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Abstract

For a wide class of Sobolev type norms with respect to measures with unbounded support on the real
line, the contracted zero distribution and the logarithmic asymptotic of the corresponding re-scaled Sobolev
orthogonal polynomials is given.

1. Introduction

Let {�k}mk=0 be a family of positive Borel measures supported on the real line. On the linear
space P of polynomials with real coefficients we introduce the Sobolev p-norm

‖q‖S =
(

m∑
k=0

∫
R

|q(k)(x)|p d�k(x)

) 1
p

=
(

m∑
k=0

‖q(k)‖p

Lp(�k)

) 1
p

, 1�p < ∞, (1)

assuming that the integrals of all the polynomials are finite. When p = 2 this is said to be a
Sobolev norm that is induced by the Sobolev inner product

〈p, q〉S :=
m∑

k=0

∫
R

p(k)(x)q(k)(x) d�k(x). (2)
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In this case it is well known and easy to verify that the monic polynomials that minimize the
Sobolev norm are the orthogonal polynomials with respect to the inner product (2).

Asymptotic properties of polynomials orthogonal with respect to a Sobolev inner product have
been studied when the supports supp(�k), k = 0, 1, . . . , m, of the measures are bounded subsets
of the real line. In particular

1. If {�k}mk=1 are atomic measures, the asymptotic behavior of the polynomials orthogonal with
respect to (2) is compared with that of the polynomials orthogonal with respect to �0 in [6,12]
assuming that �′

0 > 0 a.e. on its supporting interval.
2. The asymptotic zero distribution of the zeros of the Sobolev orthogonal polynomials and their

derivatives was analyzed for m = 1 in [4] and for general m in [7].
3. The nth root asymptotic behavior of the orthogonal polynomials was analyzed in [7,9] for

measures in the class Reg of regular measures.
4. For m = 1, the strong asymptotic of Sobolev orthogonal polynomials and their first derivative

was studied in [13] assuming that the measures belong to the Szegő class. A natural extension
when m > 1 was given in [14].

When the measures have unbounded support very few results are available and they are re-
stricted to the case m = 1. A trivial situation appears when d�0(x) = d�1(x) = e−x2

dx. Here,
the Sobolev orthogonal polynomials are the Hermite polynomials. If d�0(x) = x�e−x dx and
d�1(x) = �x�e−x dx, in [11] the analytic properties of Laguerre–Sobolev orthogonal polynomi-
als were considered, and in [10] the ratio asymptotics for such polynomials was deduced.

A first example, different from the Laguerre case, was considered in [1] with d�0(x) = (x2 +
a2)e−x2

dx, d�1(x) = �e−x2
dx in the framework of the so-called symmetric coherent pairs.

Relative asymptotics of the corresponding Sobolev orthogonal polynomials with respect to the
Hermite polynomials was obtained. An interesting fact is that this asymptotic behavior depends
on the parameter �, which distinguishes it from the bounded case.

Using well-known properties of Freud orthogonal polynomials, relative asymptotics as well as
Plancherel–Rotach formulas were deduced in [2] if d�0(x) = e−x4

dx and d�1(x) = �e−x4
dx.

From the general perspective a fundamental breakthrough is given in [5]. There the authors
consider general measures of the form d�0(x) = (�W)2 dx and d�1(x) = �W 2 dx, where
W = exp (−Q), Q : I �→ [0, +∞) is a convex function, I is an unbounded interval of the
real line, and � is a sufficiently smooth function. Let {qn} denote the sequence of orthonormal
polynomials with respect to this Sobolev inner product and {pn} the sequence of orthonormal

polynomials with respect to W 2 dx, then q ′
n behaves like �− 1

2 pn−1 for fairly general weights W
on I, but some growth restriction on � is necessary. Assuming some extra conditions on Q, the

weighted estimate of q ′
n − �− 1

2 pn−1 in L2(R) and L∞(R) as well as the strong asymptotics for
the re-scaled Sobolev orthogonal polynomials was obtained.

In this paper, we relax the conditions on the weights as compared to [5] aiming for weak
asymptotics instead of strong asymptotics. At the same time, we consider more general norms
involving derivatives of higher order.

Let {w0, w1, . . . , wm} be a family of positive continuous functions on R and p ∈ [1, +∞). We
assume that for each k = 0, . . . , m the measure w

p
k dx has finite moments. For q ∈ P we define

‖q‖S =
(

m∑
k=0

∫
R

|q(k)(x)wk(x)|p dx

) 1
p

=
(

m∑
k=0

‖q(k)wk‖p

Lp(R)

) 1
p

. (3)
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This application induces a norm on P. We say that Qn is an nth extremal monic polynomial
with respect to (3) if Qn(x) = xn + · · · and

‖Qn‖S = min{‖q‖S : q(x) = xn + · · ·}.
The existence for each n ∈ Z+ of an extremal polynomial is easy to prove. When 1 < p < ∞ this
norm is strictly convex (see [8, Lemma 1]) which yields that for each n ∈ Z+ the monic extremal
polynomial is uniquely determined. For p = 1, when we refer to “the” extremal polynomial of a
given degree, we simply mean a representative.

We say that w ∈ W(�, �), � > 0 , � > 0, if w is a positive continuous function on R such that

lim|x|→∞
− log w(x)

�|x|� = 1.

A typical example is v�,�(x) = e−�|x|� ∈ W(�, �). In the sequel,

�� :=
�
(�

2

)
�
(

1
2

)
2�
(

1+�
2

) ,

where as usual � denotes the Gamma function.
In Section 3, we consider norms of type (3) with wk ∈ W(�k, �k), 0�k�m. The results depend

on the weight which dominates the norm. Let k ∈ {0, 1, . . . , m} be the smallest index such that
either

�k < min
0 � k �m

k 
=k

�k or �k = min
0 � k �m

k 
=k

�k and �k = min{�k : �k = �k}.

Set � = �k and � = �k . We prove

Theorem 1.1. Let Qn be the nth Sobolev monic extremal polynomial relative to the norm (3)
where wk ∈ W(�k, �k), 0�k�m. Then

lim
n→∞ n−1/� ‖Qn‖1/n

S = 1

2

(��

�e

)1/�
, (4)

and, for all j �k

lim
n→∞ n−1/� ‖Q(j)

n v�,�‖1/n

L∞(R) = 1

2

(��

�e

)1/�
. (5)

A direct consequence of (5) (see Corollaries 3.1 and 3.2) is the asymptotic contracted limit
distribution of the zeros of Q

(j)
n and the weak limit of the corresponding contracted extremal

polynomials.
In Section 4, we consider a more general class of weights. We say that w ∈ W(�), � > 0, if

lim|x|→∞
log log 1

w(x)

log |x| = �. (6)

Notice that W(�, �) ⊂ W(�) for all � > 0. In particular, v� = e−|x|� ∈ W(�). Here, we consider
norms of type (3) such that wk ∈ W(�k), 0�k�m. The results also depend on the dominating
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weight in the norm. Let k̃ ∈ {0, 1, . . . , m} be the first index such that

�k̃ = min{�k : 0�k�m}.
Set �̃ = �k̃ . We prove

Theorem 1.2. Let Qn be the nth monic extremal polynomial with respect to the norm (3) where
wk ∈ W(�k), 0�k�m. Then

lim
n→∞ ‖Qn‖1/(n log n)

S = e1/̃�. (7)

To make the reading more comprehensive, we include in Section 2 a brief review of known
results from potential theory which will be needed. More details may be found in [16]. Sections
3 and 4 are dedicated to the proof of Theorems 1.1 and 1.2, respectively.

2. Auxiliary results

Technically, this paper is a continuation of [7,9] (which in turn were inspired in [4]) to the case
of measures with unbounded support. The basic idea is to compare the norm (3) of the extremal
polynomials with their weighted uniform norm on R. The reduction is possible due to Markov
and Nikolskii type inequalities. For convenience of the reader, we state the corresponding results
as lemmas in the form in which they will be used. They are simple reformulations of Theorems
VI.5.5 and VI.5.6 in [16].

Lemma 2.1 (Markov type inequalities). Let v�,�(x) = e−�|x|� , � > 0, � > 0, and let Pn be a
polynomial of degree at most n ∈ Z+. Then, for every 1�p�∞ and 1�k�n

‖P (k)
n v�,�‖Lp(R) �M(n, k, �, �, p) ‖Pn v�,�‖Lp(R),

where Mn = M(n, k, �, �, p) is such that

lim
n→∞ M

1/n
n = 1.

Lemma 2.2 (Nikolskii type inequalities). Let v�,�(x) = e−�|x|� , � > 0, � > 0, and let Pn be a
polynomial of degree at most n ∈ Z+. Then, for every 0 < p, q �∞

‖Pn v�,�‖Lp(R) �N(n, �, �, p, q) ‖Pn v�,�‖Lq(R),

where Nn = N(n, �, �, p, q) satisfies

lim
n→∞ N

1/n
n = 1.

From formulas (VI.5.7) and (VI.5.16) in [16] the values of Mn and Nn may be specified, but
we only need that they have the nth root limit indicated.

Other key ingredients in the proof are the properties of the asymptotically extremal polynomials
with respect to weighted L∞ norms. We say that a positive continuous function w on R is
admissible if

lim|x|→∞ |x|w(x) = 0.
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Let M(R) be the collection of all positive unit Borel measures � supported on R and define
the weighted energy integral

Iw(�) :=
∫ ∫

log

(
1

|x − t |w(x)w(t)

)
d�(x) d�(t)

=
∫ ∫

log

(
1

|x − t |
)

d�(x)d�(t) + 2
∫

Q(t) d�(t),

where w(x) = exp (−Q(x)). As usual,

U�(z) :=
∫

log
1

|z − t | d�(t)

denotes the logarithmic potential of �.
There exists a unique �w ∈ M(R) such that

Iw(�w) = inf{Iw(�) : � ∈ M(R)}.
Set

Fw := Iw(�w) −
∫

Q(t) d�w(t).

The measure �w is characterized by

U�w(x) + Q(x)

{
�Fw, x ∈ supp(�w),

�Fw, R \ E,

where E is a set of logarithmic capacity equal to zero (see [16, Theorem I.1.3]). Moreover, the
support, supp(�w), of �w is a compact subset of the real line and has positive capacity.

Let {Pn}, n ∈ Z+, deg(Pn) = n, be a sequence of monic polynomials. It is well known (see
[16, Theorem I.3.6]) that if w is admissible,

lim inf
n→∞ ‖Pnw

n‖1/n

L∞(R) �e−Fw . (8)

The sequence {Pn}, n ∈ Z+, is said to be asymptotically extremal with respect to w if

lim
n→∞ ‖Pn wn‖1/n

L∞(R) = e−Fw . (9)

The nth monic weighted Chebyshev polynomial with respect to w is defined as follows:

‖Tnw
n‖L∞(R) = inf{‖Pnw

n‖L∞(R) : Pn(x) = xn + · · ·}.
From [16, Theorem III.3.1], we have

Lemma 2.3. Let w be admissible, then the sequence {Tn}, n ∈ Z+, is asymptotically extremal
with respect to w. In particular,

lim
n→∞ ‖Tn wn‖1/n

L∞(R) = e−Fw . (10)

From [16, Theorem IV.5.1], we have
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Lemma 2.4. Let v̂� = exp
(−��|x|�), � > 0. Then supp(�v̂�

) = [−1, 1],
Fv̂� = log 2 + 1/�, (11)

and

d�v̂�
(t) =

(
�

�

∫ 1

|t |
u�−1

√
u2 − t2

du

)
dt, t ∈ [−1, 1]. (12)

Furthermore, on R \ [−1, 1],

U�v̂� (x) = − log |x +
√

x2 − 1| − |x|�
∫ 1/|x|

0

u�−1

√
1 − u2

du + 1/� + log 2, (13)

whereas on C \ R,

U�v̂� (z) = − log |z +
√

z2 − 1| − Re

[∫ 1

0

zu�−1

√
z2 − u2

du

]
+ 1/� + log 2. (14)

For p = 2 the next lemma is contained in (1.3), Theorem VII.1.3, in [16]. For any 1�p < ∞
the proof is exactly the same using the Nikolskii type inequalities.

Lemma 2.5. Consider the weight v�,�. Let Ln be the nth monic extremal polynomial with respect
to the weight v�,� in the p-norm, 1�p < ∞, i.e.

‖Lnv�,�‖Lp(R) = inf{‖qv�,�‖Lp(R) : q(x) = xn + · · ·}.
Then,

lim
n→∞ n−1/� ‖Ln‖1/n

Lp(R) = 1

2

(��

�e

)1/�
.

There is a close connection between the asymptotic extremality of a sequence of polynomials,
the contracted asymptotic zero distribution of its zeros, and the contracted nth root asymptotics
of the polynomials. For details see [16, Theorems III.4.2 and III.4.7(iv)]. Let q be a polynomial
of degree n. We define the normalized zero counting measure by

�n(q) := 1

n

∑
q(x)=0

�x,

where �x is the Dirac measure at the point x.

Lemma 2.6. Let w be an admissible weight (on R) and {Pn}, n ∈ Z+, a sequence of monic
asymptotically extremal polynomials with respect to w. Set �n = �n(Pn). Then,

∗ lim
n→∞ �n = �w (15)

in the weak* topology of measures. Moreover, if z is not a limit point of the zeros of the Pn’s, then

lim
n→∞ |Pn(z)|1/n = e−U�w (z). (16)
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3. Sobolev inner product on the real line

Let q be a monic polynomial of degree n. We denote

q̂(�, �; x) =
(n ��

�

)n/�
q

((
�

n ��

)1/�

x

)
.

Lemma 3.1. For every p, 1�p < ∞, there exists a constant C such that for all k, 0�k�m,

v�k,�k
(x)�Cv�,�(x), x ∈ R, (17)

‖q v�k,�k
‖Lp(R) �C‖q v�,�‖Lp(R), q ∈ P, (18)

‖q̂(�, �; ·) v�,�‖L∞(R) =
(n ��

�

)n/� ‖q v̂n
�‖L∞(R), q(x) = xn + · · · . (19)

Proof. Suppose that there exists a k ∈ {0, 1, . . . , m}, k 
= k, such that �k = �. By the definition
of k, ���k; therefore,

−�k|x|�k � − �|x|�, x ∈ R,

and consequently,

v�k,�k
(x)�v�,�(x), x ∈ R. (20)

For all k such that �k 
= �, by the definition of k, � < �k . Hence,

lim|x|→∞
�|x|�

�k|x|�k
= 0.

In particular, there exists a constant C1 > 0 such that

�|x|�
�k|x|�k

�1, |x|�C1,

or equivalently,

max
k 
=k
�k>�

v�k,�k
(x)�v�,�(x), |x|�C1. (21)

On the interval |x|�C1, the functions
v�k,�k

v�,�
are continuous and positive. Thus

max
k 
=k
�k>�

max|x|�C1

v�k,�k

v�,�
�C2 < +∞. (22)

From (20)–(22), we conclude (17). Relation (18) is a direct consequence of (17).
Finally, (19) follows from the linear substitution x = (n ��/�)

1/� t and the relation

v�,�(x) = e−�|x|� = (e−��|t |�)n = v̂n
�(t). �

Proof of Theorem 1.1. If w ∈ W(�, �), it is easy to see that for every 	, � − 	 > 0, there exists
a constant C	 > 0 such that

C−1
	 e−(�+	)|x|� �w(x)�C	e

−(�−	)|x|� , x ∈ R. (23)
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By the extremal property of Qn with respect to the norm (3) and the right-hand side of (23), we
have that for each 	 (0 < 	 < min0�k �m �k) there exists a constant C1, such that for any monic
polynomial Q, deg(Q) = n,

‖Q(k)
n wk‖p

Lp(R) �‖Qn‖p

S �‖Q‖p

S =
m∑

k=0

‖Q(k) wk‖p

Lp(R) �C1

m∑
k=0

‖Q(k) v�k,�k−	‖p

Lp(R).

Using Lemma 2.1, (17), and Lemma 2.2, it follows that there exist constants M̃n such that
limn→∞ M̃

1/n
n = 1 and

m∑
k=0

‖Q(k) v�k,�k−	‖p

Lp(R) �M̃n ‖Q v�,�−	‖p

L∞(R).

Let Tn be the nth monic weighted Chebyshev polynomial with respect to v̂�. Take Q = T̂n(�, �−
	; ·). From (19) and the previous bounds, it follows that

‖Q(k)
n wk‖p

Lp(R) �‖Qn‖p

S �C1M̃n

(
n��

� − 	

)pn/�

‖Tn v̂n
�‖p

L∞(R).

Hence, using (10) and (11), we obtain

lim sup
n→∞

‖Q(k)
n wk‖1/n

Lp(R)

n1/�
� lim sup

n→∞
‖Qn‖1/n

S

n1/�
� 1

2

(
��

e(� − 	)

)1/�

.

Since 	 > 0 is arbitrary, we conclude that

lim sup
n→∞

‖Q(k)
n wk‖1/n

Lp(R)

n1/�
� lim sup

n→∞
‖Qn‖1/n

S

n1/�
� 1

2

( ��

e �

)1/�
. (24)

Fix 	 > 0. Let Ln−k be the (n − k) monic extremal polynomial with respect to the weight
v�,�+	 in the norm of Lp(R). By the left-hand side of (23) and the extremal property of Ln−k ,
there exists a constant C3 such that

‖Qn‖p

S �‖Q(k)
n wk‖p

Lp(R) �C3 ‖Q(k)
n v�,�+	‖p

Lp(R) �C3

(
n!

(n − k)!
)p

‖Ln−k v�,�+	‖p

Lp(R).

Lemma 2.5 and these inequalities imply

lim inf
n→∞

‖Qn‖1/n

S

n1/�
� lim inf

n→∞
‖Q(k)

n wk‖1/n

Lp(R)

n1/�
� 1

2

(
��

e(� + 	)

)1/�

.

Since 	 > 0 is arbitrary,

lim inf
n→∞

‖Qn‖1/n

S

n1/�
� lim inf

n→∞
‖Q(k)

n wk‖1/n

Lp(R)

n1/�
� 1

2

( ��

e �

)1/�
. (25)

From (24) and (25), we obtain (4) and

lim
n→∞

‖Q(k)
n wk‖1/n

Lp(R)

n1/�
= 1

2

( ��

e �

)1/�
.
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On the other hand (see the sentence before Theorem VI.6.1 in [16]),

lim
n→∞

⎛⎝ ‖Q(k)
n wk‖Lp(R)

‖Q(k)
n v�,�‖Lp(R)

⎞⎠1/n

= 1.

Therefore,

lim
n→∞

‖Q(k)
n v�,�‖1/n

Lp(R)

n1/�
= 1

2

( ��

e �

)1/�
,

and using the Nikolskii type inequalities once more, we obtain (5) for j = k. For j �k

lim sup
n→∞

‖Q(j)
n v�,�‖1/n

L∞(R)

n1/�
� 1

2

( ��

e �

)1/�
(26)

follows on account of the Markov type inequalities. Let Sn−j be such that Ŝn−j (�, �; ·) =
(n−j)!

n! Q
(j)
n . From (19),

(n − j)!
n! ‖Q(j)

n v�,�‖L∞(R) =
(

(n − j)��

�

)(n−j)/�

‖Sn−j v̂
n−j

� ‖L∞(R). (27)

By (8),

lim inf
n→∞ ‖Sn−j v̂

n−j

� ‖1/n

L∞(R) �
1

2e1/�
. (28)

Taking nth root in (27) and dividing by n1/�, we obtain the lower bound which allows to conclude
the proof of (5). �

Corollary 3.1. Let {xn,1, xn,2, . . . , xn,n} be the set of zeros of Q
(j)
n+j and denote

Zn,k = {zn,i}ni=1, zn,i :=
(

�

n ��

)1/�

xn,i

the set of contracted zeros. Let

uk(t) := �

�

∫ 1

|t |
x�−1

√
x2 − t2

dx, t ∈ [−1, 1],

be the Ullman distribution associated with the index k. Let Sn,j be such that Ŝn,j (�, �, ; ·) =
n!

(n+j)!Q
(j)
n+j . For each j �k

∗ lim
n→∞ �n(Sn,j ) = uk(t) dt. (29)

Moreover, if z is not a limit point of the zeros of the Sn,j ’s, n ∈ Z+, then

lim
n→∞ |Sn,j (z)|1/n = 1

2e1/�

∣∣∣z +
√

z2 − 1
∣∣∣ e
�(z), (30)

where 
�(z) = Re

[∫ 1
0

zt�−1√
z2−t2

dt

]
.
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Proof. At the end of the proof of Theorem 1.1 we actually proved that for each j �k, the se-
quence of polynomials {Sn,j }, n�j, is asymptotically extremal with respect to the weight v̂� (see
(26)–(28)). From Lemmas 2.4 and 2.6, we conclude that (29) and (30) take place. �

Corollary 3.2. Let us assume that p = 2 and the weights wk ∈ W(�k, �k) defining the norm
(3) satisfy wk/wk−1 ∈ L∞(R), 1�k�m. Let Sn,j be such that Ŝn,j (�, �, ; ·) = n!

(n+j)!Q
(j)
n+j . For

each j �0

∗ lim
n→∞ �n(Sn,j ) = u0(t) dt. (31)

Moreover, for each j �0,

lim
n→∞ |Sn,j (z)|1/n = 1

2e1/�
|z +

√
z2 − 1| e
�0

(z)
. (32)

Proof. The condition on the ratio of the weights implies that k = 0 and (29) is true for all j �0.
On the other hand, it implies that the zeros of Qn lie in the band {z : |
(z)|�C} where C is a
constant that does not depend on n. This was proved in [3, Theorem1.1]. Since the zeros of Q

(j)
n

for all j �0 are in the convex hull of the set of zeros of Qn, it follows that for all j �0 the zeros of
Q

(j)
n+j lie in {z : |
(z)|�C}. Therefore, the contracted zeros may only have accumulation points

on the real line. Whence, using (16), (29) implies the stronger version (32) of (30). �

4. Sobolev inner product with weight in class W(�)

In this section we use the norm (3) but now the m + 1 functions {w0(x), . . . , wm(x)} satisfy
wk ∈ W(�k), �k > 0, k = 0, 1, . . . , m. Let q be a monic polynomial of degree n. We denote

q̃(�; x) := (n ��)
n/� q((n ��)

−1/� x).

Set v�(x) = e−|x|� . Notice that the linear substitution x = (n ��)
1/� t yields

v�(x) = e−|x|� =
(
e−��|t |�

)n = v̂n
�(t).

The constants k̃ and �̃ were defined in section 1. Using Lemma 3.1 with �k = 1, k = 0, . . . , m,
there exists a constant C such that for all k, 0�k�m,

v�k
(x) � Cṽ�(x), x ∈ R, (33)

‖q v�k
‖Lp(R) � C‖q ṽ�‖Lp(R), (34)

‖q̃(�; ·) v�‖2
L∞(R) = (n ��)

n/�‖q v̂n
�‖L∞(R), q(x) = xn + · · · . (35)

Proof of Theorem 1.2. If w ∈ W(�), it is easy to see that for each 	 (� > 	 > 0) there is a
constant C̃	 such that

C̃−1
	 v�+	(x)�w(x)�C̃	 v�−	(x) , v�(x) = e−|x|� , x ∈ R. (36)
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By the extremal property of Qn for the given norm and the right-hand side inequality of (36),
we have that for each 	, �̃ > 	 > 0, there exists a constant C1, such that for any monic polynomial
Q, deg(Q) = n,

‖Qn‖p

S �‖Q‖p

S =
m∑

k=0

‖Q(k) wk‖p

Lp(R) �C1

m∑
k=0

‖Q(k) v�k−	‖p

Lp(R).

Using the Markov type inequalities, (33), and the Nikolskii type inequalities, it follows that there
exist constants M̃n, limn→∞ M̃

1/n
n = 1, such that

m∑
k=0

‖Q(k) v�k−	‖p

Lp(R) �M̃n‖Q ṽ�−	‖p

L∞(R) .

Let Tn be the Chebychev polynomial of degree n with respect to v̂n
�̃−	. Take Q = T̃n(̃� − 	; ·). By

(35) and the previous bounds

‖Qn‖p

S �C1M̃n (n �̃�−	)
pn/(̃�−	)‖Tn v̂n

�̃−	‖p

L∞(R).

Therefore,

log ‖Qn‖S

n log n
� log(C1M̃n)

1/p

n log n
+ ‖Tn v̂n

�̃−	‖L∞(R)

n log n
+ 1

�̃ − 	

log(n �̃�−	)

log n
.

Hence, from Lemma 2.3, we obtain

lim sup
n→∞

log ‖Qn‖1/(n log n)

S � 1

�̃ − 	
.

Making 	 tend to zero, we conclude that

lim sup
n→∞

‖Qn‖1/(n log n)

S �e1/̃�. (37)

From (3), the left-hand side inequality of (36), and the extremal property of monic extremal
polynomials, we have that for every 	 > 0 there exists a constant C2 such that

‖Qn‖p

S �‖Q(̃k)
n wk̃‖p

Lp(R) �C2 ‖Q(̃k)
n ṽ�+	‖p

Lp(R) �C2

(
n!

(n − k̃)!
)p

‖Ln−k̃ ṽ�+	‖p

Lp(R),

where Ln−k̃ is the monic extremal polynomial of degree n − k̃ in the Lp(R) norm with respect
to ṽ�+	. Using Lemma 2.5 and the previous inequalities, it follows that

lim inf
n→∞

‖Qn‖1/n

S

n1/(̃�+	) � 1

2

( �̃�+	

e

)1/(̃�+	)
. (38)

Let �, 0 < � < 1
2

(
�̃�+	
e

)1/(̃�+	)
, be arbitrary. From (38), for all n�n0 we have

‖Qn‖1/n

S

n1/(̃�+	) � 1

2

( �̃�+	

e

)1/(̃�+	) − �.
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Taking logarithm on both sides, dividing by log n, and taking limit as n tends to ∞ we get

lim inf
n→∞

log ‖Qn‖S

n log n
� 1

�̃ + 	
.

Letting 	 tend to zero, we conclude that

lim inf
n→∞ ‖Qn‖1/(n log n)

S �e1/(̃�+	)

which together with (37 ) implies (7). �
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