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Continuous Pose Estimation for Stereo Vision based on UV Disparity
Applied to Visual Odometry in Urban Environments

Basam Musleh, David Martin, José Maria Armingol and Arturo de la Escalera

Abstract— This paper presents an autocalibration method to
determine the pose of a stereo vision system based on knowing
the geometry of the ground in front of the cameras. This pose
changes considerably while the vehicle is driven, therefore it
is good to know constantly the pose of the camera for several
applications based on computer vision, such as advanced driver
assistance systems, autonomous vehicles or robotics. These con-
stant changes of the pose make interesting to be able to detect
constantly the variations in its extrinsic parameters (height,
pitch, roll). The validation of the autocalibration method is
accomplished by a visual odometry implementation. A study of
the improvement of the results of the visual odometry estimation
taking into account the changes of the camera pose is presented,
demonstrating the advantages of the autocalibration method.

[. INTRODUCTION

Nowadays, advanced driver assistance systems (ADAS)
and autonomous vehicles require complex applications in
order to obtain accurate results. These applications use sen-
sors such as lidar laser, monocular or stereo vision systems,
among others. The ADAS algorithms relate the data provided
by the sensors to the elements in traffic environments. In
particular, the vision-based ADAS have to cope with the cor-
respondence between the location of the objects in the world
and its projection onto the image plane. This correspondence
is determined by the intrinsic and extrinsic parameters of the
camera. Intrinsic parameters are those related to the camera-
optic set and can be determined by means of a calibration
process. Extrinsic parameters express the pose of the camera:
position (heigth /) and orientation (yaw ¢, pitch 6 and roll
p) from the ground. These extrinsic parameters can change
considerably while the vehicle is driven.

There are mainly three different ways to estimate the
pose of the camera for traffic applications. The first one
is by using a calibration pattern to determine the extrinsic
parameters. For example, the calibration pattern can be
placed on the ground [1][2], or painted in the hood of the
vehicle [3]. Secondly, by way of making use of landmarks
of the road [4][5], such as traffic lines [6], making easier
the calibration process and allowing to be able to recalculate
the extrinsic parameters at different times and places. This
kind of landmarks cannot be detected constantly and the
problems normally come up in urban environments, where
the landmarks might be under bad conditions or occluded
by other elements, for instance, parked cars. The last way is
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based on the geometry estimation of the ground in front of
the vehicle [7] [8]. This geometry estimation makes possible
to find out the pose of the camera, avoiding the necessity of
a calibration pattern or landmarks.

This paper presents an autocalibration method to deter-
mine the extrinsic parameters of a stereo system based on
knowing the geometry of the ground in front of the stereo rig.
The disparity map [9] and the u-v disparity [10] [11] are used
in order to distinguish between image points belonging to the
ground (free map) and the ones which belong to the obstacles
(obstacles map) [12]. Once the road has been detected, the
goal of the autocalibration is to update the changes in the
pose of the stereo rig regarding the road ahead of the vehicle.
The implementation of the autocalibration allows to obtain
measures of the height (%), pitch (6) and roll (p) for each
frame (Fig.1(a)). However, the yaw deviation (¢) is assumed
constant in the implementation(Fig.1(b)). The autocalibration
method has been applied to an algorithm of visual odometry
[13][14]. Our visual odometry estimation [15] has been
tested by using several trajectories of a public available
dataset [16], which has ground truth information. The results
of the visual odometry show the effect of each extrinsic
parameter on the estimation of the vehicle movement.

The section II explains the autocalibration method, which
is divided into the yaw calibration, and the calibration of
the remaining extrinsic parameters. The application of the
autocalibration method to a visual odometry algorithm is
discussed in section III and its results are presented in section
IV. Finally, the conclusions are put forward in section V.

II. AUTOCALIBRATION METHOD

The presented algorithm of autocalibration is divided into
two stages. The deviation of the yaw (¢) between the stereo
rig and the move direction of the vehicle is calculated in
a unique calibration process, when the vehicle performs a
straight line movement. The yaw deviation is assumed to be
constant in time. The second stage consists in obtaining the
heigth (h), the pitch (0) and the roll (p) between the stereo
rig and the road. This second stage is carried out frame by
frame in order to detect the possible changes between the
road and the stereo rig.

A. Yaw Calibration

The yaw calibration is based on detecting the vanishing
point during two consecutive frames while the vehicle has
a straight line motion. Ideally, when there is not a yaw
deviation, the horizontal coordinate of the vanishing point
(utyp) should be equal to the horizontal coordinate of the
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(a) Schema of the configuration of the stereo rig from the ground. (b) Schema of the yaw deviation. (c) Results of an example of the yaw deviation

calibration in an urban environment; Superposition of two consecutive frames where the consecutive positions of each feature point are connected by a
straight line (green lines) whereas their intersections appear in red. Best viewed in colour.

optical center (up). Whenever a yaw deviation (¢) appears,
it can be calculated using (1), where « is the focal length.
The implemented method tracks feature points [17] between
two consecutive frames in order to find the vanishing point.
The coordinates of the nth feature point on the left image is
(U, ,Vn, ) and (un,, vy, ) in the next frame. Thus, a straight line
r,, (2) can be built for the feature point tracked. The vanishing
point corresponds to the intersection of each straight line with
the remaining lines.

¢ = arctan (uvP — uo) (D
o
Vi, —V
V:U'u+vn2(un2+unl) 2)
Upy — Up,

The calibration process is performed in a non-controlled
environment. Dynamic elements can appear, making difficult
the determination of the vanishing point by means of this
calibration process. The feature points belonging to the road
are used to find the vanishing point, in order to deal with the
dynamic elements. There are others sources of errors, such as
the vehicle vibration or the incorrect matching of the feature
points. An useful tool to solve these errors (outliers) is
Random Sample Consensus (RANSAC) [18]. The resulting
vanishing point for each pair of frames is chosen from every
intersection points of the straight lines using RANSAC. This
process is repeated along several frames and the final solution
for the vanishing point is determined by using RANSAC
again, among every partial solutions. An example of the
processing of two consecutive frames is shown in Fig.1(c),
where the position of each feature point in the two frames is
connected by green lines. That is, the intersection of these
lines determines the vanishing point.

B. Calibration of the Height, Pitch and Roll

Once the deviation of the yaw has been estimated
(Fig.1(b)), the configuration of the stereo rig and the road
is described in Fig.1(a). The stereo rig is composed of two

cameras whose image planes are coplanar in order to make
possible that the epipolar lines can be parallel. Following
the nomenclature and explanation presented by Labayrade
et al. in [7], it is possible to relate the homogeneous world
coordinates of a point P = (X,Y,Z,1) to its projection in the
two image planes (u;-S,v-S,S,1) (3) and (4).

uiS X
vS Y
S - Mproj 'MTranslx *MRotx 'MR()tz . MTransly 7 (3)
1 1

_(X 0 u O
0 a vo O
Mpraject(a7u07VO) = 0 0 10 0
100 0 1
(1 0 0 —gb
01 0 0
MTranslx (gib) = 0 0 1 0
0 0 0 1
(1 0 0 0]
0 cosf® —sin6 O
Moz (8) = 0 sin® cos® O @)
10 0 0 1]
[cosp —sinp 0 O]
sin cos 00
Mkorz (P) = op op 10
| O 0 0 1]
(1 0 0 0
01 0 h
MTransly (h) = 001 0
0 0 0 1

Where i = r for the right camera and i =/ for the left one,
being & =1 and & = 0. b is the baseline between both
cameras, (up,vp) are the coordinates of the optical center



and « is the focal length in pixels. The stereo rig is rotated
an angle O (pitch) around the axis X and an angle p (roll)
around the axis Z, which correspond to the angles between
stereo rig and ground (Fig. 1(a)). The cameras are elevated
a height 4 from the ground.

The depth (Z) of any point of the world is a function
of the disparity (A), which is the difference between the
horizontal image coordinates of the point in both images.
The expression of u, -S for the right camera and u; - S for the
left one, is calculated by using (3). Then, the final expression
for the disparity (A) for each point P = (X,Y,Z,1) is (5).
Ao uS —u,S

> b 5)
A= ZcosO+ (Y +h)cospsinO + X sinp sin 6

Below, the relationship between image coordinates for
points which belong to the ground, is obtained. The ground
or road in front of the stereo rig corresponds to every point
whose Y = 0, as shown in Fig. 1(a). Thus, it is necessary to
find out the expression of Y as a function of the coordinates
of the image {u,v}, the extrinsic and intrinsic parameters of
the stereo system {e,b,uq,vo,h,p,0}, and the disparity (A).
The relationship between the world and left image (&g = 0)
coordinates (3) can be formulated in inverse way (6), in order
to obtain the expression for every point of the ground (7). The
value of S is a function of the world coordinates (X,Y,Z),
that is the main problem of this procedure and it is solved
expressing S as S = ab/A by using (5).
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The equation (8) shows the relationship between the image
coordinates (u,v) for the points belonging to the ground. This
relationship is a straight line whose expression is v=C-u+
d for the different values of disparity A. The roll in urban
environments is normally low, so cosp ~ 1 and sinp ~ 0,
simplifying the expression (8) and obtaining (9). This new
expression (9) describes the relationship between the vertical
coordinate image (v) and the disparity (A) as another straight
line, that is achieved from the v-disparity. This straight line
is known as road profile [10], being v = C,A+ vy, where C,
is the slope and vaq is the value of (v) when the disparity is
A = 0. Once the road profile has been obtained, it is possible
to calculate the pitch by means of (10) and the height 4 by
using (11). The obtaining of the road profile when there are

large obstacles -usually in urban environments- is a complex
task. Thus, the road profile is obtained from a different v-
disparity in the presented approach. This new v-disparity is
built by using the free map instead of the disparity map [12],
removing the obstacles.

h
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0 = arctan (M) (10)
a
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The next goal is to estimate the roll (p). The work pre-
sented by Labayrade et al. [7] performs several projections
and regressions in order to estimate the roll. According to the
authors, their implementation does not exceed 10 projections
and regressions, but this implementation is computationally
expensive. However, it is possible to determine the free map
which corresponds to a disparity map, where only the ground
appears in front of the vehicle, by means of the u-disparity
[12]. Thus, the equation (8) can be applied to the free map
to detect the straight line v = Cu+d for a fixed value of
disparity A, which belongs to a close area of the vehicle.
Then, the roll can be estimated knowing the slope C of the
straight line in the free map by means of (12), avoiding
carrying out several projections.

_ tanp

=8~ P= arctan (Ccos 0)

(12)

The evaluation of the roll estimation method is performed
using a synthetic sequence of images. The ground appears in
the synthetic images as a rolling plane which has been rotated
in the range of -5 to 5 degrees. Fig.2 depicts the results
of the evaluation, where the median and mean of the error
are 0.0276 and 0.0331 degrees respectively, and the standard
deviation is 0.213 degrees. The detail of the evaluation is
shown in Fig.2(a), where the blue line corresponds to the
gradual rotation performed over each frame, and the red dots
are the corresponding results of the roll estimation method
for each frame. Fig.2(b) shows the histogram and the normal
distribution of the error in the roll estimation.

IIT. APPLICATION OF THE AUTOCALIBRATION
TO VISUAL ODOMETRY

The presented approach for the autocalibration of the
camera pose has been applied to our visual odometry method
[15]. The estimation of the visual odometry is based on
the fact that the vehicle performs a flat movement (2D) on
the ground. This movement is estimated by tracking feature
points [17] belonging to the road between consecutive frames
of the left camera, and converting their coordinates from left
image (u,v) into the world (X,Z). Once the image coordi-
nates of the feature points have been obtained, the equation
(6) is solved in order to express X (13) and Z (14) as a
function of the coordinates of the image, the extrinsic and in-
trinsic parameters of the stereo system {ct,b,ug,vo,h,p,0},
and the disparity (A). These world coordinates X (13) and
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Fig. 2. Results of the roll estimation evaluation. (a) Comparison between
the real rotation (blue line) and the estimated rotation (red dots) for each
frame. (b) Histogram (blue columns) and the normal distribution (red lines)
of the errors between the real rotation and the estimated one.

Z (14) do not have information about the calibration of the
yaw deviation (¢). The solution to the yaw deviation is to
calculate X' and Z' using (15) in order to estimate correctly
the movement of the vehicle (Fig.1(b)).

b
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As we can see, both X (13) and Z (14) are a function
of the disparity (A), whose value (5) is a function of the
world coordinates (X,Y,Z). Thus, it is necessary to achieve
a new expression of disparity (A) for the points belonging
to the road. This new expression (16) can be obtained from
(7) where the relation between the disparity and the image
coordinate, the extrinsic and intrisic parameters is found.

A :w@f\/o) - %(p)(”*m))jL
. (16)
abcos(p)sin(0)
T

IV. EXPERIMENTAL RESULTS

The experimental results for the pose estimation of the
camera and its effect on the visual odometry estimation
are presented in this section. The evaluation of the pre-
sented approach has been performed by means of a publicly
available dataset [16] [19], which allows to evaluate algo-
rithms of visual odometry as the ground truth information
is available. The presented results correspond to a sequence
(2011-09_30_drive_0027) consisting of 1100 frames where a
vehicle performs a closed loop in an urban environment. The
trajectory has a lengh about 700 meters and a duration of 5
minutes.

A. Results of the Camera Pose Estimation

As we mentioned before, the camera pose estimation is
divided into two stages: Firstly, the yaw deviation is achieved
using the vanishing point (Section II-A). The yaw calibration
has been performed by using different parts of sequences
where the vehicle has a straight line motion obtaining a de-
viation value of -0.3 degrees. In spite of the fact that the yaw
deviation seems to be low, it produces a great deformation
on the resulting trajectory as it will be discussed in the next
section (IV-B). Once the yaw calibration has been performed,
and it is assumed constant along the trajectory, the next stage
lies in obtaining the extrinsic remaining parameters, frame
by frame, using solely the visual information.

The extrinsic parameter that best allows to evaluate the
robustness of the autocalibration method is the height (k)
where the stereo rig is located. The authors of the public
dataset specify that the height has a value about 1.650
meters. The Fig.3(a) depicts the histogram and the normal
distribution of the raw data for the height (k) estimated in
the whole sequence (1100 frames). The results present a
mean of 1.6404 meters and a median of 1.65 meters with a
standard deviation of 0.0875 meters. The variations measured
in the height can be due to several circumstances. Besides the
possible outliers in the estimation of the extrinsic parameters,
the height is a function of the load in the vehicle or the road
due to potholes and speed bumps. By comparison, if the v-
disparity is built by using the disparity map instead of the
free map, the standard deviation increases to 0.1383 meters.

An Unscented Kalman Filter (UKF)[20] is used in order
to reduce the number of outliers and smooth out undesirable
fluctuations in the extrinsic parameters estimation (Fig.3(c)).
The Fig.3(b) shows a new histogram and normal distribution
of the filtered data for the height (%), reducing the standard
deviation of the data to 0.0415 meters.

B. Autocalibration Effect on the Visual Odometry

The knowledge of both the yaw deviation (¢) and the
continuous variations in each of the extrinsic remaining
parameters (h,p, ) is a useful source of information applied
to the visual odometry estimation. This information allows
to reduce in large measure the error in the visual odometry
estimation. The Fig. 5 depicts the resulting trajectories of the
visual odometry estimation, where it is possible to observe
the effect of the autocalibration method in comparison with
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Fig. 3. Results of the estimation of the extrinsic parameters along the sequence: (a) and (b) Histogram and the normal distribution of the raw and filtered
data respectively. (c) Evolution of the pitch (green line) and roll (dashed red line) all along the path.
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the ground truth (red line). Besides, a quantitative analysis of
the error both in translation and rotation is presented in Fig.4
and Table I, where the error values at the end of trajectory
are also detailed.

Firstly, the effect of the yaw calibration is shown in Fig.
5(a), where the resulting trajectory by using the information
of every extrinsic parameters appears in green (Autocali-
brated odometry), whereas the resulting trajectory appears
in cyan if the yaw deviation is ignored (¢ = 0). A low
yaw deviation produces an important rotation error along the
trajectory (cyan line with dots in Fig.4) and, consequently, a
large translation error at the end of the trajectory (5,72%).

In relation to the remaining angles of the extrinsic param-
eters (roll p and pitch ), their effect on the trajectory is
different. The autocalibration of the roll, frame by frame,
improves to a lesser extent the estimation of the visual
odometry than the autocalibration of the pitch. The Fig.5(b)
puts forward a comparison of two resulting trajectories
with the autocalibrated visual odometry (green line) and the
ground truth (red line), where in the first one (line in orange),
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Comparison of the effect of the extrinsic parameters on the translation (a) and rotation (b) error evolution along the trajectory. Best viewed in

the roll has been fixed to (p = 0) and in the second one
(line in magenta) the pitch has been also fixed to (6 = 0).
This different influence is also observed in the evolution
of the error both in the rotation and the translation along
the trajectory (Fig.4). Finally, the aggregation of the error
because of the non-calibration of the roll and the pitch (in
addition to the roll) produces a translation error of 2.87% and
16.51%, respectively. Whereas the autocalibrated estimation
obtains a final translation error of 1.16% (Table I).

TABLE I
FINAL TRANSLATION AND ROTATION ERRORS OF THE TRAJECTORY

Tran[m] Rot[deg] Tran[%] Rot[deg/m]
no pitch & roll 114.70 31.96 16.51 0.0460
no roll 19.97 7.24 2.87 0.0343
no yaw 39.71 23.83 5.72 0.0104
autocalibrated 8.04 1.23 1.16 0.0018




(b)

Fig. 5.  Resulting trajectories of the visual odometry estimation. (a)
Comparison of the trajectory obtained without the information of the yaw
deviation (cyan line) with the autocalibrated trajectory (green line) and the
ground truth (red line). (b) Comparison of the effect of the roll (orange line)
and the roll together with the pitch (magenta line) on the trajectories. Best
viewed in colour.

V. CONCLUSIONS

An autocalibration method of the extrinsic parameters of a
stereo rig, based on the road geometry in front of the vehicle,
has been explained and applied to urban environments.
The presented approach improves the method presented by
Labayrade et al. [7], because of the road profile is obtained
by using a v-disparity without obstacles, that reduces the
number of outliers in the estimation. Besides, the roll can
be achieved avoiding performing several projections with a
precision about 0.03 degrees.

The application of the autocalibration method to a visual
odometry algorithm has obtained a considerable reduction
of the error along the trajectory followed by the vehicle,
obtaining a final error of 1.16% in translation and a rotation
error of 0.0018 degrees per meter. This reduction validates
the performance and the utility of the autocalibration method
in ADAS or autonomuos vehicles applications.
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