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Abstract. Several authors have pointed out the possible absence of martingale
measures for static arbitrage free markets with an infinite number of available
securities. Accordingly, the literature constructs martingale measures by gen-
eralizing the concept of arbitrage (free lunch, free lunch with bounded risk,
etc.) or introducing the theory of large financial markets. This paper does
not modify the definition of arbitrage and addresses the caveat by drawing
on projective systems of probability measures. Thus we analyze those situa-
tions for which one can provide a projective system of σ−additive measures
whose projective limit may be interpreted as a risk-neutral probability of an
arbitrage free market. Hence the Fundamental Theorem of Asset Pricing is
extended so that it can apply for models with infinitely many assets.
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1. Introduction

The existence of pricing rules, discount factors or state prices is crucial in Mathe-
matical Finance. It is closely related to the concepts of arbitrage and equilibrium
(see, for instance, [5]). Harrison and Kreps [10] showed the link between pricing
rules and martingale measures.

Since Harrison and Kreps [10] established the existence of martingale prob-
ability measures for some arbitrage-free pricing models their result has been ex-
tended in multiple directions, generating the Fundamental Theorem of Asset Pric-
ing (henceforth FTAP ). For instance, Dalang et al. [7], Schachermayer [23], Del-
baen and Schachermayer [8] or Jacod and Shiryaev [11] provide deep characteri-
zations of the existence of martingale measures in different settings.
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Nevertheless a simple version of the FTAP cannot be proved, in the sense
that the arbitrage absence is not sufficient to construct martingale measures if the
set of trading dates is not finite. It was pointed out in [2], where a simple dynamic
discrete time counter-example was provided. To overcome this problem Clark [6]
extended the ideas of Kreps [19] where the concept of free lunch was introduced.
Under the Clark’s definition the existence of free lunches is far weaker than the
existence of arbitrage. The absence of free lunch has been the key to yield further
extensions of the FTAP , even in the imperfect market case (see, for instance,
[12]).

Any free lunch can be understood as an “approximated arbitrage” in the sense
that it is “quite close” to an arbitrage portfolio. However it is almost an arbitrage
but it is not an arbitrage, it is not so intuitive and its economic interpretation is
not so clear. On the contrary it is introduced in mathematical terms and solves
a mathematical problem, but classical pricing models (binomial model, Black and
Scholes model, etc.) usually deal with the concept of arbitrage. Recent studies
of efficiency in imperfect markets avoid the use of free lunches and retrieve the
concept of arbitrage, but they have to deal with models containing a finite number
of states of nature, case in which arbitrage strategies and free lunches coincide (see,
for instance, [13]).

If feasible, it may be worth to provide risk-neutral probabilities and pricing
rules (martingale measures) under simple and meaningful assumptions, as the
arbitrage absence. Balbás et al. [4] have shown that it is possible to solve the
counter-example of Back and Pliska [2] without drawing on free lunches. They
characterize the arbitrage absence in dynamic discrete time pricing models. They
build an appropriate projective system of perfect probability measures (see [20])
that are risk-neutral for each finite subset of trading dates. Then they show that
the projective limit is risk-neutral for the whole set of trading dates, in the sense
that the set of states of the world and the price process may be extended to a
“new price process” which is a martingale under this projective limit. The initial
probability measure and the risk-neutral one cannot be equivalent, as illustrated by
using the counter-example of Back and Pliska [2]. However, for any finite subset
of trading dates one can find projections of both measures that are equivalent,
and there are Radon-Nikodym derivatives in both directions. Balbás et al. [4] use
this property to introduce the concept of “projective equivalence” of probability
measures.

The solution of Balbás et al. [4] allows us to prove further extensions of
the FTAP that retrieve the equivalence between the initial and the martingale
measure. It has been pointed out by Balbás et al. [3], where the equivalence is
proved under some assumptions on the ratio “risk/return”. A recent approach
about risk measurement may be found in [21].

Another caveat appears when characterizing the arbitrage absence for (even
static) models with an infinite family of securities. This is clearly pointed out in
[23], where a simple counter-example with a countable number of assets is provided.
Models with infinitely many assets may be useful when dealing with interest rates
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(see [9]) or when dealing with markets for which several parameters are not fixed
(consider for instance a derivative market where call options with infinitely many
strikes may be available). Moreover, as will be illustrated in Remark 4.12 (Section
4), every dynamic pricing model could be adapted in such a way that it becomes
a model with infinitely many assets

The literature has addressed different properties of those models with infin-
itely many assets (for example, Aliprantis et al. [1] analyze the existence of some
kind of equilibrium). The theory of large financial market is a quite interesting
alternative that also provides martingale measures (see, for instance, [14] or [17],
among others). Each “small” market is arbitrage free and there is even an equiv-
alent martingale measure on each of the small markets. Still there can be various
forms of approximate arbitrage opportunities when one considers the sequence of
markets, and the notion of “no arbitrage” is generalized to be sufficient to get a
risk neutral measure for the large financial market.

The approach of Balbás et al. [4] could be useful to analyze new problems
related to the FTAP . For instance, imperfect markets (see, for example, [15], [16]
or [24]) or markets with infinitely many assets. This paper follows this approach
and addresses one-period perfect models with infinitely many securities. The study
seems to be general enough since there are no assumptions on the properties of
the set of securities and the notion of arbitrage is not extended.

The existence of risk-neutral probabilities will be stated by means of projec-
tive limits of projective systems of Radon probability measures (see [25]), rather
than projective systems of perfect measures. These projective systems will permit
us to extend the concept of projective equivalence and to broaden the set of states
of nature. In some sense the new set of states of nature may be identified with the
set of paths of real prices and, therefore, it better captures the price behavior. We
could interpret that the failure of the FTAP partially obeys to the “insufficiency”
of the set of states to explain the whole price process.

The outline of the article is as follows. Section 2 will introduce the basic con-
cepts and notation. Section 3 will transform the problem in order to introduce the
“projective system approach” and will define the notion of “projectively equivalent
martingale measure”. Two counter-examples will illustrate the FTAP failure, as
well as the role of projectively equivalent martingale measures in order to address
the caveat. The first counter-example is adapted from the one of Back and Pliska
[2], although we consider only two trading dates (instead of an infinite number of
them) and infinitely many securities (instead of two ones). The second one is that
introduced by Schachermayer [23], though this author never used the example to
deal with projective systems. Section 4 presents those results concerning the exis-
tence of projectively equivalent martingale measures. In particular, Theorem 4.1
will point out that the arbitrage absence is the necessary and sufficient condition
for complete markets, whereas Theorem 4.7 and Remark 4.12 will yield some suf-
ficient conditions for incomplete markets. The counter-example of Schachermayer
[23] will prove that there are arbitrage free (incomplete) markets for which it is not
feasible to yield any price of some new securities and, consequently, it is impossible
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to find projectively equivalent martingale measures. Hence there exists a critical
difference between both counter-examples. The last section concludes the paper.

2. Preliminaries and notation

Let (Ω,F , µ) be a probability space composed of the set Ω, the σ−algebra F and
the probability measure µ. Consider a set (Si)i∈I of available securities and a
second set (fi)i∈I ⊂ L2 (µ) of random variables providing the pay-off at a future
date T of Si, for every i ∈ I. Denote by (pi)i∈I ⊂ R the family of current prices.
Let us assume that 0 ∈ I and S0 is a numeraire, in the sense that p0 = 1 and
f0 = 1, µ − a.s.

The set of feasible portfolios will be the vector space

E∞ = {(xi)i∈I ⊂ R; there exists J ⊂ I with J finite and xi = 0 whenever i /∈ J}.
The current price and the future pay-off of x = (xi)i∈I ∈ E∞ will be given by

λ(x) =
∑

i∈I

xipi ∈ R

and
Λ(x) =

∑

i∈I

xifi ∈ L2 (µ)

respectively. As usual an arbitrage portfolio allows traders to get “money without
risk”. A risk-neutral measure makes prices be mean values of each pay-off. We
have:

Definition 2.1. A portfolio x ∈ E∞ is said to be an arbitrage if λ(x) ≤ 0, Λ(x) ≥ 0
µ − a.s. and µ (ω ∈ Ω : Λ(x)(ω) − λ(x) > 0) > 0.

Notice that those arbitrage profits obtained at the current date may by in-
vested in the riskless asset S0. Whence the existence of arbitrage is equivalent to
the existence of self-financing arbitrage for which λ(x) = 0 holds.

Definition 2.2. The σ−additive measure ν : F �−→ [0, 1] is said to be a risk-neutral
probability (or a risk-neutral probability measure, or a martingale measure) if

(i) µ and ν are equivalent, i.e., µ (A) = 0 ⇐⇒ ν (A) = 0.
(ii)

pi =
∫

Ω

fi dν (2.1)

for every i ∈ I.

The absence of arbitrage and the FTAP guarantee the existence of risk-
neutral probability measures for any finite sets of securities (see, for instance, [7],
[23] or [11]).

Henceforth PF (I) will denote the set of finite subsets of I containing 0.
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Theorem 2.3. The model is arbitrage-free if and only if a net (ν̃J )J∈PF (I) of
σ−additive probability measures exists on F such that µ and ν̃J are equivalent
for every J ∈ PF (I) and

pi =
∫

Ω

fi dν̃J (2.2)

whenever J ∈ PF (I) and i ∈ J .

Despite the previous result, several counter-examples point out that the risk-
neutral measure ν̃J depends on J , i.e., in general, it is not possible to find ν :
F �−→ [0, 1] satisfying the conditions of Definition 2.2. Two interesting counter-
examples will be presented in the next section, where we will introduce an adequate
framework that may solve this caveat.

3. Projective system approach

For every set C we will denote by R
C the set of R−valued functions on C endowed

with the usual product topology and the Borel σ−algebra BC .
Let J ∈ PF (I). Consider the probability space

(RJ ,BJ , µJ) (3.1)

where µJ is the probability measure fJ(µ) given by

µJ (B) = µ
[
f−1

J (B)
]

for every B ∈ BJ , fJ being the measurable function

Ω 	 ω �−→ fJ(ω) = (fi(ω))i∈J ∈ R
J . (3.2)

Then (µJ )J∈PF (I) is a projective system of Radon probability measures (see [25]),
in the sense that, denoting the natural projection by

πJ,K : R
K �−→ R

J

we have that µJ = πJ,K(µK) whenever J, K ∈ PF (I) and J ⊂ K.
For every J ∈ PF (I) one can consider the one-period pricing model defined

on the probability space (3.1) and generated by the finite family of securities whose
current prices are (pi)i∈J and whose pay-off are given by the natural projections

π{i},J : R
J �−→ R

i ∈ J . This new model will be called J th−market.

Proposition 3.1. The initial model is arbitrage free if and only if the J th−market
is arbitrage free for every J ∈ PF (I).

Proof. The J th−market is not arbitrage free if and only if there exists a self-
financing portfolio (xi)i∈J such that

µJ

[
(αi)i∈J :

∑

i∈J

xiαi ≥ 0

]
= 1 and µJ

[
(αi)i∈J :

∑

i∈J

xiαi > 0

]
> 0.
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This is equivalent to

µ

[
ω ∈ Ω :

∑

i∈J

xifi(ω) ≥ 0

]
= 1 and µ

[
ω ∈ Ω :

∑

i∈J

xifi(ω) > 0

]
> 0

which means that the initial model is not arbitrage free. �

Assumption 1. From now on we will assume that (fi)i∈I ⊂ L∞(µ).1

Assumption 1 implies that µJ has a compact support included in the compact
set2

Πi∈J [−‖fi‖∞, ‖fi‖∞] ⊂ R
J (3.3)

for every J ∈ PF (I). Hence the Prokhorov Theorem (see [25]) guarantees the
existence of a unique Radon probability measure µI on the measurable space
(RI ,BI) that is the projective limit of the system (µJ)J∈PF (I), i.e.,

µJ = πJ,I(µI)

holds for every J ∈ PF (I). Moreover, µI has a compact support included in the
compact set

Πi∈I [−‖fi‖∞, ‖fi‖∞] ⊂ R
I . (3.4)

Now we can introduce a key concept for this paper.

Definition 3.2. A Radon probability measure νI on the measurable space (RI ,BI)
is a projectively equivalent martingale measure (or a projectively equivalent risk-
neutral probability) if:

(i) µI and νI are projectively equivalent, i.e., µJ and νJ = πJ,I(νI) are equivalent
for every J ∈ PF (I).

(ii) Given J ∈ PF (I) we have that νJ is a martingale measure for the J th−
market.3

Despite µI and νI do not have to be equivalent notice that Condition (i) above
guarantees the existence of positive densities between their projections. This also
implies that the compact supports of νI and its projections are included in (3.4)
and (3.3) respectively.

Notice that Ω may be interpreted as a subset of R
I owing to “the immersion”

(3.2) where J is replaced by I.4 In some sense the projective system approach
allows us to enlarge the set of states of nature and to identify this set and the set
of real prices.

Next let us prove a preliminary result.

1This assumption significantly simplifies the exposition. Anyway most of the theory would still
hold if the assumption failed, though the the role of the Prokhorov Theorem (see [25]) should be
replaced by the Daniel-Kolmogorov Theorem (see [18]).
2[−‖f0‖∞, ‖f0‖∞] = [−1, 1] may be replaced by {1}. An analogous comment applies for (3.4).
3i.e., pi =

∫
RJ π{i},J dνJ =

∫
RI π{i},I dνI holds for every J ∈ PF (I) and every i ∈ J .

4This immersion is not necessarily measurable, although this problem is solved if we consider
the cylindrical σ−algebra of R

I instead of the Borel one (see [18]).
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Proposition 3.3. Statements below satisfy the implications 3.3.1) ⇒ 3.3.2) ⇔
3.3.3) ⇒ 3.3.4).

3.3.1) There exists a martingale measure ν.
3.3.2) There exists a projective system [νJ ]J∈PF (I) of Radon measures such

that νJ is a martingale measure for the J th−market.
3.3.3) There exists a projectively equivalent martingale measure νI .
3.3.4) The initial model is arbitrage free.

Proof. [3.3.1) ⇒ 3.3.2)]. Given J ∈ PF (I) take νJ = fJ(ν), where fJ is rep-
resented in (3.2). Then the equivalence between µ and ν trivially leads to the
equivalence between µJ and νJ , and the equality

pi =
∫

RJ

π{i},J dνJ ,

for i ∈ J , trivially follows from (2.1). Finally, if J, K ∈ PF (I) and J ⊂ K, then
νJ = fJ(ν) = πJ,KfK(ν) = πJ,K(νK).

[3.3.2) ⇒ 3.3.3)]. Since any νJ is equivalent to µJ their supports are included
in the compact sets (3.3). Thus the Prokhorov Theorem ensures the existence of
the projective limit νI .

[3.3.3) ⇒ 3.3.2)]. Just define νJ = πJ,I(νI) for every J ∈ PF (I).
[3.3.2) ⇒ 3.3.4)]. Theorem 2.3 ensures that the J th−market is arbitrage-free

so 3.3.4) trivially follows from Proposition 3.1. �

Examples 1 and 2 below will be clear counter-examples showing that, in
general, 3.3.2) � 3.3.1) and 3.3.4) � 3.3.2).

Example 1. Consider I = {0, 1, 2, ...} = N, Ω = {1, 2, ...} = N \ {0}, F the discrete
σ−algebra of Ω and suppose that µ (ω) > 0 for every ω ∈ Ω. Let be pi = 1,
i = 0, 1, 2, ... and

fi (ω) =
{

ω2+2ω+2
2ω ω ≤ i

1
2i ω > i

i, ω = 1, 2, ... To make it easy, let us provide the infinite matrix below whose
ith−column reflects the pay-off of Si, i = 0, 1, 2, ...

M1 =





1 5/2 5/2 5/2 5/2 ...
1 1/2 10/4 10/4 10/4 ...
1 1/2 1/4 17/8 17/8 ...
1 1/2 1/4 1/8 26/16 ...
... ... ... ... ... ...




.

Consider i, ω ∈ Ω such that ω > i and define νi,ω > 0 so that

∞∑

ω=i+1

νi,ω = 1 −
i∑

ω=1

1
2ω(ω + 1)

=
i + 2
2i + 2

(3.5)
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holds. Clearly, the existence of (νn,ω)∞ω=n+1 is guaranteed for every n ∈ Ω = N\{0}.
Take n ∈ Ω, Jn = {0, 1, ..., n}, and define

ν̃n (ω) =
{ 1

2ω(ω+1) ω ≤ n

νn,ω ω > n.

It can be easily proved that µ and ν̃n are equivalent for n = 1, 2, . . . and condition
(2.2) is satisfied whenever i ∈ Jn. Therefore Theorem 2.3 ensures that the market is
arbitrage free. However, it can be observed that a risk-neutral probability measure
ν as in Definition 2.2 does not exist. Indeed, if it existed we would obtain by
induction

ν(ω) =
1

2ω(ω + 1)
(3.6)

but then
∑∞

ω=1 ν(ω) = 1
2 and

∑∞
ω=1 fi(ω)ν(ω) < 1 for all i = 0, 1, ...

Next let us build the projectively equivalent martingale measure that illus-
trates the fulfillment of 3.3.3).

Notice that the rows of M1 provide the measure µJn associated with the
J th

n −market. Indeed, it is easy to see that

µJn (1, 5/2, 5/2, ..., 5/2)) = µ (1)

µJn (1, 1/2, 10/4, ...10/4) = µ (2)

µJn (1, 1/2, 1/4, 17/8, ...17/8) = µ (3)

........................................

µJn (1, f1(n), f2(n), ......, fn(n)) = µ (n)

µJn (1, f1(n + 1), f2(n + 1), ......, fn(n + 1)) =
∞∑

r=n+1

µ (r) .

It is important to point out that the J th
n −market is complete, in the sense that it

involves n + 1 independent securities and the support of µJn contains n + 1 points
of R

Jn . Therefore the risk-neutral probability of this market is unique and it is
easy to see that it is given by

νJn (1, 5/2, 5/2, ..., 5/2)) = ν(1)

νJn (1, 1/2, 10/4, ...10/4) = ν(2)

νJn (1, 1/2, 1/4, 17/8, ...17/8) = ν(3)

...............................

νJn (1, f1(n), f2(n), ......, fn(n)) = ν(n)

νJn (1, f1(n + 1), f2(n + 1), ......, fn(n + 1)) =
∞∑

ω=n+1

νn,ω

where ν and
∑∞

ω=n+1 νn,ω are given in (3.6) and (3.5) respectively. In order to see
that 3.3.2) or 3.3.3) are fulfilled it is sufficient to prove that

πJn,Jn+1(νJn+1) = νJn ,
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n = 1, 2, ..., but this trivially follows from equalities above. Finally, the previous
projective system clearly converges to the measure νN whose support is concen-
trated in the rows of M1 plus the additional sequence

(
1,

1
2
,
1
4
, ...

)
=

(
1
2n

)∞

n=0

. (3.7)

Furthermore, ν(ω) (see (3.6)) coincides with νN on the ωth−row of M1, ω = 1, 2, ...,
and

νN

(
1
2n

)∞

n=0

=
1
2
.

Overall, as already said in the introduction, the projective system approach allows
us to enlarge the set of states of nature and to identify this set and the set of paths
of real prices, since (3.7) is reflecting “the only trajectory of prices not contained
in the columns of M1”.

Example 2. Next let us introduce a new example illustrating that 3.3.4) � 3.3.2)
or 3.3.3). Consider again I = N, Ω = N \ {0}, F the discrete σ−algebra of Ω and
suppose that µ (ω) > 0 for every ω ∈ Ω. Let be pi = 0, i = 1, 2, ... and fi (i) = 1,
fi (i + 1) = −1 and fi (ω) = 0 for every i, ω = 1, 2, ... with ω �= i and ω �= i + 1.
As in Example 1, it may be convenient to provide the pay-off matrix

M2 =





1 1 0 0 0 ...
1 −1 1 0 0 ...
1 0 −1 1 0 ...
1 0 0 −1 1 ...
... ... ... ... ... ...




.

If we define
ν̃n(ω) =

1
2 (n + 1)

for n = 1, 2, ... and ω = 1, 2, ..., n, n + 1, and

ν̃n(ω) =
µ(ω)

2
∑∞

ω∗=n+2 µ(ω∗)

for n = 1, 2, ... and ω = n+2, n+3, ..., then it may be easily proved that Theorem
2.3 holds and therefore the market is arbitrage free. Besides, according to (2.1), a
risk-neutral probability ν should satisfy

0 < ν(1) = ν(2) = ν(3) = ...

which makes it impossible to verify ν(1)+ ν(2)+ ν(3)+ ... = 1. Furthermore, as in
the previous case the rows of M2 yield the measure µJn of the projective system
approach. Indeed,

µJn (1, 1, 0, ..., 0) = µ (1)
µJn (1,−1, 1, 0, ..., 0) = µ (2)

µJn (1, 0,−1, 1, 0, ..., 0) = µ (3)
µJn (1, 0, 0,−1, 1, 0, ..., 0) = µ (4)
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.............................

µJn (1, 0, ..., 0,−1) = µ (n + 1)

µJn (1, 0, ..., 0) =
∞∑

r=n+2

µ (r) .

Note that there is an important difference between both examples since the
J th

n −market is not complete. In fact, the number of states equals n + 2 while
the number of securities equals n + 1. Accordingly, the number of risk-neutral
measures for this market is infinite. So, if Λn denotes the set of risk-neutral mea-
sures then each element of Λn is characterized by two strictly positive parameters
λ and λ∗ such that

(n + 1)λ + λ∗ = 1. (3.8)

Thus the corresponding risk-neutral measure satisfies

νλ
Jn

(1, 1, 0, ..., 0) = νλ
Jn

(1,−1, 1, 0, ..., 0) = νλ
Jn

(1, 0, 0,−1, 1, 0, ..., 0) . . .

= νλ
Jn

(1, 0, ..., 0,−1) = λ

and
νλ

Jn
(1, 0, ..., 0) = λ∗.

In order to show that 3.3.2) fails suppose that
(
νλn

Jn

)∞

n=1
is a projective system

satisfying the conditions of 3.3.2). Fix n ∈ N \ {0}. One has that

πJn,Jn+m(νλn+m

Jn+m
) = νλn

Jn

for every m ∈ N, from where

λn = νλn

Jn
(1, 1, 0, ..., 0) = ν

λn+m

Jn+m
(1, 1, 0, ..., 0) = λn+m.

From (3.8) one has that

λn = λn+m <
1

n + m + 1
and therefore, taking m �−→ ∞, we have λn = 0. But this contradicts the equiva-
lence between µJn and νλn

Jn
.

4. Existence of projectively equivalent martingale measures

Next let us introduce a first result justifying the success of the Projective System
Approach in Example 1. In addition it will illustrate the utility of projectively
equivalent martingale measures when pricing new assets.

Theorem 4.1. Suppose that there exists a cofinal subset C ⊂ PF (I) such that the
J th−market is complete for every J ∈ C. Then Assertions 3.3.2), 3.3.3) and 3.3.4)
are equivalent. Furthermore, in the affirmative case the following properties hold:

4.1.1) The projectively equivalent martingale measure νI is unique.
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4.1.2) Consider J ∈ PF (I), νJ = πJ,I (νI), ϕ ∈ L∞ (
R

J ,BJ , µJ

)
and the new

security Sϕ whose pay-off at T is given by

fϕ = ϕ ◦ fJ ∈ L∞ (µ) . (4.1)

One has that

pϕ =
∫

RI

(ϕ ◦ πJ,I) dνI (4.2)

is the only price of Sϕ making the market (Si)i∈I ∪ (Sϕ) arbitrage free.

Proof. Suppose that 3.3.4) holds. Take K ∈ C. Proposition 3.1 and the complete-
ness of the Kth−market ensure the existence of νK , unique martingale measure
for the Kth−market. If J /∈ C consider K ∈ C with J ⊂ K and set

νJ = πJ,K(νK). (4.3)

It is clear that νJ does not depend on K. Indeed, if K ′ ∈ C and J ⊂ K ′ then take
K∗ ⊃ K ∪ K ′ such that K∗ ∈ C and we have that

νK = πK,K∗(νK∗) (4.4)

holds due to the uniqueness of the martingale measure for the Kth−market. Anal-
ogously

νK′ = πK′,K∗(νK∗),
from where

πJ,K(νK) = πJ,KπK,K∗(νK∗) = πJ,K∗(νK∗) = πJ,K′πK′,K∗(νK∗) = πJ,K′(νK′).

In order to see that (νJ)J∈PF (I) is a projective system it is sufficient to bear in
mind (4.3) and (4.4). Thus, 3.3.2) holds.

In order to prove 4.1.1) it is sufficient to realize that the projections of νI

are unique on a cofinal subset C. Consequently the projections are unique on the
whole set PF (I) and the uniqueness of νI trivially follows from the uniqueness of
the projective limit of projective systems of Radon measures (see [25]).

Finally, to prove 4.1.2), consider the security above Sϕ. As in the proof of
Proposition 3.1 one can establish that the market (Si)i∈I ∪ (Sϕ) is arbitrage free
if and only if for every K ∈ PF (I) with K ⊃ J the market

(
π{i},K

)
i∈K

∪ (ϕ ◦ πJ,K) (4.5)

is arbitrage free. In particular if this holds and K ∈ C the uniqueness of πK,I(νI)
leads to (4.2). Conversely (4.2) guarantees that (4.5) is arbitrage free for every
K ∈ C and, therefore, for every K ∈ PF (I). �

The latter theorem and Expression (4.2) point out that projectively equiva-
lent risk-neutral probabilities may yield pricing rules that enable us to value new
securities of complete markets. So it is worth to illustrate that the valuation of
new securities is not always feasible for incomplete markets. Additionally this also
anticipates some intuitions about the reasons of the Projective System Approach
failure when dealing with Example 2.
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Remark 4.2. Consider the market of Example 2 plus a new asset Sϕ whose pay-off
at T is given by

fϕ = (2f1 − 1)+ =
{

1, ω = 1
0, ω �= 1.

Obviously Sϕ may be understood as a call option with expiration at T , strike equal
to one monetary unit and underlying asset composed of two units of S1. It is also
easy to check that

fϕ = ϕ ◦ f{0,1}
if

ϕ : R
{0,1} −→ R

is given by
ϕ(x, y) = (2y − 1)+ ,

so Sϕ has the general form proposed in (4.1).
Next let us prove that it is impossible to provide Sϕ with a price pϕ ∈ R

unless we accept the existence of arbitrage. First, µ(fϕ ≥ 0) = 1 and µ(fϕ >
0) > 0, along with the arbitrage absence, will imply that pϕ > 0. Second, if
the market (Sn)n∈N

∪ (Sϕ) is arbitrage-free then (see Definition 2.1) the market
{S0, S1, ..., Sm, Sϕ}is arbitrage-free for every m ∈ N. Choose m such that

1
m + 1

< pϕ.

Then it is easy to show that every risk-neutral measure ν̃m for the market
{S0, S1, ..., Sm} will satisfy

ν̃m(1) ≤ 1
m + 1

from where the price pϕ does not prevent the existence of arbitrage.

Theorem 4.7 and Remark 4.12 below will present some general models for
which the implication 3.3.4) ⇒ 3.3.3) holds. Moreover it shows that projectively
equivalent risk-neutral probabilities, if they exist, provide us with pricing rules
for incomplete markets as well. Before presenting their statements we need some
additional concepts.

Definition 4.3. Suppose that the initial model is arbitrage free. We will say that
the P−property holds if for every J ∈ PF (I) and every ϕ ∈ L∞ (

R
J ,BJ , µJ

)
, the

new security Sϕ whose pay-off at T is given by fϕ = ϕ ◦ fJ ∈ L∞ (µ) has at least
one price pϕ ∈ R making the market (Si)i∈I ∪ (Sϕ) arbitrage free.

Definition 4.4. Suppose that the initial model is arbitrage free, and for every J ∈
PF (I) consider the set RJ of martingale measures for the J th−market. Proposition
3.1 guarantees that each RJ is non-empty. We will say that the ∗−property holds if
there exists a cofinal subset C ⊂ PF (I) such that RJ is uniformly µJ−continuous
for every J ∈ C, i.e., for every J ∈ C and every ε > 0 there exists δ > 0 such that
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the implication

BJ ∈ BJ and µJ (BJ) ≤ δ =⇒ θJ (BJ) ≤ ε, for every θJ ∈ RJ

holds.

Definition 4.5. We will say that the initial model verifies the ∗∗−property if there
exists a cofinal subset C ⊂ PF (I) such that for every J ∈ C and every compact set
XJ ⊂ R

J with void interior and positive probability (µJ (XJ) > 0) there exists a
µJ− atom YJ with positive probability and such that YJ ⊂ XJ .

Remark 4.6. The ∗−property holds for many interesting cases. For instance, it is
obviously fulfilled for complete markets since RJ is a singleton. It is easy to see
that it is also fulfilled if for any µJ (or a cofinal family) there exists a finite and
disjoint collection of µJ−atoms

B1
J , B2

J , ...Br
J

(r depending on J) such that
r∑

s=1

µJ (Bs
J) = 1.

In particular, the model of Example 2 satisfies the ∗−property.
Analogously, The ∗∗−property also holds for many interesting cases like com-

plete markets or Example 2. More generally, it is easy to prove that the property
holds if any R

J (or a cofinal family) may be divided into a countable and disjoint
collection of µJ−atoms.

Theorem 4.7. 4.7.1) If there exists νI , projectively equivalent martingale measure,
then the initial model is arbitrage-free and satisfies the P−property. Furthermore,
(4.2) is a price of (4.1) making the market (Si)i∈I ∪ (Sϕ) arbitrage free.

4.7.2) Suppose that I is countable. If the initial model is arbitrage free and
satisfies the P−property, the ∗−property and the ∗∗−property, then there exists a
projectively equivalent martingale measure.

In order to prove Theorem 4.7 we will need some technical results. Some of
them may also have special interest by themselves.

Lemma 4.8. Suppose that the market is arbitrage free. Then there exists a projective
system (λJ )J∈PF (I) of Radon probability measures such that

4.8.1) The support of λJ is contained in (3.3) for every J ∈ PF (I).
4.8.2) If J ∈ PF (I) then pi =

∫
RJ π{i},J dλJ for every i ∈ J .

4.8.3) If the market satisfies the P−property, J ∈ PF (I) and BJ ⊂ R
J is a

Borel set such that µJ(BJ ) �= 0, then the projective system (λK)K∈PF (I) may be
constructed in such a way that λJ (BJ) �= 0.

4.8.4) If the market satisfies the ∗−property then λJ is µJ−continuous for
every J ∈ PF (I).
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Proof. For J ∈ PF (I) we will consider the compact set CJ given by (3.3). In addi-
tion R∗

J will denote the set of Radon probability measures on the Borel σ−algebra
of CJ , and RJ will be composed of those ρJ ∈ R∗

J such that ρJ and µJ are
equivalent and

pi =
∫

CJ

π{i},J dρJ (4.6)

for every i ∈ J . The absence of arbitrage and Proposition 3.1 imply that RJ is
non-void.

On the other hand, the Riesz Representation Theorem allows us to identify
the space C∗(CJ ) of Radon (non necessarily positive) measures on CJ with the dual
of C(CJ ), space of continuous functions on CJ , and the Alaoglu Theorem guaran-
tees that R∗

J is weak∗−compact since this set is obviously weak∗−closed in the
unit ball of C∗(CJ ). Consequently, the Tijonov Theorem leads to the compactness
of

R∗ = ΠJ∈PF (I)R∗
J .

Fix the element
(ρJ)J∈PF (I) ∈ R∗ (4.7)

in such a way that
ρJ ∈ RJ (4.8)

for every J ∈ PF (I). Given J, H ∈ PF (I) denote Jc = I \ J and consider

λH
J = πJ∩H,J (ρJ) ⊗ µJc∩H ,

where ⊗ is used to denote the usual tensor product of Radon measures (see [25]).5

Then it is easy to see that λH
J and µH are equivalent.

For every J ∈ PF (I) consider the element

ΛJ =
(
λH

J

)
H∈PF (I)

∈ R∗.

The compactness of R∗ implies the existence of

(λJ )J∈PF (I) ∈ R∗

agglomeration point of the net (ΛJ)J∈PF (I) ⊂ R∗.
In order to see that (λJ )J∈PF (I) is a projective system, let us consider J, K ∈

PF (I) with J ⊂ K. Clearly

(λJ , λK) ∈ R∗
J ×R∗

K (4.9)

is an agglomeration point of the net
(
λJ

H , λK
H

)
H⊃K

= (πJ,H (ρH) , πK,H (ρH))H⊃K ⊂ R∗
J ×R∗

K .

Therefore (4.9) is agglomeration point of

(πJ,KπK,H (ρH) , πK,H (ρH))H⊃K

and the continuity of
R∗

K 	 α −→ πJ,K (α) ∈ R∗
J

5Obviously λH
J = πH,J (ρJ ) whenever H ⊂ J and λH

J = µH if H ⊂ Jc.

14



(when both spaces are endowed with the weak∗−topology) leads to

λJ = πJ,K (λK) . (4.10)

Let us prove 4.8.2. Consider J ∈ PF (I) and i ∈ J . It is clear that λJ is an
agglomeration point of

(
λJ

H

)
H⊃J

= (πJ,H (ρH))H⊃J

from where the continuity of π{i},J : R
J −→ R implies that

∫

RJ

π{i},J dλJ =
∫

CJ

π{i},J dλJ

is an agglomeration point of
(∫

CJ

π{i},J d (πJ,H (ρH))
)

H⊃J

=
(∫

CH

π{i},H dρH

)

H⊃J

= (pi)H⊃J

due to (4.6) and (4.8).
Let us prove 4.8.3. Take J ∈ PF (I) and the Borel set BJ ⊂ R

J such that
µJ(BJ ) > 0. Since µJ is a Radon measure with support in CJ there exists a
compact set C̃J ⊂ BJ ∩CJ with µJ (C̃J ) > 0. We will prove that λJ (C̃J ) > 0. Add
the new security Sϕ whose final pay-off is fJ ◦ 1C̃J

,

1C̃J
=

{
1 if ω ∈ C̃J

0 if ω /∈ C̃J

being the characteristic function of C̃J . The P−property implies the existence
of one (maybe non-unique) price pϕ > 0 making the new market arbitrage free.
Thus, as in the proof of Proposition 3.1, for every H ⊃ J the Hth−market is still
arbitrage free if we add the pay-off

1π−1
J,H(C̃J )∩CH

with price pϕ. Consequently, there are martingale measures for this new market,
i.e., (4.7) may be chosen in such a way that (4.8) and ρH(π−1

J,H(C̃J ) ∩ CH) = pϕ,
for every H ⊃ J . Then

λJ
H(C̃J ) = pϕ

for every H ⊃ J . Take ε > 0 such that pϕ − ε > 0. Since λJ is a Radon measure
there exists an open set GJ such that

GJ ∩ CJ ⊃ C̃J

and
λJ ((GJ ∩ CJ ) \ C̃J ) ≤ ε.

The Uryson Lemma guarantees the existence of a continuous function h : CJ −→
[0, 1] that equals one on C̃J and vanishes on CJ \ GJ . If H ⊃ J ,

∫

CJ

h dλJ
H ≥ λJ

H(C̃J ) = pϕ.
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Hence,
∫

CJ
h dλJ , agglomeration point of

(∫
CJ

h dλJ
H

)

H⊃J
, satisfies

∫

CJ

h dλJ ≥ pϕ.

Thus

λJ(C̃J ) =
∫

C̃J

h dλJ =
∫

CJ

h dλJ −
∫

CJ\GJ

h dλJ −
∫

(GJ∩CJ )\C̃J )

h dλJ

≥ pϕ − ε > 0.

Finally, to prove 4.8.4, denote by C the cofinal subset of PF (I) whose existence
follows from the ∗−property. Suppose that J ∈ PF (I) and BJ ⊂ R

J is a Borel set
such that µJ (BJ) = 0. We must prove that λJ vanishes on BJ but, being λJ a
Radon measure, we can assume that BJ is closed. Furthermore, (4.10) allows us
to assume that J ∈ C.

Fix ε > 0. Since πJ,H (ρH) , H ⊃ J, are uniformly regular owing to (4.8) and
the ∗−property, one can take a compact set C̃J ⊂ CJ \ BJ such that

πJ,H (ρH)
(
(CJ \ BJ) \ C̃J

)
≤ ε

for every H ⊃ J . If CJ ∩ BJ is non void then the Uryson Lemma guarantees the
existence of h : CJ −→ [0, 1] continuous and such that h vanishes on C̃J and equals
one on CJ ∩ BJ . For every H ⊃ J one has that

πJ,H (ρH) (CJ ∩ BJ) = 0.

Hence

0 ≤
∫

CJ

h dλJ
H =

∫

(CJ\BJ )\C̃J

h dλJ
H +

∫

CJ∩BJ

h dλJ
H

≤ ε +
∫

CJ∩BJ

h d (πJ,H (ρH)) = ε.

Whence

0 ≤ λJ (CJ ∩ BJ) ≤
∫

CJ

h dλJ ≤ ε

because
∫

CJ
h dλJ is agglomeration point of

(∫
CJ

h dλJ
H

)

H⊃J
.

Consequently, λJ (CJ ∩ BJ) = 0 because ε can take any positive value.6 �

Lemma 4.9. Suppose that the market is arbitrage free and verifies the P−property
and the ∗−property. Take K ∈ PF (I) and a countable collection (Bn)n∈N

⊂ BK

such that µK(Bn) �= 0 for every n ∈ N. Then the projective system (λJ )J∈PF (I) of
Lemma 4.8 may be constructed in such a way that λK(Bn) �= 0 for every n ∈ N.

6It may be worthwhile to remark that Assumption 1 is not necessarily crucial when proving
the lemma above. Indeed, if it fails then the role of C(CJ ) and C∗(CJ ) may be substituted by
L∞ (

R
J ,BJ , µJ

)
and its dual L∗∞

(
R

J ,BJ , µJ

)
, space of finitely additive real valued measures

on BJ with finite variation and vanishing on every µJ−null set.
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Proof. We will use the same notation as in the proof of Lemma 4.8. Bearing in
mind 4.8.3 consider the projective system (λn

J )J∈PF (I) such that

λn
K(Bn) > 0 (4.11)

for every n ∈ N. Let (εn)n∈N. be a decreasing sequence of positive real numbers
such that

∞∑

n=0

εn = 1.

Take finally

λJ =
∞∑

n=0

εnλn
J

for every J ∈ PF (I). The convergence in both the norm topology and the
weak∗−topology of C∗(CJ ) is guaranteed by the Weierstrass criterion. Thus, it
is easy to see that (λJ )J∈PF (I) is a projective system that verifies 4.8.1 and 4.8.2
and such that λJ is µJ−continuous for every J ∈ PF (I). Moreover, λK(Bn) �= 0
trivially follows from (4.11) and λK ≥ εnλn

K for every n ∈ N. �

Remark 4.10. Consider an arbitrary positive measure space (W,
∑

, θ). It is worth
to recall the Saks Lemma (see [22]) guaranteeing that for every ε > 0 there exists
a disjoint partition W1, W2, ..., Ws, Ws+1, ...Wr of W such that W1, W2, ..., Ws are
θ−atoms and θ(Wi) ≤ ε, i = s + 1, ..., r. One can apply again this lemma on each
Wi, i = s+1, ..., r, and for ε/2. By induction, it is easy to prove the existence of a
disjoint sequence (Wn)n∈N

such that the restriction of θ to W0 is non-atomic and
Wn is an atom for n = 1, 2, ....

Lemma 4.11. Suppose that the market is arbitrage-free and satisfies the P−property
and the ∗−property. Take K ∈ PF (I). Then the projective system (λJ )J∈PF (I) of
Lemma 4.8 may be constructed in such a way that λK(BK) �= 0 for every Borel
set BK ⊂ R

K such that µK(BK) > 0 and BK is an open set or a µK−atom.

Proof. According to Remark 4.10, consider a partition (Wn)n∈N
of R

K such that
µK is non-atomic on W0 and (Wn)∞n=1 are µK−atoms. Besides, take a countable
basis (Gn)∞n=1 of the usual topology of R

K . Then Lemma 4.9 ensures that the
projective system may be constructed in such a way that λK does not vanish on
those elements of

(Wn)∞n=1 ∪ (Gn)∞n=1

with measure µK positive. Thus the lemma trivially follows. �

Proof. of Theorem 4.7. Suppose that there exists the projectively equivalent risk-
neutral measure νI and consider the model (Si)i∈I ∪ (Sϕ) where the price pϕ of
Sϕ is given by (4.2). Then the model (Sj)j∈H ∪ (Sϕ) is trivially arbitrage-free for
every H ∈ PF (I) with H ⊃ J . Now, one can prove that (Sj)j∈I ∪ (Sϕ) is arbitrage
free by proceeding as in the proof of Proposition 3.1.
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In order to prove 4.7.2 take (Jn)∞n=1 for n = 1, 2, .... According to the latter
lemma, for every natural m = 1, 2, ... take the projective system

(λm
Jn

)∞n=1

such that λm
Jm

(Bm) > 0 if µJm(Bm) > 0 and Bm is open or µJm−atom. Take finally
a sequence (εm)∞m=1 ⊂ R as in the proof of Lemma 4.9, i.e., positive, decreasing
and satisfying

∑∞
m=1 εm = 1. Set

νJn =
∞∑

m=1

εmλm
Jn

n = 1, 2, ... Once again, as in the proof of Lemma 4.9, the Weierstrass criterion
guarantees the convergence in the norm topology. It only remains to show the
implication

µJm(Bm) > 0 =⇒ νJm(Bm) > 0.

Since we are dealing with Radon measures one can assume that Bm is compact
and included in CJm . If Bo

m denotes the interior of Bm and µJm(Bo
m) > 0 then

νJm(Bo
m) > 0. Otherwise we have that Bm \Bo

m is a compact set with void interior
and positive µJm−measure. The ∗∗−property implies that Bm \ Bo

m contains a
µJm−atom with positive µJm−measure. Whence νJm (Bm \ Bo

m) > 0. �

Remark 4.12. Theorem 4.1 points out that completeness is a sufficient condition to
guarantee the existence of projectively equivalent risk-neutral measures and that
new securities can be priced in arbitrage free models. Nevertheless it is worthwhile
to illustrate that completeness is far from necessary. Indeed, many alternatives
may be given in order to ensure the fulfillment of the implication 3.3.4) ⇒ 3.3.3).

A significant alternative arises if one applies those findings of Balbás et al.
[4]. So we can consider a discrete-time dynamic price process

S(ω, t) = (S0(ω, t), S1(ω, t), ..., Sm(ω, t)) : Ω × {0 < t1 < t2 < ...} −→ R
m+1

with a finite number m+1 ∈ N of assets and an infinite number {0 < t1 < t2 < ...}
of trading dates. As usual the price process must be adapted to the arrival of
new information. Under this framework the arbitrage absence does not imply the
existence of martingale measures, as established in Back and Pliska [2]. But the
study of Balbás et al. [4] proves the existence of projectively equivalent martingale
measures, regardless the completeness of the model. Thus if we consider the one-
period model with infinite securities such that

I = {0, 1, ..., m} × {t1 < t2 < ...},
p(a,b) = Sa(ω, 0)

for every (a, b) ∈ I and
f(a,b)(ω) = Sa(ω, b)

for every (a, b) ∈ I and almost every ω ∈ Ω, then the equivalence between 3.3.3)
and 3.3.4) will hold for incomplete markets too. This kind of models may be called
“finitely generated” and, as already said in the introduction, our Example 1 is a
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particular case that arises from the counter-example of Back and Pliska [2] (for
which m = 1). In some sense, the existence of Example 2 illustrates that one-period
models with infinite and countable cardinal of securities are “more general” than
dynamic-discrete-time models with a finite collection of securities.

5. Conclusions

Representation Theorems have shown to be crucial in Asset Pricing and Mathe-
matical Finance. Regarding markets with infinite number of securities the char-
acterization of the absence of arbitrage by the existence of equivalent martingale
measures fails in general.

This paper draws on the projective system approach in order to establish
the equivalence between the absence of arbitrage and the existence of projectively
equivalent martingale measures, which provides pricing rules allowing for the val-
uation of new assets. The analysis seems to be quite general since there are no
conditions on the set of assets or on the properties of future prices.

The equivalence holds for many significant cases like complete or finitely
generated markets. Moreover, since finitely generated markets can in some sense
extend many dynamic pricing models, it seems that the analysis of markets with
infinitely many securities may deserve important attention in Mathematical Fi-
nance.

Projectively equivalent pricing rules have been also found for more complex
markets. Under some regularity properties, only the possibility of pricing new
securities is necessary and sufficient.

The projective system approach allows us to enlarge the set of states of na-
ture and to identify this set and the set of real prices. Thus a complete equivalence
between the initial probability measure and the martingale measure does not hold
in general. However, the existence of densities between “real” probabilities and
“risk-neutral” ones is guaranteed by introducing the concept of “projective equiv-
alence”, which implies that both the martingale measure and the initial probability
measure generate equivalent projections.
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