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Summary. Many economic sectors often collect significantly less data than would
be required to analyze related standard decision problems. This is because the
demand for some data can be intrusive to the participants of the economy in
terms of time and sensitivity. The problem of modelling and solving decision models
when relevant empirical information is incomplete is addressed. First, a procedure
is presented for adjusting the parameters of a model which is robust against the
worst-case values of unobserved data. Second, a scenario tree approach is consid-
ered to deal with the randomness of the dynamic economic model and equilibria is
computed using an interior-point algorithm. This methodology is implemented in
the Australian deregulated electricity market. Although a simplified model of the
market and limited information on the production side are considered, the results
are very encouraging since the pattern of equilibrium prices is forecasted.
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1 Introduction

Decision makers need to build and solve stochastic dynamic decision models
to make planning decisions accurately. Three steps are involved. The first is
the specification of the structure of the stochastic dynamic decision model
reflecting the essential economic considerations. The second step is the cali-
bration of the parameters of the model. The final step is the computation of
the model’s outcome for forecasting and/or simulating economic problems.
In the first part of this paper, we propose an integrated approach to
address this problem. The first task, the specification of the model, involves
a trade-off between complexity and realism. A more realistic model is usually
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a multistage stochastic problem that will become increasingly impractical as
the problem size increases. In general, any multistage stochastic problem is
characterized by an underlying exogenous random process whose realizations
are data trajectories in a probability space. The decision variables of the model
are measurable functions of these realizations. A discrete scenario approxi-
mation of the underlying random process is needed for any application of
the stochastic problem. This field of research has became very popular due
to the large number of finance and engineering applications. For example,
(Bounder, 1997), (Kouwenberg, 2001) and (Hgyland and Wallace, 2001) devel-
oped and employed scenarios trees for a stochastic multistage asset-allocation
problem. (Escudero, Fuente, Garcia and Prieto, 1996), among others, consid-
ered scenarios trees for planning the production of hydropower systems. We
obtain a discrete approximation of the stochastic dynamic problem using
the simulation and randomized clustering approach proposed by (Giilpinar,
Rustem and Settergren, 2004). In particular, we consider a scenario tree
approach to approximate the stochastic random shocks process that affects
the market demand.

On the other hand, firms make decisions on production, advertisement, etc.
within the constraints of their technological knowledge and financial contracts.
In many actual production processes, these constraints contain parameters,
often unknown even when they have physical meaning. Decision makers do not
usually observe all data required to estimate accurately the parameters of the
model. For example, decision makers often lack enough information on the
specifications of competitors. In these circumstances, standard econometric
techniques cannot help to estimate the parameters of an economic model
and still, decision makers require a full specification of the market to design
optimal strategies that optimize their returns.

We propose a robust methodology to calibrate the parameters of a model
using limited information. The robustness in the calibration of the model is
achieved by a worst-case approach. Worst-case modelling essentially consists of
designing the model that best fits the available data in view of the worst-case
outcome of unobserved decision variables. This is a robust procedure for
adjusting parameters with insurance against unknown data.

In the economic context, this approach turns out especially interesting to
study situations in which a structural change takes place, for example when
there are changes in the technologies of firms or a new firm enters the economy.
As a consequence of these exogenous perturbations, the empirical data gener-
ating process is modified and classical estimations cannot be made. In this
context, a model in which decision makers assess the worst-case effect of the
unobserved data is a valuable tool for the decision maker against a risk in
future decisions. Worst-case techniques has been applied in n-person games
to study decision making in real-world conflict situations (see for example
Rosen, 1965). In a worst-case strategy, decision makers seek to minimize the
maximum damage their competitor can do. When the competitor can be
interpreted as nature, the worst-case strategy seek optimal responses in the



worst-case value of uncertainty. Choosing the worst-case parameters requires
the solution of a min-max continuous problem. Pioneering contributions to the
study of this problem have been made by (Danskin, 1967) and (Bram, 1966),
while computational methods are discussed in (Rustem and Howe, 2002).

The third and final task is the computation of the equilibrium values (deci-
sions and prices) for each scenario. We consider a variant of the interior-point
method presented in (Esteban-Bravo, 2004) to compute equilibria of stochastic
dynamic models.

In the second part of the paper, we consider the deregulated electricity
market in NSW Australia to illustrate the applicability of this methodology.
In recent years, the theoretical and empirical study of the electricity market
has attracted considerable attention. In particular, the ongoing liberaliza-
tion process in the electricity markets has created a significant interest in
the development of economic models that may represent the behaviour of
these markets (a detailed review on this literature can be found in Schweppe,
Carmanis, Tabors and Bohn 1988, Kahn 1998, Green 2000, and Boucher and
Smeers 2001). One of the key characteristics of these markets is that their
databases often collect significantly less variables than necessary for building
useful economic models. This is because the demand for some data can be
intrusive to the firm in terms of time and sensitivity.

We consider a model that focuses on the effect we hope to study in detail:
the process of spot prices. Similar selective approaches are adopted for the
decision analysis of dispatchers (Sheblé, 1999), the financial system as a hedge
against risk (e.g. Bessembinder and Lemmon, 2002), the externalities given
by network effects (e.g. Hobbs 1986 and Jing-Yuan and Smeers 1999).

First, the model developed forecasts daily electricity demand. We assume
that the demand is affected by exogenous factors and by an underlying
stochastic random process. The discrete outcomes for this random process is
generated using the simulation and randomized clustering approach proposed
by (Giilpinar, Rustem and Settergren, 2004).

Our model for generators is a simplification of the standard models in
the literature. We do not attempt to provide a realistic description of the
underlying engineering problems in electricity markets. The literature in this
area is extensive (e.g. McCalley and Sheblé 1994). Our aim is to forecast
the process of spot prices using limited information on the production side.
The knowledge of these prices is the basic descriptive and predictive tool
for designing optimal strategies that tackle competition. Some authors have
studied spot markets assuming a known probability distribution for spot prices
(see, e.g., Neame, Philpott and Pritchard 2003), or considering spot prices
as nonstationary stochastic processes (see Valenzuela and Mazumdar 2001,
Pritchard and Zakeri 2003, and the references therein). We consider economic
equilibrium models to this end. We simplify the effects of the transmission
constraints dictated by Kirchoff’s laws ((Schweppe, Carmanis, Tabors and
Bohn, 1988) and (Hsu, 1997) also consider a simplified model of transmission
network). This may be acceptable as we consider managing decisions using



limited information. In any case, the approach presented here can be applied
to any other modelling choices which include other phases of the electricity
trading and other models of competition (as those presented in Day, Hobbs
and Pang 2002).

We apply a worst-case approach to provide indicative values of the param-
eters in the model using the information available. The worst-case criteria
ensures robustness to calibrate these parameters. Robustness is ensured as
the best parameter choice is determined simultaneously with the worst-case
outcome of unobserved data.

Finally, we compute the expected value of future equilibrium prices and
we see that the model captures the essential features of the prices’ behaviour.
From the analysis of the results, we can conclude that this approach is able
to forecast the pattern of equilibrium prices using limited information on the
production side.

2 The Methodology

The design of an economic model describing the main features of a certain
managerial problem is an essential step for decision makers. The model should
allow the practitioner to forecast and design economic policies that reduce,
for example, the production cost and market prices. The dynamic stochastic
framework has been extensively used in economics to model almost any
problem involving sequential decision-making over time and under uncertainty.

Consumers are the agents making consumption plans. Market demand
reflects the consumer’s decisions as the demand curve shows the quantity of
a product demanded in the market over a specified time period and state of
nature, at each possible price. Demand could be influenced by income, tastes
and the prices of all other goods. The study of demand pattern is one of the
key steps in managerial problems.

Firms make decisions on production, advertisement, etc. within the
constraints of their technological knowledge and financial contracts. In partic-
ular, firms should maximize their expected profits subject to technological
and risk constraints. In many actual production processes, these constraints
contain parameters, often unknown even when they have physical meaning.
Prices could be decision variables as in Cournot models, or could be considered
as parameters as in perfect competition models.

Market equilibrium y is a vector of decision variables of agents (consumers
and firms) and prices that makes all decisions compatible with one another
(ie. y clears the market in competitive models or y satisfies Nash equilibrium
in strategic models). In general, an equilibrium y can be characterized by a
system of nonlinear equations H (8,y,z) = 0, where 8 is a vector of param-
eters, and z is a vector of exogenous variables that affects agents’ decisions
through technologies and tastes.



To obtain predictive models for decision makers, we face the problem of
having to estimate several parameters 8. The optimal determination of these
parameters is essential for building economic models that can address a large
class of questions. Although some of the parameters can be calibrated easily
using the available data, others remain uncertain due to the lack of empirical
information. We propose a worst-case strategy to adjust or calibrate these
parameters to the model using limited empirical data.

2.1 Worst-Case Modelling

Some of the variables (y,z) can be empirically determined (observed data).
Let z be the vector of non-observable variables, r be the vector of observable
variables, and let H (6, z,7) = 0 denote the system of nonlinear equations that
characterize an equilibrium of the economy, where § is a vector of parameters.
The aim of the worst-case modelling is essentially to fit the best model (the
best choice of parameters @) to available data in view of the worst-case unob-
servable decision z. When designing economic models, the worst-case design
problem is a continuous minimax problem of the form

eerg}TxleR max flr — r||2 subject to H(0,z,7) =0, (1)
where © C R” is the feasible set of parameters, R C R™ is the feasible set
of observable variables, Z C R! is the feasible set of non-observable variables
and 7 is a data sample of r. In other words, our aim is to minimize the
maximum deviation for the worst-scenario of realizable decisions. Thus, the
optimal solution 8* to this problem defines a robust optimal specification of
the economic model. This criterion for choosing parameters typically can be
applied to engineering, economics and finance frameworks.

For solving continuous minimax problems we use the global optimisation
algorithm developed by (Zakovi¢ and Rustem, 2003). They consider an algo-
rithm for solving semi-infinite programming problem since any continuous
minimax problem of the form

glelgmax {f(0,2) : g(0,2) =0,} (2)
can be written as a semi-infinite programming problem. Note that the above
problem is equivalent to

i : <p: =
Jin, {p max {f(0,2) < p:9(0,2) 0}} ) (3)
and since max,ez f(0,z) < p if and only if f(6,z) < p, for all z € Z, we can
solve the alternative semi-infinite problem:

mingco,, P
subject to f(0,z2) S z€ Z, (4)
9(0.2) = zeZ



Zakovié and Rustem’s algorithm involves the use of global optimisation to
compute the global worst-case. The global optimisation approach is essential
to guarantee the robustness property of the solution of the minimax prob-
lems. This is because a crucial step to solve the semi-infinite problem is to
find 0 € O, f(0,2) < p, g(0,2) = 0, for all z € Z. To reduce the cost of
computing global optima, it is recommended to restrict the domains © and
Z as much as possible given the information available. The monograph edited
by (Pardalos and Resende, 2002) reviews the global optimisation literature
(see Chap. 6).

2.2 Modelling the Uncertainty

As discussed in the introduction, the importance of considering uncertainty via
scenarios is well known in finance and engineering applications. In this section,
we extend the scenario tree methodology to the computation of equilibria in
stochastic dynamic economic models. In such models, agents (consumers and
firms) face a problem involving sequential decision making over time and
under uncertainty. Given the parameters § € © calibrated using the available
information, assume that each agent face the decision problem:

T
max Z E [Ug (z¢,a4,t)] subject to go(xt,ai,t) <0 ae., (5)
Tt =0

where {x;} are the decision variables, {a;} are observable Markovian random
variables with a continuous distribution function, Uy (z+, at, t) represents the
agents’ preferences and a.e. denotes “almost everywhere”. This decision model
will be characterized by the information available at each period of time,
among other things. We assume that this information is the same for all
agents. Let o; be the o-algebra generated by {a,:0 < s <t} and let {5,}
be the complete specification of the revelation of information through time,
called filtration.

To reduce the cost of computing optima, we approximate the process {a¢}
and the associated information set {o.} by a discrete process {ass},", of
possible outcomes for each t, and a discrete information structure {F;}, ;.
A discrete information structure is formally defined as follows: Given a finite
sample space 2 = {w;,...,wy } that represents the states of world, a discrete
information structure is a sequence of o-algebras {}-t}tT=1 such that: 1) F; =
{Q,0}, 2) Fr = 29, 3) Fi41 is finer than F;, Vt =1,...,T — 1. The scenario
tree associated with the discrete information structure {F }z;l is defined as
S =User, ses, (t:5), where T={0,...,T} and S¢ = {1,...,5;} . Each (t,s)is
called a tree node or scenario. For each scenario tree we can define a preorder
relation > such that (¢,s) > (', s’) if and only if the node (¥, s’) comes after
(t,s) in the tree, that is, if ¢ > ¢t and s’ C s.

Two main approaches to generate discrete scenario trees have been consid-
ered to date. The first one is known as the optimisation approach. This



method considers the relevant statistical properties of the random variable
such as the first four moments of the marginal distributions. Then a nonlinear
optimisation problem is formulated where the objective is to minimize the
square distance between the statistical properties of the constructed tree
and the actual specifications. The second approach is called the simulation
approach and only uses the sample from the fitted cumulative distribution
function. In this paper, we generate discrete scenario trees using the simula-
tion and randomized clustering approach proposed by (Giilpinar, Rustem and
Settergren, 2004). This method is a simulation-based approach that clusters
scenarios randomly.

2.3 Computing Stochastic Dynamic Equilibria

Once the uncertainty of the problem is represented by a discrete scenario
tree, the stochastic dynamic decision problem of each agent can be written as
follows:

T St

max Z ,Hts UG (xt,svat,svt) SUbjECt to 96 (xt,sval,svt) < O,V(t, 5)3
Foe i20 s=0
(6)

where {0;s} are the conditional probabilities associated to state s at each
period t, with By = 1, and A > 0 denotes the Lagrange’s multipliers asso-
ciated with the inequality constraints. Under appropriate convexity assump-
tions, equilibria are characterized by the first-order conditions of the agents’
problems and the market clearing conditions that define the economic model.
These optimality conditions can be seen as a special class of problems known
as nonlinear complementarity (complementarity conditions stem from comple-
mentarity slackness in the first-order optimality conditions). Mathematically,
these problems are stated as follows: find p7 = (z7,AT) > 0 such that
F(p) > 0 and p" F(p) = 0. A nonlinear complementarity problem can be
reformulated as a standard system of equations H(z) = 0, where

- (57,

s are slack variables and 27 = (xzT,AT,sT) > 0. Often, the decision vari-
ables, the Lagrange’s multipliers and the slack variables may take any value
within a certain range bounded by positive finite lower and upper bounds,
I < z < u. A brief summary of standard approaches for solving these problems
can be found in (Esteban-Bravo, 2004). In Chap. 13, (Pardalos and Resende,
2002) provide an excellent introduction to complementarity and related
problems.

The final stage of the methodology is the computation of equilibria for the
stochastic economic model using the generated scenario tree. In this paper,



we consider a version of the interior point method given in (Esteban-Bravo,
2004). This algorithm can find accurate solutions with little computational
cost, what it is a desirable property as the scenario tree can be expanded
to arbitrarily large sizes as the temporal horizon increases. The main idea of
the algorithm is the application of the Gauss-Newton method to solve the
following perturbed system of nonlinear equations,

J(ze)TH(z) — wi +w? =0,
(Zk — L)W —p =0,
(U—-Zi)WE —p=0,

wi, wi >0,

where Z, = diag(zx), L = diag(l), U = diag (u) and J(z;) denote the
Jacobian matrix of H. Note that when y — 0, we compute the original
problem. Following the Gauss-Newton approach, the Hessian of the perturbed
system is approximated by its first term. As a consequence, this algorithm has
the very desirable property that it finds accurate solutions with little compu-
tational cost.

3 Modelling the NSW Spot Electricity Market

In this section, we focus on an application of the robust modelling method-
ology for the deregulated electricity market in NSW, Australia. The deregu-
lated electricity market should be modelled as a sequential trade for goods
and assets. A model of sequential markets is a system of reopening spot
markets, which is a market for immediate delivery. In other words, a seller and
a buyer agree upon a price for a certain amount of electric power (MWs) to
be delivered at the current period (in case of electricity markets, in the near
future). This agreement is monitored by an independent contract adminis-
trator who matches the bids of buyers and sellers.

We consider an economy with three generators that face the NSW
Electricity System. In NSW electricity markets, the role of a financial contract
is small and, as a consequence, we only focus on spot markets that trade most
of the local electricity.

To meet electricity demand and for the spot electricity market to operate
efficiently, a reliable forecast of daily electricity demand is required. Typically,
the electricity demand is affected by several exogenous variables such as air
temperature, and varies seasonally (the total demand will generally be lower
over weekend days than weekdays, and higher in summer or winter than in
fall or spring). Electricity forecasting process must therefore consider both
aspects. The time spans involved in electricity forecasts may range from half
an hour to the next few days. The technique described in this paper considers
the day-to-day forecast as the aim is to guide decisions on capacity, cost
and availability to meet the demand or the necessity to purchase from other



producers. In the very short-term electricity market, the demand varies little
in response to price changes so we can say that the demand is not affected by
prices, i.e. it is inelastic within the observed range of prices variation.

Generators make decisions about the amount of electricity to produce
within the constraints of their technological knowledge. Modelling the
technologies of a generation company requires special attention. Generators
can produce electricity by means of hydro, thermal and pumped storage
plants. A pumped storage hydro plant is designed to save fuel costs by serving
the peak load (a high fuel-cost load) with hydro energy and then pumping
the water back up into the reservoir at light load periods (a lower cost load).
Moreover, generators face uncertainty because of the inflows in the case of
hydro generation and the price of fuel in the case of thermal and pumped
storage. As the generation system in NSW is overwhelmingly thermally based,
we just consider this kind of technology.

3.1 The Demand

The problem of modelling the pattern of the electricity demand has previously
been studied in the literature; see e.g. (Rhys, 1984), (Harvey and Koopman,
1993), (Henley and Peirson, 1997), (Valenzuela and Mazumdar, 2000), among
others. In this paper, we assume that the daily electricity demand is affected
exogenously by air temperature. In addition, we take into account its daily
pattern. Note that the total electricity demand is generally lower over weekend
days than weekdays, and higher in summer or winter than in fall or spring.
Also in the short term we can assume that the aggregate demand for electricity
is inelastic, as the quantity of power purchased varies little in response to price
changes.

We consider electricity demand data for each day in New South Wales,
Australia, between 1999 and 2002 (see http://www.nemmco.com.au/data/).
The data sequence starts at January 1, 1999 and ends at April 30, 2002.
All values are in MW and according to Eastern Standard Time. The result
is a sequence of 1247 values (see Fig. 3 in Appendix). Let z; denote the
electricity demand at the 7-th day. The data for temperature are drawn from
the file AUCNBERA.txt given in the website http://www.engr.udayton.edu/
weather. This dataset contains information on the daily average temper-
atures for Canberra. Let f; denote the average temperature (°F) at the
j-th day.

With a daily temporal frequency, there are patterns repeated over a stretch
of observations. In particular, we observe two seasonal effects: weekly (such as
weekdays and weekends) and monthly (such summer and winter). Assuming
that these effects follow a deterministic pattern, we consider stational dummy
variables. Let dj; = 1, if the t-th observation is a j-th day and d;; = 0,
otherwise, defining the weekly periodic effects, with 7 = 1 for Mondays, j =
2.for Tuesdays, and so on; and d;; = 1, if the t-th observation is a j-th
month and §;; = 0, otherwise, defining the monthly periodic effects, with



j = 1 for January, j = 2 for February and so on. Thus, given n = 1247
pairs of observations (z;, f;), with § = 1,...,n, we consider the following
regression model:

6 6

Xe=p+oaf;+efl + Z’Yj (dje — dre) + Z’Y]’ (djt — dre) £
j=1 j=1

11 11
+3 85 (8je— 812) + Y _Bj (85 — S120) £
Jj=1 =1

6 11
+3 ) (dje = dre) 24> B} (80 — 6120) 7 + et (8)
J=1

j=1

where {e;}, is a Gaussian and second order stationary process with zero
mean and covariance function, v (s) = E [e44—s]. This specification avoids
the multicollinearity problems derived from the fact that Z;zl djs = 1 and
2]111 8;¢+ = 1. In particular, we consider a linear regression model using all
the dummies variables and assuming that 217‘:1 v; =0, and 2312:1 B = 0. For
an introduction to the estimation of this type of models see e.g. (Brockwell
and Davis, 1987).

The regression parameters were estimated by the ordinary least squares
(OLS) method using STATA (see http://www.stata.com/). Least-square
regression estimations can be found in Appendix. The degree of explanation
of this model is quite significant, as its R-Squared and adjusted R-Squared
values are 0.7793 and 0.7695, respectively.

The study of the plots of residual autocorrelation and partial autocorre-
lation estimates (see below Fig. 4 in Appendix) suggests an autoregressive
AR(1) model for the perturbation ¢,. Model (2) considers an autoregressive
AR(1) specification for the process {e;};, €; = Tej—1 + a;, where |7] < 1
and {aj}j are independent identically distributed disturbances with zero
mean and constant variance, o2. Using STATA to estimate Model (2) by
the OLS method, its coefficient estimation is 7 = 0.60069, with 02 =
1.5402¢, and its R-Squared and adjusted R-Squared values are 0.3687 and
0.3682, respectively. Simple and partial autocorrelations of its residuals,
shown in Fig. 5 in Appendix, reveal that Model (1) and Model (2) fit
data.

The Markovian process {a;}, is approximated by a discrete scenario tree
{ass} as presented in Sect. 2.2. Following the simulation and randomized
clustering approach proposed in (Giilpinar, Rustem and Settergren, 2004) and
given the covariance matrix o2, we construct a tree with a planning horizon
of T'+ 1 days (today and T future periods of time) and a branching structure
of 1 — 2 — 4 — 6. This means that the tree has an initial node at day 0, 2 at
day 1,... The scenario tree provides information about the probabilities Sts
associated with the different states s at each period t, with G = 1, and the



AR (1) stochastic process of error terms as, at each state s and period ¢. The
values of these elements can be found in Appendix.

3.2 The Problem of the Electricity Generators

As we mentioned before, in the very short-term electricity market, the demand
varies little in response to price changes. In this applications where the
planning time horizon is assumed to be three days or periods of time,
we should consider a pure competitive behaviour of generators rather than
oligopolistic strategies. Therefore, in a deregulated environment, the purpose
of the short-term generator is to maximize its expected profit on its techno-
logical constraints over a time period of length T+ 1, today and the planning
time horizon. This means that each generator collects its revenue from selling
electricity at spot prices in the spot market. There are network capacity
constraints affecting generators and therefore the total amount of electricity
that these generators can produce will be bound by the network externalities.
The notation used to present the problem of the electricity generators is the
following, at each period t =0,1,...,T":

Decision variables:

pt, spot price,

yjt, spot electricity production of generator j,

wjt, input of generator j.

Parameters:

T, maximum number of periods,

J, number of generators,

0 < r, discount rate for generators,

gjt, unit generation cost (input’s price) of generator j,

Aj;, a;, parameters associated with the technology of generator j,

N, maximum capacity of the network,

M, rate limit to generation over two periods,

l;, u;, minimum and maximum of generation capacity of generator j,
respectively.

The generation constraints are:

Cobb-Douglas type technological constraint: y;; < Ajw;t’ .

Network capacity constraint: Zj,#jyj«t +y;e < N.

Rate limit to generation over two consecutive periods: y;; — yjt—1 < M.

We consider a market with three generators, j =1,...,J with J = 3, that
aim to maximize the expected revenues and minimize the expected costs:

i(lir)t [pe - wjt — qje - wja] - (9)

t=0

1"



Thus, the decision problem of each generator is given by

t
T
maxy, ;Yo () (e st — g wyd

subject toyj < Ajw?f7Vt,
T
Zj/#jyj/t +y;: < N,VE, (10)
Yit — Yjt—1 < ]‘/17 Vtv

l; < yje <y, Vi,
OSw]'.

Most of studies on the generator’s problem have been based on a cost function
(i.e. the minimum cost of producing a given level of output from a specific
set of inputs), even though this formulation is equivalent to the one that
uses technology constraints (this is proved by dual arguments, see e.g. Varian,
1992 and Mas-Colell, Whinston and Green, 1995). But, in case of having
limited information, the formulation with technological constraints is more
recommendable as the specification of cost functions requires detailed infor-
mation on the labor costs, inputs costs, and buildings and machinery amorti-
zation, among others. In particular, we choose a Cobb-Douglas technology
as this specification is characterized by a ready capability to adapt to new,
different, or changing requirements. For example, they can exhibit increasing,
decreasing or constant return to scale depending on the values of their param-
eters. Furthermore, we can readily derive the analytical form of its associated
cost function.

On the other hand, the modelling considered here has strong simplifica-
tions on the transmission side although these simplifications could have effects
for the analysis. This is because we lack sufficient information to calibrate this
externality.

Next, we introduce the concept of equilibrium, the basic descriptive and
predictive tool for economists. The equilibrium of this economy is a vector
prices p* and an allocation (y;, w;) for all j =1,...,J, that satisfies:

e Foreachj=1,...,J, (y;‘,w;) is the solution of Problem (10).

e Generators fulfil market demand, i.e.
> v =X vt (1)
J

where X is the estimation of the market demand determined by Model (8).

Then, under appropriate convexity assumptions, equilibria can be charac-
terized by the first order conditions of all generators’ problems (10) and the
market clearing conditions (11). In other words, the vector (p*,y*, w*) is an

12



equilibrium if, for all j = 1,...,J, there exist Lagrange multiplier vectors
’Y}Y’Yf,’yf > 0, such that:

(%) P; = =+ =0V,

(%) gjt +73tA a;w m’ 1 =o,vt,
v — Aywyy? + Ry, =0,V

vhhY, =0,V

> 'yjt + hjt - N =0,Vt, (12)
’y]t Jt =0,Vt,

Vit — Yjer + hzt - M =0,Vt,

7_7:h3t =0,Vt,

ijjf = Xt7Vt7

lj § y;t S Uj,

0< w;f,

where hl, h? and h® > 0 are slack variables.

3.3 Worst-Case Calibration

To obtain predictive decision models for generators, we are faced with the
problem of having to estimate several parameters. The optimal calibration of
these parameters is the aim of this section.

As we mentioned before, some of the parameters can be calibrated easily.
Given that the planning horizon of electricity generators considered is short,
T = 3, the impact of the discount factor parameter is small. In this model,
we set the discount factor as r = 0.05 for all generators.

Fuel prices are subject to a substantial margin of error. However, in the
case of coal, prices are determined in a world market and the data can be
found in http://www.world bank.org/prospects/pinksheets0. In this model we
assume that fuel prices for each generator are given as ¢;; = 25.6, go: = 26,
g3t =15 forallt =0,1,...,T.

One of the most important parameters in the management of the electricity
generation is the maximum capacity of the network N. As max | X;| = 455670,
where X; is the observed electricity demand, estimates of this parameter
can be specified as N = 456000. The rate limit to generation over two
periods M plays also an important role in the generation of electricity. As
max | X; — X¢_1| = 84622.3, we set M = 85000. Generation capacity is also
constrained by lower and upper bounds: I[; = 0 for all j = 1, 2, 3 and
uy = 350000, uz = 220000, uz = 280000.
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To calibrate the parameters that remain uncertain, we will consider the
worst-case modelling presented in Sect. 2.1. In this context, the parameters
should satisfy the optimality conditions (12), the available information is the
daily average price p° and daily observed demand X°, and the worst-case
unobservable decision corresponds to the input’s decision variable w.

As we can determine parameters N and M, we will not consider their
associated constraints in the calibration analysis. In addition, it is predictable
that the variable h! = 0 (generators are willing to generate the maximum
amount of electricity) which implies y;; = Ajw;’t’ for all t and j. Therefore,
the optimal conditions (12) can be simplified as follows:

i—1
peAjawil T — g = 0,V
D Al — X7 =0,
J

where X7 is the daily observed demand at each day t. Let C(w, p, 4, a) denote
this system of nonlinear equations.

Thus, we define the best choice of parameters {A4;}, {a;} in view of the
worst-case unobservable decisions p, {w;} as the solution of the minimax
problem:

ming, e, p>0 Maxy [p— p°|l (13)
subject to  C(w,p, 4,a) =0,
given the observed demand X7 and the average price pj at each day t. In
particular, we consider the following observed data:

day 28/4/2002 29/4/2002 30/4/2002
X? 3344437 382222.6 38973938 (14)
p? 2353 3267 2515

As recommended before to guarantee little computational cost, we suggest
to restrict the interval of the variables {4;}, {a;}, {w;}, p given the infor-
mation available. In the context of the Australian electricity market, the
bounds should be:

A1 A2 A3 a; az ag {‘w]‘t} P
lower bound 16500 16500 18000 0.1 0.1 0.1 10000 15 (15)
upper bound 18000 18000 20000 1.0 1.0 1.0 17000 70

Therefore, the solution to Problem (13) is

i=1 j=2 j=3
A; 18000 18000 20000 (16)
a; 0.194774 0.195836 0.152826.




3.4 Computing Equilibrium

Given the scenario tree computed in Sect. 3.1, the stochastic version of the
generators’ problem (10) is defined as:

t
T S, 1
MAXy, w;  Dym0 Dsmo (1_+r) B4 [pe,s * Yjt,s — Qjt,s * Wit,s]

subject to
Yjt,s — A]-w;tjys <0, Vt,s,
z]’¢] Yj't,s + Yjt,s < N7 Vtv S, (17)

Yjt.s — Yje—1,s(t—1) < M, Vt, s,

I < yjts <uy, Vi, s,

0 .<_ wjt,sy Vt7 S,
where s(t — 1) is the predecessor state. Problem (17) can be transformed
into an equality constrained problem by introducing slack variables h}, h?,
h? > 0, and a barrier function that penalizes the infeasibility of the inequality

constraints in the slack h}, hjz-, h? > 0 and decision variables 0 < w; and
l; < y; < wuj. Thus, the transformed problem is defined as follows:

t
T s,
maXy; w; Zt=o Yto (1.}4) B pes- Yjt,s — Qjt,s - Wjt,s]

—p Yo T3 ollog (15 — yjt,s) +10g (Ust,s — 1) + log (wje,s)

+ an:l log (h;’;s)]
subject to

yjth - A]w‘[;t],s + h;‘t,s = 07Vt7 VS,
Zj';(:j Yji’t,s T Yjt,s + h]zt,s — N =0,Vt, Vs,
Yjtis = Yjt—1,s + h3y o1y — M = 0, V¢, Vs. (18)

Under appropriate convexity assumptions, the vector (y;, w;, h;) is said to
satisfy the necessary and sufficient conditions of optimality for Problem (18)

if there exist Lagrange multiplier vectors v},72,77 > 0 such that for all 7, all
t,all s:

i
1 -1 —1
(1+r) ﬂt’spt,s +u ('u'j - yjt,s) — K (yjt,é? - lj) - 7]1't,s - ’7]21!,5 + ’Y_?t,s =0,

~(27)" B apns - muiy +ohs Asautst =0,

—u (B ) - Am, =0, Vm=1,2,3,

Yits = Ajwj;  + hje =0,

¥t + B2, — N =0,

Yjt,s — Yjt—1,s + h?,ys(,,_l) -M=0 (19)
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Let Z' = p(U-Y)", 22 = p(Y-L)™", 23 = yW~! and Z™ =
pw(H™) ™! swhere Y = diag(y), L = diag(l), U = diag(u), W = diag(w),
and H™ = diag(h™) for all m = 1,2,3. Then, the above conditions can be
written as:

(%) B Prs + Zis = Zhs = Vit ~ Vs + Vts = 0
-1
( ) ﬁtysqjtxs - Z?t,s + ’y}t,s Ajajw;t,s =0,
;! - Yts =0,Ym=1,2,3,
Yjt,s — Aw;tjs—i_h‘]ts_o’
Z]‘yjt.s + hjt,,q -N=0, (20)

Yjit,s — Yjt—1,s(¢—1) T h3» -M=0,
(U; =Y;) Zje — pe =0,

(¥, - L) Z2e - e =0,
WjZ?e-—ue:O,

H]"”Z;""e —pe=0,Ym=1,2,3,

forall j =1,2,3,all s={1,...5;}, where Sy =2, and all t =0,1,2,3.

Assume that we aim to forecast the prices, inputs and electricity outputs in
equilibrium for the days May 1, May 2 and May 3, 2002, given the temperature
data f; = 45.5, fo = 41.4, f3 = 42.0. Using the initial point & = 17, the
interior-point algorithm converges to the equilibrium given in Appendix.

To show the accuracy of the computed equilibrium, we consider the
expected value of the computed equilibrium prices. Given the probabilities
B:s associated with the different states s at each period t, by Bayes’ rule,
we calculate the marginal probability m;s = [ (o) (2,51 Bt s (see Appendix).
Then, the expected value of the computed equilibrium prices E[p] =
Zf’zl msPrs and the actual prices for ¢ = 1,2,3 (which can be found in
http://www. nemmco.com.au/data/) are shown in Fig. 1, what reveals that
the model captures the essential features of the price’s behaviour.

Let now assume that we aim to forecast the prices, inputs and outputs
in equilibrium for the days October 1, October 2 and October 3, 2002, given
the temperature data fi; = 58.8, f2 = 49, f3 = 48.0. The actual and forecast
equilibrium prices are shown in Fig. 2.

Note that the accuracy of the prediction depends on the data used to
calibrate the parameters of the model. A structural change in the market can
affect the prices and productions in equilibrium, and in that case an updated
calibration of the model should be considered using the new information.

16



46

45

441

43}

421

4t

10

39

38

37

—4— Actual price

55

l -5 Forecast price ]

36
1

15 2 25 3
time span

time span

Fig. 1. Actual and computed prices for May 1st, 2nd, 3rd, 2002

29

39

—#— Actual price

37F

36t

34t

33t

32r

3

30

-7 Forecast price

time span

29

15

2
time span

25 3

Actual and computed prices for October 1st, 2nd, 3rd, 2002

17



4 Summary and Conclusions

This paper presents a methodology to build and solve stochastic dynamic
economic models using limited data information. The approach has the
potential for application in many economics sectors as practitioners often face
the problem of having significantly less data than necessary for analyzing
standard decision problems.

Decision-makers require the use of a stochastic dynamic complex model to
approximate economic problems in a realistic way, and they often lack suffi-
cient information to estimate the parameters involved in the model accurately.
In this paper, we present a robust procedure for calibrating the parameters of
model that best fits to the available data. The robust calibration of the model
is achieved by a worst-case approach, involving the computation of a minimax
problem. Also, we consider a scenario tree approach to model the underlying
randomness of the demand. We generate scenarios using the simulation and
randomized clustering approach and then, we compute equilibria by means
of the interior-point approach. This algorithm can find accurate solutions
incurring little computational cost.

We illustrate the performance of the method considering the NSW
Australian deregulated electricity market. From the analysis of the results, we
can conclude that this approach is able to forecast the pattern of equilibrium
prices using limited information on the production side.

Appendix

The least-square regression coefficients of Model (8) are:
fi = 420453.7,
7 = (—96356.6, —16410.4, 86594.03, 38223.82,17360.08,37401.59)" ,
a = (—481045.5,12954.2, —25529.96, — 27617.52,265764.7,136627.8,
37069.41, —55922.99, —35578.56, —679.53, 98605.83)T R
& = —1976.111,
7' = (2243.55,642.10, —2502.44, —997.01, —129.57, —1008.41)T ,
B = (12235.02, —4899.86, —94.86, 63.39, —7934.55,
—92853.79, 1208.76, 5784.12, 2677.32, 93.16494, —4471.44)T |
¢z = 16.45,
;" = (—20.82,-4.14,21.37, 10.16,1.53,8.87),
B" = (—75.68,46.27,8.56,5.59, 59.65,17.30, —22.62,
—82.25, —35.93, —3.36,46.17) .

The values of the probabilities 35 associated with the different states s at
each period ¢, with By = 1, and the AR (1) stochastic process of error terms
a;s at each state s and period ¢ are:

fort =1,
1 2

B, 0.26 0.74 (21)
n N720K0
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for t = 2,
12 3 4
Bs 0.79 0.20 0.79 0.20
as 0.67 0.51 0.60 0.80

for t = 3,
1 2 3 4 5 6 7 8
Bs 0.47 0.52 0.62 0.37 0.40 0.59 0.6 04
as 0.54 0.72 0.68 0.54 0.75 0.55 0.57 073

The computed values of equilibrium are:
for t =0, p§ = 49.39, and

1 2 3
yjo 1.51e5 1.53e5 1.05e5
wiy 57.10e3 57.222 53.07e3

fort=1,
p} = (47.29,47.29), and

s=1 1 2 3 [s=2 1 2 3

Y;, 1.50e5 1.52e5 1.04e5 || yj, 1.50e5 1.52e5 1.046e5
wjs 54.11e3 54.21e3 50.42e3|| wj, 54.11e3 54.21e3 50.42e3

s

for t = 2,
ps = (33.19, 33.19, 33.19, 33.19) , and

s=1 1 2 3 s=2 1 2 3

yjs 1.38e5 1.39ed 9.8led || y7, 1.38e5 1.39¢5 9.8le4
w?, 34.85e3 34.90e3 33.19e3|| w}, 34.85e3 34.90e3 33.19e3

*
Js 7

*

s=3 1 2 3 s=4 1 2 3

yjs 1.38e5 1.39e5 9.8led || y;, 1.38e5 1.39e5 9.81e4
w}, 34.85e3 34.90e3 33.19e3|| wj, 34.85e3 34.90e3 33.19e3

is

for t = 3,
p% = (52.53, 52.53,52.53, 52.53, 52.53, 52.53, 52.53, 52.53) , and

s=1 1 2 3 s=2 1 2 3

Y5, 1.54e5 1.56e5 1.06e5 | yz, 1.54e5 1.56e5 1.06e5
w, 61.64e3 61.77e3 57.07e3||w}, 61.65e3 61.77e3 57.07e3

js

s=3 1 2 3 s=4 1 2 3

yi, Lbdeb 1.56e5 1.06eb || y7, 1.5de5 1.56e5 1.06e5
w?, 61.65e3 61.77e3 57.07e3||w?, 61.64e3 61.77e3 57.07¢3

js
s=5 1 2 3 s=6 1 2 3

yjs 1.54ed 1.56e5 1.06e5 ||y, 1.54e5 1.56e5 1.06e5
wj, 61.65e3 61.77e3 57.07e3||w}, 61.64e3 61.77e3 57.07e3
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Model (2)

partial autocorrelations for residuals of

s=7 1 2 3 |s=8 1 2 3
y;, 1.54ed 1.563e5 1.06e5 || yj, 1.54e5 1.56e5 1.06e5 (31)
w}, 61.65e3 61.77e3 57.07€3||w- ;s 61.65e3 61.77e3 57.07e3
The marginal probabilities 7, are:
fort=1,
1 2
7. 022078 (82)
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for t =2,
1 2 3 4

s 0.132 0.088 0.632 0.148 (33)
fort =3,
1 2 3 4
s 0.068 0.064 0.072 0.016 (34)
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