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I Introd uction 

In this report a new decomposition procedure for optimization problems is 
described and applied to a problem arising in the analysis of interconnected 
power systems. In such systems, it is often desirable to preserve the autonomy 
of each utility. This decentralized operation can be carried out using decom­
position techniques arising in optimization problems. These techniques are 
often used in many planning problems. With them, an optimum of the global 
problem can be achieved in a decentraliced fashion. Also, the application of 
these techniques allow the realization of potential gains in computational 
efficiency and useful information is generated as part of the decomposition 
process. 

The proposed decomposition method is applied to the multi-area Optimal 
Power Flow (OPF) problem. This is an important problem for the secure 
and economic operation of an interconnected power system. The multi-area 
OPF determines, in a precise way, the active and reactive power that each 
interconnected generation unit in the system must generate. This is done to 
ensure that all demand and security constraints for the system are satisfied, 
at a minimal cost for all interconnected areas. The resulting multi-area OPF 
problem is a large-scale non-convex optimization problem [1]. 

The decomposition methodology proposed in this paper is general, simple and 
efficient. The procedure allows the companies in each area to operate their 
systems independently of the others, while obtaining an optimal coordinated 
but decentralized solution. A central agent in the model is necessary to carry 
out coordination tasks for the whole system. This agent ensures the coupling 
of the global system and guarantees transparent transactions. 

Several other decomposition techniques, such as Lagrangian Relaxation [2, 
3, 4], and relaxation techniques based on Augmented Lagrangian functions 
[5, 6, 7], have been proposed for the solution of similar problems. An ap­
plication to solve a multi-area DC OPF is described in [8], while in [9] an 
Augmented Lagrangian Relaxation procedure is used to solve a distributed 
OPF. These procedures present several disadvantages. For example, they do 
not guarantee the computation of an optimal solution for the global system 
(they obtain a quasi-optimal solution), they require a large computational 
effort, their convergence is slow, and they make use of several parameters 
which are difficult to update. Also, a central agent is needed to update 
information. 

The proposed decomposition algorithm avoids the disadvantages from proce-
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dul'(~s based on Lagrangian methods and presents the following advantages: 

• A coordinated solution of the global problem is achieved. The coupling 
of the system is obtained by the Lagrange multipliers associated with 
certain constraints. 

• The computational efficiency is improved. In Lagrangian-based tech­
niques a subproblem must be solved at each iteration in the process. In 
the proposed decomposition algorithm, the solution of each subproblem 
is not necessary. The results from a single iteration are enough, provid­
ing a considerable reduction in computing time. This is a consequence 
of convergence properties of the proposed methodology. 

• The implementation is simple and robust. The procedure generates 
the subproblems as slight modifications of the optimization problems 
for each area, and the convergence properties of the algorithm do not 
require any parameter updating. 

• The solution process is more transparent. The central agent does no 
need to update any information, only to distribute it. This information 
is updated by the different areas of the system. 

• It can be implemented in a distributed computation environment. This 
is due the minimal information interchange between areas that is re­
quired. 

The report shows local and global convergence behaviour for the proposed 
Decomposition Algorithm. The main local convergence condition is related 
to the separable structure of the problem and can be interpreted as a mea­
surement of the coupling between the areas in the global system. It has been 
verified that this condition holds for all multi-area OPF cases that have been 
found available to test the procedure. In this regard, these convergence prop­
erties seem to be satisfied for most practical cases of interest. It is shown 
that the local rate of convergence of the proposed Decomposition Algorithm 
is linear. It must be noted that the rate of convergence of a centralized 
approach could be quadratic. 

Global properties of the method need a merit function in order to measure 
progress and a line search procedure. An Augmented Lagrangian function 
has been chosen as this merit function, and the line search procedure can be 
computed in a appropriate form for the new decomposition algorithm. 
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The report is organized as follows: in Section II a mathematical formulation 
suitable to be applied together with decomposition techniques is introduced. 
This formulation is given for the multi-area OPF model. Section III presents 
decomposition techniques available to date. Section IV describes the new 
decomposition methodology. Section V shows an example that illustrates 
the main ideas behind the procedure. Sections VI and VII present local 
and global convergence properties, respectively. Section VIII shows compu­
tational results and some conclusions are provided in Section IX. 

11 Problem Formulation 

In this section it is discussed the structure that an optimization problem 
must present so that the application of the new decomposition methodol­
ogy is advantageously. Decomposition techniques available to date are also 
based on this structure. The structure is described for a specific class of 
problems arising in interconnected power systems, specifically for multi-area 
OPF problems, where the power that each generation unit in the intercon­
nected system must generate is determined. This is done to ensure that all 
demand and security constraints for the system are satisfied at a minimal 
cost for all interconnected areas. 

Mathematically, a model for this problem can be formulated as 

minimize f(z, u) 
subject to h(z, u) = 0 

g(z, u) ~ 0 

(1) 
(2) 

(3) 

where z is the set of dependent variables for the global system, that may 
contain bus voltage magnitudes, bus phase angles, and the MVAr output 
of generators performing bus voltage control. The vector u is the set of 
control variables for the global system. It may include real and reactive 
power generation, phase-shifter angles, voltage control settings, transformer 
taps settings, etc. 

Function (1) is known as the objective function. Several different objective 
functions may be of interest, such as: total system operation cost, total power 
losses from power transmission, total control shifts, or total system emissions, 
for example. 
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Equations of type (2) are the Power Flow equations [1], including two equa­
tions for each bus of the global system, representing the active and reactive 
power balance in each bus. Constraints of type (3) are the transmission 
capacity limits for each line of the global system, and technical limits over 
dependent and control variables. 

The multi-area OPF model (1)-(3) is a non-convex, differentiable, large-scale 
optimization problem. To simplify the presentation of the new decomposi­
tion methodology, problem (1)-(3) will be reformulated. It will be assumed, 
without loss of generality, that the global system consists of just two areas, 
X and Y. The variables belonging to area X will be denoted as x = [ZX, U

X] , 
and the variables belonging to area Y will be denoted by y = [zY, uY]. 

The problem equivalent to (1)-(3) presents the structure 

minimize fx(x) + fy(y) 

subject to hx(x, y) = 0 

hy(x, y) = 0 

gx(x) ~ 0 

gy(y) ~ 0, 

and is called the Primal Problem. 

(4) 

(5) 
(6) 

(7) 
(8) 

The equations (5)-(6) are commonly known as complicating equations. These 
equations contain variables from both areas and prevent each system from 
operating independently from the other. If these equations are removed from 
problem (4)-(8), the resulting problem can be trivially decomposed into one 
su bpro blem for each area. 

The complicating equations (5) include the power balance equations at the 
interconnecting buses of system X (the buses from system X connected to 
buses from system Y). The complicating equations (6) include the power 
balance equations at the interconnecting buses of system Y. Also, the trans­
mission capacity limits for the interconnecting lines of the global system are 
complicating equations. These constraints must be introduced into equations 
(5)-(6) (after slack variables have already been included to convert inequality 
constraints into equality constraints). Therefore, the only variables appearing 
in the complicating equations are those corresponding to the interconnecting 
buses of the global system. 

Equations (7) and (8) contain only variables belonging to areas X and Y, 
respectively. These constraints represent balance equations, transmission 
limits, and technical constraints for areas X and Y, respectively, and may 
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correspond to equality or inequality constraints. 

III Available Decomposition Techniques 

There are several methods that decompose problems of the form (5)-(6). It 
should be noted that the main goal of these techniques is not to improve 
computational efficiency. Instead, they seek for a solution of (4)-(8) III a 
decentraliced fashion, preserving the autonomy of each area. 

a) Lagrangian Relaxation 

This technique seeks for a solution of the Primal Problem (4)-(8) through 
another problem called the Dual Problem. 

In this technique, the equations (5)-(6) must be of the form 

hx(x, y) = h1(x) + h~(y) 
hy(x, y) = h~(x) + h~(y). 

Equations of the previous form are called separable equations. 

In order to decompose the Primal Problem (4)-(8), equations (5)-(6) are 
included in the objective function. Then, the Relaxed Primal Problem to be 
solved is 

minimize .c(x, y, Ax, Ay) 
x,y 

subject to gx(x) ~ 0 

gy(y) ~ 0 

where the Lagrangian function, .c, is defined as 

.c(x, y, Ax, Ay) = fx(x) + fy(y) + AI h1(x) + 

(9) 

(10) 
(11) 

+ AI h~(y) + Af h~(x) + Af h~(y), 

and vectors Ax, Ay are known as the Lagrange multipliers of equations (5), 
(6), respectively. 
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The Dual Problem corresponding to (4)-(8) is defined as 

sup <fJ(Ax,Ay), 
Ax,Ay 

where the Lagrangian dual subproblem is 

minimize £(x, y, AX, Ay) 
x,y 

subject to gx(x) ~ 0 

gy(y) ~ 0 

The decomposition algorithm based on the Lagrangian Relaxation is: 

Lagrangian Relaxation: 

Step 0 
Parameters "Xx, "xy are initialized. 

Step 1 
System X solves 

minimize fx(x) +"X~ h1(x) +"X~ hHx) (14) 
subject to gx(x) ~ o. (15) 

Step 2 
System Y solves 

minimize fy(y) + "X~ h~(y) + "X~ h~(y) (16) 
subject to gy(y) ~ o. (17) 

Step 3 
Parameters "Xx,"Xy are updated (information exchange). 
The algorithm stops if the convergence criteria for the global 
problem are satisfied. Otherwise, go to Step 1. 

The values AX, Ay are kept fixed in Steps 1 and 2. 

( 12) 

(13) 

This algorithm requires a central agent. This agent updates the multipliers 
corresponding to the interconnected buses. There are several techniques that 
update the Lagrange multipliers. These techniques seek for a maximum of 
the dual function. Among these techniques are: Subgradient methods [4], 
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Cutting Plane methods [3], and Bundle methods [10]. 
easiest implementation is the subgradient method: 

For example, the 

where CXk is a sequence verifying 

00 

CXk ~ 0, LCXk = +00. 
k=O 

(18) 

(19) 

The duality gap is defined as the difference between the optimum of the 
Primal and the Dual problems: 

fx(x*) + fy(y*) - <f;(A"x, Ay). 

If problem (4)-(8) is not convex then the duality gap can be greater than O. 

The Lagrangian Relaxation technique presents several disadvantages. For ex­
ample, it does not guarantee the computation of an optimal solution for the 
global system (they obtain a quasi-optimal solution because of non-convexity 
of the global problem), they require a large computational effort, their con­
vergence is slow, and they make use of several parameters which are difficult 
to update. Also, a central agent is needed to update information. 

b) Augmented Lagrangian Relaxation 

This technique seeks to mix penalization methods with local duality theory, 
by including a quadratic penalization term in the objective function. This 
term makes the Lagrangian function more convex. 

Equations (5)-(6) must be separable. In the Primal Problem (4)-(8), the 
complicating equations (5)-(6) are relaxed and penalized. The new objective 
function has the form 

£A(x, y, Ax, AY) = fx(x) + fy(y) + AI h1(x) + AI h~(y) + 
AT hl () AT h2 () PII [h!x(X) + h'i(Y)] 112 + y y x + y y y + 2 h} (x) + h~ (y) , (20) 
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Function .cA is called the Augmented Lagrangian function. For p sufficiently 
large, the Augmented Lagrangian function is locally convex, and duality 
theory can be applied. 

Function .cA is not separable, because of the quadratic term. In order to 
decompose the quadratic term it is necessary to fix variables corresponding 
to neighbouring areas [6]. In area X the quadratic term is given by 

The decomposition algorithm based on the Augmented Lagrangian Relax­
ation is: 

Augmented Lagrangian Relaxation: 

Step 0 
Variables and parameters X, y, Ax, Ay are initialized. 

Step 1 
System X solves 

Step 2 

minimize 
-T 1 -T 1 

fx(x) + Ax hx(x) + Ay hy(x) + 
+ ~lIhx(x, fJ)11 2 + Ilhy(x, fJ)11 2 

subject to gx(x) ~ O. 

System Y solves 

Step 3 

minimize -T 2 -T 2 
fy(y) + Ax hx(Y) + Ay hy(y) + 

+ ~llhx(x, y)112 + IIhy(x, y)112 
subject to gy(y) ~ o. 

(21) 

(22) 

(23) 

(24) 

Variables and parameters X, y, ~x, ~y are updated (informa­
tion exchange). 
The algorithm stops if the convergence criteria for the global 
problem are satisfied. Otherwise, go to Step 1. 
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This algorithm requires a central agent. This agent updates the Lagrange 
multipliers corresponding to the interconnected buses. In Step 3, an usual 
procedure to update these multipliers [2], at iteration k, is 

A~+l = A~ + P (h~(Xk) + h'i(yk)) 

At+ 1 = At + p (h~(Xk) + h~(yk)). 
(25) 

(26) 

The values X, fj, AX, Ay are fixed from the solution at previous iteration. At 
each iteration of the algorithm, it may be necessary to increase p. A general 
procedure is to define 

pk+l = f3l with f3 > 1. 

The Augmented Lagrangian Relaxation technique presents several disadvan­
tages. For example, it requires a large computational effort, its convergence 
is slow, and it makes use of several parameters which are difficult to update. 
Also, a central agent is needed to update information. 

IV New Decomposition Methodology 

The proposed method is based on the decomposition of the first-order nec­
essary conditions, see [2J, for problem (4)-(8). The main characteristic of 
such an approach is that convergence properties does not require an optimal 
solution of the subproblems at each iteration of the algorithm. Because the 
movement directions are computed in a decomposed way, it is enough to 
compute a single iteration of these subproblems. Therefore, the new method 
has the potential for large savings in computing times. Other decomposition 
methods need, in order to attain convergence, to solve the subproblems until 
the optimum is achieved. Therefore, the new methodology obtains a solution 
of problem (4)-(8) in a decentralized fashion, and with higher computational 
efficiency. 
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The first-order necessary conditions for problem (4)- (8) are 

\l xfx (x*) + f[hx (x*, y*) A:;; + JI hy(x*, y*) A~, + JI gx(x*) a:;; = a 
hx(x*, y*) = a 

gx(x*) ::; a 
gx (x*f a:;; = a 

a~ ~ a1 

\l yfy(y*) + J~ hx(x*, y*) A~ + J~hy(x*, y*) A~ + J~ gy(y*) a~ = a 
hy(x*, y*) = a 

gy(y*) ::; a 
gy(y*)T a;- = a 

a;- ~ al. 

These conditions coincide, for the optimal values of x*, y*, AX' A~, with the 
first-order necessary conditions for problems 

minimize fx(x) + (A~ f hy(x, y*) (27) 

subject to hx(x, y*) = a (28) 

gx(x) ~ 0, (29) 

and 

minimize fy(y) + (Axf hx(x*,y) (30) 

subject to hy(x*,y) =0 (31) 

gy(y) ~ O. (32) 

The values AX' Ay are the Lagrange multipliers of equations (5) and (6), 
respectively. The values ax, ay are the Lagrange multipliers of equations (7) 
y (8), respectively. 

The new approach has the advantage that convergence properties do not 
require an optimal solution of the subproblems (27)-(29) and (30)-(32) at 
each iteration of the algorithm. It is enough to perform a single iteration 
for each subproblem, and then to update these optimality conditions. As 
a consequence, computation times can be significantly reduced with respect 

IThese conditions are only applicable when constraints (7), (8), respectively, are in-

equality constraints. 
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to other methods which require the computation of the optimum for the 
subpl'Oblems in order to attain convergence. 

Finally, it must be noted that generalization of the proposed decomposition 
algorithm for three or more interconnected areas is immediate. An outline 
of the algorithm is as follows: 

Decomposition Algorithm: 

Step 0 
Variables and parameters X, y, AX, Ay are initialized. 

Step 1 
System X carries out one iteration for 

minimize 
-T 

fx(x) + Ay hy(x, y) 
subject to hx(x, y) = 0 

gx(x) ::; 0 

and obtains b..x, b..Ax. 

Step 2 
System Y carries out one iteration for 

(33) 

(34) 

(35) 

-T 
mmlmlze fy(y) + AX hx(x, y) (36) 

subject to hy(x, y) = 0 (37) 

gy(y) ::; 0 (38) 

and obtains b..y, b..Ay. 

Step 3 
Variables and parameters X, y, ~x, ~y are updated (informa­
tion exchange). 
The algorithm stops if the convergence criteria for the global 
problem are satisfied. Otherwise, go to Step 1. 

It is relevant to observe that problem (33)-(35) is a modified OPF for area 
X. The only departure from a standard OPF is the Lagrangian term in the 
objective function (33). This property preserves the special structure of the 
problem in the subproblems and it may allow a more robust and simpler 
implementation of the decomposition procedure, as specialized codes can be 
used for the subproblems. 
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The search directions for subproblems (33)-(35) and (36)-(38) can be com­
puted independently of each other which may result in a parallel implementa­
tion. A modified Newton procedure is used, in conjunction with a nonlinear 
interior point treatment of the inequality constraints. 

Step 3, requires a central agent to coordinate the process; an ISO could per­
form this role. This agent receives certain information from the areas and 
returns it to the appropriate areas. This information consists of the values 
x, fj, );"x, );"y. The values x, fj represent variables involved in the interconnect­
ing buses. The values -Xx, -Xy are the Lagrange multipliers associated with 
the complicating equations. 

Also, it must be emphasized that in the proposed decomposition algorithm 
the central agent only distributes information and checks the convergence 
condition. This central agent needs a minimal amount of information to 
check this condition, and this information can be exchanged between dif­
ferent areas. This is not the case in other decomposition techniques. In 
Lagrangian-based procedures, areas must offer the central agent the same 
minimal information, but the central agent must update this information and 
return it to the different areas. In the proposed Decomposition Algorithm 
the central agent does not need to update the information to be exchanged 
because this information is updated by the areas of the system, implying a 
more transparent and simpler process. 

V Example 

Next, a simple example is introduced. This example clarifies how the three 
considered decomposition techniques, the Lagrangian Relaxation, the Aug­
mented Lagrangian Relaxation, and the proposed Decomposition Algorithm, 
work. 

Assume that the global problem to be solved is 

minimize xi + x~ + yi + y~ 
subject to 1 - 4Xl - Y2 = 0 

1 - Xl - 4Y2 = 0 

(39) 

(40) 

(41) 

In this example, equations (40) and (41) are complicating equations, and no 
constraints of the form (7) or (8) have been included, for simplicity sake. 
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There are only two variables involved in the complicating equations, Xl and 
Y2. Equation (40) represents (5) in the general model, and equation (41) 
represents (6). The solution of this problem is 

* = [0.2] 
X 0.0' y* = [~:~] , \ * = [0.08] 

/\ 0.08' 

The constraint vector (40)-(41) is denoted by h: 

h(x,y) = [1- 4Xl - Y2] . 
1 - Xl - 4Y2 

This problem is solved below by the three described procedures. 

a) Lagrangian Relaxation Solution 

Subproblems to be solved in Steps 1 and 2 of the decomposition algorithm 
based on Lagrangian Relaxation are, respectively, 

(42) 

and 

mllllmlze (43) 

Iteration k = 0: 

Step O. Variables and multipliers 

[0.4] x = 0.4 ' [0.4] 
Y = 0.4 ' 

x = [0.01] 0.01 
are initialized. 

Iteration k = 1: 

Step 1. System X solves (42), beginning at X = x, and obtains 

X= [
0.025] 0.0 . 
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Step 2. System Y solves (43), beginning at y = y, and obtains 

[ 
0.0 ] 

y = 0.025 . 

Step 3. Convergence. Multiplier updating. The central agent 
checks if convergence condition Ilh(x, y)11 < 10-4 is verified: 

h = [0.875] Ilhll = 1.2374 > 10-4
. 

0.875 ' 

The convergence condition is not verified, and the central agent 
updates the multipliers by a subgradient procedure: 

~ = ~ + ~ h(x, y) = 
2k Ilh(x, y) 1I 

= [0.01] ~ [0.875] /1 2374 = [0.3636] 
0.01 + 2 0.875· 0.3636 . 

Next, the variables 

_ _ _ [0.025] 
x - x - 0.0 ' 

_ [ 0.0 ] 
y = y = 0.025 

are updated, k = k+ 1 = 2, and Steps 1, 2, and 3 ofthe algorithm 
are repeated until convergence is achieved. 

The algorithm stops when k = 53, Ilhll = 4.1772 x 10-5
, 

[
0.2] 

x = 0.0 ' [
0.0] >.. [0.0868] 

y = 0.2' = 0.0868 . 

b) Augmented Lagrangian Solution 

Subproblems to be solved in Steps 1 and 2 of the decomposition algorithm 
based on Augmented Lagrangian Relaxation are, respectively, 

2 2 - - ) P )2 minimize Xl + x 2 - (4.\1 +.\2 Xl + 2(1 - 4XI - Y2 ( 44) 

and 

minimize (45) 

Iteration k = 0: 
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Step O. Variables, multipliers, and parameters 

[
0.4] 

x = 0.4 ' [
0.4] 

y = 0.4 ' >: = [0.01] 
0.01 ' 

p = 0.1 

are initialized. 

Iteration k = 1: 

Step 1. System X solves (44), beginning in x = x, and obtains 

= [0.0806] 
x 0.0. 

Step 2. System Y solves (45), beginning in y = 'fj, and obtains 

[ 
0.0 ] 

y = 0.0806 . 

Step 3. Convergence. Multiplier updating. The central agent 
checks if convergence condition IIh(x, y)11 < 10-4 is verified: 

h = [0.5972] Ilhll = 0.8446 > 10-4
. 

0.5972 ' 

The convergence condition is not verified, and the central agent 
updates the multipliers in the form: 

- - [0.01] [0.5972] [0.0697] ). = ). + P h(x, y) = 0.01 + 0.1 0.5972 = 0.0697 . 

Next, the parameter p is increased 

pI = l.2p = 0.12, 

and the variables 

_ _ _ [0.0806] 
x - x - 0.0 ' 

_ [ 0.0 ] 
y = y = 0.0806 ' 

are updated, k = k+ 1 = 2, and Steps 1, 2, and 3 of the algorithm 
are repeated until convergence is achieved. 

The algorithm stops when k = 16, Ilhll = 9.9172 x 10-5
, 

[
0.2] 

x = 0.0 ' Y = [~:~], ). = [~:~~], p = l.5407. 
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c) Proposed Decomposition Algorithm Solution 

Subproblems to be solved in Steps 1 and 2 of the proposed Decomposition 
Algorithm are, respectively, 

and 

mmlmlze 

subject to 

mmlmlze 

subject to 

22-
Xl + X 2 - ).2 Xl 

1 - 4Xl - '112 = ° 

2 2 -
Yl + Y2 - Al Yl 

1 - Xl - 4Y2 = ° 
Iteration k = 0: 

Step O. Variables and multipliers 

[
0.4] 

X = 0.4 ' [
0.4] Y = 0.4 ' ~ = [0.01] 

0.01 

are initialized. 

Iteration k = 1: 

Step 1. System X computes a movement direction for problem 
(46), by Newton's method, at X = x: 

[ ~ ~ ~4] [~~~] = _ [ ~:~~ ] , 

-4 ° ° L),Al -1.00 

and obtains 

A [0.4] [-0.25] [0.15] 
X = X + uX = 0.4 + -0.40 = 0.00 ' 

and 

Al = Al + L),Al = 0.01 + 0.0625 = 0.0725. 
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Step 2. System Y computes a movement direction for problem 
(47), by Newton's method, at y = y: 

[°0
2 

~ ~4] [~~~] = - [ ~:~~ ], 
-4 ° .6.>'2 -1.00 

and obtains 

.6. [0.4] [-0.40] y = y + y = 0.4 + -0.25 [
0.00] 
0.15 ' 

and 

>'2 = >'2 + .6.>'2 = 0.01 + 0.0625 = 0.0725. 

Step 3. Convergence. Multiplier updating. The central agent 
checks if convergence condition Ilh(x, y)II < 10-4 is verified: 

h = [~:;~], IIhll = 0.3536 > lO-4. 

The convergence condition is not verified, and the variables 

[
0.15] 

x = x = 0.0 ' - [0.0] y = y = 0.15 ' ~ = A = [0.0725] 
0.0725 

are fixed, k = k + 1 = 2, and Steps 1, 2, and 3 of the algorithm 
are repeated until convergence is achieved. 

The algorithm stops when k = 8, IIhll = 8.6317 x lO-5, 

[
0.2] 

x = 0.0 ' [
0.0] 

y = 0.2 ' 
\ = [0.08] 
/\ 0.08· 

The behaviour of the three algorithms is analyzed in the following figures. 
Fig. 1 shows the evolution of the objective function (39) at each iteration, for 
each of the three procedures. The dashed line represents the evolution of the 
objective function evaluated at the iterates for the Lagrangian Relaxation 
procedure. The dotted line represents the evolution of the objective function 
evaluated at the iterates for the Augmented Lagrangian Relaxation proce­
dure. Lastly, the solid line represents the evolution of the objective function 
evaluated at points computed by the proposed decomposition algorithm. 
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30 

Fig. 2 shows the value of multiplier )11, at each iteration, for each of the three 
procedures. The value of multiplier A2 coincides, at each iteration, with the 
value of multiplier Al for each procedure. As in fig. 1, the dashed line rep­
resents the values of the multiplier computed by the Lagrangian Relaxation 
procedure; the dotted line represents the evolution of the multiplier from the 
Augmented Lagrangian Relaxation procedure; lastly, the solid line represents 
the evolution of the multiplier as obtained by the proposed decomposition 
algorithm. 

The slow and oscillating behaviour of the Lagrangian Relaxation procedure 
is apparent. The quadratic penalization term in the Augmented Lagrangian 
procedure corrects this anomaly, although the convergence is slower than 
that of the decomposition algorithm. 

VI Local Convergence 

In this section local convergence properties for the proposed Decomposition 
Algorithm are analyzed. It is proved that the local rate of convergence of the 
proposed Decomposition Algorithm is linear. It must be noted that the rate 
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of convergence of a centralized approach could be quadratic. 

The notation used in demonstrations is stated below 

Jzh 
I:­
p(A) 
IIAII 
k(A) 

gradient, with respect to z, of scalar function 9 
hessian, first with respect to wand then with respect 
to z, of scalar function g 
jacobian, with respect to z, of function h 
Lagrangian function 
spectral radius of matrix A 
norm of matrix A 
condition number of matrix A. 

Movement directions in Steps 1 and 2 are obtained computing one decomposed 
Newton's iteration for the KKT system of problem (4)-(8), see Appendix A. 
For the sake of simplicity in this analysis, separable constraints (7) and (8) 
can be omitted. These constraints can be handled by introducing them into 
the objective function using an interior point procedure, for example. 

The KKT system corresponding to the first-order necessary conditions for 
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problem (4)-(6), see Appendix A, is 

where 

[ 
KKTx KKTyX ] [~~] = _ [\7 x,)..xL] , 
KKTxy KKTy ~y \7y,)..yL 

L(X, AX, y, Ad = fx(x) + fy(y) + A~ hx(x, y) + Ar hy(x, y) 

KKT x = [\7 xx L 
Jxhx 

KKT = [\7YX L 
YX J h 

Y x 

KKT y = [\7 yyL J~ h y
] 

Jyhy 0 

KKT = [\7 xyL J~ hx] 
Xy Jxhy 0 ' 

and Newton's directions ~~, ~~ are 

( 48) 

The following notation is useful in the study of convergence. At iteration k of 
the algorithm, Zk denotes the point (x, AX, y, AY)' ~k denotes the decomposed 
direction (~x, ~y), and ~f denotes Newton's direction (~~, ~~). Also, 
matrices 

KKTk = [KKTx KKTyx] 
KKTxy KKTy 

KKT = [KKTx 0] 
k 0 KKTy 

denote the KKT Newton matrix and KKT decomposed matrix, respectively, 
at iteration k. 

The following theorem shows a sufficient condition for convergence of the 
Decomposition Algorithm when Steps 1 and 2 are computed in a parallel 
implementation. 

Theorem 1. Assume that Steps 1 and 2 are solved simultaneously and func­
tions in (4)-(8) are supposed to be twice continuously differentiable. If the 
following condition holds for an optimal solution z* of problem (4) -(8) (where 
matrix I denotes the identity matrix), 

---1 
p(I - KKT KK1) < 1 (49) 
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then, the proposed decomposition algorithm converges locally to z* with linear 
rate of convergence. 

Proof. If Steps 1 and 2 are computed independently of each other, the de­
composed system is: 

[
KKOTX 0] [6. X]_ [Vx,)..x L] 

KKTy 6.y - - Vy,)..yL . (50) 

Then, the Decomposition Algorithm updates variables at iteration k + 1 as 

where 

The error, at iteration k of the algorithm, is denoted by ek = Zk - z*, where z* 
is an optimal solution of problem (4)-(6). Using Taylor's theorem, Appendix 
A, 

If this equation is multiplied by KKT~l then, 

---1 ---1 
0= -KKTk VLk + KKTk KKTk ek 

---1 
= 6.k + KKT k KKTk ek· 

Expanding D.k the following equation is obtained 

and 

(51) 

This result shows that, if the proposed Decomposition Algorithm converges, 
then convergence is linear. A sufficient condition is shown next for conver­
gence of the algorithm. 
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Equation (51) shows that KKTk is a good approximation of KKTk if the 
following condition holds 

---1 
p(J - KKTk KKTk) < 1 (52) 

for k large enough. But this is true because of (49) and the continuity of the 
coefficients in systems KKT and KKT. 0 

Some additional comments on this condition is introduced. Condition (49) is 
related to the separable structure of the problem and in the multi-area OPF 
problem it can be interpreted as a measurement of the coupling between the 
areas in the global system. This measure tends to be smaller for systems 
with a small number of interconnecting lines. 

Matrix KKTk can be expressed as KKTk = KKTk + Ek, and convergence 
condition (52) is 

(53) 

for points near z*. 

Also, condition (53) can be expressed in terms of the condition number of 
matrix KKT k . The following result is true for any matrix norm that satisfies 
the submultiplicative property [11] 

and then 

Therefore, if 

(54) 

is verified, then (53) holds. An interpretation of (54) is the following: as the 
condition numbers of the systems in X and Y increase then the first and 
second derivatives of complicating equations must become small enough in 
comparison with the rest of equations and constraints. 

Finally, it must be remarked that conditions (52) or (53) are the same ones 
as those in J acobi and Gauss-Seidel methods for solving linear systems [11]. 
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Then, these techniques can be used to improve the performance of the pro­
posed Decomposition Algorithm. 

Alternatively, Steps 1 and 2 could be implemented one after the other. The 
following theorem shows a sufficient condition for convergence of the Decom­
position Algorithm when Steps 1 and 2 are computed one after the other, 
serial implementation. 

Theorem 2. Assume that Steps 1 and 2 are computed in a serial imple­
mentation and functions in (4)-(8) are supposed to be twice continuously 
differentiable. If the following condition holds for an optimal solution z* of 
problem (4)-(8) (where matrix I denotes the identity matrix), 

(55) 

then, the proposed decomposition algorithm converges locally to z* with linear 
rate of convergence. 

Proof. From (48) it follows that 

Ll~ = -(KKTx - KKTyx KKTyl KKTxy)-l 

(VxL - KKTyx KKTyl VyL) (56) 

and 

Ll~ = -(KKTy - KKTxy KKTx1 KKTyx)-l 

(''V yL - KKTxy KKTx1 V xL). (57) 

Then, Newton's direction for system X, if the decomposed direction for sys­
tem Y is known, is given by 

and 

is true if 

(58) 

holds. o 

23 



Next, the relationship between the convergence condition in a parallel im­
plementation (58) and the convergence condition in a serial implementation 
(53) is analyzed. If condition (52) is expanded, then 

---1 ([ 0 -KKTXolKKTyx]). 
p(I - KKTk KKTk) = P -KKTylKKTxy (59) 

If [~] is an eigenvector of matrix 1- KKT~lKKTk with an associated eigen­

value f.1, then 

- KKTx1 KKTyx y = f.1x 

-KKTyl KKTxy x = f.1y. 

Thus, 

(60) 

holds and, by the last equation 

Therefore, if the Decomposition Algorithm converges, (53) or (58) is verified, 
then, the ratio of convergence is better in a serial implementation than in a 
parallel implementation, as (61) shows, and as it would be expected. 

VII Global Convergence 

Global convergence properties require that new point Zk+1 be a better point 
than Zk. This is achieved by decreasing a given merit function sufficiently. 
This reduction is attained in Step 3 of the proposed decomposition algorithm. 

The merit function measures progress toward the solution z*. If <I>m(Zk + 
a~k) denotes the merit function at the new point Zk + a~k' this function is 
redefined as <I> ( a) in order to make dependence of a clearer. 

In order to reduce the progress toward the solution, it is necessary that 
<I>m(a) < <I>m(O). But this condition must be satisfied sufficiently. A good 
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step size should be satisfy 

<pm(a) s:: <pm(O) + aa<P~(O) 
1<p~(a)1 s:: -77<p~(O) 

(sufficient-decrease condition) (62) 

(Wolfe condition) (63) 

where 0 < a < 77 < 1. This condition implies that <p~(0) must be negative. 

The line search procedure in Step 3 of the decomposition algorithm is the 
following: 

Line search: 

Paso 0 
Initial value of ao is selected (maximum feasible step). 

Paso 1 
Condition <p~(0) < 0 must be ensured. 

Paso 2 
A value a E (0, ao) is selected such that (62) or (62)-(63) is 
satisfied. 

An appropriate merit function for problem (4)-(6), based on the Augmented 
Lagrangian function, is the" following 

<Pm = fx(x) + fy(y) +.x~ hx(x, y) +.xf hy(x, y) + 

+ ~llhx(x, 17)11 2 + ~llhy(x, y)112. (64) 

It can be proved that 

If 

then 

where h = [~;]. 
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If h i= 0 (infeasible case), it is possible to ensure that <I>~(O) < -u with 
'll > O. If <I>~ (0) > 0, then e > 0 and the penalty parameter can be chosen as 

e+u 
P> lfhIT2' 

If h = 0 (feasible case), then 

<I>~(O) = \7;£ tlx + \7~£ tly, 

and as tlx y tly are the decomposed Newton directions, then 

and this direccional derivative is negative if matrices \7 xx£ y \7 yy£ are posi­
tive definite. 

The line search can be computed in a parallel implementation. In the infea­
sible case, the penalty parameter can be chosen as p = Px + py where 

and 

because 

ex + 0.5u 

Px > IIhx l1 2 

ey + O.5u 
py > IIhy ll 2 

ex = \7;£ tlx 

ey = \7~ £ tly, 

Ox + O.5u Oy + D.5u 0 + u 
IIhx ll 2 + IIhy ll 2 > lfhIT2' 

VIII Numerical Results 

(65) 

(66) 

(67) 

(68) 

This section presents numerical results obtained by applying the proposed 
decomposition algorithm to several test problems. Cases I and 11 correspond 
to the same IEEE-9 system, and only differ in the number of interconnecting 
lines. Case III is based on the IEEE-3D system; this system has been trip­
licated with seven interconnecting lines. Cases IV and V are based on the 
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Table 1: Main characteristics and numerical results for case studies. 

Case Areas Var. Constr. Algor. Iter Ratio 

I 2 24 27 Global 16 

Decomp. 23 1.4375 

II 2 24 27 Global 16 

Decomp. 42 2.6250 

III 3 72 101 Global 23 

Decomp. 59 2.5652 

IV 2 224 167 Global 27 

Decomp. 54 2.0000 

V 3 336 251 Global 29 

Decomp. 73 2.5172 

VI 3 1032 1344 Global 42 

Decomp. 43 1.0238 

IEEE RTS24 [12]; this system has been duplicated for case IV, and tripli­
cated for case V, based on [13]. Finally, case VI is based on the IEEE-1I8 
system; this system has been triplicated with ten interconnecting lines. In 
all cases, the objective function (1) is taken to be the total operation cost 
for the system. 

All cases have been solved by a centralized approach and a decentralized 
one, using the proposed decomposition algorithm. The solutions for both 
approaches have been computed using a nonlinear interior point procedure, 
based on a version of [14]. 

The model and algorithms have been implemented in MATLAB [15]. The two 
procedures have been initialized using the same starting point. 

Table 1 shows the most relevant characteristics and the numerical results for 
each case study. 
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Figure 3: Case VI. Total cost in US $. 

The second column in Table 1 shows the number of areas for the global 
system. The third and forth columns are total number of variables and 
constraints, respectively, for each case study. The fifth column indicates the 
approach used to solved each case, a global procedure or a decomposed one. 
The sixth column shows the total number of iterations required to reach the 
optimum for each problem. And the last column shows the ratio between 
total iterations for the decentralized approach and total iterations for the 
centralized approach. 

To further illustrate the behavior of the decomposition procedure, fig. 3 
shows, for Case VI, the evolution of the objective function (1), at each itera­
tion, for each of the two procedures. The dashed line represents the evolution 
of the objective function evaluated at points obtained by the centralized ap­
proach. The solid line represents the evolution of the objective function 
evaluated at points obtained by the new methodology approach. 

Fig. 4 shows, for Case VI, the evolution of the complementarity duality gap 
[14] and the norm of the first-order necessary conditions, at each iteration, 
for each of the two procedures. 

It must be noted that, in this case, both the centralized and decentralized 
approach provide nearly the same results. 
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Figure 4: Case VI. 

sxlO' 

-
Centralized approach 
New methodology approach 

~~~~--~~~~~2S--~~~~ 
... ~ ... 

(a) Complementary duality gap 

J5 1

- - - Cenlrallzed approach 1 
-- New methodology approach 

(b) pt. order necessary conditions. 

It must be noted that although the total number of iterations for the proposed 
Decomposition Algorithm is larger than that for the centralized procedure, 
total computing time may be smaller. This is due to the size of the linear 
systems that need to be solved by each procedure. A centralized approach 
should solve systems that are larger by a factor equal to the number of areas 
than those solved by the decomposition algorithms. 

IX Conclusions 

In this report a new decomposition methodology is presented and applied to 
a problem arising in the analysis of interconnected power systems. The new 
methodology preserves the autonomy of each utility in the global system by 
means of a coordinated but decentralized procedure. 

Numerical results show that the method has less computational cost than a 
centralized approach and other alternative decomposition techniques. 

As a result of these properties, the new methodology is very well-suited for 
its use in the solution of large-scale multi-area OPF problems, and in general 
in optimization problems that can be separated by fixing the values of some 
of their variables. 
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A Taylor's Series and KKT Systems 

This appendix shows some results related to the Taylor's series of a given 
multivariate function. This is a useful result in optimization, and in par­
ticular in the preceding analysis of the proposed Decomposition Analysis 
convergence. Also, a KKT system of an optimization problem is defined. 
Notation of Section VI is used. 

It is necessary to introduce the following terminology. Given two non­
negative sequences, l/k and ek, the notation 

indicates that a real number C > 0 exists, such that, 

for all k. 

The next theorem is a particular case of Taylor's Theorem. 

Theorem 3. If x E jRn, and f(x) E lR is a function with continuous second 

derivatives, then real number () exists satisfying 0 :::; () :::; 1, and such that 

1 
f(x + p) = f(x) + pT V' xf(x) + 2 pT V' xxf(x + () p) p. (69) 

Therefore, it can be concluded that 

Conditions 

If(x + p) - f(x) - pT 'V xf(x)1 = O(llpI12). 

'Vx£(x*,'\*) = 0 

h(x*) = 0 

(70) 
(71) 

form a nonlinear system of n + m equations and n + m variables for problem 

minimize f (x) 

subject to h(x) = 0 
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where n is the dimension of vector x, and m is the dimension of vector h( x). 
If z denotes the set of variables (x*,). *), and the function F (z) denotes the 
set of conditions (70)-(71), then 

for j = 1, ... ,n + m. Then, it holds that 

Fj (z + 6.) :::: Fj ( z) + 6. T V z Fj ( z ) 

for 1/6.11 small enough. 

(74) 

In optimization algorithms, it is desirable to find a direction 6. such that 
F(z + 6.) = 0, and so, this value can be approximately computed as 

where the term V zF(z) can be expressed in terms of original variables and 
functions as 

V F( ).) = [V xx£(x,).) Jxh(x)] 
x,>. x, Jxh(x) 0 

Matrix V x,>.F(x,).) is known as the KKT matrix [16] for problem (72)-(73). 
System 

[
Vxx£(x,).) Jxh(X)] [6.x] = _ [Vx£(x, ).)] 

Jxh(x) 0 6.), h(x) 

is the KKT system for problem (72)-(73). This system can be formulated in 
the form 

KKT 6. = -V (x,>.)£ 

where 

KKT = [\7 xx£(x,).) Jxh(X)] [6.x] 
Jxh(x) 0' 6. = 6.), , 

\7 £ - [\7 x£(x, ).)] 
(x,>.) - h(x) . 
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