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Abstract

This paper is concerned with the interactions of persistence and dimensionality in the context of
the eigenvalue estimation problem of large covariance matrices arising in cointegration and principal
component analysis. Following a review of the early and more recent developments in this area we
investigate the behaviour of these eigenvalues in a VAR setting that blends pure unit root, local
to unit root and mildly integrated components. Our results highlight the seriousness of spurious
relationships that may arise in such Big Data environments even when the degree of persistence of
variables involved is mild and is affecting only a small proportion of a large data matrix with important
implications for forecasts based on principal component regressions and related methods. We argue
that first differencing prior to principal component analysis may be suitable even in stationary or
nearly-stationary environments.

Keywords: Spurious cointegration, spurious factors, persistence, high dimensional covariances, principal
components.
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1. Introduction

The advent of Big Data through the increasing availability of data collection methods and new data

types resulting from novel interactions between economic agents has had and continues to have a profound

impact on conventional econometric methodologies. In such environments the classical framework of a

fixed number of variables p and a large number of observations n is no longer suitable for making best use

of massive quantities of information and for accurately disentangling meaningful patterns from noise. Over

the past twenty years, this has led to a vast body of research broadly referred to as High Dimensional

Statistics and Machine Learning methods that seek to develop novel estimation and forecasting techniques

or adapt existing methods to environments where p ∼ n, p � n and more generically p = p(n) → ∞.

Important methods that seek to adapt to large p environments include high dimensional covariance

estimation techniques via shrinkage and thresholding methods, principal component regressions, regression

trees, random forests, penalised estimation to just name a few (see Hastie, Tibshirani and Friedman

(2009), Bühlmann and Van de Geer (2011), Koch (2014) amongst others).

A notable feature of these developments has been their emphasis on prediction rather than on

explanation and the rather limited attention that has been paid to the influence of variables’ time series

characteristics such as their degree of persistence on the properties and reliability of these methods. It is

well known for instance that independent but highly persistent, unit-root or local to unit-root processes

tend to display spurious correlations and one may then speculate that these may be further amplified

in high dimensional environments. Similarly, the phenomenon of cointegration which has traditionally

been viewed as a dimensionality reduction technique and a convenient way of addressing the spurious

regression problem may in turn spuriously manifest itself in large p settings.

As recognised in Granger (1998) when Big Data concepts were still in their infancy, the move from

classical fixed p/large or moderate n statistics to Big Data environments raises three important questions:

(i) which of our commonly used standard procedures should be discarded (e.g. tests of statistical significance,

small sample adjustments, simulation based methods such as the jacknife and bootstrap), (ii) which new

techniques need to be developed (e.g. for the analysis of mega-panels) and (iii) whether some existing

procedures are expected to perform better in such settings (e.g. conventional asymptotic approximations).

A casual overview of the recent High Dimensional Statistics literature suggests that these insights very

much materialised in the form of buoyant research agendas encompassing all three of the above questions

(see for instance Johnstone and Titterington (2009), Varian (2014), Carrasco, Chernozhukov, Goncalves

and Renault (2015), Mullainathan and Spiess (2017), Ng (2017) and references therein). At the same

time the proliferation of time-series variables being used within many of these Big Data techniques raises

the additional question of whether the persistent nature of these data may amplify spurious outcomes in

high dimensional environments (e.g. findings of spurious relationships and correlations). We view this as

an important concern to have when evaluating the properties of these new methods or when adapting
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existing methods to high dimensional settings.

In the area of forecasting with Big Data for instance principal components have become an important

tool for condensing information from hundreds of time series into one or two dominant linear combinations

which are then used as predictors within predictive regressions (e.g. diffusion index based forecasting

via principal component regressions). How reliable are these principal components in summarising the

underlying data when the latter consist of many persistent time series? How persistent should a group of

time series be for persistence to become an important concern when extracting principal components?

The issue also bears strong resemblance with the literature on cointegrating regressions since cointegration

itself may be viewed as a dimensionality reduction device in inherently persistent systems as illustrated by

Gonzalo and Granger (1995)’s common factor representation of a cointegrated system.

Whether one wishes to condense a large data set into few dominant components as in principal

component analysis or explain a large system of persistent components with a smaller number of common

factors as in cointegration analysis, the essential tools for achieving such objectives rely on the information

provided by the eigenvalues of sample covariance matrices. Understanding how these eigenvalues behave

in high dimensional environments with persistence is therefore key to understanding the nature of the

distortions that may arise is such settings.

The main objective of this paper is to investigate the behaviour of eigenvalues of sample covariance

matrices obtained from a simple vector autoregressive system that combines high dimensionality with

persistence. We introduce a series of new analytical results that illustrate the potentially serious distortions

practitioners may face when techniques relying on principal components and related methods are applied to

high dimensional environments characterised by persistence even when this persistence is reasonably mild

(e.g. findings of spurious factors, spurious cointegration, spurious predictability). An important message

also conveyed by our analysis is that growingly popular techniques commonly labelled as machine learning

methods need to be analysed through the lens of uncorrelated persistent data prior to recommending their

use in a time series modelling context.

The plan of the paper is as follows. Section 2 reviews early and more recent developments on the

influence of dimensionality in systems characterised by the presence of persistence and cointegration,

starting from our early work in Gonzalo and Pitarakis (1995,1999) and followed by the more recent

contributions in Onatski and Wang (2018a, 2018b, 2019). Section 3 develops our main results on the

large sample behaviour of sample eigenvalues obtained from high dimensional persistent systems with

and without cointegration. These are in turn illustrated through a broad range of simulation experiments

documenting empirically the importance of the spuriousness phenomenon. Section 4 concludes. All proofs

are relegated to the appendix.
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2. Dimensionality induced spuriousness in cointegration analysis

The growth of the unit-root and cointegration literature since the early 80s has placed VAR and VECM

based modelling environments at the heart of empirical research involving time series data, spanning

areas such as impulse response analysis, forecasting, structural macro modelling, forecast error variance

decompositions amongst others. The Granger representation theorem ensuring that systems of cointegrated

variables admit a VECM representation also highlighted the dangers of misspecifying the cointegration

properties of a system with potentially severe implications for the above types of analyses (e.g. using

first differenced cointegrated VARs with omitted error correction components). This has prompted a

rich research agenda on testing for cointegration with Johansen’s VAR based framework emerging as the

workhorse model for conducting such inferences (Johansen (1988, 1991)).

Although in their early days these VAR/VECM models were mainly specified using a small number of

variables due to degrees of freedom concerns or the nature of questions being investigated (e.g. Blanchard

and Quah (1989)’s bivariate structural VAR, Gali (1992)’s four dimensional cointegrated VAR; King,

Plosser, Stock and Watson (1991)’s cointegrated trivariate VAR) the important economic implications

of detecting the presence of common trends also led to numerous empirical applications implementing

these conventional methods in higher dimensional VARs with limited concern for the potential distortions

that may arise in such settings (e.g. Baillie and Bollerslev (1989), Kasa (1992), Diebold, Gardeazabal and

Yilmaz (1994) amongst numerous others).

These considerations have motivated our own work on dimensionality effects within cointegrated

I(1) systems in the early to mid 90s. Our main concerns and agenda at the time were geared towards

diagnosing the nature of the distortions that may be affecting traditional inferences implemented on large

dimensional VARs/VECMs (Gonzalo and Pitarakis (1995, 1999)) and in particular highlighting the fact

that dimensionality induced distortions go well beyond simple complications caused by limited degrees

of freedom and the importance of considering asymptotic approximations that explicitly allow both the

system dimension and sample size to grow.

Consider the following simple p-dimensional system of I(1) variables formulated in a VECM form

∆Xt = ΠXt−1 + ut (1)

where the reduced rank nature of the long run impact matrix Π, say Π = αp×rβ
′
r×p conveys the relevant

information about the cointegration properties of the system and the fact that the components of Xt share

(p− r) common trends and with Π = 0 under r = 0. A likelihood ratio based testing approach of the null

hypothesis that Rank(Π) = r can then be formulated in terms of the canonical correlations between ∆Xt

and Xt−1. More specifically, letting S11 =
∑
Xt−1X

′
t−1 S00 =

∑
∆Xt∆X ′t and S10 =

∑
Xt−1∆X ′t,

Johansen’s LR based test statistic (Johansen (1988, 1991)) is formulated as LRn = −n
∑p
i=r+1 ln(1− λ̂i)
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with the λ̂′is denoting the ordered eigenvalues of S−1
11 S10S

−1
00 S01. An important question we were concerned

with in Gonzalo and Pitarakis (1995, 1999) was about the adequacy of the commonly used asymptotic

distribution of this LRn statistic in high dimensional settings and the question of how fast could p be

allowed to grow with n for the conventional asymptotics to continue to be reliable in the sense of the LRn
statistic not displaying excessive size distortions. We approached the problem by evaluating the behaviour

of the asymptotic mean of the LRn statistics’ distribution, establishing that

E[LRn] ≈ p(2p− 1) + p2(2p− 1)
n− p

(2)

with the second term in the right hand side of (2) highlighting the severe degree of mis-centeredness that

will characterise LR′ns distribution in high dimensional settings even under large sample sizes, unless

one restricts the rate of increase of p relative to the sample size n (e.g. p3/n→ 0). This dimensionality

induced rightward shift of LR′ns distribution translates into excessive size distortions when inferences

are based on conventional asymptotic critical values (fixed p/large n) resulting in a phenomenon we

coined as spurious cointegration. This has also led us to argue that alternative functionals of the λ̂′is may

alleviate these dimensionality induced distortions through a milder tendency to propagate the upward

biases in the λ̂′is while maintaining the same limiting distribution as the LRn statistic (note that in the

vicinity of zero we have − ln(1 − λi) ≈ λi + λ2
i /2 + λ3

i /3 + O(λi)4). We considered two such statistics.

A Pillai-Bartlett type functional given by PBn = n
∑p
i=r+1 λ̂i and a novel linear combination statistic

given by (LRn + PBn)/n ≡ LCn and shown to be substantially more robust to dimensionality induced

distortions (see Figure 1 in Gonzalo and Pitarakis (1999, p. 217)) maintaining a seemingly perfect size

behaviour in large p/small n VAR settings.

Although a lot of these early results were established heuristically through a combination of theoretical

and simulation based approaches their relevance has become particularly topical in Big Data time series

environments where spuriousness is and needs to be viewed as a major concern. In a series of recent papers

Onatski and Wang (2018a, 2018b, 2019) developed a rigorous theoretical analysis of the interactions

between cointegration and dimensionality using formal random matrix theory methods, corroborating

many of our early conjectures. Operating within an (n, p)→∞ setting combined with a Marchenko-Pastur

type of regime whereby p/n → γ ∈ (0, 1] and assuming r/p → 0 the authors obtained the remarkable

result that the empirical distribution function (EDF) Fn,p(λ) =
∑p
i=1 I(λ̂i ≤ λ)/p of the λ̂′is converges to

a deterministic limit known as Wachter’s distribution with its parameters depending on the magnitude of

γ (see Wachter (1978, 1980)).

Wachter’s distribution was originally obtained in the context of the roots of determinental equations

of the type |S1 − λ̂S2|= 0 for two given covariance matrices S1 and S2. Noting that these roots are

the eigenvalues of S−1
2 S1 the setting can be seen to be analogous to the canonical correlation based

framework for testing for cointegration. Taking S1 as the residual covariance matrix of (1), say S1 ≡ Ω̂u,
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and S2 ≡ S00 for instance it is straightforward to establish that the eigenvalues of S−1
11 S10S

−1
00 S01 are the

same as the eigenvalues of Ip − S−1
00 Ω̂u (see Gonzalo and Pitarakis (1995)). What is then particularly

interesting and powerful about the result in Onatski and Wang (2019) is that this early Wachter limit

obtained under a stationary Gaussian IID setting continues to hold within nonstationary VARs and in

particular in a context where Xt and ∆Xt are not independent. In hindsight, our observation about the

connection between the eigenvalues of S−1
11 S10S

−1
00 S01 and Ip − S−1

00 Ω̂u helps highlight the intuition that

under the null hypothesis that Π = 0 the matrices S00 and Ω̂u will consist solely of components on which

standard laws of large numbers apply.

This result about the Wachter limit of the eigenvalues arising in cointegration testing subsequently

allowed the authors to formally establish the mis-centering phenomenon characterising the LRn statistic

under a fixed p setting with the distribution of LRn/p2 shown to concentrate in the vicinity of 2 under

n→∞. Exploring the upper boundaries of the Wachter distribution across alternative magnitudes of γ

provides a clear rationale for the excessive size distortions characterising the LRn statistic when operating

in a high dimensional setting while relying on fixed p asymptotics (e.g. under γ = 1/5 the largest canonical

correlation under no cointegration (r = 0) will exceed 0.7 and under γ = 1/2 it is expected to lie in the

vicinity of unity when in fact it should be zero in the population). These results also offer a clear rationale

for the improved performance of the linear combination statistic LCn introduced in Gonzalo and Pitarakis

(1995, 1999) as PBn and LRn’s distortions in the high-dimensional regime are shown to move in opposite

directions in a symmetric manner.

Although the above results have been obtained within simple VAR settings the messages they convey

go well beyond the confines of toy models and cointegration/unit-root based analyses. The tendency for

spurious relationships to be further amplified in high dimensional environments combined with unit root

type of extreme persistence will almost certainly result in false discoveries of high correlation and spurious

predictability across most popular regularisation and prediction algorithms commonly used in the machine

learning literature.

In what follows we aim to focus on one such regularisation and dimensionality reduction method

that has been particularly popular in the area of economic forecasting involving big data sets, namely

principal component analysis and principal component regressions. These have given rise to a rich

agenda on diffusion index type indicator building for business cycle analysis such as the Chicago Fed’s

National Activity Index (see also Stock and Watson (1999)), forecasting (Stock and Watson (1989, 2002)),

time-series modelling with factor augmented VARs and VECMs (Stock and Watson (2005), Gao and Tsay

(2019) amongst others).

Principal component analysis essentially aims to condense the variance structure of a large number

of variables into a smaller set of their linear combinations (PCs) that preserve as much information as

possible from the original data set, in the sense of capturing a large proportion of its variance. These

(potentially small) number of PCs can in turn be used as stand-alone variables proxying the underlying
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high-dimensional data (e.g. via predictive principal component regressions that use these PCs as predictors

themselves). Naturally the key issue that arises in such contexts is the reliable detection and estimation

of this small number of PCs that are able to capture a large proportion of the variance of the original

data in a non-spurious manner. Given the close link between PCA and the eigenvalues and eigenvectors

of the data covariance matrix our analysis also provides important insights on the interactions between

persistence, cointegration and high dimensionality.

3. Dimensionality induced spuriousness under strong and mild persistence in
principal component analysis

This section aims to formalise the relationship between persistence and dimensionality through the

lens of covariance matrix behaviour and associated principal components. Operating within a series

of toy models commonly encountered in the time-series literature and designed to be flexible enough

to capture high persistence, pure unit-root behaviour, near stationarity and cointegration we explore

the limiting behaviour of key eigenvalues of covariance matrices formed on data generated from these

models. These are in turn used to investigate the joint impact of dimensionality and persistence on the

principal component analysis of this data. Our analysis is conducted within a high dimensional setting

with p = p(n)→∞

3.1. A High Dimensional Environment with Persistence

We consider an environment where the p dimensional random vector of interest Xt is modelled as

Xt =
(
Ip −

Cp
nα

)
Xt−1 + ut t = 1, . . . , n (3)

where Cp = diag(c, . . . , c) for c ≥ 0, α ∈ [0, 1] and ut is the p-dimensional random disturbance vector.

The system in (3) specialises to p random walks when c = 0 while under c > 0 and α = 1 its components

are said to be nearly integrated. The parameter α controls the speed at which the random walk boundary

is approached and helps add an additional layer of fine-tuning to the persistence properties of the system.

The case associated with α = 1 is commonly referred to as a local to unit root (LUR) model while lower

magnitudes of α turn the components of Xt into nearly stationary or stationary processes where it is

understood that |1 − c|< 1 under α = 0 and c > 0. Throughout this paper we also operate under the

assumption of zero initial conditions, setting X0 = 0.

We next let Xn×p denote the n× p data matrix formed from the components of Xt. Each one of its p
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columns consists of the observation vectors xi = (xi1, . . . , xin)′ for i = 1, . . . , p. More specifically, we have

Xn×p = (x1, . . . ,xp) =



x11 x21 x31 . . . xp1

x12 x22 x32 . . . xp2

x13 x23 x33 . . . xp3
...

...
...

...
...

x1n x2n x3n . . . xpn


(4)

and we also specify the random disturbance matrix Un×p analogously, with its columns consisting of the

disturbance vectors ui = (ui1, . . . ,uin)′ with i = 1, . . . , p.

It is now convenient to reformulate (3) in the following matrix form

Rn(c, α) X = U (5)

where the non-random n× n matrix Rn(c, α) takes the bi-diagonal form

Rn(c, α) =



1 0 0 . . . 0 0

−ρn(c, α) 1 0 . . . 0 0

0 −ρn(c, α) 1 . . . 0 0
...

...
...

...
...

0 0 0
... −ρn(c, α) 1


(6)

with ρn(c, α) = 1− c/nα.

Letting Hn = In − n−1
11
′ denote the n × n centering matrix and XH = HnX the corresponding

centered data matrix we can now formulate the centered covariance matrix in outer product form as

Sn = 1
p
XHX

′
H . (7)

Note that XHX
′
H shares the same non-zero eigenvalues as X ′HXH which are also closely linked to the

cointegration properties of the multivariate system. As Sn is expressed in outer product form, under

p > n for instance its eigenvalues will be the same as the nonzero eigenvalues of its inner product based

counterpart. Similarly, under p < n its (n− p) non-zero eigenvalues will also be the same as those of its

inner product counterpart. Naturally, for n = p the inner and outer product forms will have the same

eigenvalues.

Although the econometrics literature traditionally refers to Sn as the covariance matrix of X, its
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uncentered counterpart, say Sucn

Sucn = 1
p
XX ′ (8)

is often the main object of interest in the machine learning literature as well as the vast literature on

the spectral properties of covariances. As we discuss in greater detail below there are subtle differences

between these two constructions, in particular when ρn(c, α) falls in the vicinity of unity and therefore

when relevant we will be explicitly distinguishing between the properties of Sn and the properties of Sucn .

Using (5) we can now write XH = HnRn(c, α)−1U so that

Sn = 1
p
HnRn(c, α)−1UU ′(Rn(c, α)−1)′Hn (9)

and

Sucn = 1
p
Rn(c, α)−1UU ′(Rn(c, α)−1)′ (10)

and we also let λ̂k and λ̂uck denote the kth largest eigenvalues of Sn and Sucn respectively.

In what follows we aim to explore the behaviour of the eigenvalues of Sn and Sucn in a high-dimensional

setting allowing the system dimension p to grow with n. These will inform our understanding of how

dimensionality and persistence interact, potentially leading to spurious relationships in the form of spurious

principal components and spurious cointegrating relationships. More importantly, a specific objective of

our analysis is to quantify the degree of persistence of the components included in X beyond which spuri-

ousness becomes a major concern. Throughout this paper we operate under the following set of assumptions.

ASSUMPTION A: (i) p = p(n)→∞ as n→∞; (ii) ut ∼ IID(0, Ip) with E[u4
it] <∞ for i = 1, . . . , p and

t = 1, . . . , n; (iii) For a non-random n× n symmetric matrix AnA
′
n whose eigenvalues are of order nδ and

a continuous function ψ(.) it holds that n−δ|ψ(An(UU ′/p)An)− ψ(AnA
′
n)| p→ 0.

Part (iii) of Assumption A is a high level assumption that is a law of large number type of statement for

particular functionals of the random disturbance matrix Un (e.g. eigenvalues). It essentially implies that

the two matrices share the same limiting spectral distributions so that the eigenvalues of Sn or Sucn can

be analysed via the limiting spectral distribution of AnA
′
n. Upon imposing further primitive conditions

on the spectrum of An it can in fact be shown that part (iii) of Assumption A follows directly from part

(ii) and suitable restrictions on the way p and n interact (see Bai and Silverstein (2010, Chapter 3)).

We are now in a position to state our main results about the behaviour of the eigenvalues and trace of

the covariance matrices of interest. As the distinction between (7) and (8) becomes relevant for ρn(c, α)

in the vicinity of unity only, we will be considering these two cases separately solely for such scenarios

9



while focusing solely on Sn when operating in purely stationary settings.

An important quantity whose behaviour we are particularly interested in exploring is given by

λ̂k/
∑
k=1 λ̂k ≡ λ̂k/Tr(Sn) which estimates the proportion of the total variance captured by the kth

principal component (PCk therefater) of XH . This ratio is a fundamental quantity that is omnipresent

in the analysis of high dimensional data as it is used to signal how many PCs would be sufficient to

proxy for the underlying higher dimensional data. Within an environment of completely independent

components we naturally expect this ratio to be negligible while a sufficiently large magnitude for the first

few k′s would indicate that a small set of PCs will be sufficient to capture most of the information of

the underlying high dimensional data. Note that in the context of the uncentered covariance the same

ratio denoted as λ̂uck /
∑
k=1 λ̂

uc
k is equally relevant although strictly speaking it would not be referred to as

capturing variance proportions but uncentered second moments instead. Nevertheless in what follows we

use the same terminology to refer to these two ratios.

Propositions 1 and 2 below treat the case where the components of X are local to unit root processes,

an environment we refer to as highly persistent. Proposition 1 focuses on the behaviour of the eigenvalues

of the uncentered matrix Sucn while Proposition 2 deals with the centered scenario associated with Sn. As

we discuss extensively in the appendix, the limiting behaviour of these sample eigenvalues is determined

by the eigenvalues of special structured matrices which although analytically tractable do not always lend

themselves to closed form solutions for any magnitude of ρn(c, α). These however can be approximated

highly accurately through suitable asymptotic expansions and hence our notation below where we use

the symbol ∼ to emphasise the fact that the quantities in the right hand side of (12) and (14) are

approximations for λuck and vuck in (11) and (13).

PROPOSITION 1 (Uncentered Covariance): Under Assumption A, for given k and ρn(c, α) = 1− c/n

with c > 0 we have

λ̂uck
n2

p→ λuck (11)

where

λuck ∼ −1 + 2c+ e−2c

2c tanh(c)

(
1

c2 + (k − 1
2)2π2

)
≡ λuc∗k (12)

and

λ̂uck∑n
k=1 λ̂

uc
k

p→ vuck (13)
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where

vuck ∼ 2c
tanh(c)

(
1

c2 + (k − 1
2)2π2

)
≡ vuc∗k. (14)

The key result in (14) provides interesting insights on how the interaction of persistence and dimension-

ality leads to spurious relationships. Note for instance that under c = 1 and k = 1 we have vuc∗1 = 75.7%

highlighting a substantial proportion of variation captured by the first eigenvalue when in fact the data

consist of independent processes. More importantly this spuriousness can also be seen to remain significant

even for large magnitudes of c. Under c = 10 for instance we have vuc∗1 = 19.5% and vuc∗2 = 16.4% so that

the first two eigenvalues spuriously capture 35.9% of the corresponding trace.

It is now also interesting to assess the behaviour of (12) and (14) as c → 0. It is indeed a simple

algebraic exercise to establish that

lim
c→0

λuc∗k = 4
(2k − 1)2π2 (15)

and

lim
c→0

vuc∗k = 8
(2k − 1)2π2 . (16)

The above two quantities are in fact the exact (as opposed to the approximations in (12) and (14)) limiting

outcomes for (11) and (13) as the pure unit root scenario lends itself to tractable closed forms as discussed

in the appendix. The quantity in (15) is well known in the literature as it corresponds to the eigenvalues

that appear in the Karhunen-Loève representation of a Brownian Motion. The expression in (16) is also

particularly interesting as it provides an exact formulation for the proportion of “variance” captured by

each eigenvalue. It highlights the fact that spuriousness peaks at the exact unit root boundary with 81.1%

(= 8/π2) of the trace (spuriously) captured by the first eigenvalue.

We next concentrate on the case of the centered covariance matrix with our results summarised in

Proposition 2 below.

PROPOSITION 2 (Centered Covariance): Under Assumption A, for given k and ρn(c, α) = 1− c/n

with c > 0 we have

λ̂k
n2

p→ λk (17)
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where

λk ∼ 6 + 2c2 + 2e−2c − 8e−c + c(−5 + e−2c)
2c(−1 + c coth(c))

( 1
c2 + k2π2

)
≡ λ∗k (18)

and

λ̂k∑n
k=1 λ̂k

p→ vk (19)

where

vk ∼ 2c2

(−1 + c coth(c))

( 1
c2 + k2π2

)
≡ v∗k. (20)

Within this centered setting, the quantity in (20) corresponds to the proportion of variance captured by

the kth principal component and in line with the uncentered case we note the substantial spuriousness

that is caused by the presence of persistent components in X. Under c = 1 for instance we can note that

the first principal component will capture close to 60% of the total variance when in fact the system is

composed of independent local to unit-root processes. Under c = 10 the first two principal components

will (spuriously) capture v∗1 + v∗2 = 36.1%, a substantial proportion despite being away from the unit-root

boundary. This also highlights the important point and key motivation of this paper that the spuriousness

induced by the presence of persistent variables is not solely confined to highly persistent ones in the sense

that (20) can remain very large even for magnitudes of c well away from 0.

It is here useful to also highlight the behaviour of (18) and (20) when c→ 0. Indeed we have

lim
c→0

λ∗k = 1
k2π2 (21)

and

lim
c→0

v∗k = 6
k2π2 . (22)

The quantity in (21) can now be recognised as the set of eigenvalues that drive the Karhunen-Loève

representation of a Brownian Bridge which makes intuitive sense in this centered context if we recall the

following equality in law of a Brownian Bridge and a demeaned Brownin Motion

∫ 1

0
[W (r)−

∫ 1

0
W (s)ds]2dr law≡

∫ 1

0
[W (r)− rW (1)]2dr. (23)

The dimensionality/persistence induced spuriousness as illustrated by (20) can clearly be seen to be a

decreasing function of the non-centrality parameter c when k = 1 and peaks (for k = 1) under the pure unit
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root scenario c = 0. It is also useful to point out that (22) specialises our result to that obtained in Onatski

and Wang (2018) who pointed out the striking result that in a pure unit-root setting of independent

random walks the first PC spuriously captures more than 60% of the data variance (6/π2 ≈ 60.79%).

Here it is also important to mention that researchers from a variety of fields have been interested in

the behaviour of PCs in high dimensional random walk settings. Examples include the modelling of the

evolution of virus infections in biology (e.g. Moore, Ahmed and Antia (2018)), morphometric analyses of

organisms (e.g. Bookstein (2013)) amongst others. In Moore, Ahmed and Antia (2018) for instance the

authors also heuristically obtained the result that in a high dimensional pure random walk environment the

proportion of variance captured by each PC is given by 6/k2π2. Another important contribution in this

same area is Antognini and Sohl-Dickstein (2018) who explored similar issues in an environment motivated

by neural network training, also establishing the result that in a high dimensional asymptotic framework

the proportion of variance captured by the kth PC is given by 6/k2π2 when the data consist of random

walks. A particularly noteworthy contribution of Onatski and Wang (2018) however is their rigorous

linking of the eigenvalues of Sn with their deterministic equivalents via Stieltjes transform methods.

Our result in (20) highlights the fact that this spuriousness could continue to cause important distortions

even in non-random walk and more mildly integrated environments. This important point is illustrated in

Figure 1 below where we plot the proportion of variance captured by PC1 and PC2 across alternative

magnitudes of the near integration parameter c using our expression obtained in (20) for k = 1 and k = 2.

We note that even for reasonably large magnitudes of c the first and second PCs may appear to capture

close to 40% of the variance in the data.
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Figure 1: Proportion of variance captured by PC1 and PC2

Another novel and important observation that follows from our results in Proposition 2 is related

to the impact that persistence has on the higher PCks (e.g. k = 2 and above). It is indeed interesting

to observe that the proportion of variance spuriously captured by higher principal components may be

further amplified for magnitudes of c away from c = 0 rather than at c = 0. This is illustrated by the

bump at c = 4.8 in the plot of PC2 in Figure 1b and is a phenomenon that affects all PCs beyond k = 1.
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Under c = 0 the pure random walk based result in (21) indicates that the second PC will spuriously

capture 15.2% of the total variation whereas if c = 4.8 the same PC will spuriously capture 19.4% of the

total variation.

It is of course difficult to gauge what these asymptotic settings imply in terms of the specific magnitude

of the ρn(c, 1)’s beyond which we are likely to fall in a spuriousness trap. It is well known that many

economic and financial time series that conceptually cannot be modelled as pure unit root processes display

first order autocorrelations that often fall within the interval [0.90, 0.99]. Familiar examples that have

often been included in principal component analyses and diffusion index based forecasting studies include

stock market valuation ratios such as price-to-earnings and dividend yields, interest rates, unemployment

rates, inflation rates amongst others. Our Figures 1(a)-1(b) suggest that the first two PCs are likely to

indicate the presence of spurious factors even for larger magnitudes of c within this local to unit root

setting.

To gain more tangible insights on these distortions and to illustrate the validity of our results in

Propositions 1 and 2 under finite p and n we implement a series of Monte-Carlo experiments geared towards

empirically quantifying the impact of specific magnitudes of ρn(c, α) on the spuriousness phenomenon.

An important side objective of this exercise is to also assess whether first differencing the data helps

remove the spurious outcomes even when c 6= 0. In a first instance however our simulations are designed

to demonstrate the accuracy of our eigenvalue approximations in (12) and (18) across a broad range of

configurations for p, n and c.

Table 1 displays the Monte-Carlo means of the first and second sample eigenvalues for the un-

centered and centered covariances and compares them with our theoretical approximations in (12)

and (18) respectively. The DGP is given by (3) with ρn(c, α) = 1 − c/n. As our approximations in

(12) and (18) are valid for c > 0 we evaluate their accuracy for c ∈ {0.01, 5, 10, 20} across (n, p) ∈

{(150, 150), (500, 100), (100, 500), (50, 502)}.

The first and third columns of each panel labelled as Uncentered and Centered in Table 1 present the

Monte-Carlo means of the first and second eigenvalues while the second and fourth columns present

the corresponding theoretical approximations obtained using (12) and (18). We note highly accurate

matches between the two pairs of interest across all configurations. Under (n, p) = (150, 150) and c = 5

for instance the first suitably normalised sample eigenvalue led to a Monte-Carlo average of 0.032 which

can be compared with 0.033 obtained using our approximation in (12). Here it is also interesting to point

out the distinct behaviour of these eigenvalues depending on whether the data has been centered or not

(e.g. 0.400 versus 0.101 under c = 0.01 and (n, p) = (150, 150)). More importantly we note that the

centering plays an important role when ρn(c, 1) gets closer and closer to the unit root boundary while for

magnitudes nearer to the stationarity region the spreads become negligible.

We next explore in greater detail the interactions between dimensionality and persistence in order to
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Table 1: Monte-Carlo Means of Sample Eigenvalues and their Population Approximations

Uncentered Centered

λ̂uc1 /n
2 λuc1 λ̂uc2 /n

2 λuc2 λ̂1/n
2 λ1 λ̂2/n

2 λ2
(n, p) = (150, 150) (n, p) = (150, 150)

c = 0.01 0.400 0.403 0.045 0.045 0.101 0.101 0.025 0.025
c = 1 0.195 0.215 0.040 0.032 0.054 0.068 0.024 0.018
c = 5 0.032 0.033 0.019 0.019 0.019 0.022 0.012 0.012
c = 10 0.010 0.009 0.008 0.008 0.008 0.008 0.006 0.006
c = 20 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002

(n, p) = (500, 100) (n, p) = (500, 100)
c = 0.01 0.403 0.403 0.045 0.045 0.101 0.101 0.026 0.025
c = 1 0.197 0.215 0.040 0.032 0.055 0.068 0.024 0.018
c = 5 0.032 0.033 0.018 0.019 0.019 0.022 0.012 0.012
c = 10 0.010 0.009 0.008 0.008 0.008 0.008 0.006 0.006
c = 20 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002

(n, p) = (100, 500) (n, p) = (100, 500)
c = 0.01 0.399 0.403 0.045 0.045 0.101 0.101 0.025 0.025
c = 1 0.196 0.215 0.040 0.032 0.054 0.068 0.024 0.018
c = 5 0.032 0.033 0.019 0.019 0.019 0.022 0.012 0.012
c = 10 0.009 0.009 0.008 0.008 0.008 0.008 0.006 0.006
c = 20 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002

(n, p) = (500, 100) (n, p) = (500, 100)
c = 0.01 0.394 0.403 0.044 0.045 0.101 0.101 0.025 0.025
c = 1 0.196 0.215 0.040 0.032 0.054 0.068 0.024 0.018
c = 5 0.032 0.033 0.019 0.019 0.019 0.022 0.013 0.012
c = 10 0.009 0.009 0.008 0.008 0.008 0.008 0.006 0.006
c = 20 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002
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empirically gauge how far off the unit root boundary one may need to be for the spuriousness phenomenon

not to kick in. For the remainder of this analysis we concentrate solely on the centered covariance based

PCA so that λ̂k/
∑
k λ̂k can be interpreted as the proportion of variance captured by the kth principal

component. Results for this set of experiments are presented in Table 2 which displays the Monte-Carlo

means of λ̂1/
∑n
k=1 λ̂k across alternative (n, p) configurations and choices of c ∈ {0, 5, 10, 20, 40}. The

columns labelled X(PC1) and X(PC2) correspond to PCA on the raw centered data matrix XH and

the columns labelled ∆X(PC1) andd ∆X(PC2) repeat the same exercise on the first differenced data.

As the DGP consists of independent components we naturally expect the estimated proportion captured

by each PC to remain in the vicinity of zero.

The magnitudes displayed under X(PC1) and X(PC2) highlight the severity of the spuriousness

phenomenon even for relatively large magnitudes of the non-centrality parameter c. Under (n, p) =

(100, 500) and c = 5 and c = 10 for instance we note that the first two PCs spuriously capture 49% and

34% of the data variance respectively. Under (n, p) = (500, 100) and c = 5 the first two PCs capture

more than 50% of the total data variance. The empirical magnitudes of Table 2 can also be compared

with their theoretical asymptotic counterpart in (20). Under c = 0 and k = 1 for instance our estimated

variance proportions remained in the close vicinity of 60% across all configurations, closely matching the

theoretical value of 6/π2 ≈ 60.8 which can be obtained from (21). Under c = 10 and for k = {1, 2} our

estimates of 20.0% and 15.3% can be compared with their theoretical counterparts of 20.2% and 15.9%

(as implied from (20)). The outcomes presented in Table 2 also corroborate our earlier point about the

higher order PCs whose spuriousness feature may deteriorate when moving from the pure unit root setting

to an environment in the vicinity of unity. Note for instance the magnitude of 19.4% associated with

X(PC2) when c = 5 which can be compared with the 15.3% outcome in a pure unit root setting.

Table 2: Proportion of variance spuriously captured by PC1 and PC2 under high persistence

α = 1 X(PC1) X(PC2) ∆X(PC1) ∆X(PC2) X(PC1) X(PC2) ∆X(PC1) ∆X(PC2)
(n, p) = (150, 150) (n, p) = (500, 100)

c = 0 60.9 15.3 2.6 2.5 61.0 15.4 2.1 2.0
c = 5 30.2 19.4 2.8 2.6 30.7 19.6 2.1 2.0
c = 10 20.0 15.3 2.6 2.6 20.9 15.6 2.1 2.0
c = 20 11.5 9.8 2.7 2.7 12.6 10.5 2.1 2.0
c = 40 6.5 5.8 2.7 2.7 7.6 6.7 2.1 2.0

(n, p) = (100, 500) (n, p) = (50, 502)
c = 0 60.8 15.2 2.1 2.0 60.9 15.2 2.7 2.6
c = 5 29.6 19.4 2.1 2.0 29.1 19.3 2.7 2.7
c = 10 18.9 15.1 2.1 2.0 17.9 14.7 2.8 2.8
c = 20 10.0 9.0 2.2 2.1 8.6 8.1 3.1 3.0
c = 40 5.0 4.6 2.3 2.1 3.4 3.3 3.9 3.8

Another important message implied by the eigenvalue behaviour of the differenced data is that first

differencing eliminates the spuriousness phenomenon even for magnitudes of c that place ρn(c, 1) far

away from the unit-root boundary, essentially corresponding to some mild degree of over-differencing.
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From a practical standpoint this latter result suggests that when forecasting with principal component

regressions that use a small number of PCA based indices as predictors (e.g. diffusion index forecasting)

it may be wise to estimate such indices using first differences of persistent variables regardless of whether

these have unit-roots or not. This is expected to alleviate findings of spurious forecastability that may

arise from the use of such principal component based predictors whose importance is spuriously inflated.

The advantages of over-differencing nearly non-stationary predictors have also been documented in other

time-series contexts. Using series modelled as autoregressive processes, Sanchez and Pena (2001) for

instance established that overdifferencing nearly-stationary predictors typically leads to forecasts with

lower mean squared errors. The VAR based analysis in Marcet (2004) which explores the influence of

overdifferencing VARs for impulse response and related analyses also goes in this direction.

Finally, another important practical implication of our analysis is that empirical work involving PCA

should aim to eliminate these dimensionality induced biases through preliminary dimensionality reduction

stages with techniques such as group based PCA, sparse PCA, thresholding and related approaches (see

Zou, Hastie and Tibshirani (2006), Ma (2013) and references therein).

In light of our result in (20) it is also important to gauge more formally the relationship between

the degree of persistence of the components of X and the spuriousness they induce. Although the above

analysis explored alternative magnitudes of the non-centrality parameter c in order to highlight the impact

of alternative degrees of persistence, the components remained within the same local to unit root class

with α = 1. Here we adopt the parameterisation ρn(c, α) = 1− c/nα but require that α ∈ [0, 1) so that

the unit root boundary is now allowed to be approached more slowly, depending on the magnitude of α.

Smaller values of α are associated with larger neighbourhoods away from unity and such series are typically

labelled as mildly integrated or near stationary (see Magdalinos and Phillips (2007)). Note that, as we

wish to exclude explosive or negative unit root behaviour, this parameterisation implicitly restricts the

relationship between c and α so as to avoid such occurrences (e.g. 0 < c/nα < 2). The following Proposi-

tion establishes the limiting behaviour of the λ̂′ks and that of the trace of Sn in this mildly integrated setting.

PROPOSITION 3: Under Assumption A, for given k and α ∈ [0, 1) we have

λ̂k
n1+α

p→ 0 (24)

and ∣∣∣∣∣∣∣∣∣
Tr(Sn)
n1+α − 1

2c
(

1− c

2nα
)
∣∣∣∣∣∣∣∣∣
p→ 0. (25)
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It is here important to emphasise that the limiting results in (24)-(25) exclude the local to unity scenario

associated with α = 1. It is now particularly interesting to point out that the outcomes in (24)-(25)

smoothly bridge the purely stationary case of α = 0 and the mildly integrated cases associated with

α ∈ (0, 1). For α = 0 we can note for instance that the limit of 1/(2c− c2) is the familiar expression of

the variance of a stationary AR(1) process since ρ = 1− c. Note that this latter observation should not

be interpreted as implying that each individual (non-normalised) eigenvalue λ̂k converges to 1/(1− ρ2)

under α = 0. It is well known for instance that in high dimensional settings the maximum eigenvalues

of covariance matrices are subject to important asymptotic biases that depend on how p and n interact.

Our result in (24) refers to suitably normalised versions of these eigenvalues ensuring that they vanish

asymptotically while the same normalisation leads to bounded traces.

A useful implication of the results in Proposition 3 is that within this mildly integrated setting we will

have
λ̂k∑n
k=1 λ̂k

p→ 0 (26)

so that the dimensionality/persistence induced spuriousness problem vanishes asymptotically, as expected

within this factorless setting. Our analysis of the mildly integrated scenario is particularly useful for

highlighting the need to be quite far off the unit root boundary in order to avoid the spuriousness

phenomenon. If we take n = 500, c = 5 and α = 0.5 in ρn(c, α) = 1− c/nα for instance we can compare

the autocorrelation coefficient of (1− 5/
√

500) = 0.776 with the magnitude of 0.99 that would arise under

a standard local to unity setting having α = 1, (1− 5/500) = 0.990.

We next consider a set of simulation experiments to illustrate the finite sample behaviour of (26)

across alternative choices of α ∈ [0, 1). In order to highlight the behaviour of eigenvalues in an increasing

sample size/dimension setting we proceed as follows. For a given (n, p) combination we vary α ∈

{0.00, 0.25, 0.50, 0.75} and fine-tune the magnitude of c for each α in a way that guarantees the same

ρn(c, α) parameter across increasing (n, p) magnitudes. The first five columns of Table 3 detail these

alternative parameterisations while the remainder columns present the Monte-Carlo means of λ̂k/
∑
λ̂k

for k = 1, 2 (i.e. the first and second PCs variance capture proportion) using both the level and first

differenced data.

The outcomes presented under X(PC1) and X(PC2) corroborate our theoretical results in (24)-(25)

as we can observe a clear decline in the upward biases of eigenvalues as α declines towards zero and/or

(n, p) increase for given α. Under α = 0.50 and (n, p) = (100, 50) for instance we note that the first

two PCs spuriously capture a sizeable 37.9% of the variation which subsequently drops to 15.5% under

(n, p) = (500, 50) and to just 10.0% under (n, p) = (500, 250). For given (n, p) we also note the substantial

decrease in these spurious proportions as α approaches zero. The last two columns of Table 3 illustrate

the analogous outcomes when PCA is implemented on first differenced data with outcomes that are in

line with our analysis of Table 2. A key message that comes across the outcomes of Table 3 is that the
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Table 3: Proportion of variance spuriously captured by PC1 and PC2 under mild persistence

n p α c ρn(c, α) X(PC1) X(PC2) ∆X(PC1) ∆X(PC2)

100 50 0.00 1.00 0.000 5.60 5.10 6.80 6.10
100 50 0.25 1.00 0.684 10.10 8.60 5.80 5.30
100 50 0.50 1.00 0.900 22.10 15.80 5.60 5.20
100 50 0.75 1.00 0.968 37.00 20.80 5.60 5.20

500 50 0.00 1.00 0.000 3.40 3.20 3.80 3.60
500 50 0.25 1.50 0.684 4.70 4.40 3.50 3.30
500 50 0.50 2.24 0.900 8.30 7.20 3.40 3.30
500 50 0.75 3.34 0.968 16.90 13.10 3.40 3.20

500 250 0.00 1.00 0.000 1.10 1.10 1.40 1.40
500 250 0.25 1.50 0.684 2.20 2.10 1.20 1.10
500 250 0.50 2.24 0.900 5.20 4.80 1.20 1.10
500 250 0.75 3.34 0.968 13.80 11.60 1.20 1.10

dimensionality/persistence induced spuriousness problem is not necessarily confined to highly persistent,

pure unit-root or local to unit-root settings. Within factorless settings, having components with first order

autocorrelation coefficients in the vicinity of 0.9 or even below may continue to give the impression of

meaningful common factors when there are truly none.

3.2. A High dimensional environment with mixed degrees of persistence and cointegration

An important new question that arises from the above analysis is whether the system composition in

terms of the relative weights of persistent versus less persistent components in X affects the spuriousness

phenomenon and if it does towards which direction. This issue is particularly relevant for empirical

applications in economics where PCA is typically implemented on variables with potentially different

persistence characteristics and cointegration properties (e.g. the monthly database for Macroeconomic

Research known as FRED-MD commonly used in PCA applications and diffusion index construction (see

McCracken and Ng (2015)). An important question that arises in this context is whether the spuriousness

problem is alleviated if the system dimension is dominated by less persistent variables. Another related

issue from a practicioner’s point of view is whether first differencing such a mixed data set creates

an additional layer of distortions akin to the well known problems that arise when first differencing a

cointegrated VAR.

To address these questions we consider a mixed system that consists of variables whose dynamics

continue to be captured by (3) but with different parameterisations that blend pure unit-root, local to

unit-root (LUR) and stationary components in varying proportions relative to the full system dimension

p. It is here important to point out that such a setting can also specialise into a cointegrated system

that consists for instance of r cointegrating relationships and (p− r) common trends (e.g. random walk

components). Such a system has been investigated in Onatski and Wang (2018) where the authors showed
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that the spuriousness phenomenon and limiting result in continues to be present provided that r/p→ 0.

This can intuitively be explained by the fact that requiring r/p→ 0 essentially forces the I(1) components

of the system (i.e. (p − r)/p) to dominate. As it would typically be impractical to evaluate the joint

cointegration properties of hundreds of variables it is also important to assess whether first differencing

the entire data matrix X containing series of varying degrees of persistence in addition to pure random

walks results in any distortions akin to the well known mispecifications that arise in cointegrated VAR

models formulated in first differences.

To address these issues we now assume that the p dimensional vector Xt consists of p1 and p2

components, say X1t and X2t modelled as

X1t = Φ1nX1t−1 + u1t (27)

X2t = Φ2nX2t−1 + u2t, (28)

with Φ1n = ρn(c, α)Ip1 and Φ2n = Ip2 . The n× p data matrix X is now understood to concatenate the

n× p1 and n× p2 sub-data matrices X1 and X2 stacking the components of (27) and (28) in its columns.

We also write ut = (u1t,u2t)′ so that the n× p matrix of random disturbance terms U remains as in our

earlier analysis.

The system in (27)-(28) can now be conveniently reformulated in first differenced matrix form as

Rn(0, 0)X = Dn(c, α)ULp +UMp (29)

where

Dn(c, α) =



1 0 0 . . . 0 0 0

δ 1 0 . . . 0 0 0

δ(1 + δ) δ 1 . . . 0 0 0

δ(1 + δ)2 δ(1 + δ) δ . . . 0 0 0
...

...
...

...
...

δ(1 + δ)n−2 δ(1 + δ)n−3 δ(1 + δ)n−4 ... 0 δ 1


(30)

Mp =

 0p1×p1 0p1×p−p1

0p−p1×p1 Ip−p1×p−p1

 , (31)

Lp =

 Ip1×p1 0p1×p−p1

0p−p1×p1 0p−p1×p−p1

 (32)
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with δ = −c/nα. Note that Rn(0, 0) in (29) is a differencing matrix corresponding to (6) with c = 0

and α = 0. To arrive at the first component in the right hand side of (29) for instance it suffices to

combine ∆X1t = δIp1X1t−1 +u1t with the recursion X1t =
∑t
j=0(1 + δ)t−ju1j for t = 1, . . . , n. The lower

triangular matrix Dn(c, α) in (30) captures the dynamics of the nearly integrated, near stationary or

purely stationary components of (27) depending on the chosen magnitudes of α and c. Under α = 0 for

instance we have ρn(c, 0) = 1− c which is understood to satisfy |1− c|< 1 and corresponds to a scenario

where the first p1 variables of the data matrix X are purely stationary while the remaining p− p1 ≡ p2

are random walks. This scenario is analogous to a setting with r = p1 cointegrating relationships and

p− p1 ≡ p2 common trends. Under α = 1 the first p1 components are local to unit-root processes and

under α ∈ (0, 1) these p1 components are mildly integrated.

Using (29) we can now formulate the centered data matrix that concatenates X1 and X2 as

XH = HnRn(0, 0)−1Dn(c, α)ULp +HnRn(0, 0)−1UMp (33)

which can be viewed as the matrix moving average representation of (27)-(28). Noting the orthogonality of

Lp and Mp and their idempotent nature it is now straightforward to express the outer-product of interest

as

XHX
′
H = HnRn(0, 0)−1Dn(c, α)ULpU ′Dn(c, α)′(Rn(0, 0)−1)′Hn

+ HnRn(0, 0)−1UMpU
′(Rn(0, 0)−1)′Hn. (34)

and write the (centered) covariance matrix as

Sn = 1
p
HnRn(0, 0)−1Dn(c, α)ULpU ′Dn(c, α)′(Rn(0, 0)−1)′Hn

+ 1
p
HnRn(0, 0)−1UMpU

′(Rn(0, 0)−1)′Hn. (35)

It is here straightforward to note that the first component in the right hand side of (35) captures the

covariation of the p1 persistent but also possibly stationary processes associated with (27) depending on how

ρn(c, α) has been specialised while the second component is associated with the (p− p1) I(1) components

in (28). From our Assumption A and standard algebra it in fact follows that |ULpU ′/p− p1/p|
p→ 0 and

|UMpU
′/p− (p− p1)/p| p→ 0.

We initially evaluate the large sample properties of the trace of Sn under alternative scenarios on the

interactions between p1 and p2 ≡ (p− p1) and persistence parameterisations. This will then allow us to

establish the large sample behaviour of the proportion of variances captured by the principal components

of X across the same scenarios. The types of interactions between p1 and p2 that we will operate under

are summarised under Assumption B below.
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ASSUMPTION B: p1/p→ θ ∈ [0, 1].

We note that the boundaries of θ capture pure I(1) environments as in (28) when θ = 0 and purely

persistent and/or purely stationary environments as specified in (27) when θ = 1. Intermediate magnitudes

of θ accommodate mixed systems blending components that behave as in (27) and (28) in proportions

determined by θ. Recalling that the p1 components are parameterised with ρn(c, α) = 1− c/nα, in what

follows we will be solely interested in two alternative scenarios forcing these p1 components to be either

LUR processes (setting ρn(c, 1) = 1− c/n) in (27) or purely stationary processes (setting ρn(c, 0) = 1− c

with |1− c|< 1) in (27)).

Poposition 4 below treats the boundary cases of θ ∈ {0, 1} while the intermediate scenarios are inferred

directly from these further below. Note that under p1/p→ 0 the system essentially evolves towards a pure

I(1) setting, capturing an environment with less and less “stationarity” or equivalently an environment

where the growth in the number of cointegrating relationships is progressively dominated by pure I(1)’ness.

This would for instance be akin to operating under r/p→ 0 in a system such as (1) with r cointegrating

relationships. Under p1/p→ 1 on the other hand the system evolves towards a setting with no pure I(1)

components. The results associated with part (iii) of Proposition 4 are of course known but are maintained

for comparison purposes.

PROPOSITION 4: (i) Under Assumptions A and B and θ = 0 (pure I(1) system) we have

1
n2Tr(Sn) p→ 1

6 . (36)

(ii) Under Assumptions A and B, θ = 1 and ρn = 1− c

n
(pure LUR system) we have

1
n2Tr(Sn) p→ 6 + 2c2 + 2e−2c − 8e−c + c(−5 + e−2c)

4c3 . (37)

(iii) Under Assumptions A and B, θ = 1 and ρn = 1− c with |1− c|< 1 (pure I(0) system) we have

1
n
Tr(Sn) p→ 1

2c− c2 . (38)

We note that under all of the above scenarios the suitably normalised trace of Sn converges in

probability to a constant magnitude. Recalling that under pure stationarity each one of the independent

components of X follows the same AR(1) process with slope ρn = 1− c the result in (38) is intuitively

clear as it implies that the total system variance converges to 1/(1− ρ2
n) ≡ 1/(2c− c2). The result in (37)
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is obtained for a purely LUR system where each component of X consists of nearly integrated AR(1)’s

with slope coefficients ρn = (1− c/n).

Before proceeding further it is instructive to empirically assess the adequacy of the above approximations

and evaluate the progression of Tr(Sn)/n2 towards its limits in (36)-(38) for θ approaching its {0, 1}

boundaries. For this purpose we simulate data from the DGP in (27)-(28) using θ ∈ (0.50, 0.25, 0.10, 0.01)

so as to capture the notion of a θ approaching 0 from above (i.e. progressively decreasing the proportion

of non I(1) components in the system). We note from (36) that the normalised trace approaches 1/6 as

p1/p→ θ = 0 (i.e. as the system evolves towards a full I(1) environment) and this result holds regardless of

the composition of the p1 components which we parameterised as pure I(0) processes with autocorrelation

coefficients ρn = 0.5. Under θ = 0.1 for instance the system consists of p1 = 150 I(0) components and

p2 = 1350 I(1) components while under θ = 0.5 the system consists of an equal share of I(0) and I(1)

components (i.e. p1 = p2 = 150). From the top panel of Table 4 we can clearly note the Monte-Carlo

averages evolving towards 0.167 as θ → 0. It is here also particularly interesting to note that the entries

in the top panel of Table 4 correspond to (1− θ)(1/6) i.e. the limiting magnitude of the trace in a pure

I(1) setting (see (36)) multiplied by the fraction of I(1) components (1− θ).

Our second scenario focuses on the LUR case in (37) and uses θ ∈ (0.50, 0.75, 0.90, 0.99) to capture a

system whose pure I(1) components are progressively eliminated (see middle panel of Table 4) with the

system evolving towards a pure LUR environment (see middle panel of Table 4). The quantities in the

rightmost column have been obtained from (37) and we can clearly note that the Monte-Carlo means of

Tr(Sn)/n2 evolve towards their expected limit as θ → 1.

Table 4: Monte-Carlo averages of Tr(Sn)/n2

(n, p1, p2) = (150, 150, 1−θ
θ p1)

p1 ∼ I(0), p2 ∼ I(1) and p1/p→ θ

θ 0.500 0.250 0.100 0.010 Theory
ρn = 0.5 0.088 0.127 0.151 0.165 0.167

p1 ∼ LUR, p2 ∼ I(1) and p1/p→ θ

θ 0.500 0.750 0.900 0.990 Theory
ρn(c = 1) 0.142 0.129 0.122 0.118 0.116
ρn(c = 5) 0.115 0.089 0.087 0.065 0.062
ρn(c = 10) 0.104 0.072 0.054 0.042 0.039

p1 ∼ I(0), p2 ∼ I(1) and p1/p→ θ

θ 0.500 0.750 0.900 0.990 Theory
ρn = 0.50 13.152 7.234 3.739 1.607 1.333
ρn = 0.80 13.788 8.190 4.884 2.865 2.778
ρn = 0.95 16.215 11.839 9.257 7.670 10.256

The third and last scenario corresponds to a system that evolves into a pure I(0) system with ρn ≡ 1−c

(see bottom panel of Table 4 with ρn ∈ {0.50, 0.80, 0.95}). Here it is particularly interesting to notice that

for magnitudes of ρn near unity, (37) provides a subtantially better description of the trace’s behaviour
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than (38).

The above analysis focused on scenarios where the system composition evolves either towards purely

stationary/purely LUR processes (θ = 1) or towards purely I(1) processes (θ = 0). It is now also interesting

to explore the behaviour of Tr(Sn) when θ ∈ (0, 1) instead. Using Proposition 4 it is straightforward to

establish that for θ ∈ (0, 1) and ρn = 1− c/n we have

1
n2Tr(Sn) p→ θ

(
6 + 2c2 + 2e−2c − 8e−c + c(−5 + e−2c)

4c3

)
+ (1− θ)1

6 (39)

and for ρn = 1− c with |1− c|< 1 we have

1
n2Tr(Sn) p→ (1− θ)1

6 . (40)

Note that (39) corresponds to an environment where a θ proportion of the system consists of LUR

processes and the remainder (1− θ) are pure I(1)’s. Similarly (40) corresponds to an environment where a

θ proportion of the system consists of purely stationary processes with ρn = 1− c and its remainder are

again pure I(1)’s. Under this latter environment it is interesting to point out the dominance of I(1)’ness

even for large magnitudes of θ. Indeed, we note that the trace of Sn behaves as in a pure I(1) setting

albeit with a scaling factor (1− θ) representing the fraction of I(1) components in the system.

These theoretical outcomes are illustrated in Table 5 below whose purpose is to empirically evaluate

the approximations in (39) and (40). Note that the first component in the right hand side of (39) converges

to 1/6 as c → 0 so that for small magnitudes of c we expect Tr(Sn)/n2 ≈ 1/6 as in (36). This clearly

makes intuitive sense as for c small the system which consists of p1 LURs and p2 pure I(1)′s will essentially

behave like a pure I(1) system (as θ → 1 in particular).

The top panel of Table 5 considers a mixed LUR/I(1) system while its bottom panel considers a

mixed I(0)/I(1) system. As expected from the above discussion we note that for small magnitudes of θ

(i.e. dominance of I(1)’ness) empirical means almost identically match their theoretical counterparts as

formulated in (39) and (40). Focusing on the bottom panel of Table 5 we note a deterioration in the

accuracy of the empirical averages for θ ≈ 0.90 and above. This corresponds to a scenario where more than

90% of components are purely stationary processes with autocorrelation coefficients of 0.5. Nevertheless

these results make it clear that even a small proportion of persistent components in a system will have

the ability to generate substantial spuriousness in PCA.

Our next objective is to evaluate the proportion of variance captured by the first few principal

components (e.g. λ̂k/Tr(Sn)) in such mixed environments. The cases associated with θ = 0 (pure I(1))

and θ = 1 (pure I(0)) can be easily inferred from our results in Propositions 2 and 4 with (22) and (26)

characterising these two scenarios’s PC behaviour. The main question we wish to explore here is the
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Table 5: Monte-Carlo averages of Tr(Sn)/n2 in mixed environments
(n, p1, p2) = (150, 150, 1−θ

θ p1)

θ 0.100 0.250 0.750 0.900 0.950
p1 ∼ LUR and p2 ∼ I(1)

c = 1 0.162 0.154 0.154 0.120 0.119
Theory 0.162 0.154 0.154 0.121 0.118
c = 5 0.156 0.141 0.141 0.073 0.068
Theory 0.156 0.140 0.140 0.072 0.067
c = 10 0.154 0.136 0.136 0.052 0.047
Theory 0.154 0.135 0.135 0.052 0.045

p1 ∼ I(0) and p2 ∼ I(1)
ρn = 0.5 0.151 0.128 0.048 0.024 0.017
Theory 0.150 0.125 0.042 0.017 0.008

influence of the relative proportion of I(0)/I(1) components on the proportion of variance captured by the

first principal component and whether the spuriousness that results from the presence of I(1) components

can be alleviated through an increase in I(0) components. For this purpose we consider an environment

with p1 I(0) components having ρn = 1− c with |1− c|< 1 and p2 I(1) components. Here it continues to

be the case that

λ̂k∑
k λ̂k

p→ 6
k2π2 (41)

which holds regardless of the proportion of I(0) components in the system and which reflects the fact that

I(1)’ness dominates regardless of the proportion of I(0) components. The intuition behind this result can

be gained from (35) which when normalised by n2 sees its first component vanish asymptotically while its

second component driven by the presence of I(1) variables remains bounded.

Table 6: Proportion of variance spuriously captured by PC1 and PC2 in Mixed Systems

θ 0.100 0.250 0.500 0.800 0.950 0.990
(n, p) = (150, 200), p1 = θp, p2 = (1− θ)p2

PC1 60.7 60.0 58.0 50.8 33.2 14.6
PC2 15.1 15.1 14.8 13.3 9.1 4.6

(n, p) = (500, 500), p1 = θp, p2 = (1− θ)p2
PC1 60.7 60.7 60.1 57.8 49.0 29.6
PC2 15.3 15.2 15.2 14.5 12.9 6.9

The empirical outcomes in Table 6 are again striking when it comes to the presence of the spuriousness

phenomenon. Even when only 1% of the system consists of I(1) variables, the proportion of variance

captured spuriously by PC1 and PC2 remains substantial and effectively approaches 6/k2π2 asymptotically.

Under (n, p) = (500, 500) for instance and p1 = 0.99 p and p2 = (1 − 0.99) p (i.e. the system of 500

variables consists of 495 I(0) series with autocorrelation coefficients of 0.5 and only 5 series that are I(1))
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we note that the first two PCs spuriously capture close to 40% of the data variation. These outcomes have

important implications as they suggest that the presence of only a small fraction of suspected persistent

series should not give a false sense of protection against false discoveries.

In the context of this trivially cointegrated system with p1 stationary components and p2 I(1)

components we have also reconsidered our analysis of Table 6 using fully first differenced data, including

(unnecessarily) first differencing the p1 stationary components. This resulted in PC1 and PC2 proportions

lying in the vicinity of 1-2% across all of the above configurations, suggesting that first differencing

regardless of the stationarity properties of the underlying series may be an important pre-processing step

when implementing such regularisation techniques.

4. Discussion and Conclusions

This paper aimed to highlight some important distortions that are caused by the joint impact of

persistence and dimensionality. These distortions take the form of strong spurious relationships between

time series that have no connections whatsoever and continue to be present even when these time series

are only mildly persistent. Although we have operated within toy models our findings have broad

implications for empirical work, in particular when considering Big Data methods relying on regularisation

techniques for dimensionality reduction. Such environments are particularly prone to false discoveries

when implemented with time series data characterised by even mild degrees of persistence.

Another particularly important finding is that these distortions and tendency to uncover spurious

relationships remain very much present even if only a very small fraction of the data contains persistent

components. In order to avoid this spuriousness trap our analysis suggests that first differencing the data

may be appropriate even for time series that although persistent are away from the unit root boundary.

Similarly, even in systems whose majority of components are purely I(0) series and a minor fraction

are highly persistent it is important to first difference the entire data matrix to avoid this spuriousness

phenomenon. From an empirical strategy point of view if PCA based on first differenced data suggests

a factorless outcome then clearly dimensionality reduction is not worth pursuing. If on the other hand

the presence of commonalities is supported by PCA on first differenced data and we wish to estimate

the common factors numerous options are available, in particular following the PANIC approach of Bai

and Ng (2004) (see also Corona, Poncela and Ruiz (2020) and references therein). Our results on the

spuriousness of principal components have also a direct analogy with canonical correlations which also

rely on the eigenvalues of quantities that include Sn (see for instance Harris (1997) and Gonzalo (1994)).

Granger’s early insights on the need to alter existing methods when considering big data environments

have become particularly topical. Onatski and Wang (2018)’s recent contributions very much go in that

direction within the specific context of cointegration analysis. We expect that methods designed to capture
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sparsity via linear combinations and canonical correlations of only a subset of variables will be particularly

fruitful for handling a large number of time series data (e.g. sparse principal components, sparse canonical

correlations).

It is also important to point out that well known weaknesses of many techniques pointed out in the

classical statistics literature may manifest themselves differently in high dimensional settings. A notable

example from the model selection literature is the inconsistency of various fixed penalty based information

criteria when used to detect the “true” model from a finite selection of competing models (e.g. AIC). In

Gonzalo and Pitarakis (2002) for instance we showed that this well known inconsistency vanishes when

the system dimension is allowed to increase with the sample size at a suitable rate. Given the usefulness

of model selection criteria as tools for dimensionality reduction (e.g. detection of reduced rank structures

as explored in Gonzalo and Pitarakis (1998)) we view this agenda as highly promising for tackling the

spuriousness problem as recently investigated in Bai, Choi and Fujikoshi (2018), Fujikoshi, Sakurai and

Yanagihara (2017) and Fujiskoshi (2017, 2019).
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APPENDIX A

This appendix introduces a series of intermediate results which are used for establishing our statements

in Propositions 1-4. For notational simplicity we drop the referencing to c and α in ρn(c, α) and the

associated matrices.

Assumption A ensures that the limiting behaviour of the sample eigenvalues of Sucn and Sn will be

determined by the eigenvalues of the deterministic equivalents (R′nRn)−1 and Hn(R′nRn)−1Hn respec-

tively. Lemma 1 below obtains the exact trace of these two matrices for any n and any magnitude of ρ

while Lemma 2 and Lemma 3 obtain their eigenvalues.

From (6) the n× n dimensional matrix R′nRn is given by

R′nRn =



1 + ρ2 −ρ 0 . . . 0 0

−ρ 1 + ρ2 −ρ . . . 0 0

0 −ρ 1 + ρ2 . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . 1 + ρ2 −ρ

0 0 0 . . . −ρ 1


(42)

which is of nearly Toeplitz form with a perturbed bottom right corner. The key quantities of inter-

est are now the eigenvalues of (R′nRn)−1 and the (n − 1) non-zero eigenvalues of Hn(R′nRn)−1Hn as

Rank[Hn(R′nRn)−1Hn] = n− 1 by construction.

The eigenvalues of (R′nRn)−1 can be inferred directly from those of (42) for any n while the treatment

of Hn(R′nRn)−1Hn will require us to operate under large n. More specifically, as Hn(R′nRn)−1Hn

has one zero eigenvalue we consider the eigenvalues of its pseudo-inverse, say (Hn(R′nRn)−1Hn)−, and

recover the eigenvalues of interest via their reciprocal. It is here particularly interesting to point out

some subtle differences between (R′nRn)−1 and Hn(R′nRn)−1Hn. Under |ρ|< 1 it is well known that

these two matrices will share the same eigenvalues for large n. As ρ approaches unity however this

correspondence breaks down. Although an analytical expression for (Hn(R′nRn)−1Hn)− becomes quickly

intractable if we wish to operate under any n, using standard properties of pseudo-inverses and the fact

that (Hn(R′nRn)−1Hn)(Hn(R′nRn)−1Hn)− = Hn in particular, standard but involved algebra allows us
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to establish that for sufficiently large n (Hn(R′nRn)−1Hn)− takes the following tridiagonal form

(Hn(R′nRn)−1Hn)− ∼



1 −ρ 0 . . . 0 0

−ρ 1 + ρ2 −ρ . . . 0 0

0 −ρ 1 + ρ2 . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . 1 + ρ2 −ρ

0 0 0 . . . −ρ 1


. (43)

The right hand side of (43) provides the exact pseudo inverse when ρ = 1 while for ρ 6= 1 (43) holds for

large n and ρ in the vicinity of unity.

Lemma 1 below obtains the exact traces of (R′nRn)−1 and Hn(R′nRn)−1Hn while Lemma 2 and

Lemma 3 obtain their eigenvalues. As the proof of Lemma 1 involves rather tedious but straightforward

algebra its proof is omitted from this appendix.

LEMMA 1: For any n and any magnitude of ρn(c, α) the trace of (R′nRn)−1 is given by

Tr(R′nRn)−1 =
n∑
j=1

 j∑
`=1

ρn(c, α)2(`−1)

 (44)

and the trace of the centered counterpart Hn(R′nRn)−1Hn is given by

Tr(Hn(R′nRn)−1Hn) =
(

1− 1
n

) n∑
j=1

 j∑
`=1

ρn(c, α)2(`−1)


− 2

n

n−1∑
k=1

 k∑
j=1

 j∑
`=1

ρn(c, α)2(`−1)


 ρn(c, α)n−k. (45)

REMARKS: The differences between (44) and (45) highlight the impact that centering has on the eigen-

structure of covariances. It is straightforward to establish that the second component in the right hand

side of (45) vanishes asymptotically provided that |ρ|< 1, corroborating our earlier observation that under

pure stationarity the eigenvalues of (R′nRn)−1 and Hn(R′nRn)−1Hn will coincide for sufficiently large

n. For ρ in the vicinity of unity however this same component becomes equally dominant as the first

component causing the (suitably normalised) eigenvalues of the these two matrices to converge to different

limits.

LEMMA 2: (i) The eigenvalues of (R′nRn)−1 in (42) are given by λuck = (1+ρn(c, α)2+2ρn(c, α) cosφk)−1
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where the φ′ks solve sin[(n+ 1)φ] + ρn(c, α) sin[nφ] = 0. (ii) For ρn(c, α) = 1 the solutions to the trigono-

metric equation in (i) are given by φk = 2kπ/(2n+ 1) for k = 1, 2, . . . , n.

PROOF: We let ν denote the eigenvalues of R′nRn. Assuming ρ > 0 and applying the change of variable

2 cosφ = (1 + ρ2 − ν)/(−ρ) (46)

we can write

R′nRn − ν In = (−ρ)



1+ρ2−ν
−ρ 1 0 . . . 0 0

1 1+ρ2−ν
−ρ 1 . . . 0 0

0 1 1+ρ2−ν
−ρ . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 1+ρ2−ν
−ρ 1

0 0 0 . . . 1 1−ν
−ρ


(47)

= (−ρ)



2 cosφ 1 0 . . . 0 0

1 2 cosφ 1 . . . 0 0

0 1 2 cosφ . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . 2 cosφ 1

0 0 0 . . . 1 (ρ+ 2 cosφ)


(48)

≡ (−ρ)Kn. (49)

It now follows that Det[R′nRn − ν In] = (−ρ)nDet[Kn]. Proceeding with a standard cofactor expansion

of the determinant of Kn we have Det[Kn] = Det[An(cosφ)] + ρDet[An−1(cosφ)] where

An(x) =



2x 1 0 . . . 0 0

1 2x 1 . . . 0 0

0 1 2x . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . 2x 1

0 0 0 . . . 1 2x


. (50)

We can now recognise that Det[An(x)] = Un(x) with Un(x) denoting the nth Chebyshev polynomial of
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the second kind. We therefore have

Det[R′nRn − ν In] = (−ρ)n[ρUn−1(cosφ) + Un(cosφ)]. (51)

From the properties of Chebyshev polynomials, Un(cosφ) = sin[(n + 1)φ]/sinφ, so that (49) leads to

sin[(n + 1)φ] + ρ sin[nφ] = 0 as the eigenvalues must solve Det[R′nRn − ν In] = 0. The eigenvalues of

(R′nRn) are now obtained from our earlier change of variable in (46) resulting in νk = (1 + ρ2 + 2ρ cosφk)

and the eigenvalues of (R′nRn)−1 follow directly as λuck = (1 + ρ2 + 2ρ cosφk)−1 where the φk are the n

roots of Un(cosφ) + ρUn−1(cosφ) = 0.

Using the standard trigonometric toolkit it is straightforward to establish that under ρ = 1, sin[(n +

1)φ] + sin[nφ] = 0 admits the simple closed form solutions given by φk = 2kπ/(2n + 1) leading to

λuck = (1 + ρ2 + 2ρ cos[2kπ/(2n+ 1)])−1 while no closed form solutions exist for ρ 6= 1.

LEMMA 3: (i) The eigenvalues of (43) sorted in ascending order are given by ω1 = 0 and ωk =

(1 + ρn(c, α)2 + 2ρn(c, α) cos φ̃k) for k = 2, . . . , n. (ii) Under ρn(c, α) = 1, φ̃k = kπ/n.

PROOF: We first note that (43) is symmetric with a zero eigenvalue while its remaining eigenvalues are

strictly positive. Let Pn(ω) denote the characteristic polynomial of (43) which we wish to obtain an

expression for and Sn(ω) the characteristic polynomial of (42). It now suffices to observe that Pn(ω) can

be expressed in terms of Sn(ω). Indeed using standard cofactor expansions we have

Sn(ω) = (1 + ρ2 − ω)Sn−1(ω)− ρ2Sn−2(ω) (52)

with initial conditions S0 = 1 and S1 = 1− ω. The characteristic polynomial of (43) is then given by

Pn(ω) = (1− ω)Sn−1(ω)− ρ2Sn−2(ω). (53)

Solving first (52) using the change of variable ω = (1 + ρ2 − 2ρ cos φ̃) and standard difference equation

techniques we have

Sn(φ̃) = −ρ+ (cos φ̃+ i sin φ̃)
2i sin φ̃

ρn(cos φ̃+ i sin φ̃)n +

ρ− (cos φ̃− i sin φ̃)
2i sin φ̃

ρn(cos φ̃− i sin φ̃)n. (54)

Plugging (54) into (53) and solving for Pn(φ̃) = 0 leads to the desired result.
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APPENDIX B

PROOF OF PROPOSITION 1: Assumption A ensures that the limiting behaviour of λ̂uck /n2 is de-

termined by the suitably normalised eigenvalues of (R′nRn)−1 which as shown below are of order n2

under ρn(c, 1) = 1 − (c/n). From Lemma 2 we can write the eigenvalues of (R′nRn)−1 as λuck =

(1 + ρn(c, 1)2 + 2ρn(c, 1) cosφk)−1 with φk (k = 1, . . . , n) satisfying sin[(n+ 1)φ] + ρn(c, 1) sin[nφ] = 0. It

is now important to point out that as λuck is formulated in reciprocal form and as these eigenvalues are

typically sorted in descending order, φk above is naturally replaced with φn−k+1 so that in descending

order the eigenvalues of (R′nRn)−1 are written as λuck = (1 + ρn(c, 1)2 + 2ρn(c, 1) cosφn−k+1)−1.

The trigononometric equation sin[(n + 1)φ] + ρn(c, 1) sin[nφ] = 0 admits the closed form solutions

φn−k+1 = 2(n − k + 1)π/(2n + 1) under ρn(c, 1) = 1 but has no closed form solutions for general

ρn(c, 1). As we operate in the vicinity of unity however we propose to approximate these eigenvalues as

λuck ∼ (1 + (1− c/n)2 + 2(1− c/n) cos[2(n− k + 1)π/(2n+ 1)])−1 which we subsequently adjust to ensure

that their sum matches the exact trace of (R′nRn)−1 as formulated in Lemma 1.

A standard Taylor expansion of (1 + ρn(c, 1)2 + 2ρn(c, 1) cos(2(n− k + 1)π/(2n+ 1)))−1 gives

λuck ∼ n2

c2 + (1/4)(2k − 1)2π2 +O(n) (55)

or equivalently

λuck
n2 ∼ 1

c2 + (1/4)(2k − 1)2π2 +O

( 1
n

)
. (56)

Using (55) it is now useful to note that

lim
n→∞

n∑
k=1

1
c2 + (1/4)(2k − 1)2π2 = tanh(c)

2c . (57)

We can now refine the approximation in (55) by adjusting it in a way that ensures that the sum of the

adjusted eigenvalues matches the exact normalised trace of (R′nRn)−1. Using ρn(c, 1) = 1− (c/n) in (44)

gives

1
n2Tr(R

′
nRn)−1 =

(
−c2n− c2 + n2

(
(c−n)2

n2

)n+1
+ 2cn2 + 2cn− n2

)
c2(c− 2n)2 (58)

from which it also follows that

lim
n→∞

1
n2Tr(R

′
nRn)−1 = −1 + 2c+ e−2c

4c2 . (59)
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As a side note it is here useful to contrast (59) with (57) as the spread between these two quantities

provides a metric for the distortions induced by our use of φk = 2kπ/(2n+ 1) in λuck . For c = 5 and c = 10

for instance (57) takes the values 0.099 and 0.05 compared with 0.090 and 0.05 for (59).

We can now refine the approximation in (55) as

λuck ∼ λuc∗k ≡ 2c
tanh c

(
−1 + 2c+ e−2c

4c2

)(
1

c2 + (1/4)(2k − 1)2π2

)
(60)

which establishes our result in (12). Our statement in (14) now follows straightforwardly.

PROOF OF PROPOSITION 2. Our results in (18) and (20) follow from the same steps as in the proof

of Proposition 1. From Lemma 3 the (non-zero) eigenvalues of Hn(R′nRn)−1Hn sorted in descending

order are given by λk = (1 + ρn(c, 1)2 + 2ρn(c, 1) cos φ̃n−k+1)−1 and which we now approximate as

λk ∼ (1 + (1− c/n)2 + 2(1− c/n) cos[(n− k + 1)π/n])−1. A standard Taylor expansion now gives

λk ∼ n2

c2 + k2π2 +O(n) (61)

from which we also have

λk
n2 ∼ 1

c2 + k2π2 +O

( 1
n

)
. (62)

Using (61) it is also useful to note that

lim
n→∞

n∑
k=1

1
c2 + k2π2 = −1 + c coth c

2c2 . (63)

We now refine the approximation in (62) by adjusting the eigenvalues in a way that ensures that the sum
of the adjusted eigenvalues matches the exact trace of Hn(R′nRn)−1Hn. Using ρn(c, 1) = 1− (c/n) in
(45) gives

T rHn(R′nRn)−1Hn) = n3

c3(c − 2n)2

c(n − 1)


((

1 − c
n

)2n − 1
)

(c − n)2

n2 − (c − n)2

n
+ n


+

n3

c3(c − 2n)2

(
2n

((
1 − c

n

)n
− 1
)((

1 − c

n

)n+2
+ 2c

n
− 3
)(

1 − c

n

)
+ 2c(c − 2n)

)
(64)

from which it also follows that

lim
n→∞

1
n2TrHn(R′nRn)−1Hn) = 6 + 2c2 + 2e−2c − 8e−c + c(−5 + e−2c)

4c3 . (65)
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We can now refine the approximation in (62) as

λk ∼ λ∗k ≡
(

2c2

−1 + c coth c

)
6 + 2c2 + 2e−2c − 8e−c + c(−5 + e−2c)

4c3
1

c2 + k2π2 (66)

which establishes our result in (18). Our statement in (20) follows straightforwardly.

PROOF OF PROPOSITION 3. Here we operate under ρ ≡ ρn(c, α) = 1 − c/nα for α ∈ [0, 1). It now

suffices to replace ρn(c, 1) = 1 − c/n with ρn(c, α) = 1 − (c/nα) in λk ∼ (1 + (1 − (c/nα))2 + 2(1 −

(c/nα)) cos[(n− k + 1)π/n])−1. A standard Taylor expansion gives

λk ∼ n2α

c2 + nα(1 + nα)O(n−2) (67)

from which we also have

1
n2αλk = 1

c2 +O

( 1
n2(1−α)

)
. (68)

As 1+α > 2α it now follows that limn→∞ λk/n
1+α = 0 which using Assumption A also implies λ̂k/n1+α p→ 0

as stated in (24).

The boundedness of Tr(Sn)/n1+α as stated in (25) follows directly using ρn(c, α) = 1− c/nα in (45) of
Lemma 1. We have

T r(Sn) = 1
c3 (c − 2nα)2 n2α−1 (2c2nα+1 + 2c2nα − 9cn2a + 6n3α − c3n2 + c3 + 2c2nα+2 − 5cn2α+1−

2
(
1 − cn−α

)n (
c − 2nα

)2 (
nα − c

)
+
(
1 − cn−α

)2n (
c − nα

)2 (2nα + c(n − 3)
))

(69)

which is of order n1+α.

PROOF OF PROPOSITION 4. (i) Using ρn(c, 1) = 1 in (46) of Lemma 1 leads to Tr(Sn) = (n−1)(n+1)/6

from which (36) follows. (ii) The case for ρn(c, α) = 1 − c/n has been treated in (65). (iii) For

ρn(c, α) = |1− c|< 1 we have

Tr(Sn) = 1
(c− 2)2c3n

(
c(n− 1)

(
(c− 1)2

(
(1− c)2n − 1

)
− (c− 1)2n+ n

)
(70)

+ 2
(

(1− c)
(
(1− c)n − 1

) (
(1− c)n+2 + 2(c− 1)− 1

)
+ (c− 2)cn

))

from which it follows that Tr(Sn)/n p→ 1/(2c− c2).
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