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Abstract 

 

This paper investigates the role of energy on U.S. agricultural productivity using panel data at 

the state level for the period 1960-2004. We first provide a historical account of energy use in 

U.S. agriculture. To do this we rely on the Bennet cost indicator to study how the price and 

volume components of energy costs have developed over time. We then proceed to analyze the 

contribution of energy to productivity in U.S. agriculture employing the Bennet-Bowley 

productivity indicator. An important feature of the Bennet-Bowley indicator is its direct 

association with the change in (normalized) profits. Thus our study is also able to analyze the 

link between profitability and productivity in U.S. agriculture. Panel regression estimates 

indicate that energy prices have a negative effect on profitability in the U.S. agricultural 

sector. We also find that energy productivity has generally remained below total farm 

productivity following the 1973-1974 global energy crisis. 
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1  Introduction 

 

The purpose of this study is to investigate the role that energy plays in the U.S. 

agricultural sector, both in terms of its role as a factor of production and its role as a 

contributor to productivity growth. Our analysis employs a unique data series 

compiled by the U.S. Department of Agriculture’s Economic Research Service (ERS). 

The data consist of a state-by-year panel, which will allow us to assess the impact of 

technological advances over the study period as well as the effect of volatile energy 

prices. Of particular interest are the effects of major energy market shocks (e.g. the oil 

price shocks of the 1970s) on energy productivity and the profitability of the U.S. 

agriculture. The data set includes three outputs and six inputs; the latter include direct 

energy use in agriculture as well as indirect energy use as, for example, consumption 

of agricultural chemicals.
1
 Both price and quantity data are available. A more detailed 

description of the data set is given in Section 3 below. 

 

Our first objective is to give an historical accounting of energy consumption in U.S. 

agriculture. While direct energy consumption in the agricultural sector represents only 

a very small fraction of the total U.S. energy use, changes in the energy market can 

have a large impact on costs and, therefore, on profitability of the sector as well as on 

food prices.
2
 The effects of energy costs on profitability may also be greatly 

exacerbated by changes in fertilizer and pesticide costs, both of which are significant 

energy users. Here we rely on a Bennet (1920) indicator decomposition of profit into 

price and volume indicators, which can also be decomposed into changes over time 

and space. This decomposition is possible due to the additive structure of the Bennet 

indicator. This is not possible with the more familiar Fisher and Törnqvist indexes. 

Thus our work will provide an additional tool for the analysis of the role of energy in 

agriculture. 

 

                                                 
1
 Energy inputs feature in every stage of agricultural production, from making and applying chemicals 

to fueling farm machinery used in tillage and harvesting of crops, and to electricity for livestock 

housing facilities. Such reliance on energy consumption has left farmers vulnerable to high energy 

costs and volatile energy market fluctuations, thereby highlighting the importance of efficient use of 

energy for farm profitability and for more sustainable agricultural practices (see Levine, 2012). 
2
 For example, Wang and McPhail (2012) report that in addition to global food demand, energy shocks 

also play an important role in explaining recent rapid increases in food prices. 
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The second objective is to study the contribution of energy to productivity growth in 

U.S. agriculture. Again we will use an additive measure, namely the Bennet (1920) 

productivity indicator.
3
 This indicator requires data on both prices and quantities of 

outputs and inputs, much like the Fisher and Törnqvist indexes. And, like the Fisher 

and Törnqvist indexes, it can be derived based on a test approach (see Diewert, 2005) 

or through its dual, the Luenberger productivity indicator (see Chambers et al., 1996, 

Chambers, 2002). The Bennet (1920) indicator satisfies many desirable properties. 

For the purposes of this study, one of the most important is its additive structure 

which allows for straightforward aggregation and disaggregation. Thus we can easily 

aggregate direct energy use to get an overall contribution of energy to productivity 

growth. We can also aggregate over regions or time periods, again introducing a 

useful analytical tool. 

 

2 Indicators 

The purpose of this section is to provide a short introduction to indicator theory as a 

means of summarizing economic variables. We follow Diewert (2005) and refer to 

summary measures constructed as ratios as indexes and summary measures 

constructed as differences as indicators. Ratio measures are relatively more familiar; 

price and quantity indexes, as well as productivity indexes, are examples. Yet 

difference measures have very simple aggregation properties. The ‘total’ difference is 

the simple sum of the sub-aggregates, which makes them very useful when 

summarizing panel data as we have here.
4
 Another advantage of using differences 

rather than ratios is that they circumvent problems arising from the presence of zeroes 

in the data.
5
 Use of differences is also a more convenient tool to analyze the sources 

                                                 
3
 This indicator is as also known as the Bennet-Bowley productivity indicator based on the work of 

Bennet (1920) in the context of cost of living and Bowley (1928) in the welfare context. See Chambers 

(2002) who shows how exact and superlative productivity indicators can be computed as Bennet-

Bowley measures of profit differences. Note that Chambers also refers to the Bennet cost indicator as 

the Bennet-Bowley cost measure. 
4
 As pointed out by Diewert (2005: p. 342) a nice feature of the Bennet indicators of price and volume 

change is their additive property over commodities which give them ‘a big advantage’ over their 

superlative counterparts (e.g. Fisher or Törnqvist) which are inherently non-additive over commodities. 

The Montgomery (1929, 1937) indicators of price and volume change are also additive over 

commodities but their axiomatic or test properties are not as attractive as those of the Bennet indicators 

(see Diewert, 2005: p. 342). 
5
 Of course there are ratio measures such as the Fisher index which are well defined irrespective of the 

signs or values of prices and quantities and difference measures such as the Montgomery indicator, 

which are not. 
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of profit change from price and quantity changes or to determine the sources of 

deviations of actual values from budgeted or optimal values (see Fox, 2006). 

 

We begin with some notation. Let 1,, +=∈ + ttRx N ττ , be a nonnegative vector 

),...,( 1

τττ
Nxxx =  of inputs at time τ  and let 1,),,...,(, 1 +==∈ + ttwwwRw N

N τττττ , be 

its corresponding vector of input prices. Costs at τ  are defined as the inner product 

∑
=

==
N

n

nn xwxwC
1

τττττ .    (1) 

What we call the Bennet (1920) cost indicator (or cost change indicator) is defined as 

the cost difference 

    
tt CC −+1
      (2) 

which, following Bennet (1920), can be decomposed into two indicators: a price 

indicator  

 

))((
2

1 111 ttttt

t wwxxW −+= +++
    (3) 

 

and a volume (quantity) indicator 

 

))((
2

1 111 ttttt

t xxwwX −+= +++
    (4) 

with the property that 

 

111 +++ +=− t

t

t

t

tt XWCC .     (5) 

 

The price indicator is the additive analog of a price index. Here the simple average of 

the input quantities serves as the weight for the change in the input prices. Similarly, 

in the volume indicator, the simple average of the input prices serves as the weight for 

the change in input quantities. For these indicators to make sense, the prices must be 

‘deflated’ by some general measure (see Balk, 2008, 2010; Chambers, 2001, 2002; 

Chambers and Färe, 1998). In our case, all prices are deflated in each period by the 

total value of the input bundle.  
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The Bennet indicator in (5) has been derived by Diewert (2005) using the test 

approach by solving a functional equation based on tests or axioms. He shows that it 

is the ‘best’ indicator in the sense that it satisfies the ‘most’ axioms or tests including 

the time reversal test.
6
 This indicator has also been derived by Chambers (2002) from 

the Luenberger output indicator, which provides the theoretical connection to the 

underlying technology. This connection required invoking the quadratic 

approximation lemma due to Diewert (1976) and a quadratic functional form for the 

directional input distance function which represents technology.
7
 This yields a price 

normalized Bennet indicator, which is independent of the unit of measurement.  

 

We define the normalized price indicator as:  

 
1

1 1

1

1
( )( )

2

t t
t t t

t t t

w w
W x x

w x w x

+
+ +

+
= + −%     (3’) 

 

And the normalized volume (quantity) indicator as: 

 
1

1 1

1

1
( )( )

2

t t
t t t

t t t

w w
X x x

w x w x

+
+ +

+
= + −%     (4’) 

With the property that 

 

1 1 1t t t t

t tC C W X+ + +− = +% % % %      (5’) 

 

where x  is the sample average input bundle. This normalization comes naturally 

from the dual relationship between the price-based Bennet indicator with the 

Luenberger indicator which uses directional distance functions rather than prices to 

aggregate inputs. An intuitive choice for the direction vector here would be g = (

                                                 
6
 Diewert (2005) compares and contrasts the Bennet indicator to other measures of value change, such 

as the Montgomery-Vartia indicator (see Montgomery 1929, 1937; Vartia 1976a, 1976b) which has a 

structure similar to the Bennet indicator but uses logarithmic averages rather than simple averages as 

weights. He concludes that from the viewpoint of the axiomatic or test approach to value change, the 

Bennet indicator is best albeit in practice there may not be much difference between them. 
7
 Let T  be a technology { :),( yxT =  x  can produce }y and let 0, ≠∈ + gRg N

 be a directional 

vector. Then the directional input distance function is defined as }{( , ; ) sup :( ,D x y g x g y Tβ β= − ∈
r

. 
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,y xg g ) = (0, x ) which would result in what might be called cost share weights 

evaluated at the average input bundle.
8
 

 

In this paper we use an expression like that in (5’) to study how the price and volume 

components of energy cost have developed over the 1960-2004 period. Since costs are 

additive, total and partial cost indicators can be readily constructed. 

Our data set consists of Kk ,...,1= (=48) states, where we denote each state’s cost at 

time τ  by τ
kC . Thus the aggregate cost is 

∑
=

=
K

k

CC k

1

ττ .     (6) 

We define the aggregate cost difference as 

∑∑
=

−
=

=− ++
K

k

C
K

k

CCC t

k

t

k

tt

11

11      (7) 

and note that 

 

)

1

(
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=
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K
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K
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K

k
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k

t

k .    (8) 

 

Thus the aggregate cost difference between adjacent periods equals the difference in 

the sum of sub-aggregate changes. Also note that 
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1
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1
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=
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k
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K
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,
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,    (9) 

 

where 
1

,

+t

tkW  and 
1

,

+t

tkX  denote the k’s price and volume (quantity) indicator, 

respectively, and their sums are the aggregate indicator. 

                                                 
8
 Chambers (2002; p. 757) shows that if the firm minimizes cost, and the directional input distance 

function is quadratic and satisfies the translation property, the Bennet cost measure is “a superlative 

input indicator in the sense that it is an exact measure for a second order flexible representation of the 

technology.” In addition, he shows the Bennet cost measure calculated using input prices normalized 

by the total value of the input bundle is “an exact input indicator regardless of whether the technology 

exhibits constant returns to scale and regardless of whether the entities involved choose outputs 

optimally.”  
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Kevin Fox (2006, p.75) summarizes the aggregation property of the Bennet indicator 

as: ‘...what holds for a one-good context holds for a many-good context, as the many-

good context is simply the sum of the one-good contexts.’ As we have seen, the same 

applies to the states that make up the aggregate indicator. 

 

The second objective of this paper is to study productivity, especially energy 

productivity, which is a partial productivity measure much like the familiar labor 

productivity index. Our approach, again, is based on indicator theory, i.e., we employ 

differences rather than the ratio form of the energy productivity index. 

 

To measure productivity or productivity change, we begin by looking at the change in 

profit 

1 1 1( ) ( )t t t t t tR C R C+ + +Π −Π = − − −                   (10) 

where 

1

, , 1
M

m m

m

R p y p y t tτ τ τ τ τ τ
=

= = = +∑ ,             (11) 

 

is the revenue at time τ , MRp +∈τ  denotes output prices, and MRy +∈τ  denotes the 

associated output quantities. 

 

As in the case of costs, revenue change 

 
tt RR −+1               (12) 

 

can be decomposed into price and volume components 

 

111 +++ +=− t

t

t

t

tt YPRR              (13) 

where  

))((
2

1 111 ttttt

t ppyyP −+= +++
            (14) 

and 

))((
2

1 111 ttttt

t yyppY −+= +++
.            (15) 
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Again, the average of the output quantities serves as the weight for the change in 

output prices and the average of the output prices serves as the weight for the volume 

change indicator. Putting our cost change and revenue change indicators together our 

change in profit may be rewritten as: 

 

 

1 1 1 1( ) ( )t t t t t tR C R C+ + + +Π −Π = − − −           (16) 

  1 1( ) ( )t t t tR R C C+ += − − −  

     = 1111 ++++ −−+ t

t

t

t

t

t

t

t XWYP  

     = )()( 1111 ++++ −+− t

t

t

t

t

t

t

t XYWP . 

 

The first expression on the last line, )( 11 ++ − t

t

t

t WP , describes the ‘price’ component of 

profit change. The second expression )( 11 ++ − t

t

t

t XY  captures the ‘real profit’ or 

productivity change component. This expression is also known as the Bennet-Bowley 

productivity indicator (BB), named after Bennet (1920) and Bowley (1928). Note that 

if there is no change in prices, total profit change will be embedded in the ‘real’ 

productivity component. 

 

Again our data consist of Kk ,...,1= (=48) states; denoting each state’s revenue at 

time τ  as τ
kR , the aggregate revenue is 

τ
τ

k

K

k
RR ∑ =

=
1

. Thus our expression for 

change in profit may be written in aggregate form as the sum over states of the 

components, i.e.  
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Thus the aggregate change in profits also decomposes into a price change component 



 8 

)

1

( 1

,

1

,

11 ++++ −
=

=− ∑ t
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t
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t
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t

t W
K

k

PWP             (18) 

 

and a volume or quantity component 

 

)

1

( 1

,

1

,

11 ∑
=

−=− ++++
K

k

XYXY t

tk

t

tk

t

t

t

t .             (19) 

As mentioned before, for these indicators to make sense, the prices must be ‘deflated’ 

by some general measure, which we define to be the total value of the input output 

bundle. Thus the normalized profit indicator is expressed as:  

 
1

1

1

t t
t t

t tw x w x

+
+

+

Π Π
Π −Π = −% %                        (20) 

 

The normalized Bennet-Bowley indicator is then given by: 

 
1
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1

1
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1

1
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                       (21) 

 

And the normalized price change indicator as: 

 
1

1 1

1

1
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With the property that 

 

1 1 1t t t tBB P+ + +Π −Π = + %% %             (23) 

 

In our empirical section on productivity, instead of total cost we will focus on energy 

cost, so that we obtain a partial rather than a total factor productivity indicator. This 

means that the cost, input price and quantity variables are specific to energy which 
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allows us to decompose revenue change due to a change in energy cost into a partial 

price and a partial productivity component. Since costs are additive, the total factor 

productivity (TFP) indicator is simply the difference between an output quantity 

indicator and the sum of the individual input quantity indicators (see also Balk, 2010). 

 

3 The Data 

This section provides a brief overview of our data. A more detailed description of the 

sources and methods can be found in Ball et al. (1999, 2004). The accounts for each 

state are derived from a panel of annual observations.  State-specific aggregates of 

output and capital, labor, and materials inputs are formed as Törnqvist indexes over 

detailed output and input accounts. Törnqvist output indexes are formed by 

aggregating over agricultural goods and services using revenue-share weights based 

on shadow prices which are inclusive of government payments.
9
 Data on hours 

worked and compensation per hour cross-classified by demographic characteristics of 

the agricultural labor force underpin our estimates of labor input.  

 

To construct a measure of capital input, we require data on the capital stock for each 

component of capital input. Estimates of depreciable capital are derived by 

representing capital stock at each point of time as a weighted sum of all past 

investments. The weights correspond to the relative efficiencies of capital goods of 

different ages, so that the weighted components of capital stock have the same 

efficiency.
10

  The stocks of land and inventories are measured as implicit quantities 

                                                 
9
 Note that we take the subaggegate index series for inputs and outputs as given and we combine them 

to form aggregate value indices and their decomposition into measures of aggregate price change and 

quantity change. Next we use a similar approach to aggregate at a lower level, i.e. at the level of a 

specific input such as energy, and as such obtain a partial value change indicator along with its 

decomposition into a price change and quantity change measure. 
10

 A detailed description of the methods used to construct the capital stocks is provided in Ball et al. 

(2008). The “relative efficiency” of assets as they age is given by a hyperbolic decay function concave 

to the origin. Asset service life is assumed to be a normally distributed random variable and relative 

efficiencies are calculated for each of the possible service lives. An aggregate efficiency function is 
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derived from balance sheet data. Indexes of capital input are formed by aggregating 

over the various capital assets using cost-share weights based on asset-specific rental 

prices. The derivation of the capital rental prices is discussed in Ball et al. (2008).   

 

Törnqvist indexes of energy consumption are calculated for each state by weighting 

the growth rates of petroleum fuels, natural gas, and electricity by their value shares in 

the overall value of energy inputs. Fertilizers and pesticides are also important 

intermediate inputs. But these inputs have undergone significant changes in quality 

over the study period. To account for changes in input quality, price indexes for 

fertilizers and pesticides are constructed using hedonic methods. A price index for 

fertilizer is obtained by regressing prices of single nutrient and multigrade fertilizer 

materials on the proportion of nutrients contained in the materials; prices for 

pesticides are regressed on differences in physical characteristics such as the 

chemical’s potency, toxicity, persistence in the environment, and leaching potential.
11

  

The corresponding quantity indexes for fertilizers and pesticides are formed implicitly 

by taking the ratio of the value of each aggregate to its hedonic price index. Finally, 

                                                                                                                                            
then constructed as the weighted sum of the individual efficiency functions where the weights are the 

probabilities of occurrence. The resulting aggregate efficiency function reflects both loss of efficiency 

as the asset ages and discards of worn out assets. The time series on investment is sufficiently long to 

allow the use of a zero benchmark for the initial period capital stock which dates back to 1871. Given 

assumptions of a mean service life of 38 years and tail service life of 76 years under normally 

distributed discards, any investment prior to 1871 will be fully “replaced” by 1947.  
11

 The following characteristics are  included in the hedonic regression: application rate, chronic score, 

half-life, sorption, water solubility and vapor pressure. These characteristics reflect the chemical’s 

potency (application rate), toxicity (chronic score), persistence in the environment  (half-life and 

sorption),  and leaching potential (water solubility and vapor pressure). The application rate measures 

the chemical’s potency. Hazardous characteristics are measured by chronic toxicity scores, and 

persistence is measured by the pesticide’s half-life. The chronic toxicity index is the inverse of the  

water quality threshold (which measures the concentration in parts per billion) and serves as  an 

indicator for environmental-risk.  The lower the index, the lower is the potential environmental risk for 

the chemical. The persistence indicator is defined by the share of pesticides with a half-life less than 60 

days (the lower the indicator, the less persistent the pesticide is) and by the degree to which the 

pesticide binds to soil particles (sorption coefficient Koc). The leaching potential is measured by the 

water solubility (measured as the amount in milligrams of pesticides that would dissolve in one liter of 

water, mg/L) and vapor pressure (how readily a chemical will evaporate) measured in millimeters of 

mercury (mm Hg). 
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indexes of output and input prices in each state relative to those in a numeraire state 

were constructed for the base year, 1996.
12

  We have compiled price indexes for each 

state for the period 1960-2004. Price indexes in each state relative to those in the 

numeraire state for each year were obtained by linking the time-series price indexes 

with the estimates of relative prices in the base year. The indexes of relative prices 

were used to construct estimates of the levels as well as growth rates of the output and 

input aggregates.
13

 

 

4 Energy Cost 

 

In this section we look at the development of energy costs in the US agricultural 

sector over the time period 1960-2004. We apply the Bennet indicator discussed in 

Section 2. Specifically we focus on the price and volume (quantity) components. 

 

Recall that the cost change may be written as 1 1 1t t t t

t tC C W X+ + +− = + , where 1+t
tW  is 

the price indicator and 1+t
tX  is the volume (quantity) indicator. In our empirical 

analysis we have used data on petroleum fuels, gas and electricity to construct the 

Bennet energy cost indicator and decompose it into price and quantity change. The 

energy cost indicator is deflated by the value of the fuels, gas and electricity bundle 

evaluated at the sample average of these quantities. 

 

                                                 
12

 Like the multilateral versions of the Fisher and Tornqvist indexes, the multilateral Bennet indicator 

compares the price of, say diesel fuel, in a given state to the mean price across all states. This is 

necessary in order to obtain a measure which is both intertemporally and interspatially consistent. To 

express the results relative to a base state (i.e., Alabama), we simply subtract the “indicator” for 

Alabama relative to the mean from the indicators for Arkansas, Arizona, etc. The results are invariant 

to the choice of the numeraire state. This ensures our calculations are base-state invariant. To obtain a 

base-year invariant measure, we use 1996 as a base year and we construct our indexes for earlier and 

later years in the sample by chain linking them to 1996. The result is a ‘true’ panel with both temporal 

and spatial comparability. See Ball et al. (2004) for further discussion. 
13

 Updates of the State-level statistics have been suspended in light of reduced USDA Economic 

Research Service (ERS) resources and the discontinuance of key sources of data series. While more up-

to-date data would have been desirable, this does not detract attention from the main interest of our 

analysis focussing on the 1970s major oil price shocks that resulted in a rapid and unexpected rise in 

energy prices and their aftermath linked to a slowdown in U.S. agricultural productivity growth (see 

Ball et al., 2013). 
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Figure 1 shows the time paths of the energy cost indicator and its price and quantity 

components for the 10 U.S. farm production regions during the period 1960 to 2004. 

It is clear from these plots that energy costs track very closely increases in energy 

prices with very little contribution from changes in energy use.
14

 Overall direct energy 

use appears to be increasing until the mid-1970s, declines over the next decade, and 

starts to rise again from the mid-1980s until about the late 1990s. This is similar to the 

direct energy use pattern reported by Miranowski (2005). There is a steep rise in 

energy costs across all regions during the 1970s oil price shocks starting with the oil 

embargo in 1973 and reaching a peak in the early 1980s following the 1978 Iranian 

revolution. Energy costs in most regions decline during the 1980s reaching a trough 

during the OPEC price-cutting war in 1986-1987, but they start to rise again following 

new waves of oil shocks associated with the Gulf War in the early 1990s, a price blip 

in the late 1990s, the 2001 terrorist attack in the U.S. and the 2002 run-up to the U.S. 

invasion of Iraq but at a much more moderate rate.  

 

Analysis of the individual states reveals a positive and fairly substantial average 

annual rate of energy cost increase. The median rate of energy cost change during the 

1960-2004 period was 4.63 percent per year, with farmers in 10 of the 48 States 

facing energy cost increases averaging more than 5 percent per year. Average annual 

rates of energy cost change ranged from 3.59 percent for Rhode Island to 6.08 percent 

for Delaware. 

 

5  Energy and Productivity 

 

Energy productivity is the topic of this section. We apply the Bennet-Bowley 

indicator discussed in Section 2. Specifically we study the decomposition of profit 

change into price and productivity changes as described in (16). We provide both the 

partial energy productivity indicator as well as the total factor productivity (TFP) 

indicator.  As shown in the Appendix (Tables A1), standard panel unit root tests 

provide no evidence of a unit root in the profit indicator across U.S. States or in the 

                                                 
14

 Our results show close correspondence between the Törnqvist energy price and implicit quantity 

indices and the Bennet indicator of energy price change and quantity change.  
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price and quantity components of the indicator. Also, as shown in Table A2, we find 

no evidence of a unit root in the energy productivity indicator.  

 

Figure 2 shows time plots of the profit change indicator (a measure of farm 

prosperity) and its components, the Bennet-Bowley productivity (TFP) indicator and 

the (normalized) price change indicator. The price indicator is the difference between 

the output price indicator, i.e. an aggregate measure of prices received by U.S. 

farmers, and the input price indicator, i.e. an aggregate measure of prices farmers paid 

for inputs. Following a sharp price increase in the early 1970s farm prices decline in 

real terms and especially if compared to input prices as shown in Figure 2.
15

 There is 

a clear contrast between the productivity indicator which displays a positive trend and 

the price indicator displaying a negative trend over time.  

 

Every state shows a positive and generally substantial average annual rate of TFP 

growth. There is considerable cross-sectional variance, however. The median TFP 

growth rate over the 1960-2004 period was 1.67 percent per year.
16

 However, 15 of 

the 48 States had productivity growth rates averaging more than 2 percent per year. 

Only Oklahoma and Wyoming had average annual rates of growth less than 1 percent 

per year. Average annual growth rates ranged from 0.55 percent for Oklahoma, 0.62 

percent for Wyoming, and 1.06 percent for Tennessee to 2.45 percent for Oregon, 

2.60 percent for Florida and 2.68 percent for Rhode Island. Profit change for most 

regions hovers around or just below zero.
17

 Notable exceptions displaying negative 

profitability are the Northern Plains, Delta, Mountain and Southern Plains regions. 

But these regions exhibited relatively modest gains in productivity. Our results show 

that 22 of the 48 States had negative average profit change rates, with Louisiana and 

Oklahoma reporting the lowest average annual rates at -0.89 percent -0.82 percent, 

respectively. Overall we find that the contributions of the price and quantity change 

                                                 
15

 The Bennet-Bowley output price indicator declines by an average annual rate of 1.3 percent between 

1974 and 1978 while the output indicator increases at a rate of 2.5 percent per annum during the same 

period. The highest output increases are reported in Iowa (5.4%), Indiana (5.7%), Arkansas (6.1%), 

Illinois (6.2%), and North Dakota (8.2%) on average per year. 
16

 This is exactly the same with the median state TFP growth rate reported by USDA (see 

http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/findings,-documentation,-

and-methods.aspx#ball2010) using the Törnqvist index. However on average, TFP growth rates are 

slightly higher under the Bennet-Bowley compared to the Törnqvist measure. 
17

 Ball et al. (2010) report a positive relationship between productivity and R&D expenditure in the 

U.S. agricultural sector. They also report a negative trend in the price indicator suggesting that the 

benefits of public R&D expenditures accrue largely to the consumer through lower real prices. 
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components are largely offsetting, with the long term trend in profitability of the U.S. 

farm sector being very nearly flat. 

 

Figure 3 shows time plots of the partial (energy) productivity indicator in comparison 

to the TFP indicator. Energy productivity is more volatile than total factor 

productivity and in most cases falls well short of the rate of change in TFP which 

appears to be positive and substantial during most of the period. Some notable 

exceptions are the Northern Plains, Delta and Southern Plains regions where energy 

productivity tracks TFP very closely from 1980 to 1996. There is a widening gap 

between energy productivity and TFP in the Northeast, Lake States and Mountain 

regions. Energy productivity did recover in the 1980s but not as fast as TFP. Our 

findings corroborate previous results -- see Cleveland (1995) who reports a shift in the 

productivity of energy use in the US agriculture during the 1980s. In particular, he 

reports a decrease in energy productivity in the 1960s and 1970s driven by 

diminishing returns to energy use per hectare of land, associated with a sharp increase 

in the quantity of land harvested from 1968 to 1978; and an increase in energy 

productivity in the 1980s which he attributes to a decrease in energy use per hectare 

coupled with a reduction in cropland, and continuing improvements associated with 

increasing farm size. He concludes that these productivity gains reflect the adoption 

of better technologies and farm management techniques as a response to rising energy 

price pressures.  

 

Next we proceed to analyze the effect of input and output prices on profitability using 

panel regressions. We report cluster adjusted fixed effects panel estimates for the 

profit change indicator in Table 1. We find that the energy price has a negative effect 

on farm profitability. Similarly, labour and capital costs are negatively related to 

profitability while output prices for crops and livestock have a positive effect on farm 

profits. A surprising result is that the price of pesticides is positively related to profit 

change. One possibility is that this finding can be explained by quality change which 

has not been captured fully by the hedonic adjustment method used to construct the 

pesticides price measure. There is also the possibility this is capturing an indirect 

efficiency effect. While farmers may not be able to make immediate adjustments, 

higher pesticide prices may force them to adopt in the long-run better pest 

management practices that save them money while maintaining product quality. We 
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have controlled for weather and specialization using an index of total precipitation 

between March and August and the Hirschmann-Herfindahl index of specialization, 

respectively.
18

 We find that precipitation has a positive effect on profitability. The 

effect of specialization is also positive but not statistically significant. 

 

Table 2 presents Arellano-Bond dynamic panel estimates for the Bennet-Bowley 

productivity change (TFP) indicator. As shown in Figure 3, energy productivity 

shows much greater fluctuation than total productivity. The panel estimates indicate 

that while there is an overall positive adjustment of total productivity to energy 

productivity change, the intermediate response appears to be negative.
19

 A possible 

explanation for this finding is offered by Ball et al. (2013). They argue that the rapid 

and unexpected rise in energy prices in 1973 and again in 1979 accelerated the rate of 

obsolescence of the capital stock and simultaneously created opportunities for 

profitable new investment in more energy efficient equipment.
20

 Since conventional 

measures of capital stock do not capture changes in the rate of obsolescence, this 

would at first appear as slower productivity growth. But rapidly expanding investment 

in equipment during the 1970s, both to replace obsolete capital stock and to expand 

output, led to a symmetric boost in both energy and total productivity during the 

1980s.
21

 Similarly, we find that investment in R&D, as is to be expected, has a 

positive effect on farm productivity. Finally, we control for the effects of weather and 

specialization. The effect of specialization on productivity is positive, as is March to 

August precipitation, but the latter effect is not statistically significant. 

                                                 
18

 The Hirschman-Herfindahl index of specialization is constructed as the sum of squares of the output 

shares in total output. As such, it can range from 0 to 1.0, moving from a large number of goods, each 

representing a small share of total output, to production of a single output. See Hirschman (1964). 
19

 The long-run energy coefficient estimate is 0.21 indicating that a change in energy productivity 

makes about one-fifth contribution to total farm productivity change. 
20

 The recycling of “petrodollars” by the major oil exporting countries during the 1970s fueled rapid 

growth in demand for U.S. agricultural exports (in particular major row crops such as soybeans). 

Agricultural output increased at a rate faster than TFP over the same period and even faster than input 

use. The latter has generally been quite flat albeit it did increase in the second half of the 1970s. 

Agricultural output prices increased, viz. more than doubled from 1972 to 1983, in nominal terms yet 

did not rise as fast as the U.S. general price index and not as fast as agricultural input prices -- See 

Fuglie et al. (2007) for more information. Energy consumption did not decline in response to higher 

prices. In fact, a special board was established by the U.S. Government to ensure that agriculture got its 

fair share of the energy total. Agricultural exports kept the economy afloat and growth in export 

demand spurred output growth, and this output came about through increased fuel, capital, and 

chemicals inputs. Growth in both energy productivity and TFP slowed. But this was much more 

pronounced in energy productivity.   
21

 Growth in TFP recovered dramatically during the 1980s, more so than energy productivity. This is 

visible in the Figure 3 charts for most regions.  



 16 

6 Conclusion 

 

While agriculture is not a major energy user relative to other sectors of the economy, 

changes in energy costs can have a significant impact on farm profitability. Our 

analysis has shown that energy productivity has been volatile and has not in general 

been able to catch up with total factor productivity which shows a positive and 

generally substantial rate of growth. These findings suggest that there has been 

variable success in the response of farm production to changes in energy prices as 

well as to the ability of the farm sector to use energy more efficiently. The latter is 

important since energy efficiency plays a key role in developing sustainable 

agricultural practices in view of global pressures arising from population and income 

growth and an increasing trend towards urbanisation.  
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         Figure 1: Energy Cost Indicators 
 

 

 
 

NORTHEAST (Connecticut, Delaware, Maryland, Maine, Massachusetts, New 

Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont);  

LAKE STATES (Michigan, Minnesota, Wisconsin);  

CORN BELT (Illinois, Indiana, Iowa, Missouri, Ohio);  

NORTHERN PLAINS (Kansas, Nebraska, North Dakota, South Dakota);  

APPALACHIAN (Kentucky, North Carolina, Tennessee, Virginia, West Virginia);  

SOUTHEAST (Florida, Georgia, Alabama, South Carolina) 

-5

0

5

10

15

20

25

NORTHEAST

-2

0

2

4

6

8

LAKE STATES

-2

0

2

4

6

8

10

12

CORN BELT

-2

0

2

4

6

8

10

NORTHERN PLAINS

-2

0

2

4

6

8

10

12

APPALACHIA

PRICE QUANTITY COST

-2

0

2

4

6

8

10
SOUTHEAST

PRICE QUANTITY COST



 21 

Figure 1 (Continued) 
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Figure 2: Bennet-Bowley TFP and Price Indicators 
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Figure 2 (Continued) 
 

 
 

DL = DELTA (Arkansas, Louisiana, Mississippi);  

SP = SOUTHERN PLAINS (Oklahoma, Texas);  
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Figure 3:  TFP and Energy Productivity Indicators 
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Figure 3 (Continued) 
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Table 1: The Impact of Input and Output Prices on the Profit 

Change Indicator 
 

Fixed effects panel estimator with robust standard errors adjusted for 
10 regional clusters 

     

Variable Coef. Std. Error t-ratio P>|t| 

     

Input Prices     

P_energy -0.2361 0.0695 -3.4000 0.0080 

P_fertilizer 0.0060 0.0302 0.2000 0.8460 

P_pesticides 0.0787 0.0324 2.4300 0.0380 

P_land 0.0362 0.0472 0.7700 0.4630 

P_capital -0.2011 0.0807 -2.4900 0.0340 

P_labor -0.1591 0.0367 -4.3400 0.0020 

     

Output Prices     

P_crops 0.1171 0.0538 2.1800 0.0570 

P_livestock 0.1058 0.0638 1.6600 0.1320 

P_other output 0.1802 0.1367 1.3200 0.2200 

     

Controls     

HHI 0.4244 0.2906 1.4600 0.1780 

Prec 0.0063 0.0021 2.9400 0.0160 

     

Constant -0.0638 0.0411 -1.5500 0.1550 

     

R-square within 0.2637   

 between 0.0057   

 overall 0.1045   

F(11,9) 14.27 p-value 0.00  

Number of obs. 2160 Groups 48  

     
 

 

Notes: 

  

PREC is total precipitation in inches between March and August  

HHI is the Hirschmann-Herfindahl index of specialization. 
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Table 2: The Impact of Energy Productivity on the Bennet-Bowley 

TFP Indicator 
 

Arellano-Bond dynamic panel-data estimates with robust S.E.s 

     

Variable Coef. Std. Error t-ratio P>|t| 

     

BB(-1) 0.4886 0.0444 10.993 0.0000 

BB(-2) 0.2352 0.0393 5.990 0.0000 

BB_Energy 0.3774 0.0396 9.540 0.0000 

BB_Energy(-1) -0.2664 0.0598 -4.458 0.0000 

BB_Energy(-2) -0.1164 0.0335 -3.474 0.0005 

BB_Energy(-3) 0.0637 0.0195 3.268 0.0011 

Log_R&D(-1) 0.1087 0.0650 1.672 0.0946 

HHI 0.3223 0.1956 1.647 0.0996 

Prec 0.0004 0.0015 0.247 0.8050 

     

Wald Chi-sq(9) 5925.29 p-value 0.000  

J-statistic  42.10 p-value 0.338  

Number of obs. 1920 Groups 48  
 

Arellano-Bond Serial Correlation Test:  
     

Test order m-Statistic  rho      SE(rho) Prob.  
     
     AR(1) -2.198494 -4.928641 2.241825 0.0279 

AR(2) -0.170093 -0.516255 3.035129 0.8649 
     
     

 

 

Notes: 

  

BB is the Bennet-Bowley productivity change indicator 

BB_Energy is the Bennet-Bowley energy productivity change indicator  

Log_R&D is (log) public R&D expenditure 

PREC is total precipitation in inches between March and August.  

HHI is the Hirschmann-Herfindahl index of specialization 

 

Wald Chi-square statistic tests the overall significance of the model 

J-statistic tests the null that the instruments as a group are exogenous 

The Arellano–Bond test for autocorrelation has a null hypothesis of no autocorrelation 

and is applied to the differenced residuals. The AR(1) test in first differences is 

expected to reject the null hypothesis. The AR(2) test in first differences is thus more 

important, since it detects autocorrelation in levels. 
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Appendix 

 

Table A1. Panel Unit Root Tests (Bennet-Bowley Indicators) 

 
    

Profit Change    

Exogenous variables: Individual effects   

Method Statistic Prob.** Obs 

Null: Unit root (assumes common unit root process)  

Levin, Lin & Chu t* -8.88774 0 2052 

Breitung t-stat (includes linear trend) -6.22541 0 1996 

    

Null: Unit root (assumes individual unit root process)  

Im, Pesaran and Shin W-stat  -11.6898 0 2052 

ADF - Fisher Chi-square 319.072 0 2052 

PP - Fisher Chi-square 315.328 0 2064 

    
 
Price Change    

Exogenous variables: Individual effects and trends   

Method Statistic Prob.** Obs 

Null: Unit root (assumes common unit root process)  

Levin, Lin & Chu t* -3.90127 0 2061 

Breitung t-stat -4.47389 0 2013 

    

Null: Unit root (assumes individual unit root process)  

Im, Pesaran and Shin W-stat  -8.63653 0 2061 

ADF - Fisher Chi-square 241.993 0 2061 

PP - Fisher Chi-square 256.703 0 2064 

    
 
Productivity Change (TFP)    

Exogenous variables: Individual effects and trends   

Method Statistic Prob.** Obs 

Null: Unit root (assumes common unit root process)  

Levin, Lin & Chu t* -15.1999 0 2061 

Breitung t-stat -10.2031 0 2013 

    

Null: Unit root (assumes individual unit root process)  

Im, Pesaran and Shin W-stat  -16.4071 0 2061 

ADF - Fisher Chi-square 479.534 0 2061 

PP - Fisher Chi-square 582.054 0 2164 

    
** Probabilities for Fisher tests are computed using an asymptotic Chi-square 
distribution. All other tests assume asymptotic normality. 
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Table A2. Panel Unit Root Tests (Bennet-Bowley Energy Indicator)  

 

    

Productivity Change     

    

Exogenous variables: Individual effects and trends  

    

Method Statistic Prob.** Obs 

Null: Unit root (assumes common unit root process)  

Levin, Lin & Chu t* -7.30336 0 2049 

Breitung t-stat -8.59617 0 2001 

    

Null: Unit root (assumes individual unit root process)  

Im, Pesaran and Shin W-stat  -7.52358 0 2049 

ADF - Fisher Chi-square 221.113 0 2049 

PP - Fisher Chi-square 267.514 0 2064 

    

   

   

    

** Probabilities for Fisher tests are computed using an asymptotic Chi-square 
distribution. All other tests assume asymptotic normality. 

    

 


