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1 Introduction 

It is a well-known fact that many economic time series are nonstationary, but present an 

upward trend. During a long time this trend has been modelled by means of a simple linear 

time trend of the form 

(1) Yt =a+{3t+st 

where Y t usually stands for the natural log of the original series under study and the 

deviation from the linear trend, St' denotes a stationary process. Such an assumption is 

controversial, however, since it implies deterministic long-run growth rates. 

In their seminal paper, Nelson and Plosser (1982) presented evidence that model (1) is 

inadequate for explaining the evolution of many economic time series, and proposed the 

alternative model 

(2) Yt =P+YI_I +SI· 

This model is known as integrated of order one, l( 1), process. It implies that the level of the 

series has a unit root whereas that the first differences of the series is stationary. 

Correspondingly, a process is l(d) if we achieve stationarity after d integer differences .. 

When dealing with integrated processes, the underlying constituent components of the 

series, typically designated in the corresponding literature as "trend", "seasonal" and 

"irregular", are stochastic. In this case, Newbold (1991) showed that there is not a unique 

possible definition of "local trend". One possible characterization of trend is the well-known 

Beveridge-Nelson (BN) decomposition. 

For time series following any (non-seasonal) ARIMA(p,l,q) process, Beveridge and 

Nelson (1981) found a way of decomposing it into a trend (or permanent component) and a 
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cycle (or transitory component). The permanent component or long-term trend of the series 

is simply defined as the value the series would have if it were on its long-run path in the 

current time period, and it is also the current observed value plus all forecastable future 

changes in the series beyond its mean rate of drift, so that, at any point in time, such a trend 

depends only on the information available to agents at that time. The permanent component 

of the BN decomposition of an 1(1) series turns out to be an 1(1) series while the cyclical 

component is a stationary series, as proved in Beveridge and Nelson (1981) or in Newbold 

and Vougas (1996). 

Recently, Newbold and Vougas (1996) extend the BN decomposition to /(2) series. In 

this case, the permanent component turned out to be an 1(2) series, so that, in contrast with 

the previous case, the slope of the permanent component evolves itself over time. The 

cyclical part of the series, in turn, remains stationary. 

On the other hand, it has been argued many times (see, e.g., Diebold and Rudebusch, 

1989) that a series may not follow neither model (1) nor be well represented as an 

integrated process. In this sense, the spectrum of many economic time series seems to be 

infinite at the origin, which suggests that some difference should be taken. However, after 

differencing, such time series appear not to have power at the origin. See, e.g., Granger 

(1969). In those cases, Granger and Joyeux (1980) and Hosking (1981) proposed the use of 

the so-called auto regressive fractionally integrated moving average (ARFIMA) models, a 

generalization of the standard ARIMA processes, where now the number d of differences is 

allowed to take any real value. 

Fractionally integrated processes have received an increasing attention because of their 

ability to provide a natural and flexible characterization of the nonstationary and persistent 
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characteristics of econOmIC time senes. They allow for more parsimonious models. 

Moreover, by allowing a rich range of spectral behaviour near the origin, they can provide 

superior approximations to the Wold representations of many economic time series. See 

Baillie (1996) for a review of the growing literature of econometric work on fractional 

processes and their applications in economics and finance. 

The aim of this paper is to extend the BN decomposition to cover the fractional 

framework. From Baillie's (1996) survey, it seems quite reasonable to assume that most 

economic time series achieve stationarity after applying a fractional filter. Thus, it appears 

equally reasonable to look for a procedure describing the permanent and transitory 

components of the economic time series of interest under the fractional assumption. For this 

the paper is organised as follows. In Section 2 we extend the BN decomposition to 

nonstationary ARIMA(p,d,q) models. As particular cases, when d = 1 and d = 2 we 

obtain the decompositions proposed by Beveridge and Nelson (1981) and Newbold and 

Vougas (1996), respectively. Section 3 considers the BN decomposition under a fractional 

set-up. We prove that such a decomposition exists and the components are functions of 

current and past, but not future, values of the series, so that they are computable in real 

time. Computational issues are gathered in Section 4 whereas Section 5 of the paper 

concludes. Proofs are given in the Appendix. 

4 

I I 



2 The BN decomposition for ARIMA(p, d, q) models 

In their seminal paper, Beveridge and Nelson (1981) proved that if a time series, zt> 

follows an ARIMA(p,l,q) model, possibly with drift, then such a series can be decomposed 

into a trend and a cyclical components, denoted "it and ct respectively, and defined as 

0() 

(3) Zt=Zt+Lxt(J) 
j=1 

and 

00 

(4) ct =Zt -"it = - Lxt(J), 
j=1 

being the forecast at time t of x t+ j j periods ahead. 

Therefore, the trend or permanent component Zt is defined as the current observed value 

of z, plus all forecastable future changes in the series beyond the mean rate of drift J..l. 

Moreover, it is quite simple to prove that the k-step ahead forecast of Zt at time t is 

k 

(5) Zt(k)=zt + Lxt(J)+kfJ, 
j=1 

so that, asymptotically, as the forecast horizon k increases, this function Zt (k) is linear in k 

with slope fJ and intercept 

0() 

(6) Zt + LXt(J)· 
j=1 
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Hence, it is clear from expression (6) that the permanent component of a series as defined 

by Beveridge and Nelson (1981) is the value the series would have if it were on its long-run 

path in the current time period. 

On the other hand, when Zt follows an ARlMA(p,2,q) model, Newbold and Vougas 

(1996) have recently proved that the k-step ahead forecast of Zt made at time t is given by 

the expression 

co 

(7) it (k) = (k + l)Zt - kZt-) + ~::Ck - j + l)£t (J), 
}=I 

where now xt = (1- B)2 Zt and for simplicity and without loss of generality they assume 

that ,u = o. 

This function it (k), as the time horizon k increases, tends asymptotically to a linear 

function with slope 

00 

(8) Pt = Zt - Zt_1 + Lxt(J) 
j=1 

and intercept 

00 

(9) at = Zt - L (J -l)xt (J). 
j=1 

Thus, as in the previous case, the forecasting function it (k) tends asymptotically to a 

linear function. However, now the slope of the asymptotic forecast function also evolves 

over time. 

In this ARlMA(p ,2, q) case, Newbold and Vougas define the permanent part of the series 

again as the value that the series would have if it were on its long-run path in the current 

time period, that is, the permanent component is 
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00 

(10) Zt = Zt + L (I - )xt (J) , 
}=I 

and the cyclical component becomes 

00 

(11) ct =Zt -Zt = L(J-1)xt (J)· 
}=I 

Following the approach of Newbold and Vougas, we extend the BN decomposition to 

series following (non-seasonal) ARIMA(p, d, q) models for any positive integer d. 

THEOREM 1. Let Zt be a time series following an ARIMA(p,d,q) model with positive 

integer d Let xt = (I - B)d Zt' and let us assume for simplicity that J..l = E(xt ) = o. Then 

(i) Z t+k can be expressed as 

_ ~ (I -i)(2 -i)···(d -I-i) 
(12) Zt+k - Pd-I (k) + Zt + -t (d -1)! xt+i , 

where the coefficients a j are functions of Zt ,Zt_I'··· ,Zt_d+1 ,Xt+I'··· 'Xt+k' 

(ii) The forecasting function Zt (k), as the time horizon k increases, tends asymptotically to 

a d - 1 degree polynomial in k with intercept equal to 

(l3) 
00 (I - )(2 - ) .. ·(d -1- ) A • 

Zt + ~ (d _ 1)! xt{j)· 

As a consequence of this result, we propose as a definition of the permanent component 

of the ARlMA(p,d, q) process Zt the following expression 
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(14) 
_ <t) (1- j)(2 - j)---(d -1- j)" . 
Z = Z +" x (J) 

t t 7:: (d - 1)! I 

_ _ d-J ~ (j - l)(j - 2)- --(j - d + 1)" . 
-ZI +( 1) f=t (d-I)! xt(j), 

so that the cyclical component will be given by 

(15) 
_ <t) (1- j)(2- j)---(d-l- j)" . 

ct =Zt -Zt =-~ (d-I)! xt(j)· 

It is straightforward to show that these definitions give as particular cases the original BN 

decomposition for ARIMA(p, 1, q) models and the recent BN decomposition proposed by 

Newbold and Vougas (1996) for ARIMA(p,2, q) data generating processes. 

To close this section, it is worth mentioning that the interest of Theorem 1 does not rely in 

searching for a BN type decomposition for integrated processes of order greater than two, 

since one does not usually meet this kind of series in practice. The importance of the 

theorem stems in the fact that to understand how to find a BN decomposition of an 

ARIMA(p, d, q) processes for any positive integer d does will provide with useful insights 

about how to proceed in order to obtain aBN decomposition in the ARFIMA(p,d,q) case. 

3 ARFIMA Models 

When a given time series Zt becomes weakly stationary after differencing d times, and the 

degree of differentiation or memory parameter, d, is a real number, then the series is said to 

be fractionally integrated of order d, and it is said to follow an ARFIMA(p, d, q) model if it 
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can be represented as ~(B)(l- B)d Zt = O(B)6t , where(l- B)d is the fractionally difference 

operator defined as (l-B)d =1+ I:od(d-I)(d-2} .. (d- )+I)V!t(-lfBi . 

A fractionally integrated process is stationary if d < t and all the roots of ~(z) = 0 lie 

outside the unit circle and and nonstationary if d ~ t, whereas it is invertible if d > - t and 

all the roots of O(z) = 0 lie outside the unit circle. It is both stationary and invertible if and 

only if d E ( - t , t) The problematic cases are when d = t or d = - t , in which the series is 

either no stationary or no invertible. 

In spite of being nonstationary, the process is mean-reverting with transitory memory, i.e., 

with any random shock having only a temporary influence on the series, if d < I, in contrast 

with the case when d ~ 1, where the process is both nonstationary and not mean-reverting 

with permanent memory, i.e., with any random shock having now a permanent effect on the 

present and future path of the series. On the other hand, a stationary fractionally integrated 

process has short-memory with autocorrelations decaying at an exponential rate if d = 0, 

whereas it has long-memory with autocorrelations that die out at the slower hyperbolic rate 

ifO<d < 1/2. 

A non stationary fractionally integrated process can be made stationary by taking a suitable 

number of integer differences. The problematic cases are when d = t , t , f , .... In effect, for 

d = n + t ,d ~ t ,n = 1,2,3, ... after n differences in the series, an ARFlMA(p, to q) series is 

obtained which is no stationary, and after n + 1 differences the series obtained is 

ARFlMA(p, - t ,q) which is not invertible. 
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In this section we are going to propose a decomposition into trend and cycle of a time 

series that follows a nonstationary ARFlMA(p,d,q) model. Moreover, in order to rule out 

possible problems of lack of stationarity and/or invertibility, we shall be concerned here with 

values of the memory parameter d lying in the set 0 = {d E £RId> t , d 1=- n + t, n = 1, 2, 3, ... } . 

We focus the attention to the nonstationary case because it is the natural framework when 

dealing with BN-like-decompositions, but most of our results also hold in the stationary 

range. 

Following the steps of Section 2, given a series Zt that follows an ARFIMA(p, d, q) model 

with d EO, we need to obtain an expression of Zl+k as a function of Zt_j for j;;?: 0 and of 

X t+i for i = 1, ... , k, where x t = (1- B)d z(' d EO. Afterwards, we will need to obtain the 

asymptotic behaviour of Zt (k) and proceed to separate the trend component and the cycle. 

The following theorem gives an expression of Zt+k . 

THEOREM 2. Let z/ be a time series/ollowing an ARFlMA(p,d,q) model with d EO. 

Let xt = (1- B)d Zt' and let us assume/or simplicity that f.1 = E(xt ) = O. Then 

00 

(16) Zt+k = LtfJ/k)Zt_j + !f(k), 
j=O 

where 

(k + ~ -1) 
tfJ (k) = } d(l + d)(2 + d}··(k - 1 + d)(1- d)(2 - d}··(j - d) 

) (k+j)! 
(17) 

(I8) 
r (k + d) r (j - d + 1) ( -1) j r (k + d) = =----~~~--~---

j!(k -l)!(k + .j)r(d)r(d + 1) j!(k -l)!(k + j)r(d - j) 
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for d":t= n, and lfI(k) is afunction of Xt+1 ,Xt+2 , ... +xt+/c given by 

To decompose an ARFlMA(p,d,q) time series in permanent and cyclical component in 

the way ofBeveridge and Nelson, the question turns out to be what is the function at which 

it (k) tends asymptotically. The value of this function at k = 0 would be the permanent 

component of the time series, and the remaining part the cyclical component. But this 

question has no sense in this context. In effect, when looking for an asymptote, one is 

customary looking for a straight line or a parabola or a curve within a known class of 

curves. In that sense, whatever real functionfsuch that lim/c~",[it(k)-f(k)]=O is an 

asymptote of it (k). But for an asymptote to be of interest, it should be a function of a 

specific class of functions, and it seems there is no well-known function at which it (k) 

tends to. 

Consequently, in order to propose a BN-like-decomposition of Zt in a fractional context, 

we observe that, according with Theorem 1, for any non-seasonal ARlMA(p,d,q) series 

with positive integer d the permanent component is 

'" 
(20) "it =zr + Lf(d,})xJ}), 

}=1 

where 

(21) 
. 1 .. . (_1)d+1(j_l)! 

f(d,)) = (d_l)!(l- )(2- ) ... (d-l- ))= (d-l)!(j-d)!· 
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Values of f(d,J) for different integer numbers d andJ are given in Table 1. For a fixJ the 

coefficients f(d,J) are the coefficients of the terms Xk in the expression (x _1)1-1 and 

thus Table 1 looks like the Tartaglia triangle. 

f( d ,i) j 
d 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 0 -1 -2 -3 -4 -5 -6 

3 0 0 1 3 6 10 15 

4 0 0 0 - 1 -4 -1 0 -20 

5 0 0 0 0 1 5 1 5 

Table l. f(d,J) for different values of d and) according 

to expression (21). 

Our purpose in to extend Table 1 to values of d E (). For this, our proposal for the 

permanent component z; of an ARFlMA(p,d, q) time series, would be the same expression 

(20) but with the f(d,J) coefficients defined now for dE () in such a way that as d 

approaches to a positive integer n, f(d,J) will approach to f(n,J). Correspondingly, then, 

our definition of f(d,J) for d E () is 

(22) f(d,J) = 

(_l)d+'(j -I)! 

(d -l)!(j -d)! 
red - J) 

r(d)r(1- J + d - [d]) 
red - J) 

r(d)r(-J +d -[dD 

if d=l, 2, 3 .. ··, 

if d:1= 1, 2, 3,···, and did] < t, 

ifd:1=l, 2, 3 .. ··,andd-[d]>t, 

with [d] denoting the maximum integer number smaller or equal than d. f(d,J) can also be 

defined as 
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(23) f(d,j) = 

(_l)d+'(j -I)! 

(d - 1) I (j - d)! 
red - j) 

r(d)r(l- j +d - rounded»~ 

ifd=n=l, 2, 3 .. ··, 

otherwise, 

where rounded) stands for the integer number closest to d. 

It is easy to check that with these definitions of f(d,j), for eachj 

(24) Um f(d, j) = f(n,j) 
d ...... n 

as desired. Notice how f(d,j) is not defined for d = n +t, and so, there is no EN 

decomposition for fractionally integrated processes with such a values of the memory 

parameter d. This is not a surprise, since for such cases there is no integer difference making 

the series both invertible and stationary. Nevertheless, the above comment should not 

represent a problem either, since the probability for the parameter d to be equal to n + t for 

d E {} is zero. Moreover, for each j and d E {} the function f(d,j) is continuous in 

9i \ {n + t}. Table 2 shows values of f( d,j) for different j and d according with 

expressions (22) or (23). Figures 2.a, 2.b and 2.c, in turn, plot /(d,j) for different values 

of d while Figures 3.a and 3.b plot f(d,2) and f(d,3). It is clear from the graphics of 

Figures 2.c, 3.a and 3.b as well as from Table 2 that f(d,j) is not continue for d = n + t. 
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[(d,li J 

d 1 2 3 4 5 6 7 

0,6 0,672 0,672 0,672 0,672 0,672 0,672 0,672 

0,9 0,936 0,936 0,936 0,936 0,936 0,936 0,936 

1 1,000 1,000 1,000 1,000 1,000 1,000 1,000 

1, I 1,051 1,051 1,051 1,051 1,051 1,051 1,051 

1,4 1,127 1,127 1,127 1,127 1,127 1,127 1,127 

1,6 -0,448 -1,567 -2,686 -3,805 -4,924 -6,044 -7,163 

1,9 -0,104 -1,144 -2,183 -3,223 -4,263 -5,303 -6,343 

2 0,000 -1,000 -2,000 -3,000 -4,000 -5,000 -6,000 

2,1 0,096 -0,860 -1,816 -2,771 -3,727 -4,682 -5,638 

2,4 0,322 -0,483 -1,288 -2,093 -2,898 -3,703 -4,508 

2,6 -0,168 0,392 2,350 5,708 10,464 16,620 24,174 

2,9 -0,049 0,060 1,264 3,563 6,955 11,443 17,025 

3 0000 0000 1000 3000 6000 10000 15000 

Table 2. f ( d,}) for different values of d and j according to expressions 

(22) or (23). 

f(d,j) 

2 3 4 5 6 7 8 9 10 

--·--f(2.6J) --·--f(2.9j) -.-tt3j) ---.-- tt3.1j) --·---[(3.4j) 

Figure 2.a. Graphic of f(d,}) for} = 2.6, 2.9, 3, 3.1 and 3.4 
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f(d,j) 
2 3 4 5 6 7 8 9 10 I I I I I I I I I o .• --.-.--=::-.. ~~_~_ .. 

·--=~i"'" "--..... , ~--... -- ... 10 • --~..... • .... - , .• ~ .... ", .... '. '. -20 
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40 

• " .... 
-

\ ., , -50 
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' \ \\:\\" -70 

., '. 'e , 
\ . ~O 

, . 

--e--f(4.4j) --e--£t4.Ij) -e-f(4j) ---e-- f(3.9j) --.---f(3.6j) 

Figure 2.h. Graphic of /(d,}) for} = 3.6,3.9,4,4.1 and 4.4 
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,+ 

2 3 4 5 6 7 8 9 10 
- -.- -f(2.55J) -+-ft3J) - - -+ - - £t3.45j) - - -e - - f(I.55J) -e-f(2j) - -e- -£t2.45j) 

Figure 2.c. Graphic of /(d,}) for} = 1.55, 2, 2.45, 2.55, 3 and 3.45 
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Figure 3.a. Values of /(d,2). 
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Figure 3.b. Values of /(d,3). 
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4 Computational issues 

Numerical calculations of the components in the BN decomposition of a fractionally 

integrated series require the computation of 

to 

(24) Lf(d,})Xt(J). 
j=1 

To obtain an analytical expression of (24) we need the following result. 

PROPOSITION 1. Let d E 8 and k and q integer numbers with k ~ 1 and q ~ O. Let A be 

a square matrix, and define gk(d,}) = red - })/r(d - } - k + 1) for k ~ 2 and 

gl (d,}) = 1 for} positive, with gk (n,}) = rr~I(n -} -i). Then, 

We are now in position to obtain an expression for (24). Thus, as in Newbold (1990) and 

Newbold and Vougas (1996) consider the decomposition 

to lJ co 

(26) Lf(d,})Xt (J) = Lf(d,})xt(J) + Lf(d,})xt(J)· 
j=1 j=q+l 

Since for} > q xt (J) = rA xJ} -1)+ .. . +(I>pxt (j - p), we have that 

where e and x are 1 x p vectors defined by e'= (1,0, ... ,0) and x'= (xt(q)"",xt(q - p + 1)) 

and A = (aif ) is a pxp matrix with a1j =(I>j for ls}sp, a i ,i-l =1 for lsisp and all 

other elements are zero. 
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Now, for + < d < t, k is equal to 1 and f(d, j) = Ijr(d}, and expression (24) is 

calculated as in Newbold (1990). For d> t, k is greater than 1 and we can apply the 

previous proposition so that f (d, j) = g" (d, j) If (d) , and thus 

~ 1 ~ 

j~(d,j)xJj) = fed) "'fg,,(d,q +h)x/(q +h) 

1 
= fCd) e' Sed, k, q)x , 

and therefore, 

(28) 

When d = 1 or d = 2 and due to the fact that, for the special form of matrix A, 

A(I - A)-I = (I - A)-I A, expression (28) is the same as the obtained by Newbold (1990) 

and Newbold and Vougas (1996), respectively. When d is an integer number, then 

additionally q = 0, then - C(t) = e' A" (/ - A) -k X . 

5 Summary and Conclusions 

In this article we have generalised the classical Beveridge-Nelson decomposition of an 

ARIMA(p,l,q) and the recent ARIMA(p,2,q) extension of Newbold and Vougas (1996) to 

non stationary ARFlMA(p,d,q) models, dE 8. This extension, by allowing for more 
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flexible and natural characterizations of the trend-reversing behavior of a time series, can be 

proved useful when decomposing a time series into a permanent and a transitory 

components. Moreover, as in the ARIMA case, our decomposition depends only on past 

data and therefore is computable in real time. 

To that purpose we have first identified how should be such a decomposition for 

ARIMA(p,d,q} models for arbitrary integer d. Once it was understood how should be such 

a decomposition, we propose a decomposition for the more general ARFlMA framework 

with weights f(d,J) in the permanent component selected via continuity arguments and in 

order to resemble the paths of the weights in the ARIMA case. 

We have finished our paper by giving analytical formulas to numerically calculate both 

components of the fractionally integrated BN decomposition. Such a expressions allow 

efficient and exact computation of the BN-type trends discussed in this paper. 
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Appendix 

PROOF OF THEOREM 1. For simplicity we shall first provide a formal proof for the 

particular d = 4 case. The steps to follow in order to prove the general ARlMA(p,d,q) 

case for other values of d are completely similar to those of d = 4 . 

Therefore, assume that z/ is well represented as an ARlMA(p,4,q) process and let 

x/ = (1- Bt z/ so that 

(A. I) Zt = 4zt_1 - 6zt_2 + 4zt _ 3 - Zt_4 + xt . 

In this case, Zt+k can be expressed as 

(A. 2) Zt+k = a(k)zt + b(k )Z'_I + c(k)Zt_2 + d(k)zt_3 + lJf(k), 

where lJf(k) is a function of Xt+k 'Xt+k-1 '··· ,Xt+l. 

To see this it is enough to observe that 

=[4a(k - 1) - 6a(k - 2) + 4a(k - 3) - a(k - 4)]z/ 

+[4b(k -1) - 6b(k - 2) + 4b(k - 3) - b(k - 4)]Zt_l 

+ [4c(k -1) - 6c(k - 2) + 4c(k - 3) - c(k - 4)]Zr_2 

+[4d(k - 1) - 6d(k - 2) + 4d(k - 3) - d(k - 4)]Zt_3 

+41Jf(k -1) - 61f1(k - 2) + 41Jf(k - 3) - lJf(k - 4) + Xt+k' 

and thus, 

a(k) = 4a(k - 1) - 6a(k - 2) + 4a(k - 3) - a(k - 4), 

b(k) = 4b(k - 1) - 6h(k - 2) + 4b(k - 3) - b(k - 4) , 
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c(k) = 4c(k - 1) - 6c(k - 2) + 4c(k - 3) - c(k - 4) , 

d(k) = 4d(k -1) - 6d(k - 2) + 4d(k - 3) - d(k - 4), 

lfI(k) = 41f1(k - 1) - 61f1(k - 2) + 41f1(k - 3) -1fI(k - 4) + Xt+k , 

. with initial conditions 

a(- 3) = O,b(- 3) = O,c(- 3) = O,d(- 3) = 1, 

a(- 2) = O,b(- 2) = O,c(- 2) = l,d(- 2) = 0, 

a(-l) = O,b(-l) = 1,c{-1) = O,d(-l) = 0, 

aCe) = l,b{O) = o,c(o) = O,d(O) = 0, 

1fI{- 3) = 1fI(- 2) = 1//(-1) = 1fI(0) = 0, 

yielding 

and 

1 3 2 11 
a(k) = - k + k + - k + 1 
66' 

1 3 5 2 
b(k)=--k --k -3k 

2 2 ' 

1 3 1 3 
c(k) = --k- - 2k~ +-k 

2 2 ' 

1 3 I 2 1 
d(k) = - - k - - k - - k 

6 2 3' 

k[ 1 11] lfI(k) = L l+-(k _i)3 +(k-i)2 +-(k-i) xt+i 
i=1 6 6 
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~ (i - 1)(; - 2)(i - 3) 
- L.. 6 Xt+i , 

i=1 

so that 

~ (i - 1)(i - 2)(; - 3) 
+Zt-L.. 6 X t+i , 

i=1 

and so the first part of the theorem is proved. 

To prove the second part, notice that Zt (k) tends asymptotically to a polynomial of 

degree 3 with intercept 

_ _ _ ~ (j - l)(j - 2)(j - 3) A ( .) 

Zt - Zt L.. xt } . 
]=1 6 

Consequently, if the permanent component Zt of Zt is defined as the value the series 

would have if it were on its long-run path in the current time period, then this permanent 

component should be the intercept of this asymptotically polynomial, and so 

_ _ + ~ (1- .1)(2 - j)(3 - j) A ( .) 

Zt - Zt L.. xt } , 
j=1 31 

and the theorem is proved for d = 4 . 

Finally, in order to prove the theorem for any integer d, we should follow similar steps as 

in the d = 4 case. So, if XI = (1- B)d Zt, then 
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and Z/+k can be expressed as 

In the same manner, it can be proved that now the a j (k) terms are polynomials of degree 

d - I with ao(O) = I, and a j (0) = 0 for I:s; i:S; d - 1, whereas l{f(k) is a polynomial in k 

of degree d -1 whose coefficients are combinations of x/+p ••• x I+k , and with 

(0) = (_l)d-l ~ (i - l)(i - 2) . .. (i - d + 1) x .. 
l{f ~ (d-I)! 1+1 

Rearranging terms in (A. 3) we obtain that 

d-J ~ (i - 1)(1- 2) ... (i - d + 1) 
zl+k=Pd_J(k)+z/+(-I) L. _, Xl+i 

i=l (d 1). 

with Pd - 1 (0) = 0, and so, the permanent component of the series III the general 

ARIMA(p,d,q) case becomes 

_ _ (_ )d_l~(j-l)(j-2) ... (j-d+1) A (.) 

Z/ - z/ + 1 L.. XI } 
j=1 (d -I)! 

concluding the proof of the theorem .• 

PROOF OF THEOREM 2. Since XI = (1- B)d ZI we have that 

00 

(A.4) z/ = L ajzl _ j _ 1 + X, 
j=O 

being a 0 = d and a j = d (I - d)( 2 - d)- .. (j - d) / (j + I)! . Assuming that for s:s; k 

<X) 

Zt+s = L ~J (s)z/_ j + If/(S) , 
j=O 
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we have that for s = k + I 

and thus, 

00 

~i(k+l)= Lar~J(k-r), 
r=() 

and 

00 

lfI(k+l)= Lajlf/(k- j)+X t+k+l. 
j=O 

The next step is to find the analytical expression of tPj (k). Let us start with j = O. We 

know that 

00 

~o (k + 1) = L a r ~o (k - r) , 
r=() 

with initial conditions ~() (0) = 1, tPo (m) = 0 for m < o. By recurrence it can prove that 

tPo(l) = d, tPo(2) = (21t d(1 + d) , ... , tPo(k) = (k!t d(l + d)(2 + d)···(k -1 + d). The initial 

conditions for .i = 1 are ~l (0) = 0, ~1 (-1) = 1 and ~1 (m) = 0 for m < -1. Thus, by 

recurrence it is obtained now that 

k 
tPl (k) = (k + I)! d (1 - d)(l + d)( 2 + d)- .. (k - 1 + d) . 

For general j the initial conditions are ~j (- j) = 1 and ~j (m) = Ofor m ~ 0, m*-- j, and 

the expression of ~j (k) is 
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(k + j -1J 
fjJ(k)= ./. d(1-d)(2-d)-··(j-d)(1+d)(2+d)···(k-l+d). 
] (k +./)1 

This expression, in turn, for d E iJ and d * n becomes equal to 

r(k+d)r(j-d+l) (-l)if(k+d) 

rpj(k) = j!(k -1)1 (k + j)f(d)f(d + 1) = j!(k -1)!(k + j)f(d - j)" 

Finally, to conclude the proof of the theorem only remains finding the explicit expression 

of If/(k). For this, notice from the fact that 

"" 
lfI(k + 1) = L a,lfl(k - j) + Xl+k+l 

;=() 

and the initial condition If/(m) = 0 for m:S; 0 that 

and in general 

k 

If/(k) = LrfJn(k - ,/)x/+i ' 
;=1 

concluding the proof of the theorem. _ 

PROOF OF PROPOSITION 1. In order to proof this proposition, we need some 

intermediate results collected in the following lemma. 

LEMMA 1. Under the same assumptions as in Proposition 1, 

(ii) For k> 1, gk (d,q + I) + (k -l)gk_1 (d,q + 1) = gk (d,q) . 
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(iii) For k 21, gk+l(d,q) = gk(d,q)(d -q+k), 

and 

(iv)for 1 ~ i ::; k , 

(k -1) (k -2) 1 (k -1) 1 
gk(d,q) i-I +(-k+l)gk(d,q) i-2 d_q_i=gk+l(d,q) i-I d-q-i' 

PROOF OF LEMMA 1. Parts (i) to (iii) are straightforward using the definition of gk' To 

prove (iv) note that, by using (Ui) we have that 

(k -1) (k -2) 1 
gk(d,q) . 1 + (-k + l)gk(d,q) . 1 d . 

1- 1- -q-l 

(
k - 1)[ (-k + 1)(k - i) ] (k -1) 1 

=gk(d,q) i-I l+(d-q-i)(k-l) =gk+l(d,q) i-I d-q-i' 

and part (iv) is proved. 

Now, to prove the proposition, it is easy to check that expression (25) is true for k = 2 . 

Assuming that it is also true for k - 1, let us check that it also holds for k. For this, notice 

that, after some manipulations, we obtain 

'" 
(A. 5) S - SA = g k (d, q + I) A + L [g k (d, k + h) - g k (d, k + h - 1) ]A h . 

h=2 

Using parts (i) and (ii) of the Lemma, this expression is equal to 

'" 
gk(d,q + I)A + (-k + 1)Lgk-1 (d,q +h)A h 

h=2 

= gk (d,q + l)A + (-k + l)[S(d,k -1,q) - gk-I (d,q + 1)A] 

=[gk (d,q + 1) + (k -1)gk_1 (d,q + 1)]A + (-k + l)S(d,k -l,q) 

= gk (d,q)A + (-k + l)S(d,k -l,q) . 
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Since expression (25) is assumed to be true for k - 1, this last expression becomes equal 

to 

By using parts (iii) and (iv) of Lemma 1, we can summarise the above expressions, 

yielding 

(A.6) S - SA = L (-1 )1+1. gk+1 ,q, Ai (I - Ark+1 , 
[ 

k . (k -1) (d) ] 
1=1 I - 1 d - q -1 

and thus 

(A. 7) S = [± (_ly+1 (k -1) gk+1 (d,q? Ai]U _ Ark, • 
1=1 1-1 d - q-l 
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