‖u1‖2 = 1 partitioned
as in (4.1) and then, we express that vector in the compact form:

u1 =


u
(1)
1
...

u
(d)
1

v1

 =


Q1R

(1)
1
...

Q1R
(d)
1

v1


where Q1 ∈ Cn×r1 has orthonormal columns such that

span{Q1} = span
{
u
(1)
1 , · · · , u(d)1

}
, r1 = rank([u

(1)
1 · · ·u

(d)
1 ]).

Observe that r1 = 1 if and only if u1 is chosen to have collinear nonzero blocks
u
(1)
1 , . . . , u

(d)
1 . Now, taking into account the definition of Rj in (4.5), after j steps

the matrices Qj and Rj have to be expanded into Qj+1 and Rj+1 respectively, which
results in the so-called two levels of orthogonalization.

First level of orthogonalization. In Theorem 4.5 we have proved that we need
to orthogonalize u(1)j+1 with respect to Qj to obtain the last orthonormal column of
Qj+1. In addition, it can be easily seen that

span{Qj+1} = span{Qj, u
(1)
j+1} = span{Qj, û

(1)}, (4.16)

where û(1) is the first block of size n of the vector û obtained by applying the shift-
and-invert step to uj (step 3 in Algorithm 2.4) when û is partitioned as in (4.1).
Therefore, we only need to compute the block û(1) of û to compute Qj+1. Thus, we
can run Algorithm 4.1 with w = uj and µ = θj until step 3, saving the resulting
vector x(1) = û(1). It is important to observe that the first d blocks of uj have to be
constructed, since the variables in R-CORK are Qj and Rj, and uj is not stored. As
in CORK, they are computed as the single matrix-matrix product Qj [r

(1)
j · · · r

(d)
j ],

where r(1)j , . . . , r
(d)
j are the first d blocks of the last column rj of Rj, which is a very

efficient computation in terms of cache utilisation on modern computers. Once û(1)
is computed, by (4.16) we can decompose

û(1) = Qjxj + αjqj+1, (4.17)

where qj+1 is a unit vector orthogonal to Qj and xj = Q∗j û
(1). Note also that since

û(1) has been already computed, we can compute the last s entries of û, denoted by



90 CHAPTER 4. THE R-CORK METHOD

v̂, from step 5 in Algorithm 4.1 without the need of performing step 4. The vector
v̂ will be used in the second level of orthogonalization. Now, if û(1) does not lie in
the subspace spanned by the columns of Qj, i.e., if û(1) −Qjxj 6= 0, we can expand
Qj into Qj+1 as follows:

Qj+1 = [Qj qj+1], rj+1 = rj + 1.

On the other hand, if û(1) lies in the subspace spanned by the columns of Qj, we
have Qj+1 = Qj and rj+1 = rj. The first level of orthogonalization is summarized
in Algorithm 4.2. In step 2, if it is necessary, we can reorthogonalize q̃ to ensure or-
thogonality. In fact, in our MATLAB code, we perform the classical Gram-Schmidt
method twice.

Algorithm 4.2 First level of orthogonalization in R-CORK

Input: The matrix Qj ∈ Cn×rj and the vector û(1) ∈ Cn (the first block of û =
(A− θjB)−1Buj).

Output: The matrix Qj+1 ∈ Cn×rj+1 , the vector xj, and the scalar αj.
Expanding Qj into Qj+1.
1. xj = Q∗j û

(1).
2. q̃ = û(1) −Qjxj.
3. αj = ‖q̃‖2.
if αj 6= 0 then

4a. Qj+1 = [Qj q̃/αj].
5a. rj+1 = rj + 1.

else
4b. Qj+1 = Qj.
5b. rj+1 = rj.

end if

Second level of orthogonalization. In Algorithm 2.4, after choosing the shift
θj and performing the shift-and-invert step, we need to compute the entries of the
j-th column of Hj in step 4. We will explain how to do it efficiently in the R-CORK
method. By using the compact representation of Uj in (4.4) - (4.5), we have

hj = U∗j û,

= (R
(1)
j )∗Q∗j û

(1) + · · ·+ (R
(d)
j )∗Q∗j û

(d) + V ∗j v̂, (4.18)

where û has been partitioned in an analogous way to (4.1). Since (A−θjB)û = Buj,
and A and B have the structures in (2.11), we obtain the following relation between
the blocks of size n of û and the blocks of size n of uj

û(i) = θjû
(i−1) + u

(i−1)
j , for i = 2, . . . , d. (4.19)
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Motivated by (4.19), we consider the vectors xj ∈ Crj obtained in step 1 in Algorithm
4.2 and v̂ ∈ Cs obtained in step 5 in Algorithm 4.1 with x(1) = û(1) and µ = θj, and
a vector p̂ ∈ Cdrj+s partitioned as follows

p̂ =


p̂(1)

...
p̂(d)

v̂

 , p̂(i) ∈ Crj , i = 1, . . . , d, (4.20)

with the blocks defined by the recurrence relation

p̂(1) = xj,

p̂(i) = θj p̂
(i−1) + r

(i−1)
j , i = 2, . . . , d, (4.21)

where r(i)j represents the j-th column of the block R(i)
j in (4.4). If αj 6= 0 in step 3

in Algorithm 4.2, by using p̂, the decomposition (4.17) and the recurrence relation
(4.19), the vectors û(i), i = 1, . . . , d, corresponding to the partition of û as in (4.1)
can be represented as follows

û(i) = Qj+1

[
p̂(i)

θi−1j αj

]
, i = 1, . . . , d, (4.22)

whereas that if αj = 0, we can represent the blocks û(i), i = 1, . . . , d, as follows

û(i) = Qj p̂
(i). (4.23)

Then, by using either (4.22) or (4.23) (depending on the value of αj) in (4.18) and
recalling that the columns of Qj+1 are orthonormal, we have

hj =


R

(1)
j
...

R
(d)
j

Vj


∗ 

p̂(1)

...
p̂(d)

v̂

 = R∗j p̂. (4.24)

Thus, after computing p̂ with the recurrence relation (4.21), the vector hj can
be computed by performing a matrix-vector multiplication of size drj + s, which,
according to (4.15), is much smaller than dn + s in large-scale problems and, even
more, much smaller than n whenever s� n as often happens in applications [76, 99].

Next, in step 5 of Algorithm 2.4, we need to compute the vector ũ, which means
that in R-CORK we need its compact representation. By using the compact repre-
sentation of Uj and (4.22), we have, if αj 6= 0,

ũ = û−Ujhj,
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=


Qj+1

[
p̂(1)

αj

]
...

Qj+1

[
p̂(d)

θd−1j αj

]
v̂


−


QjR

(1)
j
...

QjR
(d)
j

Vj

hj,

=


Qj+1

. . .

Qj+1

Is





[
p̂(1) −R(1)

j hj
αj

]
...[

p̂(d) −R(d)
j hj

θd−1j αj

]
v̂ − Vjhj


,

and, in a similar way, if αj = 0 we obtain

ũ =


Qj

. . .

Qj

Is



p̂(1) −R(1)

j hj
...

p̂(d) −R(d)
j hj

v̂ − Vjhj

 .

Defining

p̃ :=


p̃(1)

...
p̃(d)

ṽ

 , p̃(i) := p̂(i) −R(i)
j hj ∈ Crj , i = 1, . . . , d, ṽ := v̂ − Vjhj ∈ Cs,

(4.25)
and taking into account that the columns of Qj+1 and Qj are orthonormal, we can
express the step 5 in Algorithm 2.4 as follows: if αj 6= 0, then

hj+1,j = ‖ũ‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥



p̃(1)

αj
...
p̃(d)

θd−1j αj
ṽ



∥∥∥∥∥∥∥∥∥∥∥∥∥
2

and uj+1 = Qj+1 ·
1

hj+1,j



p̃(1)

αj
...
p̃(d)

θd−1j αj
ṽ


, (4.26)

where the notation in (4.5) is used, while if αj = 0 we proceed as in (4.26) by
removing all the entries involving αj and with Qj+1 = Qj. From the previous
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equations, we can conclude that the first d blocks of size rj+1 of the last column of
Rj+1 in (4.5) are given if αj 6= 0 by

r
(i)
j+1 =

1

hj+1,j

[
p̃(i)

θi−1j αj

]
, i = 1, . . . , d, (4.27)

and if αj = 0 by

r
(i)
j+1 =

1

hj+1,j

p̃(i), i = 1, . . . , d. (4.28)

In addition, the last block of size s of the last column of Rj+1 is

vj+1 =
1

hj+1,j

ṽ. (4.29)

Since Rj has orthonormal columns, from (4.24) and the definitions in (4.20)-(4.21)
and (4.25), we have that hj and p̃ satisfy

p̃ = p̂−Rjhj, (4.30)

where p̃ is orthogonal to Rj. This process is the Gram-Schmidt process without the
normalization step, and it is summarized in Algorithm 4.3.

Algorithm 4.3 Second level of orthogonalization in R-CORK

Input: The matrix Rj ∈ C(drj+s)×j and the vector p̂ ∈ Cdrj+s from (4.20)-(4.21).
Output: Vectors hj ∈ Cj and p̃ ∈ Cdrj+s.
1. hj = R∗j p̂.
2. p̃ = p̂−Rjhj.

Remark 4.8. In order to improve orthogonality, a reorthogonalization method can
be included in Algorithm 4.3. In our MATLAB code, we use the classical Gram-
Schmidt process twice.

The whole procedure of this new method to solve large-scale and sparse rational
eigenvalue problems requires the use of the two levels of orthogonalization described
in this section, the first level to expand Qj into Qj+1 and the second level to expand
Rj into Rj+1. The complete R-CORK method is summarized in Algorithm 4.4.
Note that R-CORK has as inputs the matrix Q1 and the vector R1, which have to
be computed. As in CORK [104, p. 830], there are two possible ways of computing
these inputs: either starting with a random vector u1 ∈ Cnd+s and using an economy-
size QR factorization, or emulating the structure of the eigenvectors (2.12) of the
linearization in (2.10). We know from Theorem 2.14 that the eigenvectors have a
Kronecker structure. Therefore, Algorithm 4.4 can also be started with

u1 =

[
f ⊗ g
t

]
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where f ∈ Cn, g ∈ Cd and g ∈ Cs. This results in

Q1 = g/‖g‖2 ∈ Cn and R1 =

[
‖g‖2f
t

]
∈ C(d+s)×1,

with r1 = 1. Recall in Algorithm 4.4 that rj denotes the last column of the matrix
Rj in (4.5).

Algorithm 4.4 Compact rational Krylov method for REP (R-CORK)

Input: Q1 ∈ Cn×r1 , R1 ∈ C(dr1+s)×1 with Q∗1Q1 = Ir1 and R∗1R1 = 1.
Output: Approximate eigenpairs (λ,x) of A− λB with A and B as in (2.11).
for j = 1, 2, . . . do

1. Choose shift θj.
2. Compute uj = Qjrj, obtaining the first d blocks as matrix-matrix product
Qj [r

(1)
j · · · r

(d)
j ].

3. Compute û(1) by using Algorithm 4.1 until step 3 applied to w = uj and
µ = θj.
4. Compute v̂ from step 5 in Algorithm 4.1.
First level of orthogonalization
5. Run Algorithm 4.2 obtaining Qj+1, the scalar αj and the vector xj.
Second level of orthogonalization:
6. Compute p̂ in (4.20) via the recurrence relation in (4.21).
7. Run Algorithm 4.3 obtaining p̃ and hj.
8. Compute hj+1,j and rj+1 using (4.26)-(4.27)-(4.28)-(4.29) and get Rj+1 with
Lemma 4.7.
9. Compute eigenpairs: (λi, ti) of (2.27) and test for convergence.

end for
10. Compute eigenvectors: xi = Qj+1Rj+1Hjti.

4.3 Memory and computational costs

In this section, we discuss the memory and the computational costs of R-CORK and
compare these costs with those of the classical rational Krylov (RK) method, i.e.,
Algorithm 2.4, applied directly to the linearization A − λB of the REP in (2.10).
In order to simplify the results we will take rj = j + d in R-CORK, which is the
upper bound in Theorem 4.6 and that essentially corresponds to start the R-CORK
iteration with Q1 ∈ Cn×d (r1 = d) or, equivalently, with a random initial vector
u1 whose first d blocks in the partition (4.1) are linearly independent. If the first
d blocks of u1 are taken to be collinear, then one can take rj = j and to improve
even more the costs of R-CORK. In addition, note that we estimate the costs for any
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value of s, where s×s is the size of the lower-right block C−λD of A−λB appearing
in the strictly proper part of the REP (2.9). In this way, it will be seen that even
if s ≈ n, R-CORK has considerable advantages with respect to RK in terms of
memory and computational costs. However, we emphasize that such advantages are
still much more relevant when s� n, as happens very often in applications [76, 99].

For the memory costs, after j iterations R-CORK stores Qj ∈ Cn×rj and Rj ∈
C(drj+s)×j, which amounts to (n+dj)(j+d)+sj ≈ n(j+d)+sj numbers. Note that
the approximation n+ dj ≈ n holds in any reasonable large-scale REP. In contrast,
RK stores Uj, which amounts to (nd+ s)j = ndj + sj numbers. Since, (j + d) < dj
for most reasonable choices of j and degrees d appearing in practice, we see that
R-CORK is much more memory-efficient than RK. These memory costs are shown
in Table 4.1.

With respect to the computational costs, observe that for both R-CORK and
RK the cost is the sum of (i) the shift-and-invert step and (ii) the orthogonalization
steps. Let us analyze first the shift-and-invert steps. If the shift-and-invert step in
RK, i.e., step 3 in Algorithm 2.4, is performed by applying an unstructured solver
to the (nd + s) × (nd + s) linear system (A − θjB)û = Buj, then the cost of RK
is much larger than the cost of R-CORK, since R-CORK solves this system with
Algorithm 4.1 (removing step 4) which is much more efficient because it requires the
solution of smaller linear systems (essentially, see Remark 4.4, one of size n×n and
two of size s× s, which are very often extremely small). However, one can consider
to perform the shift-and-invert step in RK with Algorithm 4.1, but this is still
somewhat more expensive than R-CORK, because for RK it is needed to perform
step 4 of Algorithm 4.1, with an additional cost of 2n(d− 2) flops in each iteration
(see Remark 4.4). A final important remark on the shift-and-invert step is that
R-CORK involves the overhead cost of constructing uj in step 2 of Algorithm 4.4,
which in RK is not needed. However, note that, as explained in previous sections,
this construction can be performed as in CORK via a single matrix-matrix product,
which allows for optimal efficiency and cache utilisation on modern computers [63,
p. 577]. Moreover, we emphasize that a traditional construction of uj in R-CORK
costs O(dnrj) = O(dn(j + d)) ≈ O(dnj) flops at iteration j, which added to the
orthogonalization cost of R-CORK discussed below would give a cost of the same
order of the orthogonalization cost of RK.

Finally, we discuss the orthogonalization costs of RK and R-CORK. In RK,
the orthogonalization is performed in steps 4-5-6 of Algorithm 2.4 and its cost is
well-known to be O(j(nd + s)) = O(jnd + js) flops at iteration j, which amounts
to O(j2nd + j2s) flops in the first j iterations (see Table 4.1). In R-CORK, the
orthogonalization is performed in steps 5-6-7-8 of Algorithm 4.4. At iteration j,
the cost of step 5 is O(rjn) = O((j + d)n) flops, the cost of step 6 is O(rjd) =
O((j + d)d) flops, which is negligible with respect to the cost of step 5, the cost
of step 7 is O(j(drj + s)) = O(jd(j + d) + js) flops, and the cost of step 8 is
O(drj + s) = O(d(j + d) + s) flops. Therefore, the total cost at iteration j of the
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orthogonalization in R-CORK is O((n+ jd)(j + d) + js) ≈ O(n(j + d) + js), where
we have used again the approximation n+ jd ≈ n, which gives O(j2n+ jdn+ j2s)
flops in the first j iterations (see Table 4.1). Observe that the orthogonalization cost
of RK includes the large term j2nd which is not present in the cost of R-CORK.
Therefore, the orthogonalization cost of R-CORK is considerably smaller than the
one of RK.

In Table 4.1, the comparison of the costs between R-CORK and RK is summa-
rized.

Classical rational Krylov method R-CORK method
Orthogonalization cost O(j2nd+ j2s) O(j2n+ jdn+ j2s)

Memory cost ndj + sj n(j + d) + sj

Table 4.1: Orthogonalization and memory costs for classical rational Krylov method
and R-CORK method after j iterations.

4.4 Implicit restarting in R-CORK

Practical implementations of any Krylov-type method for computing eigenvalues of
large-scale problems require effective restarting strategies. The goal of this section
is to develop an implicit restarting strategy for R-CORK that restarts both Qj and
Rj in the compact representation of Uj in (4.4)-(4.5). Since R-CORK shares many
of the properties of CORK, the results of this section are similar to those in [104,
Section 6], which in turn are based on implicit restarting procedures for classical
rational Krylov methods [32] and on the Krylov-Schur restart developed for TOAR
in [63, Section 4.2].

Following the Krylov-Schur spirit [98] (see also [97, Section 5.2]), the restar-
ting technique we propose transforms first the matrices Hj and Kj in (4.6) to
(quasi)triangular form (i.e. Hj and Kj are block upper triangular with 1-by-1 and
2-by-2 blocks on the diagonal), in order to reorder the Ritz values and to preserve
the desired ones with a rational Krylov subspace of smaller dimension. Second, by
representing the new smaller Krylov subspace in its compact form in an efficient way,
the implicit restart of R-CORK is completed. The main difference of the process
described below with respect to the implicit restarting in [104, Section 6] is that
here we need to add a new block of size s× s corresponding to the rational part of
R(λ) in (2.9).

Suppose that after j iterations, we have the rational Krylov recurrence relation
in its compact form as in (4.6)

AQj+1Rj+1Hj = BQj+1Rj+1Kj, (4.31)
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and we want to reduce this representation to a smaller compact rational decompo-
sition of size p, p < j, this is

AQ+
p+1R

+
p+1H

+
p = BQ+

p+1R
+
p+1K

+
p , p < j.

For this purpose, we consider the generalized Schur decomposition:

Hj =
[
Yp Yj−p

] [ T
(H)
p×p ∗
0 T

(H)
(j−p)×(j−p)

] [
Z∗p
Z∗j−p

]
, (4.32)

Kj =
[
Yp Yj−p

] [ T
(K)
p×p ∗
0 T

(K)
(j−p)×(j−p)

] [
Z∗p
Z∗j−p

]
, (4.33)

where Hj and Kj are the j× j upper Hessenberg matrices obtained by removing the
last row of Hj and Kj respectively, Y :=

[
Yp Yj−p

]
, Z :=

[
Zp Zj−p

]
∈ Cj×j

are unitary matrices with Yp, Zp ∈ Cj×p, Yj−p, Zj−p ∈ Cj×(j−p) and T (H) :=[
T

(H)
p×p ∗
0 T

(H)
(j−p)×(j−p)

]
, T (K) :=

[
T

(K)
p×p ∗
0 T

(K)
(j−p)×(j−p)

]
∈ Cj×j are upper (quasi)

triangular matrices with T (H)
p×p , T

(K)
p×p ∈ Cp×p and T

(H)
(j−p)×(j−p), T

(K)
(j−p)×(j−p) ∈ C(j−p)×(j−p).

The p < j Ritz values of interest are the eigenvalues of the pencil T (K)
p×p − λT

(H)
p×p . By

multiplying by Z on the right the recurrence relation (4.31) and using (4.32) and
(4.33), and considering the first p columns, we obtain:

AQj+1Rj+1

[
Yp 0
0 1

] [
T

(H)
p×p

hj+1,j z̃
∗

]
= BQj+1Rj+1

[
Yp 0
0 1

] [
T

(K)
p×p

kj+1,j z̃
∗

]
, (4.34)

where z̃∗ represents the first p entries of the last row of Z. By introducing the
notation:

Y1 :=

[
Yp 0
0 1

]
∈ C(j+1)×(p+1), H+

p :=

[
T

(H)
p×p

hj+1,j z̃
∗

]
, K+

p =

[
T

(K)
p×p

kj+1,j z̃
∗

]
∈ C(p+1)×p,

(4.35)
and defining Wp+1 = Rj+1Y1, we obtain

AQj+1Wp+1H
+
p = BQj+1Wp+1K

+
p . (4.36)

Note that with this transformation, we reduce the size of the matrices H+
p , K

+
p , and

Wp+1 with respect to Hj, Kj, and Rj+1, and remove the Ritz values that are not of
interest. However, observe that the large factor Qj+1 remains unchanged. In order
to reduce the size of Qj+1, consider

Wp+1 =


W

(1)
p+1
...

W
(d)
p+1

Vj+1Y1

 , W
(i)
p+1 ∈ Crj+1×(p+1), i = 1, . . . , d,
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and let ω be the rank of [W
(1)
p+1 · · · W

(d)
p+1]. The key observation is that although

the matrices H+
p , K

+
p are no longer in Hessenberg form, the subspace spanned by the

columns of (Qj+1Wp+1) is still a rational Krylov subspace corresponding to A−λB
[32]. Therefore, we can apply Theorem 4.6 to span

{
Qj+1W

(1)
p+1, . . . , Qj+1W

(d)
p+1

}
=

Qj+1 span
{
W

(1)
p+1, . . . ,W

(d)
p+1

}
to obtain that ω ≤ d+ p < d+ j. Then, the economy

singular value decomposition of:

[W
(1)
p+1 · · · W

(d)
p+1] = US[V(1) · · · V(d)],

is computed, where U ∈ Crj+1×ω, S ∈ Cω×ω and V(i) ∈ Cω×(p+1) for i = 1, . . . , d.
Thus, by defining

Q+
p+1 = Qj+1U , R+

p+1 =


SV(1)

...
SV(d)

Vj+1Y1

 , Q+
p+1 =


Q+
p+1

. . .

Q+
p+1

Is

 ,
we get from (4.36) the compact rational Krylov recurrence relation

AQ+
p+1R

+
p+1H

+
p = BQ+

p+1R
+
p+1K

+
p , (4.37)

with p < j. It is important to emphasize again that the matrices H+
p and K+

p

are no longer upper Hessenberg matrices, however, they contain the required Ritz
values and the columns of Q+

p+1R
+
p+1 span a corresponding rational Krylov subspace.

We continue the process by expanding (4.37) with Algorithm 4.4 until we get a
rational Krylov subspace of dimension j. The matrices H+

j and K+
j obtained in this

expansion are not in Hessenberg form, although their columns p + 1, . . . , j have a
Hessenberg structure (see [97, p. 329]). Then, the restarting process described in
this section is applied again to get a new compact relation (4.37) of “size p”. This
expansion-restarting procedure is cyclicly repeated until the prescribed stopping
criterion is satisfied for a certain desired number, less than or equal to p, of Ritz
pairs.

4.5 Numerical tests
In this section, we present two large-scale and sparse numerical examples to illustrate
the efficiency of the R-CORK method. All reported experiments were performed
using Matlab R2013a on a PC with a 2,2 GHz Intel (R) Core (TM) i7 processor,
with 16 GB of RAM and DDR3 memory type, and with operating system macOS
Sierra, version 10.12.1.

By following [104, Section 8], in the numerical experiments we plot the residuals
at each iteration, with and without restarts, obtained by using the R-CORKmethod,
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the dimension of the subspace at each iteration for R-CORK, and the comparison of
the memory storages of R-CORK and of the classical rational Krylov method applied
directly to the linearization (2.10). We also report on the number of iterations until
convergence.

Inspired by the applications in [99, Section 4], we construct numerical experi-
ments with prescribed eigenvalues and poles of a rational matrix R(λ) represented
as in (2.9). In order to measure the convergence of an approximate eigenpair (λ, x)
of R(λ), the relative norm residual:

E(λ, x) =
‖R(λ)x‖2

(
∑d

i=0 |λ|i‖Pi‖F + ‖E(C − λD)−1F T‖F )‖x‖2
. (4.38)

is considered. Note that the computation of E(λ, x) involves matrices and vectors
of size n and, so, is expensive. Therefore, in actual practice, we recommend to test
first the convergence through a cheap estimation of the residual of the linearized
problem, i.e., ‖(A− λB)z‖2, involving only the small projected problem (2.27), and
once such residual is sufficiently small to compute the residual (4.38) every q > 1
iterations instead of at each iteration. However, in our examples, we performed the
computation of E(λ, x) at each iteration for the purpose of illustration.

The computation of (4.38) deserves some comments. Note first that it requires to
recover the approximated eigenvector x of R(λ) from the approximated eigenvector
z of the linearization A− λB in (2.10) computed in step 10 of Algorithm 4.4. This
recovery, according to the first equation in (2.12), can be done by taking any of
the first d blocks of z if λ 6= 0. Since in our numerical examples the moduli of the
approximate eigenvalues are larger than 1, we have chosen the d-th block of z as
approximate x. However, we recommend to choose the first block if the moduli of the
approximate eigenvalues are smaller than 1. The calculation of the quantities ‖Pi‖F ,
i = 0, . . . , d needs to be performed only once and it is inexpensive since the matrices
Pi are sparse in practice. Finally, to compute the expression ‖E(C − λD)−1F T‖F
on the denominator in (4.38), we use

‖E(C − λD)−1F T‖2F = trace((E(C − λD)−1F T )∗E(C − λD)−1F T ),

= trace((E∗E)(C − λD)−1(F T F̄ )(C − λD)−∗),

which only involves the matrices E∗E, F T F̄ , (C − λD)−1 and (C − λD)−∗ of size
s× s. Since in many application s� n, this computation is usually inexpensive.

Numerical test 4.9. We construct a REP of the type arising from the free vibra-
tions of a structure if one uses a viscoelastic constitutive relation to describe the
behavior of a material [76, 99]. The REPs of this type have the following structure:

R(λ)x =

(
λ2M +K −

k∑
i=1

1

1 + biλ
∆Gi

)
x = 0, (4.39)
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where the mass and stiffness matrices M and K are real symmetric and positive
definite, bj are relaxation parameters over k regions, and ∆Gj is an assemblage of
element stiffness matrices over the region with the distinct relaxation parameters.
As in [99], we consider the case where ∆Gi = EiE

T
i and Ei ∈ Rn×si . By defining

E = [E1, E2, . . . , Ek], D = diag(b1Is1 , b2Is2 , . . . , bkIsk),

the REP (4.39) can be written in the form (2.9):

(λ2M +K − E(I + λD)−1ET )x = 0.

In our particular example, we consider the case with one region and one relaxation
parameter b1 = −1. The construction of the matrices M and K in our example
proceeds as follows: construct first R1(λ) = λ2A2 + A0 − e10000(1 − λ)−1(e10000)

T ,
with A2, A0 ∈ R10000×10000 diagonal and positive definite matrices where A2 = I10000,
A0(i, i) = i2 and e10000 the last column of I10000. This structure allows to prescribe
easily the eigenvalues for R1(λ). Then, we consider the following invertible tridiag-
onal matrix P

P =


1 1

2

1
3

1
. . .

. . .
. . . 1

2
1
3

1

 ,
and finally construct R(λ) = PR1(λ)P T . Since P is invertible, the eigenvalues of
R(λ) and R1(λ) are the same. By using this procedure, we have constructed the
REP

R(λ)x =
(
λ2M +K − p10000(1− λ)−1(p10000)

T
)
x = 0, (4.40)

where M := PA2P
T , K := PA0P

T ∈ R10000×10000 are symmetric, positive definite,
and pentadiagonal matrices, and p10000 ∈ R10000 represents the last column of the
matrix P .

In this example we are interested in computing the 20 eigenvalues of (4.40) with
negative imaginary part and with largest absolute value of the negative imaginary
part. To aim our goal, we use 3 cyclically repeated shifts in the rational Krylov
steps and a random unit real vector as an initial vector. The reader can see the
approximate eigenvalues computed by R-CORK and the chosen shifts in Figure
4.1(a). We first solve the REP (4.40) by using Algorithm 4.4 without restart, and
after 85 iterations, we find the required eigenvalues with a tolerance (4.38) of 10−10.
The convergence history is shown in Figure 4.1(b). In Figure 4.1(d), we plot rj,
the rank of Qj at the iteration j, and j, the dimension of the Krylov subspace.
Since we did not perform restart, we can see that both, rj and j increases with the
iteration count j and that rj = j+1, as expected since the degree of the polynomial
part of (4.40) is d = 2. Figure 4.1(f) displays the comparison between the cost
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of memory storage of both the R-CORK method, by using Algorithm 4.4, and the
classical rational Krylov method, by using Algorithm 2.4. From this figure, we can
see that the R-CORK method requires approximately half of the memory storage
that the classical rational Krylov method, which is consistent with the degree 2 of
the polynomial part of (4.40).

Next, we apply Algorithm 4.4 to the REP (4.40) combined with the implicit
restarting introduced in Section 4.4. We choose the maximum dimension of the
subspace m = 45, which is reduced after each restart to dimension p = 30 to
compute the 20 required eigenvalues. The convergence history of the eigenpairs
(λ, x) computed by this restarted R-CORK method is shown in Figure 4.1(c). After
3 restarts and 81 iterations, the 20 required eigenvalues have been found with a
tolerance (4.38) of 10−10. In Figure 4.1(e) the reader can see the rank of Qj at
the j-th iteration and it can be seen that with restart, the relation between j and
rj continues the same. Finally, in Figure 4.1(g) we plot the memory storage for
R-CORK and classical rational Krylov, and it can be observed that the memory
cost for the R-CORK method is a factor close to 2 smaller than the memory cost
obtained by the classical rational Krylov method.

As a final comment, note that R(λ) has prescribed eigenvalues, therefore, we can
compare both approximate and exact eigenvalues. If λ̂ denotes the approximations
and λ the exact eigenvalues, our numerical results show that, in practice,

|λ̂− λ|
λ

< 10−10, (4.41)

for every approximate eigenvalue λ̂.

Numerical test 4.10. For this numerical example, we consider an academic REP
of size 5000×5000 and with the degree of its polynomial part equal to 3, i.e., a REP
of the form

R(λ) = λ3A3 + λ2A2 + λA1 + A0 − E(C − λD)−1F T . (4.42)

The coefficient matrices of R(λ) in (4.42) were constructed in a similar way as in the
numerical experiment 4.9: first, we consider a rational matrix R2(λ) = λ3P3+λ2P2+
λP1 +P0−E0(C − λD)−1F T

0 with prescribed eigenvalues, where Pi ∈ R5000×5000 are
diagonal matrices, E0 = [e1 + e2, e5 + e6], F0 = [e4997 + e4998, e4999 + e5000] ∈
R5000×2, with ei the ith canonical vector of size 5000, and

C =

[
105 0
0 −105

]
, D = I2,
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Figure 4.1: Numerical experiment 4.9.
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and then we define R(λ) = PR2(λ)Q, where

P =



1 1
2

1
3

−1
4

. . .
. . .

. . .

−1
5

. . .
. . .

. . . 1
3

. . .
. . .

. . . 1
2

−1
5
−1

4
1


, Q =


−1 −1

3

1
2

. . .
. . .

. . .
. . . −1

3
1
2
−1

 ∈ R5000×5000.

The goal of this example is to compute the 30 eigenvalues closest to zero. In this
situation, it is natural to choose the origin as a fixed shift. In Figure 4.2(a), the
approximate eigenvalues computed by R-CORK are displayed. By starting with a
random unit complex vector, first we apply R-CORK without restarting, and after
83 iterations, the desired eigenvalues are obtained with a tolerance (4.38) of 10−12.
The convergence history can be seen in Figure 4.2(b). In Figure 4.2(d), we see that
the relation rj < j + d with j the number of iterations also holds in this example,
though in this case with d = 3 since this is the degree of the polynomial part in
(4.42). Figure 4.2(f) shows the memory costs of R-CORK and classical rational
Krylov. It is observed that the reduction in cost of R-CORK is approximately a
factor of 3, i.e., the degree of the polynomial part of (4.42).

As a final example, we solve (4.42) by using R-CORK combined with restarting
and taking a maximum subspace dimension m = 60 which is reduced to p = 40
after every restart. The convergence history is shown in Figure 4.2(c), where it is
observed that after 91 iterations and 2 restarts, the 30 eigenvalues closest to the
origin have been found with a tolerance (4.38) of 10−12. Despite the fact that a few
more iterations are needed with restart than without restart, we see in Figure 4.2(e)
that we are using a subspace of much smaller dimension to compute the eigenpairs,
and, particularly for this example, rj < j after the restart. Finally, the comparison
of the memory costs for the R-CORK and for the classical rational Krylov methods
is plotted in Figure 4.2(g), where we see again that the cost of R-CORK is a factor
d = 3 smaller. Finally, relation (4.41) also holds for the approximate eigenvalues λ̂.

As we can see, the numerical experiments confirm all the good properties of
the R-CORK method that we mentioned along this chapter. The combined use
of the compact representation of rational Krylov subspaces and the two levels of
orthogonalization in R-CORK reduces significantly the orthogonalization and the
memory costs with respect to a direct application of the classical rational Krylov
method to the linearization (2.10) of A − λB. More conclusions are presented in
Chapter 6.
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Figure 4.2: Numerical experiment 4.10.



Chapter 5

Projection methods for T-Sylvester
equations

This chapter is devoted to the numerical solution of the T-Sylvester equation

AX +XTB = C1C
T
2 (5.1)

where A,B ∈ Rn×n are large and sparse coefficient matrices, the right-hand side
matrix C := C1C

T
2 has low rank, this is, C1, C2 ∈ Rn×r with r � n and X ∈ Rn×n

is the unknown. Since our methods require the inversion of A and/or B, we also
assume the generic condition that A and B are invertible. Moreover, (5.1) is assumed
to admit a unique solution, this is, the conditions of Lemma 3.9 hold.

As we mentioned in Chapter 1, our goal is to develop projection methods that
construct low-rank approximations of the solution for T-Sylvester equations. To
achieve our goal, we will use subspaces based on Krylov spaces, as block Krylov or
extended block Krylov subspaces.

All results presented in Chapter 5 are, at the best of our knowledge, original
results and they have been published by the author of this dissertation in [35].

5.1 A general projection framework for the T-Sylvester
equation

As occurs for projection methods for the Sylvester equation, although A and B are
sparse, the solution matrixX is full, in general, so the storage ofX requires excessive
memory allocations for large-scale problems. For this reason, we look for low-rank
approximations to X. This strategy is strongly supported by the link established
in Theorem 3.12(b) between a T-Sylvester equation and a Sylvester equation both
with low-rank right-hand sides (see Theorem 3.12(c)), together with existing results
on the singular value decay of solutions to Sylvester equations with low-rank right-

105
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hand side [43, 79], which suggests that the solution X of (5.1) can often be well
approximated by a low-rank matrix.

As we discuss in Section 3.3, there exist different approaches to construct low-
rank approximations to the solution of large-scale Sylvester equations with low-rank
right-hand sides and often they proceed by imposing a Galerkin condition on a tensor
product of low-dimensional subspaces; see [13, 55, 87, 90]. In this thesis, we follow
a similar strategy for T-Sylvester equations.

Our starting point is therefore to consider approximations of the form

X ≈ Xm = VmYmWT
m ∈ Rn×n (5.2)

where the columns of Vm,Wm ∈ Rn×pm form orthonormal bases of subspaces
Vm,Wm ⊂ Rn, respectively:

Vm = range(Vm) and Wm = range(Wm). (5.3)

Note that we are using bold characters to represent Vm and Wm since in the follo-
wing sections we will consider them as block matrices.

The relation (5.2) states that Xm ∈ Vm⊗Wm, where the tensor product of these
subspaces is defined as

Vm ⊗Wm := span{v ⊗ w : v ∈ Vm, w ∈Wm}.

Note that the set Vm ⊗Wm is the set of all matrices of the form (5.2). The ma-
trix Ym ∈ Rpm×pm , which contains the coefficients of Xm in the chosen bases, is
determined by imposing a Petrov-Galerkin condition: We require the residual

Rm = AXm +XT
mB − C1C

T
2 = A(VmYmWT

m) + (VmYmWT
m)TB − C1C

T
2 (5.4)

to be orthogonal to Wm ⊗Wm in the matrix inner product [51, Section 5.2], Rm ⊥
Wm ⊗Wm. Using the orthonormal basis Wm, this becomes equivalent to requiring

WT
mRmWm = 0. (5.5)

Replacing (5.4) into (5.5) yields the small-scale T-Sylvester equation

(WT
mAVm)Ym + Y T

m (VT
mBWm) = (WT

mC1)(W
T
mC2)

T . (5.6)

If we assume that equation (5.6) admits a unique solution, it can be solved within
O(p3m) operations using Algorithm 3.3 discussed in Section 3.2.2.

It is important to emphasize that most of the existing projection methods for the
standard Sylvester equation FX+XG = C1C

T
2 use a Galerkin technique instead of a

Petrov-Galerkin technique. This means that the same tensorized subspace Vm⊗Wm

is used for searching the approximate solution and testing the residual:

Xm ∈ Vm ⊗Wm and (FXm +XmG− C1C
T
2 ) ⊥ Vm ⊗Wm. (5.7)
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In contrast, our projection framework for T-Sylvester equations involves two different
tensorized subspacesVm⊗Wm andWm⊗Wm as search and test spaces, respectively.
This is needed to ensure that the compressed equation (5.6) is again a T-Sylvester
equation, which allows for its inexpensive solution. In the language of projection
methods [84, 86], our framework for T-Sylvester equations yields oblique projection
methods, while the one for Sylvester equations yields orthogonal projection methods.

The choice of the subspaces Vm andWm is decisive and it determines the quality
of the approximation Xm obtained from (5.2) and (5.6). In this thesis two different
choices adapted to the structure of the T-Sylvester equation will be studied in detail
in Sections 5.2 and 5.3.

5.2 Block Krylov subspaces for the T-Sylvester equa-
tion

In order to motivate the choice of adequate subspaces Vm andWm for the projection
framework from Section 5.1, we will consider the generalized Schur decomposition
of the matrix pencil A− λBT

A = WTAV
T , BT = WTBV

T

where V,W ∈ Rn×n are orthogonal matrices, TA ∈ Rn×n is quasi-triangular, i.e.,
TA is block upper triangular with 1-by-1 and 2-by-2 blocks on the diagonal and
TB ∈ Rn×n is triangular, which implies that

B−TA = V T−1B TAV
T and BTV = WTB. (5.8)

If we denote by Vp the first p < n columns of V , we have that the columns of Vp
represents an orthonormal basis for an invariant subspace of B−TA, provided that
the subdiagonal entry (p + 1, p) of the upper quasi-triangular matrix TA is zero.
Moreover, if we denote by Wp the first p columns of W , we have

range(Wp) = range(BTVp) = BT range(Vp). (5.9)

This suggests we choose a subspace Vm that contains good approximations to inva-
riant subspaces of B−TA and set Wm = BTVm. Since Krylov subspaces are known
to often contain excellent approximations to invariant subspaces [86] it is natural
to choose Vm as a Krylov subspace for the matrix B−TA. Also, in view of (5.6),
it is important to ensure that range(C1) ∪ range(C2) ⊂ Wm, in order to fully pre-
serve the information from the right-hand side during the projection. Taking these
considerations into account leads us to choose the block Krylov subspaces

Vm = Km(B−TA,B−T [C1, C2]), (5.10)
Wm = BTVm. (5.11)
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By using the definition of block Krylov subspace and the algebraic identity

BT (B−TA)kB−T = (AB−T )k, k ∈ Z,
we have

Wm = Km(AB−T , [C1, C2]), (5.12)

which shows that, in fact, Wm contains the columns of C1 and C2. Note that the
computational cost can be reduced if range(C1) = range(C2). Indeed, in this case it
holds that

Vm = Km(B−TA,B−T [C1, C2]) = Km(B−TA,B−TC1),

yielding a block Krylov subspace of half the dimension. In Section 5.2.2 we will
discuss algorithms to construct orthonormal bases for Vm and Wm.

Remark 5.1. Note that the roles of A and B can be reversed. By transposing (5.1),
we obtain the T-Sylvester equation

BTX +XTAT = C2C
T
1 , (5.13)

where A is replaced by BT , B by AT , C1 by C2 and C2 by C1. Assuming that A is
invertible, we thus arrive at the block Krylov subspaces

V′m = Km(A−1BT , A−1[C1, C2]), (5.14)
W′

m = AV′m. (5.15)

In Section 5.4, we will show that we can expect fast convergence of the projection
method applied to (5.13) with V′m and W′

m if ρ(A−1BT ) < 1 and if this quantity is
not too close to one, this is, all eigenvalues of B−TA should be located well outside
the unit circle.

Therefore, we can choose between two methods depending on the location of
eigenvalues of B−TA:

1. when all eigenvalues are well inside the unit circle, use the projection method
with the block Krylov subspaces Vm, Wm defined in (5.10)-(5.11);

2. when all eigenvalues are well outside the unit circle, use the projection method
with the block Krylov subspaces V′m, W′

m defined in (5.14)-(5.15).

In order to estimate ρ(B−TA) and ρ(A−1BT ), the power method can be used
and guide the decision between 1 and 2. In Section 5.3, a variant that combines
both approaches and does not require such decision will be discussed.

For simplicity, in the rest of this section, we will focus on the equation (5.1) and
the block Krylov subspaces (5.10)-(5.11), but it should be kept in mind that the
same developments can be applied to the transposed equation.
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5.2.1 Solvability of the reduced equation

When the projection method from Section 5.1 is performed, it is required that the
compressed equation (5.6) admits a unique solution. However, the unique solvability
of the original equation (5.1) does not guarantee that the reduced equation has also
a unique solution. Similar difficulties arise in projection methods for the solution
of the Sylvester equation FX + XG = C1C

T
2 , where this problem is addressed

by imposing the more restrictive condition that the fields of values [52, Definition
1.1.1] (instead of the spectra) of F and −G are disjoint [90]. In fact, the assumption
F(F )∩F(−G) = ∅ is a key point to prove rigorous error bounds for rational Galerkin
projection methods for the Sylvester equation [11].

Theorem 5.2 proposes an analogous condition for the T-Sylvester equation. Note
that the result of Theorem 5.2 does not hold only for block Krylov subspaces, but
for any pair of subspaces Vm, Wm that satisfy Wm = BTVm. Therefore, Theorem
5.2 is also applicable to the extended block Krylov subspaces introduced in (5.20)
and (5.21) and that will be used in Section 5.3.

Theorem 5.2. Let A, B ∈ Rn×n and assume that B is nonsingular. Let the columns
of Vm,Wm ∈ Rn×pm form orthonormal bases of the two subspaces Vm and Wm ⊂
Rn, respectively, which satisfy Wm = BTVm. If F(AB−T ) is inside the open unit
disk, then

(a) The T-Sylvester equation AX + XTB = C has a unique solution for every
right-hand side C, and

(b) The T-Sylvester equation (WT
mAVm)Ym + Y T

m (VT
mBWm) = C̃ has a unique

solution for every right-hand side C̃.

Proof. (a) Since F(AB−T ) is inside the open unit disk, all eigenvalues of AB−T are
inside the open unit disk, therefore, the spectrum of A− λBT is T-reciprocal
free. Thus, part (a) follows from Lemma 3.9.

(b) Since Wm = BTVm, there exists a nonsingular matrix Qm ∈ Rpm×pm such
that BTVm = WmQm. Then,

WT
mAVm = WT

mAB
−TWmQm,

(VT
mBWm)T = WT

mB
TVm = WT

mWmQm = Qm.

Thus, the pencil (WT
mAVm)−λ(VT

mBWm)T is strictly equivalent to the regu-
lar pencil WT

mAB
−TWm − λIpm , and both pencils have the same eigenvalues.

Since F(WT
mAB

−TWm) ⊆ F(AB−T ), all eigenvalues of WT
mAB

−TWm are
inside the open unit disk. Therefore, part (b) also follows from Lemma 3.9.
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The condition that F(AB−T ) is inside the open unit disk is sufficient but by
no means necessary for ρ(AB−T ) = ρ(B−TA) < 1 and the unique solvability of the
compressed equation. As we will see in Section 5.5, in our numerical experience, we
observe fast convergence of the projection method in situations where ρ(B−TA) < 1,
but F(AB−T ) is much larger than the open unit disk.

5.2.2 Algorithmic details of the block Krylov subspace me-
thod

In this section, the algorithm associated with the Petrov-Galerkin projection onto
the block Krylov subspaces (5.10)-(5.11) is described. Two different implementations
can be chosen:

(i) We can use the block Arnoldi method [86] to compute an orthonormal basis
Vm of Vm and then, an orthonormal basis Wm of Wm by orthonormalizing
BTVm; or

(ii) Use (5.12) to first compute an orthonormal basis Wm of Wm with the block
Arnoldi method, and then, an orthonormal basis Vm of Vm by orthonormali-
zing B−TWm.

Observe that the implementation (ii) does not require more linear system solves
than (i), since the linear solves needed for computing B−TWm can be re-used by
the Arnoldi method in computing Wm+1. In fact, (ii) is slightly cheaper than (i),
since the matrix-vector products BTVm in (i) cannot be re-used by block Arnoldi
to compute Vm+1. In this thesis, we will describe in detail only the implementation
(i), which is similar to the one in Section 5.3 and the implementation (ii) is left to
the interested reader. Also note that applying block Arnoldi twice for constructing
Vm and Wm independently requires more work and does not provide us with the
connection between both bases, which is needed to cheaply compute the coefficients
of the compressed equations (see Proposition 5.3).

As occurs for the Arnoldi method, after m steps of the block Arnoldi method,
the following block Arnoldi recurrence relation holds (see, e.g., [86, Section 6.5]):

B−TAVm = VmHm + Vm+1Hm+1,mE
T
m = Vm+1Hm, (5.16)

where Vm = [V1, V2, . . . , Vm] ∈ Rn×2mr with Vj ∈ Rn×2r, for j = 1, . . . ,m, is an
orthonormal basis of Vm = Km(B−TA,B−T [C1, C2]), the matrix Em denotes the
last 2r columns of the 2mr × 2mr identity matrix, and Hm ∈ R2mr×2mr, Hm ∈
R2(m+1)r×2mr are block Hessenberg matrices with

Hm =

[
Hm

Hm+1,mE
T
m

]
where Hm+1,m ∈ R2r×2r.
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The matrix Wm can be obtained from BTVm by computing the “skinny” QR
decomposition

WmZm = BTVm, Zm ∈ R2mr×2mr, (5.17)

where Wm = [W1,W2, . . . ,Wm] ∈ Rn×2mr with Wj ∈ Rn×2r, for j = 1, . . . ,m, is an
orthonormal basis ofWm = BTVm and Zm is upper triangular. Then, the matrices

HA,m := WT
mAVm, HB,m := VT

mBWm

can be cheaply obtained during the generation of the bases Vm and Wm by using
(5.16) and (5.17). This means that the matrices HA,m and HB,m can be computed
without performing explicitly the multiplication that involves the large matrices
A and B, and then, they can be obtained without extra computational costs. In
particular, both matrices HA,m, HB,m can be expanded as the iteration proceeds.

Proposition 5.3. With the notation introduced above, the following relations hold:

HA,m = [I2mr, 02mr×2r]Zm+1Hm, and HB,m = ZT
m. (5.18)

Proof. Using (5.16) and (5.17) for m+ 1 we have

HA,m = WT
mAVm

= WT
mB

TVm+1Hm

= WT
mWm+1Zm+1Hm

= [I2mr, 02mr×2r]Zm+1Hm

and, using (5.17), we have

HB,m = VT
mBWm

= ZT
mWT

mWm

= ZT
m.

Algorithm 5.1 gives an overview of our proposed block Krylov subspace method
for solving large-scale T-Sylvester equations, which amounts to the projection me-
thod from Section 5.1 with the subspaces Vm and Wm defined as in (5.10)-(5.11).

Some comments related to the implementation of Algorithm 5.1 are listed below:

Step 2. The orthogonalization of BTVm with respect to the columns of Wm−1 in
Step 2 is performed by applying the classical Gram-Schmidt process twice.

Step 4. The matrices HA,m = WT
mAVm and HB,m = VT

mBWm in Step 4 are
cheaply updated using the expressions presented in Proposition 5.3. Also note
that (5.12) implies range([C1, C2]) = W1 = range(W1), and hence WT

mCi =
[(W T

1 Ci)
T , 0, . . . , 0]T for i = 1, 2.
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Algorithm 5.1 Block Krylov method for solving T-Sylvester equation
Input: A,B ∈ Rn×n and C1, C2 ∈ Rn×r.
Output: Factors of approximate solution Xm in (5.2) of AX +XTB = C1C

T
2 .

Compute V1 orthonormal basis of range(B−T [C1, C2]) and set V0 = W0 = ∅.
for m = 1, 2, . . . do

1. Vm = [Vm−1, Vm].
2. Orthonormalize the columns of BTVm with respect to Wm−1 to obtain Wm.

3. Wm = [Wm−1,Wm].
4. Expand HA,m = WT

mAVm, HB,m = VT
mBWm by using Proposition 5.3 and

C̃m = (WT
mC1)(W

T
mC2)

T .
5. Compute Ym solution of HA,mYm + Y T

mHB,m = C̃m via Algorithm 3.3 with
? = T .
if converged then

Return Vm, Ym,Wm such that Xm = VmYmWT
m and stop.

end if
6. Orthonormalize the columns of B−TAVm with respect to Vm to obtain Vm+1.

end for

Step 6. One step of the standard block Arnoldi method presented in [86, Algorithm
6.8] is used in Step 6: it requires 2r matrix-vector products with A, followed
by 2r solves with BT . If B is a sparse matrix, the latter can be implemented
efficiently by computing and storing a sparse LU factorization of BT before-
hand. Solves with BT then only require forward/backward substitutions with
the sparse LU factors. For simplicity, we assume that breakdowns do not occur
in the block Arnoldi method, and thus the matrices Vm,Wm ∈ Rn×2mr are of
full rank and have orthonormal columns.

Stopping criterion. To check convergence, the stopping criterion

‖AXm +XT
mB − C1C

T
2 ‖F

(‖A‖F + ‖B‖F )‖Ym‖F + ‖C1CT
2 ‖F

< tol (5.19)

is used, where tol is a fixed user-specified tolerance, Xm = VmYmWT
m, and

‖Xm‖F = ‖Ym‖F has been used. Analogous stopping criteria are used in other
algorithms for matrix equations [89, p. 1275], [48, Chapter 16].

The residual norm ‖AXm + XT
mB − C1C

T
2 ‖F is computed inexpensively via

the result obtained in Proposition 5.4, which uses the information obtained
in Steps 2 and 6. Observe that the computation of the quantities ‖A‖F and
‖B‖F in (5.19) needs to be performed only once and is inexpensive if A and
B are sparse; also notice that to compute ‖C1C

T
2 ‖F we use the expression

‖C1C
T
2 ‖2F = trace

(
(C1C

T
2 )TC1C

T
2

)
= trace

(
(CT

1 C1)(C
T
2 C2)

)
,
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which only involves the small r × r matrices CT
1 C1 and CT

2 C2.

From the expressions in (5.18) we can construct HA,m at the cost of a small
matrix multiplication and HB,m at no additional cost. Also note that, in (5.18), the
matrix HA,m is a block Hessenberg matrix and HT

B,m is upper triangular. To a certain
extent, this structure can be exploited to reduce the cost of the QZ algorithm [44,
Section 7.7] for computing the generalized Schur decomposition needed when solving
the compressed equation. A minor complication in (5.18) for HA,m is that it requires
Zm+1, which only becomes available after the orthonormalization of BTVm+1 has
been performed. This issue, however, it is easily addressed by slightly reorganizing
Algorithm 5.1.

Proposition 5.4 gives an expression for the residual norm that requires the com-
putation of the Frobenius norm for a small 2r × 2mr matrix only, in the spirit of a
corresponding result for Lyapunov equations [89, Theorem 2.1].

Proposition 5.4. With the notation introduced in Proposition 5.3, the following
relation holds for the residual norm:

‖AXm +XT
mB − C1C

T
2 ‖F = ‖Zm+1,m+1Hm+1,mE

T
mYm‖F ,

where Zm+1,m+1 is the trailing 2r × 2r principal submatrix of Zm+1.

Proof. Set Rm := AXm + XT
mB − C1C

T
2 = AVmYmWT

m + WmY
T
mVT

mB − C1C
T
2

and let the columns of Wm,⊥ form an orthonormal basis for W⊥
m, such that the

first 2r columns of Wm,⊥ coincide with Wm+1. Then we have WT
m,⊥Wm = 0,

WT
m,⊥C1 = WT

m,⊥C2 = 0 and the relations (5.16)-(5.17) imply:

‖WT
m,⊥RmWm‖F = ‖WT

m,⊥AVmYm‖F
= ‖WT

m,⊥B
TVm+1HmYm‖F

= ‖WT
m,⊥Wm+1Zm+1HmYm‖F

= ‖ ET
m+1Zm+1HmYm‖F

= ‖Zm+1,m+1Hm+1,mE
T
mYm‖F .

In a similar way,

‖WT
mRmWm,⊥‖F = ‖Y T

mVT
mBWm,⊥‖F

= ‖Y T
mZT

mWT
mWm,⊥‖F

= 0

and ‖WT
m,⊥RmWm,⊥‖F = 0. Using that the Petrov-Galerkin condition (5.5) implies

that ‖WT
mRmWm‖F = 0, we obtain

‖Rm‖2F = ‖WT
mRmWm‖2F + ‖WT

m,⊥RmWm‖2F + ‖WT
mRmWm,⊥‖2F
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+‖WT
m,⊥RmWm,⊥‖2F

= ‖WT
m,⊥RmWm‖2F

= ‖Zm+1,m+1Hm+1,mE
T
mYm‖2F

which completes the proof.

5.3 Extended Krylov subspaces for the T-Sylvester
equation

Extended Krylov subspaces are often used in modern algorithms for solving large-
scale Sylvester equations (see [89, 90] and the references therein). A motivation to
use these subspaces is to attain spaces that have smaller dimension compared to
standard Krylov spaces but contain equally good approximations of the solution.
This results in decreased storage requirements for the dense matrices Vm and Wm

needed to get the approximate solution (5.2). In addition, in the case of standard
Sylvester equations, it has been observed that these enriched spaces exhibit an
impressive performance despite the fact that multiplication by inverses, i.e., solution
of large linear systems, is involved in their construction, in contrast to standard
Krylov spaces. In the case of the T-Sylvester equation AX + XTB = C1C

T
2 the

use of extended Krylov subspaces is even more natural, since the standard block
Krylov spaces (5.10) and (5.11) adapted to this equation already involve inverses.
Other methods using enriched Krylov subspaces suggest themselves, such as Rational
Krylov space and ADI methods (see, e.g., [90] and also the discussion in Section 5.4).

Following [89, Section 3], in this section we propose the use of extended block
Krylov subspaces to implement the projection method in Section 5.1:

Vm = Km(B−TA,B−T [C1, C2]) +Km+1((B
−TA)−1, B−T [C1, C2]), (5.20)

Wm = BTVm. (5.21)

Let CB = B−T [C1, C2] ∈ Rn×2r. The subspace Vm is iteratively expanded with two
blocks of vectors at the time by an Arnoldi-type process as

[CB, (B
−TA)−1CB], [(B−TA)CB, (B

−TA)−2CB], [(B−TA)2CB, (B
−TA)−3CB], . . .

where for each pair, the first block of vectors expands the space in B−TA, while the
second block expands the space in (B−TA)−1 = A−1BT .The actual basis is computed
by orthogonalizing the newly built vectors by means of the Gram-Schmidt process
[89]. Observe that 2r + 2r vectors are added to the basis during each iteration.
After m iterations, the matrix Vm whose columns form an orthonormal basis of Vm

is iteratively generated:

Vm = [V1,V2, . . . ,Vm] ∈ Rn×4mr, Vj = [V
(1)
j , V

(2)
j ] ∈ Rn×4r, (5.22)
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where the “odds” n × 2r matrices V (1)
j originally come from multiplications with

B−TA, while the “even” n×2r matrices V (2)
j come from multiplications with A−1BT .

Keep in mind that, in the following, we shall heavily rely on this type of partitioning
to build key recurrence results.

As occurs for the block Krylov subspace method, by using the definition of block
Krylov subspaces and the matrix identity BT (B−TA)kB−T = (AB−T )k, k ∈ Z, we
obtain

Wm = Km(AB−T , [C1, C2]) +Km+1((AB
−T )−1, [C1, C2]). (5.23)

From (5.23) it is immediate to see that

AB−TWm ⊆Wm+1. (5.24)

These relations show that there is nothing special about the matrix equation
(5.21), since the same properties could be obtained by explicitly building the two
extended subspaces Vm and Wm as in (5.20) and (5.23), respectively. On the other
hand, as already mentioned, using (5.21) allows one to avoid extra system solves
and provides us with the connection between orthonormal bases of both spaces to
cheaply compute the coefficients of the reduced equations. Note that (5.23) allows
one to construct first an orthonormal basis Wm ofWm and then use Vm = B−TWm

for computing an orthonormal basis of Vm. However, this approach requires more
system solves than the approach we follow below, since only half of the solves in
B−TWm can be re-used for expanding Wm to Wm+1.

We denote by Vm ∈ Rn×4mr the orthonormal basis of Vm in (5.22), and we
compute an orthonormal basis Wm ∈ Rn×4mr of Wm by using again the “skinny”
QR decomposition

WmZm = BTVm, (5.25)

where we can see that
HB,m := VT

mBWm = ZT
m.

As occurred for the block Krylov subspace method, the derivation of an upda-
ting expression for HA,m := WT

mAVm which does not involve multiplications with
A may be obtained as follows: From (5.20), we obtain that B−TAVm ⊆ Vm+1,
and this implies that there exists a 4(m + 1)r × 4mr block Hessenberg matrix Km

such that B−TAVm = Vm+1Km. Note that the matrix Km is not obtained directly
from the construction of the extended Krylov space Vm, in constrast with the situa-
tion for standard Krylov spaces, however Km can be computed without extra large
matrix-vector multiplications and system solves via the recursion presented in [89,
Proposition 3.2]. Therefore, with (5.25), we have

HA,m = WT
mAVm

= WT
mB

T (B−TAVm)

= WT
mB

TVm+1Km
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= WT
mWm+1Zm+1Km

= [I4mr, 0]Zm+1Km.

This method for computing Hm,A is very efficient since it only involves a small
matrix product and allows one to easily expand HA,m as the iteration proceeds.
Note also that the expression above shows that HA,m is block upper Hessenberg.

However, we develop another method for computing HA,m which is slightly more
efficient, since it adapts the recursion in [89, Proposition 3.2] to computing directly
HA,m instead of Km. In order to explain this method in detail, we need to introduce
some additional notation. First, we partition the upper triangular matrix Zm =
(Zij)1≤i,j≤m ∈ R4mr×4mr with Zij ∈ R4r×4r as Zij = [Z

(1)
ij , Z

(2)
ij ], with Z

(1)
ij , Z

(2)
ij ∈

R4r×2r, and define the two block upper triangular matrices

Z(1)
m = (Z

(1)
ij )1≤i,j≤m, Z(2)

m = (Z
(2)
ij )1≤i,j≤m ∈ R4mr×2mr. (5.26)

Second, we observe that the orthonormalization process associated with the con-
struction of Vm generates the block upper Hessenberg matrix

Hm = (Hij) ∈ R4(m+1)r×4mr, where Hij ∈ R4r×4r, (5.27)

which satisfies

[B−TAV
(1)
1 , (B−TA)−1V

(2)
1 , . . . , B−TAV (1)

m , (B−TA)−1V (2)
m ] = Vm+1Hm. (5.28)

The subdiagonal blocks Hj+1,j are upper triangular, and we consider them parti-
tioned as follows:

Hj+1,j =

[
χ
(j)
11 χ

(j)
12

0 χ
(j)
22

]
, with χ(j)

11 , χ
(j)
12 , χ

(j)
22 ∈ R2r×2r. (5.29)

Submatrices H(1)
m = (H

(1)
ij ) and H(2)

m = (H
(2)
ij ) of Hm analogous to those in (5.26)

will also be used. This method is summarized in Proposition 5.5.

Proposition 5.5. Let HA,m := WT
mAVm ∈ R4mr×4mr be partitioned in blocks as

HA,m = (hij)1≤i,j≤m, where hij ∈ R4r×4r. Let each block hij be partitioned as hij =[
h
(1)
ij , h

(2)
ij

]
, where h

(1)
ij , h

(2)
ij ∈ R4r×2r, and define the following submatrices of HA,m

(separating the odd and even block columns of HA,m)

h(1) =
(
h
(1)
ij

)
1≤i,j≤m

∈ R4mr×2mr and h(2) =
(
h
(2)
ij

)
1≤i,j≤m

∈ R4mr×2mr.

By using the matrices defined in (5.22)-(5.25)-(5.27), the following results hold.

(a) h(1) = Z1:m,1:(m+1) H(1)
m .
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(b) With E1 = [I2r; 0]T ∈ R4mr×2r, let w1 = WmE1 be the matrix of the first 2r
columns of Wm, and let

[B−T [C1, C2] , A
−1[C1, C2]] = V1

[
χ
(0)
11 χ

(0)
12

0 χ
(0)
22

]
, χ

(0)
11 , χ

(0)
12 , χ

(0)
22 ∈ R2r×2r

(5.30)
be the QR decomposition of the matrix in the left-hand side. Then

h
(2)
1:m,1 =

(
E1w

T
1 [C1, C2] − h

(1)
1:m,1 χ

(0)
12

) (
χ
(0)
22

)−1
, (5.31)

h
(2)
1:m,k+1 =

(
Z

(2)
1:m,k − h1:m,1:kH

(2)
1:k,k − h

(1)
1:m,k+1 χ

(k)
12

) (
χ
(k)
22

)−1
, (5.32)

k = 1, . . . ,m− 1. (5.33)

Proof. To prove (a), let V
(1)
m := [V

(1)
1 , . . . , V

(1)
m ] and notice that (5.28) implies

B−TAV(1)
m = Vm+1 H(1)

m and AV(1)
m = BTVm+1 H(1)

m .

Therefore, h(1) = WT
mAV

(1)
m = WT

mB
TVm+1H

(1)
m = WT

mWm+1Zm+1H
(1)
m , by using

(5.25) for m+ 1. So h(1) = [I4mr, 04mr×4r]Zm+1H
(1)
m , and the result follows.

Let us prove (b). To obtain (5.31), we start by equating the second block columns
in (5.30) to get A−1[C1, C2] = V

(1)
1 χ

(0)
12 + V

(2)
1 χ

(0)
22 , which implies

AV
(2)
1 =

(
[C1, C2]− AV (1)

1 χ
(0)
12

) (
χ
(0)
22

)−1
.

Therefore

(h(2))1:m,1 = WT
mAV

(2)
1 = (WT

m[C1, C2]−WT
mAV

(1)
1 χ

(0)
12 ) (χ

(0)
22 )−1 .

Equation (5.31) follows from observing that WT
mAV

(1)
1 = (h(1))1:m,1 and that, from

(5.25), range(w1) = BT range(V (1)
1 ) = range([C1, C2]). Next, we focus on (5.32).

From (5.28), we obtain

(B−TA)−1V
(2)
k = Vm+1H

(2)
1:(m+1),k = VkH

(2)
1:k,k + Vk+1H

(2)
k+1,k

= VkH
(2)
1:k,k + [V

(1)
k+1 V

(2)
k+1]

[
χ
(k)
12

χ
(k)
22

]
,

where (5.29) has been used. This equation implies, after some manipulations,

AV
(2)
k+1 = (BT V

(2)
k − AVkH

(2)
1:k,k − AV

(1)
k+1 χ

(k)
12 ) (χ

(k)
22 )−1

= (Wm Z
(2)
1:m,k − AVkH

(2)
1:k,k − AV

(1)
k+1 χ

(k)
12 ) (χ

(k)
22 )−1 , (5.34)

where we used again (5.25). Equation (5.32) follows from combining (5.34) with
h
(2)
1:m,k+1 = WT

mAV
(2)
k+1, and the definition of HA,m.
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The method presented in Proposition 5.5 is the one we have used in all numerical
tests presented in Section 5.5. Algorithm 5.2 presents the projection algorithm in
Section 5.1 for the subspaces defined in (5.20) and (5.21) and the part concerning
with the construction of the extended Krylov subspace Vm is based on the algorithm
introduced in [89, Section 3]. Technical comments similar to those made after Algo-
rithm 5.1 apply likewise to Algorithm 5.2. In particular, the same stopping criterion
(5.19) is used here. Observe that the product (B−TA)−1V

(2)
m = A−1BTV

(2)
m in step

6 is computed by first multiplying the columns of V (2)
m with BT and then 2r linear

systems with A are solved.

Algorithm 5.2 Extended block Krylov method for solving T-Sylvester equation
Input: A,B ∈ Rn×n and C1, C2 ∈ Rn×r.
Output: Factors of approximate solution Xm of AX +XTB = C1C

T
2 .

Compute V1 orthonormal basis of range([B−T [C1, C2] , A
−1[C1, C2]]), and set V0 =

W0 = ∅.
for m = 1, 2, . . . , do

1. Vm = [Vm−1, Vm].
2. Orthonormalize the columns of BTVm with respect to Wm−1 to obtain Wm.

3. Wm = [Wm−1, Wm].
4. Set HA,m = WT

mAVm, HB,m = VT
mBWm, and C̃m = (WT

mC1)(W
T
mC2)

T .
5. Compute Ym solution of HA,mYm + Y T

mHB,m = C̃m via Algorithm 3.3 with
? = T .
if converged then

Return Vm, Ym,Wm such that Xm = VmYmWT
m and stop.

end if
6. V ′m+1 = [B−TAV

(1)
m , (B−TA)−1V

(2)
m ] where Vm = [V

(1)
m , V

(2)
m ].

7. Orthonormalize the columns of V ′m+1 with respect to Vm to obtain Vm+1.
end for

Proposition 5.6 shows that, in a similar manner as for the methods in Section 5.2,
the residual norm can be computed without explicitly storing the residual matrix,
and, thus, without performing any multiplication by the large matrices A and B.

Proposition 5.6. Let HA,m := WT
mAVm ∈ R4mr×4mr be partitioned in blocks as

HA,m = (hij)1≤i,j≤m, where hij ∈ R4r×4r, and let Em be the matrix of the last 4r
columns of I4mr. Then, with the notation in Algorithm 5.2, the residual matrix
Rm = AXm +XT

mB − C1C
T
2 satisfies

‖Rm‖F = ‖hm+1,mE
T
m Ym‖F .

Proof. We have Rm = AVmYmWT
m + WmY

T
mVT

mB − C1C
T
2 . Combining (5.24) and

(5.25) it follows that range(AVm) ⊆ Wm+1. In addition, range(Wm) ⊆ Wm+1
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and range(C1) ⊆ Wm+1 by (5.23). Therefore, range(Rm) ⊆ Wm+1. An analogous
argument shows that range(RT

m) ⊆ Wm, by using again (5.25) and (5.23). As a
consequence we can write Rm = Wm+1R̂mWT

m. Thus, R̂m = WT
m+1RmWm and by

(5.5)

R̂m =

[
WT

mRmWm

W T
m+1RmWm

]
=

[
0

W T
m+1RmWm

]
.

Since W T
m+1Wm = 0 and W T

m+1C1 = 0, because range(C1) ⊆ W1 = range(W1) by
(5.23), we have W T

m+1RmWm = W T
m+1AVmYm = hm+1,1:mYm. Besides, HA,m+1 is

block upper Hessenberg, which implies that hm+1,1:m = hm+1,mE
T
m, which proves the

result, since ‖Rm‖F = ‖R̂m‖F .

5.4 Relation to a T-Stein equation and a fixed point
iteration

In this section, another motivation for choosing the Krylov subspaces (5.10)-(5.11)
is provided, which offers some intuition on the expected convergence of Algorithm
5.1. This intuition is fully confirmed by the numerical tests presented in Section 5.5.

Since we assume that B is nonsingular, the T-Sylvester equation (5.1) is equiva-
lent to

XT = C1C
T
2 B

−1 − AXB−1.
Transposing this equation yields the fixed point equation

X = B−TC2C
T
1 −B−TXTAT . (5.35)

Matrix equations of this form are usually called T-Stein equations [20]. The
following theorem shows that the iterates produced by the fixed point iteration
applied to (5.35) are contained in the tensor product Vm⊗Wm of the block Krylov
subspaces in (5.10) and (5.11).

Theorem 5.7. Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r, and assume that B is nonsingular.
Consider the sequence of matrices {X̃m}∞m=0 defined by the fixed point iteration

X̃0 = 0, X̃m+1 = B−TC2C
T
1 −B−T X̃T

mA
T , for m = 0, 1, 2, . . . (5.36)

Then it holds that X̃m+1 ∈ Vm ⊗Wm for m = 2, 3, . . ., where

Vm = Km(B−TA,B−T [C1, C2]) and Wm = Km(AB−T , [C1, C2]).

Proof. We will show by induction that range(X̃m+1) ⊆ Vm and range(X̃T
m+1) ⊆Wm;

these two conditions taken together are equivalent to X̃m+1 ∈ Vm ⊗Wm.
The first three iterates of (5.36) are given by

X̃1 = B−TC2C
T
1 ,
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X̃2 = B−TC2C
T
1 −B−TC1C

T
2 (AB−T )T ,

X̃3 = B−TC2C
T
1 −B−TC1C

T
2 (AB−T )T − (B−TA)B−TC2C

T
1 (AB−T )T .

By inspection, range(X̃3) ⊆ V2 and range(X̃T
3 ) ⊆W2.

Suppose now that range(X̃m) ⊆ Vm−1 and range(X̃T
m) ⊆ Wm−1 hold for some

m ≥ 3. Together with (5.36), this implies

range(X̃T
m+1) ⊆ range(C1) + range(AX̃m) ⊆ range(C1) + AVm−1.

Using

AVm−1 = range
([
AB−T [C1, C2] , (AB−T )2[C1, C2], . . . , (AB

−T )m−1[C1, C2]
])
⊆Wm,

we therefore obtain
range(X̃T

m+1) ⊆W1 +Wm = Wm.

Analogously,

range(X̃m+1) ⊆ range(B−TC2) + range(B−T X̃T
m)

⊆ V1 +B−TWm = V1 +Vm = Vm,

where we have used (5.11). We have thus shown that the statement of the theorem
holds for m+ 1, which completes the induction proof.

Theorem 5.7 shows that there is a 2mr × 2mr matrix Ỹm such that

X̃m+1 = VmỸmWT
m,

for orthonormal bases Vm,Wm of Vm,Wm respectively. In particular, X̃m+1 has
rank at most 2mr. Although the iteration (5.36) itself operates with full n × n
matrices, it is certainly possible to develop a low-rank variant, similar to the low-
rank Smith method [78] for Lyapunov equations. More importantly, X̃m+1 is in
general different from the approximation Xm obtained when applying the projection
method from Section 5.1 with the same block Krylov subspaces Vm,Wm. Although,
X̃m+1 and Xm are both contained in Vm⊗Wm, the Petrov-Galerkin condition (5.5)
will usually pick an approximation different from X̃m+1. Still we believe that the
established link to the fixed point iteration (5.36) also offers some intuition on the
expected convergence of the projection method.

Establishing sufficient conditions that guarantee fast convergence of the pro-
jection method is likely a difficult problem and it is not considered in this thesis.
However, the convergence analysis of the fixed point iteration (5.36) is very sim-
ple. Observe that although in Theorem 5.8 the spectral norm is used, any other
submultiplicative matrix norm may also be considered.

Theorem 5.8. Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r, and assume that B is nonsingular
and ρ(B−TA) < 1. Then the following statements hold:
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(a) the T-Sylvester equation (5.1) (or, equivalently, the T-Stein equation (5.35))
has a unique solution X;

(b) the sequence of matrices {X̃m}∞m=0 defined by the fixed point iteration (5.36)
converges to X;

(c) the error matrix Em = X − X̃m satisfies

‖E2`‖2 ≤
∥∥∥(B−TA)`∥∥∥

2

∥∥∥(B−1AT )`∥∥∥
2
‖X‖2, for ` = 0, 1, 2, . . . .

Proof. Part (a) follows immediately from Theorem 3.9; the condition ρ(B−TA) < 1
implies that the spectrum of A− λBT is T-reciprocal free.

By the definition (5.36) of X̃m, we get E0 = X and Em+1 = −B−TET
mA

T . Then
a simple induction argument shows that

E2` = (B−TA)`X(B−1AT )` and E2`+1 = −B−T (AB−T )`XT (ATB−1)`AT ,
(5.37)

for ` = 0, 1, 2, . . .. Observe that ρ(B−TA) = ρ(AB−T ) = ρ(B−1AT ) = ρ(ATB−1).
Hence, ρ(B−TA) < 1 implies that

lim
`→∞

(B−TA)` = lim
`→∞

(AB−T )` = lim
`→∞

(B−1AT )` = lim
`→∞

(ATB−1)` = 0,

see [51, Theorem 5.6.12], and limm→∞Em = 0. This proves (b). Part (c) follows
from the first equation in (5.37).

Standard properties of the spectral radius [51, Corollary 5.6.14] and Theorem
5.8(c) show that asymptotically

‖E2`‖2 .
(
ρ(B−TA)

)2` ‖X‖2, `→∞ . (5.38)

Therefore fast convergence of the fixed point iteration (5.36) for the T-Stein equation
is expected if ρ(B−TA) < 1 and this spectral radius is not too close to one. By
Theorem 5.7, this implies that Vm ⊗Wm contains an approximation to X that
rapidly becomes more accurate as m increases. Numerically, we have observed this
behavior as well for the approximation Xm picked by the Petrov-Galerkin condition;
the experiments in Section 5.5 demonstrate that the projection method with the
block Krylov subspaces Vm,Wm in (5.10)-(5.11) converges always quickly when
ρ(B−TA) < 1, although, sometimes, it converges also in other situations.

5.5 Numerical tests
In this section we report on numerical experiments with the new Algorithms 5.1 and
5.2. All reported experiments were performed using Matlab R2012a on a PC with
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processor Intel (R) Core (TM) 2 Quad CPU Q9400 @2.66GHz (4CPUs), with 4096
MB of RAM, and with operating system Windows 7 Enterprise 64 bits. Both CPU
time (in seconds) and the dimension of the approximation space Vm (equal to the
dimension of Wm) are used to measure the cost of the different methods. We also
report on the number of iterations for completeness.

Our algorithms are compared with the extended block Krylov subspace method
applied to the standard Sylvester equation (3.20) (see Section 3.3.3, or [90] and the
references therein for details). Some remarks are in order concerning this compari-
son. In view of the eventual goal, we use the relative residual defined in (5.19) for
the T-Sylvester equation (instead of the relative residual of the Sylvester equation)
for monitoring the convergence of the approximate solution X̂m ≈ V̂mŶmŴT

m of
(3.20) provided by the extended block Krylov subspace method. To compute this
residual norm, we note that

R̂m = AX̂m + X̂T
mB − C1C

T
2 =

[
AV̂m Ŵm C1

] Ŷm
Ŷ T
m

Ir

 ŴT
m

V̂T
mB
−CT

2

 .
Therefore, if [AV̂m, Ŵm, C1] = QmSm and [Ŵm, B

T V̂m, −C2] = UmGm are two
“skinny” QR factorizations then ‖R̂m‖F = ‖Sm diag(Ŷm, Ŷ

T
m , Ir)G

T
m‖F . Although

this computation is cheap, it is far more expensive than the methods for computing
residual norms presented in Propositions 5.4 and 5.6 for Algorithms 5.1 and 5.2,
respectively. To take this into account, we will report CPU times with and without
the computation of the relative residual in every iteration.

One motivation for reporting both times is that it usually suffices to verify the
stopping criterion (5.19) only every few (say 5 or 10) iterations and hence the actual
time will be in between.

The following table summarizes the algorithms that will be compared.

BK Algorithm 5.1
BK-TR Algorithm 5.1 applied to the transposed equation (5.13)
EK Algorithm 5.2
EK-woR EK without time for residual computation
EK-SYLV extended block Krylov subspace method applied to Sylvester equation (3.20)
EK-SYLV-woR EK-SYLV without time for residual computation

Before presenting the numerical tests in detail, let us summarize the main con-
clusions we have obtained, since they offer a clear guidance on the selection of
algorithm for solving a given problem. EK is the most reliable method as it suc-
ceeds to converge more often than any other method; indeed, we have not found any
example where EK does not converge but one of the other methods does. However,
for problems satisfying ρ(B−TA) < 1 we recommend the use of BK, which we have
observed to be much faster than the other methods in this situation. On the other
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hand, if ρ(A−1BT ) < 1 then BK-TR is the fastest method. This is in accordance
with the discussions in Section 5.4 and in the paragraphs after Remark 5.1. The
method EK-SYLV based on the standard Sylvester equation (3.20) is not recom-
mended since it fails to converge in situations where other methods succeed and
even when it works, it is almost always slower than EK.

In particular, we only show results for right-hand sides C1C
T
2 with vectors C1, C2 ∈

Rn×1 generated by the command rand in Matlab, although we have also performed
tests with random matrices C1, C2 ∈ Rn×r with r = 2. . . . , 7.

In this thesis, we present three types of numerical tests. In the first type of tests
(5.9–5.11) the coefficient matrices A and B are finite difference discretizations of
certain differential operators. In the second type of tests (5.12–5.17), we construct
structured matrices A and B with prescribed eigenvalues for B−TA. Finally, we
discuss tests with block diagonal matrices built from the previous tests; see (5.39)
and the numerical test 5.18.

Numerical test 5.9. A and B are 104 × 104 matrices obtained by finite-difference
discretizations in [0, 1]× [0, 1] of the differential operators

a(u) = −uxx − uyy + y(1− x)ux + γu ,

b(u) = −uxx − uyy ,

respectively, where γ = 104. The vectors C1, C2 have been multiplied by 104 to
match the magnitude of the entries of the matrices A and B. The following table
displays the obtained results.

tol = 10−10 EK BK BK-TR EK-SYLV EK-SYLV-woR EK-woR
iterations 14 70 15 15 15 14

dim. approx. space 56 140 30 60 60 56
time (seconds) 4.277 50.856 1.684 6.255 2.901 3.666

The convergence history is shown in Figure 5.1(a). In this test, all eigenvalues of
B−TA are well outside the unit circle; the smallest absolute value of the eigenvalues
is approximately equal to 1.1226. All methods converge, with BK-TR being the
fastest by far and BK the slowest. In this test, the use of extended Krylov spaces in
EK does not add any essential information compared to BK-TR and therefore EK
wastes half of the space.

Numerical test 5.10. A and B are 104×104 matrices obtained by finite-difference
discretizations in [0, 1]× [0, 1] of the differential operators

a(u) = (−exp(−xy)ux)x + (−exp(xy)uy)y + 100xux + γ u

b(u) = −uxx − uyy,

where γ = 5 · 104. The vectors C1, C2 have been multiplied by 104 to match the
magnitude of the entries of the matrices A and B.
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(a) Numerical test 5.9.
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(b) Numerical test 5.11.

Figure 5.1: Convergence histories for numerical tests 5.9 and 5.11.

tol = 10−10 EK BK BK-TR EK-SYLV EK-SYLV-woR EK-woR
iterations 8 83 8 8 8 8

dim. approx. space 32 166 16 32 32 32
time (seconds) 1.716 58.175 0.764 2.496 1.784 1.6160

The results are similar to the numerical test 5.9, only that the convergence (except
for BK) is faster due to the fact that the eigenvalues of B−TA are even further
outside the unit circle. The eigenvalue of smallest absolute value is approximately
equal to 1.6159.

Numerical test 5.11. A and B are 104×104 matrices obtained via finite-difference
discretizations in [0, 1]× [0, 1] of the differential operators

a(u) = (−exp(−xy)ux)x + (−exp(xy)uy)y + 100xux + γu ,

b(u) = −uxx − uyy + 100xux ,

where γ = 5 · 104. The vectors C1, C2 have been multiplied by 104 to match the
magnitude of the entries of the matrices A and B. It turns out that only EK
converges for this example. BK, BK-TR, and EK-SYLV do not converge within 100
iterations and their relative residuals remained essentially constant around 10−3.
This lack of convergence is marked with a star in the following table.

tol = 10−10 EK BK* BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR
iterations 29 100 100 100 100 29

dim. approx. space 116 200 200 400 400 116
time (seconds) 10.920 70.715 63.835 521.214 71.807 9.158
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The convergence history of EK is plotted in Figure 5.1(b), which shows stag-
nation until the dimension of the approximation subspace is 90, after which quick
convergence sets in. A key difference to the previous tests 5.9 and 5.10 is that
the eigenvalues of B−TA are now located inside and outside the unit circle, with
the magnitudes of the eigenvalues varying between 0.8679 and 1.4563. This fact has
drastic effects on the convergence of the methods making EK the only valid method.

Tests 5.9, 5.10, and 5.11 clearly show that the eigenvalue distribution of B−TA
plays an important role in the behavior of the algorithms. To investigate this further,
we prescribe the eigenvalues of B−TA in the numerical tests 5.12-5.17. We construct
these matrices as follows: let A1 be a block diagonal real matrix with 1× 1 or 2× 2
blocks, whose eigenvalues are, respectively, the real and complex eigenvalues that
are prescribed for B−TA. We consider in addition the following tridiagonal matrices
P and Q

P =


1 1

3

1
2

1
. . .

. . .
. . . 1

3
1
2

1

 , Q =


1 1

6

1
4

1
. . .

. . .
. . . 1

6
1
4

1

 .

Next, we define the matrices A = PA1Q and B = QTP T . The eigenvalues of A1

and B−TA are equal because

B−TA = (QTP T )−TPA1Q = (PQ)−1PA1Q = Q−1P−1PA1Q = Q−1A1Q.

Note that B is pentadiagonal and that A has at most 7 nonzero diagonals.

Numerical test 5.12. A and B are 105 × 105 matrices such that the eigenvalues
of B−TA are distributed as in Figure 5.2(a). Observe that all eigenvalues of B−TA
are well inside the unit circle. BK-TR did not converge in 70 iterations; it was not
even close to.

tol = 10−10 EK BK BK-TR* EK-SYLV EK-SYLV-woR EK-woR
iterations 13 13 70 15 15 13

dim. approx. space 52 26 140 60 60 52
time (seconds) 14.227 6.474 179.416 107.796 15.568 11.776

The convergence history is shown in Figure 5.2(b). BK is the fastest method by far,
which is in full agreement with the discussion in Section 5.4. The behaviors of BK
and BK-TR are opposite to what has been observed in the tests 5.9 and 5.10, while
EK and EK-SYLV behave the same.
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(a) Eigenvalues of B−TA and unit circle (dashed
line).
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(b) Convergence history.

Figure 5.2: Distribution of eigenvalues of B−TA and convergence history for numer-
ical test 5.12.

Numerical test 5.13. A and B are 105× 105 matrices such that the eigenvalues of
B−TA are distributed as in Figure 5.3(a). Observe that all eigenvalues of B−TA are
well outside the unit circle. BK did not converge in 70 iterations; it was not even
close to.

tol = 10−10 EK BK* BK-TR EK-SYLV EK-SYLV-woR EK-woR
iterations 13 70 13 13 13 13

dim. approx. space 52 140 26 52 52 52
time (seconds) 14.024 168.041 6.489 73.492 12.448 11.965

All results are very similar to the ones in test 5.9, except that the CPU times
increase as a consequence of the larger size. However, we emphasize that the dis-
tributions of eigenvalues of B−TA are very different in both cases, in particular, for
test 5.9 the eigenvalues are either real or distributed along an arc, even though the
eigenvalues are well outside the unit circle in both cases.

Numerical test 5.14. A and B are 105× 105 matrices such that the eigenvalues of
B−TA are distributed as in Figure 5.3(b). Observe that B−TA has eigenvalue inside
and outside the unit circle and near 1. The behaviors of the methods are as in test
5.11, with EK being the only converging method. All other methods were not close
to convergence in 70 iterations.

tol = 10−10 EK BK* BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR
iterations 21 70 70 70 70 21

dim. approx. space 84 140 140 280 280 84
time (seconds) 35.427 178.722 192.536 3041.208 296.339 32.569
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(a) Numerical test 5.13 (unit circle-dashed line). (b) Numerical test 5.14 (unit circle-dashed line).

Figure 5.3: Distribution of eigenvalues of B−TA for numerical tests 5.13 and 5.14.

Numerical test 5.15. A and B are 105 × 105 matrices such that the eigenvalues
of B−TA are distributed as in Figure 5.4(a). In this test, the eigenvalues of B−TA
are outside the unit circle and close to the real interval [3, 5]. This test illustrates
a situation that we have not seen before: both BK-TR and BK exhibit fast conver-
gence, which is surprising in the light of the discussion in Section 6 and the results
of the previous tests. As expected, BK-TR is the fastest method, but the difference
is not as large as in the other tests.

tol = 10−10 EK BK BK-TR EK-SYLV EK-SYLV-woR EK-woR
iterations 3 9 4 3 3 3

dim. approx. space 12 18 8 12 12 12
time (seconds) 1.435 8.190 1.092 3.135 1.544 1.382

Numerical test 5.16. The tests presented so far may give the impression that
EK converges well for any real T-Sylvester equation; however, this is not true. In
fact, when B−TA has eigenvalues inside and outside the unit circle, often none of
the methods presented in this paper can be expected to work well. This test is
an example of such a situation. A and B are 105 × 105 matrices such that the
eigenvalues of B−TA are distributed as in Figure 5.4(b). With tol = 10−10 none of
the methods converged in 200 iterations, at which they reached relative residuals in
the order of 10−2 − 10−3. We have performed other tests with eigenvalues of B−TA
distributed as in Figure 5.4(b) but with matrices of size 1000 × 1000. These small
sized cases can be solved directly by using the Algorithm 3.3 and we have observed
that the solution is very far from having low-rank. As a consequence, the relative
residuals for all methods remain constant around 10−3 until the dimensions of the
approximation spaces are equal to 1000, i.e., they are the whole space.
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(a) Numerical test 5.15 (unit circle-dashed line). (b) Numerical test 5.16 (unit circle-dashed line).

Figure 5.4: Distribution of eigenvalues of B−TA for numerical tests 5.15 and 5.16.

Numerical test 5.17. In this example, the eigenvalues of B−TA are prescribed
to lie all inside the unit circle, but some of them are close to 1, see Figure 5.5(a).
This test illustrates a situation where EK-SYLV does not converge in 100 iterations,
while EK and BK do converge. The failure of BK-TR is expected from the discus-
sion in Section 5.4 and the failure of EK-SYLV from the discussion after Theorem
3.12. After 100 iterations BK-TR and EK-SYLV were far from satisfying the stop-
ping criterion. All methods have difficulties with this example and the convergence
history for EK and BK differs from the other examples, see Figure 5.5(b).

tol = 10−7 EK BK BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR
iterations 57 57 100 100 100 57

dim. approx. space 228 114 200 400 400 228
time (seconds) 261.566 112.351 336.915 6785.715 567.110 217.339

Finally, we have considered matrices A and B from the previous tests such that
BK or BK-TR performs well but the other methods do not, and then we construct
the new pair of matrices

Ã = diag(A,B) and B̃ = diag(B,A) . (5.39)

When proceeding in this way for the matrices from tests 5.9, 5.10, and 5.12, only
EK is observed to perform well. For brevity we report only the case coming from
test 5.12.

Numerical test 5.18. We construct matrices A and B of size (2 · 105) × (2 · 105)
applying (5.39) to the matrices from test 5.12. BK, BK-TR and EK-SYLV do not
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(a) Eigenvalues of B−TA and unit circle
(dashed line).
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(b) Convergence history.

Figure 5.5: Distribution of eigenvalues of B−TA and convergence history for numer-
ical test 5.17.

converge in 70 iterations and they are by no means close to satisfying the stopping
criterion. In contrast, EK converges in 44 iterations, see also Figure 5.6.

tol = 10−10 EK BK* BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR
iteration 44 70 70 70 70 44

dim. approx. space 176 140 140 280 280 176
time (seconds) 305.621 352.733 372.358 6750.553 675.375 289.663

(a) Eigenvalues of B−TA.
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(b) Convergence history.

Figure 5.6: Distribution of eigenvalues of B−TA and convergence history for numer-
ical test 5.18.
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We can see that our numerical experiments show that the new extended Krylov
method we have introduced in Algorithm 5.2 works very well in many situations
and that, if it fails, then all the other methods fail too. However, if we have some
previous information about the behavior of the eigenvalues of B−TA and they are
either well inside the unit circle, or well outside the unit circle, then the new block
Krylov method introduced in Algorithm 5.1 is much faster. More conclusions and
open problems will be discussed in Chapter 6.



Chapter 6

Conclusions, publications and open
problems

In this chapter, we discuss the main conclusions and original results of this PhD
Thesis. We also present a list of all papers that include the results developed in this
dissertation, the conferences where they have been presented, and we discuss some
future work motivated by the results obtained in this thesis.

6.1 Conclusions and original contributions

In this section, we provide a summary of the main original results introduced in this
PhD Thesis.

Chapter 3: As far as we know, the connection we have established between
T-Sylvester equations and Sylvester equations in Theorem 3.12 is a new result
in the literature. A priori, these relations suggest that a large-scale T-Sylvester
equation can be solved numerically by using a projection method on the related
Sylvester equation stated in Theorem 3.12(b). However, the numerical experi-
ments show that this is not a good approach, and projection methods developed
specifically for T-Sylvester equations perform much better than the ones for the
related Sylvester equation.

Chapter 4: We have introduced the R-CORK method for solving large-scale
rational eigenvalue problems R(λ)x = 0, with R(λ) represented as in (2.9), this
is, R(λ) = P (λ) − E(C − λD)−1F T , where P (λ) is the polynomial part and
E(C − λD)−1F T is the strictly proper part of the rational matrix R(λ). Note
that, the first key idea is that R-CORK solves the generalized (linear) eigenvalue
problem (A− λB)z = 0, defined in (2.10), for A,B and z as in (2.11)-(2.12).

The second key idea is that R-CORK is a structured version of the classical
rational Krylov method for solving generalized eigenvalue problems that takes

131
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advantage of the particular structure of the linearization (2.10). This structure
allows us to represent the orthonormal bases of the rational Krylov subspaces of
the linearization in a compact form involving less parameters than the bases of
rational Krylov subspaces of the same dimension corresponding to unstructured
generalized eigenvalue problems of the same size as the considered linearization.
In addition, this compact form can be efficiently and stably updated in each
rational Krylov iteration by the use of two levels of orthogonalization in the
spirit of the TOAR [100, 71, 63] and the CORK [104] methods for large-scale
polynomial eigenvalue problems.

The combined use of the compact representation of rational Krylov subspaces
and the two levels of orthogonalization in R-CORK reduces significantly the
orthogonalization and the memory costs with respect to a direct application of
the classical rational Krylov method to the linearization A−λB. If we consider
as n × n the size of R(λ), j the maximum dimension of the Krylov subspaces
of A − λB, d the degree of P (λ), and s × s the size of the pencil (C − λD),
then the reduction in costs of R-CORK is appreciable in the case when jd� n,
which always happens in large scale problems, and very considerable if also
s � n and d < j, which occurs in most applications of rational eigenvalue
problems. In this case, after j iterations, the orthogonalization cost of R-CORK
is O(j2n), while the cost of the classical rational Krylov is O(j2nd), and the
memory cost of R-CORK is approximately nj numbers, while the one of classical
rational Krylov is ndj. These reductions can be combined with an structured
implementation of a Krylov-Schur implicit restarting adapted to the compact
representation used by R-CORK, which allows us to keep the dimension of
the Krylov subspaces moderate without essentially increasing the number of
iterations until convergence. Our numerical experiments confirm all these good
properties of the R-CORK method.

Chapter 5: Two new projection algorithms based on Krylov subspaces to solve
real, large-scale and sparse T-Sylvester equations, AX + XTB = C, with low-
rank right-hand side were developed and tested extensively in many different
situations. In our numerical experiments, we have compared the new methods
with the extended Krylov method applied to the equivalent standard Sylvester
equation: (B−TA)X −X(A−TB) = B−TC −B−TCTA−TB.

Our experiments show that the first method, based on block Krylov subspaces,
works efficiently if the eigenvalues of B−TA are inside the unit circle, in the sense
of CPU time and reliability. Note that similar comments hold if the eigenvalues
of B−TA are outside the unit circle and the block Krylov method is applied
to the transposed of the given T-Sylvester equation, this is, if it is applied to
BTX +XTAT = CT .

The second procedure, based on extended block Krylov subspaces, works very
well in many situations and we can see, based on our numerical experience, that
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if it fails, then all the other methods fail.

The implementation for the new procedures that we have introduced for the
solution of the T-Sylvester equation projects the large-scale problem into a
small-scale T-Sylvester equation. We showed that the construction of the ma-
trices for the reduced equation can be performed without extra costs, resulting
in fast and efficient algorithms.

Note that, the extended Krylov method applied to the equivalent standard
Sylvester equation fails more often than the new methods, and also that, when
it converges, it is always considerably smaller than the new algorithms. For
these reasons, we do not recommend to use it.

The relation between T-Sylvester equations and T-Stein equations give us some
intuition on the expected convergence of the projection method, in particular
when ρ(B−TA) < 1, where the block Krylov method converges always quickly.

With the results in Chapter 5, we solve a relevant open problem concerning the
T-Sylvester equation, namely, its numerical solution in the large-scale setting.

6.2 Publications

The results in Chapter 4 are contained in:

Dopico, F. M., González-Pizarro, J., A compact rational Krylov method
for large-scale rational eigenvalue problems, accepted in Numer. Linear
Algebra Appl., arXiv:1705.06982, 2018.

Theorem 3.12 in Section 3.2 and the results in Chapter 5 are contained in:

Dopico, F. M., González-Pizarro, J., Kressner, D., Simoncini, V.,
Projection methods for large-scale T-Sylvester equations, Math. Comp. 85:2427-
2455, DOI: https://doi.org/10.1090/mcom/3081, 2016.

6.3 Contributions to conferences

The results developed in this PhD Thesis were presented by its author in several con-
ferences. Among these conferences, we find some of the most relevant international
conferences in the area of Linear Algebra: The International Linear Algebra Society
(ILAS) conference and the Society for Industrial and Applied Mathematics (SIAM)
conference. The Krylov methods for solving T-Sylvester equations developed in
Chapter 5 were presented in the following conferences:

https://doi.org/10.1090/mcom/3081
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• Projection methods for large T-Sylvester equations. Presented as a contributed
talk in the joint meeting organized by the spanish thematic network of Linear
Algebra, Matrix Analysis and Applications (ALAMA) and the german activity
group of the International Association of Applied Mathematics and Mechan-
ics (GAMM) on Applied and Numerical Linear Algebra (ANLA), (ALAMA-
GAMM/ANLA’2014 meeting), Polytechnic University of Catalonia, Barcelona,
Spain, July 14-16, 2014.

• Projection methods for large T-Sylvester equations. Also presented as a con-
tributed talk, in the 19th ILAS Conference, Sungkyunkwan University, Seoul,
South Korea, August 6-9, 2014.

• Projection methods for large T-Sylvester equations. Presented as a contributed
talk in the Workshop on Matrix Equations and Tensor Techniques, University
of Bologna, Bologna, Italy, September 21-22, 2015.

Whereas that the results related to the R-CORK method developed in Chapter 4
were presented in:

• Two-Level orthogonal Arnoldi method for large rational eigenvalue problems.
Presented as a contributed presentation in the session of “Eigenvalue and SVD
Problems” in the SIAM Conference on Applied Linear Algebra (LA15), Hyatt
Regency Atlanta Hotel, Atlanta, United States of America, October 26-30,
2015.

• Two-level orthogonal Arnoldi method for large rational eigenvalue problems.
Presented in the Young Researchers Sessions in the ALAMA’2016 Meeting,
Real Colegiata San Isidoro Hotel, León, Spain, June 20-22, 2016.

• A compact rational Krylov method for large-scale rational eigenvalue problems.
Presented in the minisymposium “Polynomial and Rational Eigenvalue Pro-
blems” in the 20th Conference of the International Linear Algebra Society
(ILAS), Catholic University of Leuven, Leuven, Belgium, July 11-15, 2016.

6.4 Future work and open problems

Finally, we present some open problems and future research motivated by the results
obtained in this dissertation.

Problem 1: Backward error analysis of the R-CORKmethod. Consider
the Arnoldi method with the Arnoldi recurrence relation (2.18) written as

AVm = Vm+1Hm.
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It is well known that if an implementation in floating point arithmetic of the
Arnoldi method is performed, with special care in the orthogonalization process,
it results in a backward stable algorithm [6, 91] in the sense that computed the
matrices V̂m+1 and Ĥm satisfy an exact Arnoldi recurrence relation for a slightly
perturbed matrix, this is,

(A+ ∆A)V̂m = V̂m+1Ĥm,

with ‖∆A‖2 = O(ε)‖A‖2 and ε the unit roundoff of the computer.

This means that a basis of an exact Krylov subspace corresponding to a nearby
matrix to A is computed. A similar backward error analysis can be performed
for the shift-and-invert Arnoldi algorithm [88]. This analysis shows that an
implementation in floating point arithmetic of the Arnoldi method applied to
A−1 yields computed matrices V̂m+1 and Ĥm such that

(A+ ∆A)−1V̂m = V̂m+1Ĥm,

again with ‖∆A‖2 = O(ε)‖A‖2.
As a future work, we propose to develop a backward error analysis of the R-
CORK method. First, we are interested into prove that the algorithm is back-
ward stable for the linearized problem, and then, establish relations between
this analysis and the “coefficients” of the rational matrix in the representation
(2.9). However, the R-CORK method is a structured algorithm based on the ra-
tional Krylov method. For this reason, as a starting point, this analysis should
be performed first for a compact Arnoldi method applied to the linearization
(2.10) and be continued to the shift-and-invert compact Arnoldi algorithm with
a fixed shift at the origin, to finalize with the implementation of the compact
rational Krylov method with different shifts at each iteration, i.e., R-CORK.
This work is already being addressed by the author and is a work in progress.

Problem 2: Extend R-CORK to other linearizations, in particular to
linearizations that express the polynomial part in other bases. In this
work, we have considered the R-CORK method for solving the REP R(λ)x = 0,
with R(λ) defined as in (2.9), i.e.,

R(λ) = P (λ)− E(C − λD)−1F T ,

where P (λ) is expressed in the monomial basis. Since matrix polynomials can
be expressed in several different bases, it is natural to consider the rational
matrix with the polynomial part expressed as

P (λ) =
d∑
i=0

bi(λ)Pi,
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where bi(λ), i = 0, . . . , d, is a polynomial of degree i. The authors of [36] de-
veloped linearizations for rational matrices with polynomial part expressed in
orthogonal bases. Some of these linearizations have the structure of the struc-
tured pencils in Definition 2.13 augmented with the matrices E,C,D and F
in (2.9), which allows easily to extend R-CORK for them. However, there are
linearizations in [36] that do not have this structure. For that reason, it is of in-
terest to analyze if R-CORK can be developed by considering linearizations that
are not structured-like pencils. In [70] this problem is addressed for nonlinear
matrices that are approximated by rational matrices, however, these rational
matrices are not expressed as in (2.9) and the linearizations that they use are
not strong linearizations, unlike the linearizations introduced in [36]. In this
way, both methods could be compared and the advantages or disadvantages of
them could be analyzed.

Problem 3: Develop a compact two-sided Krylov method for REPs
expressed as the sum of a polynomial part and a strictly proper ratio-
nal part. As we mentioned in Section 2.4.3, CORK is a method that exploits
the structure of the linearization for constructing the Krylov vectors in a com-
pact form. However, CORK approximates eigenvalues and their corresponding
right eigenvectors but is not suitable in its current form for the computation of
left eigenvectors. For this reason, two-sided compact rational Krylov methods
are introduced in [69]. These methods are a generalization of the CORK me-
thod and they are based on a class of Kronecker structured pencils that includes
many linearizations. This class of structured pencils facilitates the development
of a general framework for the computation of both right and left-sided Krylov
subspaces in compact form, which allows to compute both right and left eigen-
vectors. However, these linearizations do not consider the case when the rational
matrix is expressed as in (2.9), this is, as the sum of a polynomial part and a
strictly proper rational part. For this reason, an extension of the R-CORK me-
thod would be useful to develop a compact two-sided Krylov method for REPs
expressed as in (2.9).

Problem 4: Develop low-rank Smith methods for solving large-scale
and sparse T-Sylvester equations with low-rank right-hand side. Since
the projection methods that we introduced in this dissertation are, as far as
we know, the first methods for solving large-scale T-Sylvester equations with
low-rank right-hand side, it is natural to think about the idea of developing
other procedures to solve this matrix equation. As we saw in Section 5.4,
the T-Sylvester equation AX + XTB = C1C

T
2 is equivalent to the T-Stein

equation X = B−TC2C
T
1 − B−TXTAT which might be solved by developing

a low-rank Smith method [78]. Smith methods were developed many years
ago for solving Sylvester equations [93] and, then, they were used for solving
large-scale Lyapunov equations with low-rank right-hand side [78] by creating



6.4. FUTURE WORK AND OPEN PROBLEMS 137

a procedure that accelerates the convergence of the fixed point iteration to the
solution and by approximating the solution by a low-rank matrix in order to
have low storage requirements. They use an expression of the iterates, that
could be extended for T-Sylvester equations, to compute iterative subsequences
of the fixed point iteration which results in algorithms that converges fast. The
development of this procedure could result in an efficient method for solving
large-scale T-Sylvester equations and it would allow us to compare the results
with the ones obtained by projection methods.

Problem 5: An error analysis of the projection methods for the T-
Sylvester equation. An error analysis of projection methods for Sylvester
equations has been discussed in [11]. As we mentioned in Section 3.3, projection
methods for solving the Sylvester equation are based on Galerkin conditions,
which is an important difference with our projection methods for the T-Sylvester
equation, which are based on Petrov-Galerkin conditions. For instance, if we
consider the Sylvester equation AX +XB = C with C := C1C

T
2 of rank 1 and

A and B having disjoint field of values, an estimate for the Galerkin residual
can be obtained [11, Theorem 2.3]. As far as we know, it does not exist a similar
result for projection methods for the T-Sylvester equation and these results are
far from being trivial. The development of this error analysis will be the subject
of future work.
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