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abstract

We define the extreme values of any random sample of size n from a distribution
function F as the observations exceeding a threshold and following a type of
generalized Pareto distribution (GPD) involving the tail index of F. The threshold is
the order statistic that minimizes a Kolmogorov-Smirnov statistic between the
empirical distribution of the corresponding largest observations and the corre-
sponding GPD. To formalize the definition we use a semiparametric bootstrap to
test the corresponding GPD approximation. Finally, we use our methodology to
estimate the tail index and value at risk (VaR) of some financial indexes of major
stock markets.

keywords: bootstrap, extreme values, goodness-of-fit test, Hill estimator,
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Risk management is one of the most important innovations of the 20th century in

economics. During the last decade financial markets have realized the importance

of monitoring risk. The question one would like to answer is: ‘‘If things go wrong,

how wrong can they go?’’ The variance used as a risk measure is unable to answer

this question.

Alternative measures regarding possible values out of the range of avail-
able information need to be defined and calculated. Extreme value theory

(EVT) provides the tools to model the asymptotic distribution of the maximum

of a sequence of random variables {Xn}, and in this sense this theory can be

very helpful in order to obtain a first impression about how wrong things
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can go. A deeper insight into EVT allows us to know not only the order of con-

vergence of the maximum, but also the limiting distribution of the largest

observations of the sequence. These observations are the main ingredients of

more informative risk measures that have been recently introduced, like value

at risk (VaR) or expected shortfall. These measures are functions of extreme

quantiles of the data distribution. Attempting to model the tails of these dis-

tributions is troublesome and standard methodologies such as historical simu-
lation or the gaussian distribution do not provide reliable approximations at

very high quantiles.

On the other hand, the methodology derived from EVT covers this gap and

produces a parametric framework to derive the VaR or any function of this

extreme quantile. It is clear that the first task is to identify which values are

really extreme values. In practice this is done by graphical methods such as the

QQ plot, sample mean excess plot, or by other ad hoc methods that impose an

arbitrary threshold (5%,10%, . . .) [see Embrechts, Klüppelberg, and Mikosch
(1997)]. These methods do not propose any formal computable method, and

moreover, they only give very rough estimates of the set of extreme values. In

this article we propose a formal way of identifying and estimating the extreme

values of any random sample of size n coming from a distribution function, say F.

These values are going to be defined as the exceedances of a threshold sequence

{un} following a type of generalized Pareto distribution (GPD). The selection of

this threshold plays a central role in this definition and in estimating the param-

eters of the GPD. The sequence of extreme values depends on the length of the
data sequence by the choice of {un}. Therefore we need to introduce an appro-

priate test to assess statistically whether the distribution function of the set of

extremes given by the threshold really satisfies the weak convergence to the GPD

or not, with parameters driven by F. In order to achieve this task, we propose a

semiparametric bootstrap test and study its asymptotic as well as its finite sample

performance.

The final purpose of our methodology is to achieve a reliable approximation

of F, paying special attention to its tails. Our tail estimate provides accurate
approximations of the extreme quantiles of F, and from them it is straightforward

to calculate the risk measures introduced in the financial literature.

The article is structured as follows. In Section 1 we present some general

results of extreme value theory, focusing on the weak convergence of the largest

observations of a random sequence. Section 2 introduces different approaches to

select the threshold sequence and gives a brief review of estimation methods

for the parameters of the GPD. Some simulations show the performance of our

approach in terms of tail index estimation. The complete definition of the
sequence of extreme values is given in Section 3 by means of a bootstrap

hypothesis test. Monte Carlo simulations provide the finite sample performance

of our proposed test. Section 4 presents an empirical application where the risk of

financial indexes of major stock markets is analyzed via the tail index and VaR.

Finally, Section 5 presents some concluding remarks. Proofs are presented in the

appendix.

350 Journal of Financial Econometrics



1 REVIEW OF EXTREME VALUE THEORY RESULTS

The purpose of this section is to briefly introduce the set of results of the so-called

extreme value theory necessary to develop the theory of the article. The departing

point is the study of the weak convergence for the sample maximum of a sequence

of random variables {Xn} with distribution function F. Our intention is to use the

limiting distribution of this statistic to derive the weak convergence of the largest

observations of a random sequence imposing a minimum set of assumptions on
the distribution function F.

Let Mn ¼ max{X1, . . . , Xn} be the sample maximum of the sequence and let F
be the common distribution function for {Xn}. Our first goal is to introduce the

conditions under which Mn converges weakly to a nondegenerate distribution

function.

Result 1 Let {Xn} be an independent and identically distributed (i.i.d.) sequence. Let 0 �
t � 1 and suppose that {un} is a sequence of real numbers such that

nð1 � FðunÞÞ! t as n!1: ð1Þ

Then

PfMn � ung! e�t as n!1: ð2Þ

Conversely, if Equation (2) holds for some t, 0 � t � 1, then so does Equation (1).

The proof of this result is immediately derived from

PfMn � ung ¼ FnðunÞ ¼ 1 � nð1 � FðunÞÞ
n

� �n

: ð3Þ

However, this result does not guarantee the existence of a nondegenerate

distribution for Mn. Define the right endpoint of a distribution function as xF ¼
sup{x j F(x) < 1} � þ1. It is clear that Mn ! xF with probability 1 as n ! 1.
Suppose now that F has a jump at xF with xF < 1 (i.e., F(xF�) < 1 with

FðxF�Þ ¼ limx"xFFðxÞ), and consider a sequence {un} satisfying Equation (2) with

0 � t � 1. Then either un < xF for infinitely many values of n and n(1 � F(un)) !
1, or un > xF and n(1 � F(un)) ¼ 0. Therefore we also need some regularity

condition on the tail of F to avoid the existence of such jumps.

Result 2 Let F be a distribution function with right endpoint xF such that

lim
x"xF

1 � FðxÞ
1 � Fðx�Þ ¼ 1, ð4Þ

and let {un} be a sequence with un < xF and n(1 � F(un)) ! t. Then 0 < t < 1.

We will assume hereafter these regularity conditions as our minimum set of
assumptions on the distribution function F.

The choice of the sequence {un} determines the value of t. Suppose vn> un and

Equation (2) holds, then n(1 � F(vn)) ! t0 with t0 < t. We can write Equation (2)

as P{Mn � un(x)} ! e�t(x), with un depending on x. Moreover, there exist some
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scaling sequences an, bn varying according to F such that

Pfa�1
n ðMn � bnÞ � xg!GðxÞ as n!1, ð5Þ

with un(x) ¼ anx þ bn and G(x) ¼ e�t(x) a distribution function. This function has

been fully characterized by Gnedenko (1943) or de Haan (1976) via the analysis of

domains of attraction for the maximum, and it can be summarized as follows:

Result 3 The distribution function G(x) derived in Equation (5) can only take three
different forms,

Type I: (Gumbel) G(x) ¼ e�e�x

, �1 < x < 1,

Type II: (Fr�eechet) GðxÞ ¼
0 x � 0,

e�x
�1
j

x> 0, j> 0

�
Type III: (Weibull) GðxÞ ¼

1 x � 0,

e�ð�xÞ�
1
j

x< 0, j< 0
:

�
The parameter j is the tail index of F and characterizes the tail behavior of the

distribution function. The three types can be gathered in the so-called generalised

extreme value distribution, first proposed by von Mises (1936),

GðxÞ ¼ e�ð1þj
x�m

s
Þ�

1
j

, ð6Þ

where m is a location parameter, s a scale parameter, and j 6¼ 0.

This expression boils down to GðxÞ ¼ e�e�ðx�m
s Þ

when j ¼ 0. Clearly tðxÞ ¼
ð1 þ j

x�m

s
Þ
�1
j in Equation (5), and hence nð1 � FðunðxÞÞÞ! ð1 þ j

x�m

s
Þ
�1
j for all x,

where an, bn are suitable constants. This is the result we exploit in order to derive

the weak convergence of the largest observations determined by a threshold

sequence uon ¼ anm þ bn, with m satisfying �log G(m) ¼ 1. By doing that

1 � FðunðxÞÞ
1 � FðuonÞ

! 1 þ j
x� m

s

� ��1
j

, as n!1: ð7Þ

This expression can be rewritten as

FðunðxÞÞ � FðuonÞ
1 � FðuonÞ

! 1 � 1 þ j
x� m

s

� ��1
j

, ð8Þ

for all x > m continuity points. The threshold sequence satisfies un(x) ¼ uon þ
an(x � m), and we can define

Fuonðanðx� mÞÞ ¼ Fðuon þ anðx� mÞÞ � FðuonÞ
1 � FðuonÞ

, ð9Þ

as the conditional excess distribution function given uon with x > m. This takes us

directly to the following result:

Result 4 Let y ¼ an(x � m), then

lim
uon!xF

sup
½0�y<1�

jFuonðyÞ � GPDj;sðuonÞðyÞj ¼ 0, ð10Þ
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with

GPDj;sðuonÞðyÞ ¼
1 � 1 þ j

y

sðuonÞ

� ��1
j

if j 6¼ 0

1 � e
�y

sðuonÞ if j ¼ 0

, ð11Þ

8><>:
the generalized Pareto distribution and s(uon) ¼ san.

This result is known as Pickands (1975) theorem. Pickands proposed a
sequence uon taken in the interval [bn, bnþ1], with bn the suitable sequence in

Equation (5). This approximation for the distribution of the largest observations

regarded as the exceedances of a threshold sequence can be improved when the

tail of F decays at a polynomial rate.

Suppose 1 � FðxÞ ¼ x�
1
jLðxÞ with L(tx)/L(x) ! 1 as x ! xF and j > 0, then the

distribution function F satisfies

lim
x"xF

1 � FðtxÞ
1 � FðxÞ ¼ t�

1
j, t> 0: ð12Þ

This type of distribution function is regularly varying at a rate 1
j

and the domain

of attraction of the sample maximum is the Fréchet distribution [see Resnick (1987)

or de Haan (1976)]. The function L(x) is said to be slowly varying and is introduced

to include the deviations of F from the Pareto probability law. When these
departures from the polynomial law are small, FuonðyÞ is better approximated by

the Pareto distribution function. Consider a sequence un(x) ¼ uonx, where uon ¼
un(1) is the threshold sequence that satisfies 1 � FðuonÞ ¼ u

�1
j

on LðuonÞ. The con-

ditional excess distribution function defined by uon as FuonðunðxÞÞ¼
FðunðxÞÞ�FðuonÞ

1�FðuonÞ
satisfies

FuonðunðxÞÞ!1� unðxÞ
uon

� ��1
j

, as n!1, ð13Þ

for un(x) � uon or equivalently for x � 1. This convergence holds for all continuity

points of F and therefore for this case we can rewrite the previous result as

lim
uon!xF

sup
½uon � y<1�

j FuonðyÞ � PDjðyÞ j ¼ 0, ð14Þ

with y ¼ un(x) and PDjðyÞ ¼ 1 � ð y
uon
Þ
�1
j .

Finally, the choice of the threshold sequence also has an effect on the error

made by the approximations claimed in Pickands theorem. This error arises from

the asymptotic relation n(1 � F(un))! t and from the approximation of Fn(un) by

the exponential distribution. The latter approximation is of order o(n�1) since

0� e�x � 1 � x

n

� �n
� 0:3

1

n� 1
,

for 0 � x � n [see, e.g., Leadbetter, Lindgren, and Rootzén (1983)]. Nevertheless, if

F is continuous one can always obtain an equality in Equation (2) by taking un ¼
F�1ðe�t

nÞ and making the approximation errors vanish. However, sequences of
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type un(x) ¼ anx þ bn, with an, bn suitable constants are more appropriate to study

the weak convergence of Mn. In these cases, the equality or any uniform bound

for all x are not usually feasible in Equation (5).

2 THRESHOLD CHOICES TO DEFINE THE EXTREME VALUES

The last section has focused on finding the asymptotic laws that rule the largest

observations of a random sequence from a distribution function F. This set of

observations is defined by means of a threshold sequence and the tail index j that

characterizes the corresponding generalized Pareto or Pareto. The choice of this

sequence is troublesome since uon! xF when n!1, but at an appropriate rate.

This order of convergence depends on F represented by the sequences an and bn
when un(x) is of the form un(x) ¼ anxþ bn. Hence the threshold sequence uon can be
defined by the scaling sequences an, bn and the value of x satisfying the condition

�logG(x) ¼ 1, or equivalently n(1 � F(uon)) ! 1. For ease of notation we will

use hereafter un instead of uon to denote the threshold sequence satisfying these

conditions. This sequence is immediately derived by direct calculations when F is

known. Consider as an example the case F(x) ¼ 1 � e�x. By continuity of F we can

choose unðxÞ ¼ F�1ð1 � tðxÞ
n Þ with t(x) > 0, and hence un(x) ¼ �log t(x) þ log n.

Equation (2) is written as

PfMn � �log tðxÞ þ log ng! e�tðxÞ,

and then P{Mn � log n � x} ! e�e�x

, with t(x)¼e�x for all x 2 R. The scaling con-

stants are an ¼ 1, bn¼log n, and hence the threshold sequence is un ¼ log n, since

�log G(0) ¼ 1. More examples can be found in Leadbetter, Lindgren, and Rootzén

(1983).
In general, F is unknown, and in this setting neither the theoretical derivation

nor the direct comparison of different threshold choices is possible. This compar-

ison is undertaken by analyzing the properties of the tail index estimator of F, as

most of these estimators for j are tied to a threshold choice. Therefore their

biases and variances are influenced by the effect of the selection of un. There is a

large amount of literature in tail index estimation [chapter VI of Embrechts,

Klüppelberg, and Mikosch (1997) gives an excellent review]. Among these esti-

mators, the most popular are Hill’s estimator (1975) and Pickands’s estimator
(1975). The former is given by

ĵjðHÞ
n ðunÞ ¼

1

k

Xn
i¼n�kþ1

log
xðiÞ

xðn�kÞ
, ð15Þ

with un ¼ x(n�k), x(n�k+1) � � � � � x(n) denoting the increasing order statistics and k
an integer value in [1, n]. Pickands’s estimator for the tail index is

ĵjðPÞn ðunÞ ¼
1

logð2Þ log
xðn�kþ1Þ � xðn�2kþ1Þ
xðn�2kþ1Þ � xðn�4kþ1Þ

� �
, ð16Þ

354 Journal of Financial Econometrics



and

ŝsðPÞ
n ðunÞ ¼

xðn�2kþ1Þ � xðn�4kþ1ÞR log2
0 eĵj

ðPÞ
n ðxðn�4kþ1ÞÞtdt

, ð17Þ

for the variance, with un ¼ x(n�4kþ1) and k ¼ 1, . . . , n/4. There are some features of

both estimators that are worth mentioning. These estimators are heavily depen-

dent on the threshold choice un, and both of them can be derived under the

assumption that Fun
is exactly Pareto with parameter j or generalized Pareto

with parameters j and s(un). Moreover, if Fun
¼ PDj, Hill’s estimator is the

maximum-likelihood estimator of j inheriting the corresponding asymptotic

properties: consistency and normal distribution. This approach is only valid for
regularly varying distribution functions, that is, j > 0, otherwise the asymptotic

properties of this estimator vary according to F [see Davis and Resnick (1984)].

Pickands’s estimator for the tail index is obtained assuming Fun ¼ GPDj;sðunÞ
and taking the inverse of the parametric GPD. This estimator is consistent and also

converges to a normal distribution; but it is very sensitive to the choice of un.

Alternatively, under the latter parametric assumption on Fun we can obtain the

maximum-likelihood estimator for the parameter j and s(un) of the GPD. In this

case there is not a closed expression for the maximum-likelihood estimators of
these parameters, and we have to rely on numerical procedures [see Press (1992)].

The maximum-likelihood estimator for the tail index is consistent and asympto-

tically normal for j > �1
2, as is discussed in Smith (1985).

The threshold selection is carried out by studying the mean-squared error of

these j estimators, as un varies. However, some explicit form is required for the

distribution function F. Under the assumption

1 � FðxÞ ¼ Cx�
1
j½1 þDx�b þ oðx�bÞ�, ð18Þ

where j > 0, C > 0, b > 0, and D is a real number, Hall (1982) proposed estimators

for the tail index based on an optimal choice of intermediate order statistics as

candidates for the threshold sequence. Nevertheless, the pioneering work for

threshold selection is Pickands (1975), where F satisfies the regularity conditions
of Result 2, but not necessarily Equation (18). The estimation of the tail index and

the threshold selection are done in a single step. Pickands proposed as a candidate

for the threshold the order statistic of a sample {xn} that minimizes the distance d1

involving the distribution functions Fun;n and GPD
ĵj
ðPÞ
n ðunÞ;ŝsðPÞ

n ðunÞ
. The empirical

conditional excess distribution function Fun;nðxÞ with x > un is defined by

Fun;nðxÞ ¼
Xn
i¼1

1fun < xi � xgPn
j¼11fxj>ung

, ð19Þ

or equivalently, via the transformation y¼an(x�un) > 0, by

Fun;nðyÞ ¼
Xn
i¼1

1f0<yi � ygPn
j¼11fyj>0g

: ð20Þ
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The distance d1 can be written as a function of a variable u, once n is given, as

d1
�
Fu;n, GPDĵj

ðPÞ
n ðuÞ;ŝsðPÞ

n ðuÞ

�
¼ sup

0�y<1
j Fu;nðyÞ � GPD

ĵj
ðPÞ
n ðuÞ;ŝsðPÞ

n ðuÞðyÞ j : ð21Þ

The optimal threshold is then

uðPÞn ¼ arg min
u

d1
�
Fu;n, GPDĵj

ðPÞ
n ðuÞ;ŝsðPÞ

n ðuÞ

�
, ð22Þ

with u taking values along the ordered sample x(3n/4) � � � � � x(n). More specifi-

cally, u
ðPÞ
n ¼ xðn�kÞ with k!1, n !1, and k ¼ o(n) to benefit of an increase in the

sample size.

Alternatively we propose a version of the distance d1 where the number of

tail observations is weighted differently. This new approach accounts for the

estimation pitfalls that derive from the lack of observations when u gets close to xF.

Definition 1 Let Fu,n be the empirical version of Fu and GPD
ĵj
ðMlÞ
n ðuÞ;ŝsðMlÞ

n ðuÞ the distribution
function of the largest observations with parameters estimated by maximum likelihood
(Ml). Define the weighted Pickands distance dWP as

dWP Fu;n, GPDĵj
ðMlÞ
n ðuÞ;ŝsðMlÞ

n ðuÞ

� �
¼ k« sup

0�y<1
j Fu;nðyÞ � GPD

ĵj
ðMlÞ
n ðuÞ;ŝsðMlÞ

n ðuÞðyÞ j , ð23Þ

with 0 � « � 1
2 and k ¼

Pn
j¼11fxj > ug.

The parameter « determines the weight assigned by the distance dWP to the tail

observations defined by the corresponding u. Notice that this distance is the one

used by Pickands when « ¼ 0, and the Kolmogorov-Smirnov (KS) statistic

[Kolmogorov (1933)] when « ¼ 1
2. The corresponding threshold choice is the

order statistic that minimizes the distance,

uðWPÞ
n ¼ arg min

u
dWP

�
Fu;n, GPDĵj

ðMlÞ
n ðuÞ;ŝsðMlÞ

n ðuÞ

�
, ð24Þ

with u taking values along the ordered sample x(1) � � � � � x(n). The parameter « can
be useful to study the effect of different weighting schemes in the threshold

selection; however, this is far beyond the scope of this article, where we will

only focus on the value « ¼ 1
2 (KS statistic).

It is clear that threshold values far from xF produce biased estimates of the tail

index. On the other hand, un close to the right endpoint will result in inefficient

estimates of j. Goldie and Smith (1987) and Smith (1987) derive the asymptotic

distribution functions of both the maximum-likelihood and Hill estimators of the

tail index for a class of distribution functions such that 1 � FðxÞ ¼ x�
1
jLðxÞ, where

L(x) are slowly varying functions of different types. They also discuss in detail

asymptotic bias and variance for these estimators and find that departures of F
from a Pareto distribution function lead to biased and inefficient estimates of the

tail index for both estimators. As a result, a right choice of the threshold sequence

turns out to be of critical importance in order to minimize the mean-squared

error (MSE).

Hall (1982) derives an analytical expression for the MSE of Hill’s estimator

when F satisfies Equation (18). All these results are achieved for determined
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classes of distribution functions. In contrast, under the regularity conditions of

Result 2 it is not possible to derive analytically the MSE expression for the tail

index estimator. Therefore we propose bootstrap confidence intervals in order to

measure the bias and uncertainty of the different tail index estimators we

considered.

The naı̈ve nonparametric bootstrap is consistent since the empirical distribu-

tion function Fn is a consistent estimator of F and
ffiffiffi
k

p
ðĵjðiÞn ðuðlÞn Þ � jÞ, i ¼ H, Ml, P,

and l¼ P, WP, Ah (ad hoc) converges weakly to a normal distribution, with k being

the number of exceedances over un. Then the bootstrap approximation Jn(x, Fn) to

the true sampling distribution function Jn(x, F) of this statistic can be used to

produce confidence regions, at the 1 � a level, in the following way,

j 2
h
ĵjðiÞn ðuðlÞn Þ � 1ffiffiffi

k
p J�1

n

�
1 � a

2
, Fn
�
, ĵjðiÞn ðuðlÞn Þ � 1ffiffiffi

k
p J�1

n

�a
2
, Fn
�i

, ð25Þ

where J�1
n ð1 � a, FnÞ is the 1 � a bootstrap quantile. To implement Equation (25),

the bootstrap approximation is estimated by

ĴJnðx, FnÞ ¼
1

B

XB
j¼1

1f
ffiffi
k

p
ðĵj�ðiÞ

j;n
ðu�ðlÞ

j;n
Þ�ĵj

ðiÞ
n ðuðlÞn ÞÞ� xg, ð26Þ

where B is the number of bootstrap iterations, ĵj
�ðiÞ
j;n ðu�ðlÞj;n Þ the corresponding esti-

mator for the bootstrap sample j, and u
�ðlÞ
j;n the corresponding threshold choice.

The finite sample performance of the different estimators is analyzed in

Table 1. The threshold un is chosen by both methods, Pickands and weighted
Pickands with e ¼ 1

2. To emphasize the importance of the threshold selection to

estimating the tail index, an ad hoc threshold (u
ðAhÞ
n ¼ xð 95

100nÞ) is also included in the

analysis.

The simulation experiment of Table 1 is done for different Student

t-distributions, where the tail index j is well approximated by the inverse of the

degrees of freedom [see chapter III of Embrechts, Klüppelberg, and Mikosch

(1997)].

Before discussing the results of this Table 1 it is important to notice that
although F is known, we replace it with Fn to calculate the bootstrap approxima-

tion Jn(x, Fn). The reason for doing this is that the bootstrap procedure works

Table 1 Bootstrap confidence intervals I.

t1 (j � 1) t5 (j � 0.2) t10 (j � 0.1) t30 (j � 0)

ĵjðMlÞ
n ðuðWPÞ

n Þ [0.70, 1.69] [�0.17, 0.24] [�0.28, 0.39] [�0.43, 0.68]

ĵjðPÞn ðuðPÞn Þ [0.29, 1.06] [�0.39, 0.08] [�0.63,�0.06] [�0.64,�0.17]

ĵjðMlÞ
n ðuðAhÞn Þ [0.34, 1.75] [0.19, 0.91] [�0.26, 0.33] [�0.28, 0.57]

Bootstrap confidence intervals at a significance level a ¼ 0:05 for different estimators of the tail index:

ĵjðMlÞ
n ðunÞ with un estimated by dWP and by u

ðAhÞ
n ¼ xð 95

100nÞ; and ĵjðPÞn ðuðPÞn Þ with un estimated by d1.

B ¼ 1000 bootstrap samples of size n ¼ 1000 are drawn from a single sequence generated from tn,

with n ¼ 1, 5, 10 and 30.
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even when F is unknown and we only have a realization from the random

sequence {Xn}.

There are two clear results from Table 1: First, the confidence intervals for our

estimator contain the true tail index, something that does not occur for Pickands’s
method; and second, the confidence intervals estimated from the ad hoc threshold

are wider than the ones derived from our method when j is significantly greater

than zero.

Table 2 analyzes in more detail the advantages of the weighted Pickands

method for selecting un when the data come from heavy-tailed distributions. In

this case the GPDj;sðunÞ is replaced by the PDj in Definition 1 and Equation (24).

From Table 2 we conclude that when we are dealing with heavy-tailed dis-

tributions (j > 0), our method is more efficient with PD than with GPD. These
simulation results are in line with the theoretical findings derived in Smith (1987).

3 HYPOTHESIS TESTING

Different threshold choices define different sets of possible extreme values of

a particular sequence {Xn}. In this article the observations exceeding a certain

threshold are considered extreme values only if they are distributed as a

GPDj;sðunÞ, with j the tail index of F. In order to check this condition we propose

a goodness-of-fit test for the following hypothesis:

Hn;0 : the sample fðx1 � unÞþ, . . ., ðxn � unÞþg is distributed as GPDj;sðunÞ

versus a general alternative of the form

Hn;1 : the sample fðx1 � unÞþ, . . ., ðxn � unÞþg is not distributed as GPDj;sðunÞ

with un 2 R, j the tail index of F and (x)þ ¼ max(x, 0).

A natural goodness-of-fit test statistic is the KS statistic [for other goodness-of-
fit criteria see Anderson and Darling (1952)],

Rkðy;j,sðunÞÞ ¼
ffiffiffi
k

p
sup

0�y<1
jPkðyÞ � GPDj;sðunÞðyÞ j , ð27Þ

with k ¼
Pn

j¼11fxj>ung and Pk the empirical distribution function of the observa-

tions exceeding un. When the parameters are known, the asymptotic distribution

Table 2 Bootstrap confidence intervals II.

t1 (j � 1) t5 (j � 0.2) t10 (j � 0.1) t30 (j � 0)

ĵjðMlÞ
n ðuðWPÞ

n Þ [0.70, 1.69] [�0.17, 0.24] [�0.28, 0.39] [�0.43, 0.68]

ĵjðHÞ
n ðuðWPÞ

n Þ [0.82, 1.23] [0.08, 0.37] [�0.42, 0.23] [0.04, 0.20]

Bootstrap confidence intervals at a significance level a ¼ 0.05 for different estimators of the tail index

when u
ðWPÞ
n is obtained from GPDj;sðunÞ and from PDj, respectively. Note ĵjðMlÞ

n ðuðWPÞ
n Þ is ĵjðHÞ

n ðuðWPÞ
n Þ for the

PDj case. B ¼ 1000 bootstrap samples of size n ¼ 1000 are drawn from a single sequence generated

from tn, with n ¼ 1, 5, 10, and 30.
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of this test statistic is tabulated and the critical values can be derived. If the

parameters are unknown, but consistently estimated, the bootstrap distribution

function is a reliable approximation of the true sampling distribution of Rk(y; j,

s(un)). In this case it can be proved [see Romano (1988)] that the bootstrap critical

values are consistent estimates of the actual ones.

Our interest, however, does not lie in the definition of the extreme values of a

particular sequence {Xn}, but in the definition of the extreme values of any
sequence of length n with distribution function F. In this case a different hypoth-

esis test is needed to determine whether the selected threshold is a good candidate

to define the extremes of F given the sample size n. More formally, the testing

problem under consideration is

H0: Fun ¼ GPDj;sðunÞ

versus a general alternative

H1: Fun 6¼ GPDj;sðunÞ,

with j being the tail index of F.

Now we can formally define the set of extreme values of any sequence with
distribution function F.

Definition 2 Let {Xn} be any sequence of a distribution function F. The extreme values of
any sequence of length n from this distribution are given by the observations exceeding
the threshold un, and satisfying Fun ¼ GPDj;sðunÞ.

The test statistic in this case is a version of the family of KS test statistics,

Tnðyn; j,sðunÞÞ ¼
ffiffiffi
n

p
sup

0�y<1
j Fun;nðyÞ � GPDj;sðunÞðyÞ j , ð28Þ

with yi ¼ (xi � un)þ, i ¼ 1, . . . , n. This statistic depends on un, j, and s(un).

In order to derive the asymptotic distribution of Equation (28) and to assess

the bootstrap approximation, the following results are required. Let

UlðtÞ ¼
Pfl<T� tg
PfT> lg ð29Þ

be the conditional excess distribution function, with parameter l on [0, 1], of a

uniform [0, 1] random variable T. Its empirical counterpart

Ul;nðtÞ ¼
1

n

Xn
i¼1

1fl<ti�tg
1
n

Pn
j¼11ftj>lg

, ð30Þ

with t1, . . . , tn and t 2 [0, 1], defines an empirical process BnðtÞ ¼
ffiffiffi
n

p
ðUl;nðtÞ �

UlðtÞÞ similar to the uniform empirical process
ffiffiffi
n

p
ðUnðtÞ �UðtÞÞ. It is well known

that the latter converges weakly to the distribution of a mean-zero gaussian
process ZU(�) [see chapter V of Pollard (1984)]. By an analogue reasoning, it is

immediate to derive the probability law of the process SnðyÞ ¼
ffiffiffi
n

p
ðFun;nðyÞ�

FunðyÞÞ, where the threshold un plays the role of the parameter l.
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Theorem 1 Consider a continuous and strictly increasing distribution function F and a
threshold un, with un < xF. The empirical process Sn(y) converges weakly to the distribu-
tion of a mean-zero gaussian process ZFun ð�Þ with covariance function

covðZFun ðy1Þ, ZFun ðy2ÞÞ

¼ ðFðminðy1, y2ÞÞ � FðunÞÞ � ðFðy1Þ � FðunÞÞðFðy2Þ � FðunÞÞ
ð1 � FðunÞÞ2

, ð31Þ

with y1, y2 2 R. Moreover, under the null hypothesis H0, this empirical process takes the
form

ffiffiffi
n

p
ðFun;nðyÞ � GPDj;sðunÞðyÞÞ and the covariance function becomes

covðZFun ðy1Þ;ZFun ðy2ÞÞ ¼
GPDj;sðuÞðminðy1; y2ÞÞ

1 � FðunÞ
� GPDj;sðunÞðy1ÞGPDj;sðunÞðy2Þ: ð32Þ

By the continuous mapping theorem, the limiting distribution function,

denoted by L(x, F), of the test statistic Tn is the distribution of the supremum of a

mean-zero gaussian process with the covariance function of Equation (32). The

proof is in the appendix.

In order to test H0, we should be using the following rejection criteria:

fTnðyn; j, sðunÞÞ> L�1
n ð1 � a; FÞg, ð33Þ

where L�1
n ð1 � a, FÞ is the 1 � a quantile of the exact finite sample distribution

Ln(x, F) of the statistic Tn. This distribution Ln is clearly unknown, and in practice
has to be approximated by the asymptotic distribution L(x, F). This limiting dis-

tribution takes a complicated form and depends on the knowledge of F, on the

parameters of the GPD, as well as on the threshold un. The nuisance parameters

dependency forces us to look for an alternative method to approximate the dis-

tribution Ln(x, F).

3.1 Bootstrap Approximation

Let Ln(x,Qn) be the bootstrap distribution that approximates Ln(x,F), and L�1
n ð1 �

a, QnÞ the bootstrap quantile that approximates the corresponding finite sample
distribution quantile L�1

n ð1 � a, FÞ. In order for the bootstrap to be consistent, Qn

has to satisfy certain conditions.

Lemma 1 Let Qn be an estimator of F based on {x1, . . . , xn} that satisfies supx2R jQnðxÞ�
FðxÞj�!

p
0 whenever F 2 H0, and let L(x, F), the limiting distribution of the test statistic

Tn, be continuous and strictly increasing. Then

PfTn > L�1
n ð1�a,QnÞg!a, as n!1: ð34Þ

The naı̈ve nonparametric bootstrap from Qn ¼ Fn fails to produce consistent

estimates of a distribution function under H0 if F does not belong to the null. On the

other hand, the parametric bootstrap from the GPDj;sðunÞ [see Equation (27)] fails

to capture the structure of F for the observations smaller than the threshold un.
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To fulfill the conditions of Lemma 1 corresponding to Qn and therefore to

solve the two previously mentioned problems, a semiparametric bootstrap meth-

odology is introduced. Define

QnðxÞ ¼

(
FnðxÞ x � un

GPDj;sðunÞðx� unÞ þ FnðunÞð1 � GPDj;sðunÞðx� unÞÞ x>un:

ð35Þ

This distribution function is derived from the conditional probability theorem,

since

PfX � xg ¼ PfX � ungPfX � x jX � ung þ PfX>ungPfX � x jX>ung,
ð36Þ

where P{X � un} is consistently approximated by Fn(un), and under the null

PfX � x jX>ung ¼ GPDj;sðunÞðyÞ with y ¼ x � un.

Denote fx�ng a bootstrap sample obtained from Qn and consider the trans-

formed bootstrap sample y�i ¼ x�i � un with i ¼ 1, . . . ,n. The value of the test

statistic is tnðy�1, . . ., y�n; j,sðunÞÞ and for the sake of notation is denoted as

t�nðyn; j,sðunÞÞ. The bootstrap approximation Ln(x,Qn) is then estimated by the

empirical distribution of the B (number of bootstrap samples) values of Tn,

L̂Lnðx,QnÞ ¼
1

B

XB
j¼1

1ft�
n;j
ðyn;j;sðunÞÞ�xg: ð37Þ

The 1 � a quantile of L̂Lnðx,QnÞ is the order statistic t�n;ðdð1�aÞBeÞðyn; j, sðunÞÞ of the

sequence ft�n;jðyn; j,sðunÞÞg of B elements, where dxe is the upper integer part of x.

The rejection criteria Equation (33) is replaced now by

fTnðyn; j,sðunÞÞ> t�n;ðdð1�aÞBeÞðyn; j,sðunÞÞg, ð38Þ

and hence for a sample {xn}, the null hypothesis is rejected if tn(y1, . . . , yn; j, s(un))

is in this rejection region. This means that the conditional excess distribution
function defined by un is not a GPDj;sðunÞ, and according to our definition these

candidates for extreme observations are not really extreme.

Recall that until now we have assumed the parameters to be known. Never-

theless this condition is rarely satisfied in practice. To make our test operational,

we replace these parameters with their maximum-likelihood estimators, and

instead of Qn, we define its counterpart distribution function Q̂Qn:

Q̂QnðxÞ¼

(
FnðxÞ x� un

GPD
ĵj
ðMlÞ
n ðunÞ, ŝsðMlÞ

n ðunÞðx�unÞþFnðunÞð1�GPD
ĵj
ðMlÞ
n ðunÞ, ŝsðMlÞ

n ðunÞðx�unÞÞ x>un
:

ð39Þ

Notice that the new bootstrap distribution function Lnðx, Q̂QnÞ boils down to
Ln(x, Qn) for x� un, and for x> un, the former

ffiffiffi
k

p
converges to the latter, where k is

the number of observations of the tail defined by un. Moreover, if F belongs to the

GONZALO & OLMO | Which Extreme Values Are Really Extreme? 361



null hypothesis defined by un, the conditions in Lemma 1 still hold and the

rejection region of Equation (38) becomes

fT̂Tnðyn; ĵjðMlÞ
n ðunÞ, ŝsðMlÞ

n ðunÞÞ> t�n;ðdð1�aÞBeÞðyn; ĵj�;ðMlÞ
n ðunÞ, ŝs�;ðMlÞ

n ðunÞÞg, ð40Þ

where T̂Tn and ĵjðMlÞ
n ðunÞ, ŝsðMlÞ

n ðunÞ are calculated from the original sample {xn}, and

ĵj�;ðMlÞ
n ðunÞ, ŝs�;ðMlÞ

n ðunÞ are estimated from the corresponding bootstrap sequences.

3.2 Finite Sample Performance: Empirical Power

The power of our test,

PfT̂Tn >L�1
n ð1 � a, Q̂QnÞg, ð41Þ

depends on three key parameters: the threshold choice, the distribution function F,

and the length of the sequence. To calculate this power it is important to realize

that the maximum-likelihood estimates ĵjðMlÞ
n ðunÞ, ŝsðMlÞ

n ðunÞ that are entered in the

expression of T̂Tn are the ones used to define the null distribution Q̂Qn.

This test lies in constructing a distribution function Q̂Qn, such that its condi-

tional excess distribution is a GPD
ĵj
ðMlÞ
n ðunÞ, ŝsðMlÞ

n ðunÞ. In that way the observations

coming from the null hypothesis are drawn from Q̂Qn and not from F. The empirical

size of the test is calculated from the former distribution. For a deeper insight into

how to calculate the power via bootstrap [see Beran (1986) and Romano (1988)].

The following algorithms are devoted to describing the simulation experi-

ment. Algorithm 1 generates bootstrap samples fx�ng from the distribution func-

tion Q̂Qn and calculates the empirical bootstrap approximation of Ln(x, F). The

threshold value un and the maximum-likelihood estimates are obtained from a
particular sample {xn} from F and are used to construct Q̂Qn.

Algorithm 1 (Bootstrap Procedure)
1. l ¼ 1.
2. Generate x�1;l, . . ., x

�
n;l drawn from Q̂Qn.

3. Calculate ĵj�ðMlÞ
n ðunÞ and ŝs

�ðMlÞ
n ðunÞ from the bootstrap sample.

4. t�n;lðyn; ĵj
�ðMlÞ
n ðunÞ, ŝs�ðMlÞ

n ðunÞÞ¼
ffiffiffi
n

p
sup0�y<1jFun;nðyÞ �GPD

ĵj
�ðMlÞ
n ðunÞ;ŝs�ðMlÞ

n ðunÞ
ðyÞj

with y ¼ x � un.

5. lþþ. Go to step 2 while l � B.

6. L̂Lnðx, Q̂QnÞ¼ 1
B

PB
j¼11ft�

n;j
ðy;ĵj�ðMlÞ

n ðunÞ;ŝs�ðMlÞ
n ðunÞÞ� xg

In practice, the p-value replaces the rejection criteria given in Equation (40). The

empirical p-value is

p ¼ 1

B

XB
j¼1

1ft�
n;j

> t̂tng, ð42Þ

with t̂tn obtained from the sample {xn}.

The probability of Equation (41) cannot be directly derived, and we have to

rely on Monte Carlo simulations to calculate it. The following algorithm describes

how to implement this procedure.
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Algorithm 2 (Empirical Power)
1. j ¼ 1.

2. Let {x1,j, . . . , xn,j} be a sample from F and obtain un, ĵjðMlÞ
n ðunÞ and ŝs

ðMlÞ
n ðunÞ.

3. Construct Q̂Qn and L̂Lnðx, Q̂QnÞ as in Algorithm 1.
4. Generate fx01, . . ., x0ng from a distribution function F1.

5. Calculate t̂tnðx0n; ĵjðMlÞ
n ðunÞ, ŝsðMlÞ

n ðunÞÞ if F1 6¼ F. Otherwise t̂tnðx0n; ĵj�ðMlÞ
n ðunÞ,

ŝs
�ðMlÞ
n ðunÞÞ with ĵj�ðMlÞ

n ðunÞ, ŝs�ðMlÞ
n ðunÞ from fx0ng.

6. Calculate the p-value as in Equation (42).

7. dj ¼
n

1 if p<a

0 otherwise:

8. jþþ. Repeat while j � m.

9. âa ¼ 1
m

Pm
j¼1dj.

As n!1, the estimate âa approaches the size of the test if the threshold un is

really defining the extremes of F for a given length n. On the other hand, when the

conditional distribution function defined by the threshold is not a GPDj;sðunÞ, or

the sequence of data does not come from F, the estimate âa tends to one.

Table 3 gives the simulation results of the empirical power for a family of
Student t-distribution functions with the threshold un obtained by our weighted

Pickands method.

Table 3 points out two clear results. First, the fact that the diagonal is very

close to the nominal size reveals that our procedure performs very well in captur-

ing the extremes of sequences of length n coming from F0 (distribution function

under H0). Second, extreme value candidates coming from F1 (distribution func-

tion under H1) are rejected as extreme values of F0. A by-product of this table is

that our test can be considered a goodness-of-fit test via the tails. In principle our
test is more sensitive than standard KS statistics in detecting deviations in the tails

[see Mason and Schuenemeyer (1983)].

Another alternative to selecting the threshold is to choose a fixed order

statistic. In this case, the set of extreme values is defined by a fixed number of

observations given the sample size n.

Table 3 Empirical power for different distributions.

F1

F0 t30 (j � 0) t10 (j � 0.1) t5 (j � 0.2) t1 (j � 1)

t30 0.08 0.62 0.93 0.97

t10 0.65 0.09 0.76 0.98

t5 0.95 0.72 0.09 0.99

t1 0.94 0.94 0.92 0.09

Empirical power of Tn for a family of Student t-distribution functions, with un from dWP. F0 denotes

the data-generating process and F1 the distribution under the alternative hypothesis. Bootstrap

replications B ¼ 1000, Monte Carlo simulations m ¼ 1000, n ¼ 1000, significance level a ¼ 0.05.
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The message from Table 4 is clear: These ad hoc selections of the set of extreme

values can be valid for particular sequences of F0, but in general are rejected to
define the extremes of any sequence of F0 with the same length n.

4 EMPIRICAL APPLICATION: VaR ESTIMATION IN FINANCIAL
INDEXES

An important application of the semiparametric approximation Q̂Qn of F is quantile

estimation in the tail region, where there is usually a lack of observations because we

are dealing with extremal events. This question is becoming of primary importance

in a wide variety of research fields, including finance, climatology, and hydrology.

The goal of this section is to obtain a deeper insight into risk management for

financial indexes of different major markets. Market risk management is inher-
ently related to the probability of occurrence of extreme events, that is, very large

negative or positive returns. We focus on a particular measure of this market risk:

value at risk (VaR), the amount of money necessary to provide the institution with

coverage against losses that can occur with a p probability over some holding

period. It is not our intention to get into details of the VaR methodology; we only

pursue it to present some results about tail index estimation (tail behavior) and a

naı̈ve calculus of VaR under i.i.d. assumptions for financial data. Of course, we

know this assumption is unrealistic and we should go a step further regarding
heteroskedastic conditional volatility models, but this is left for future research.

General practitioners calculate VaRs in two different ways: (i) complete para-

metric, where it is assumed an underlying distribution (normal, student’s t, etc.),

and (ii) fully nonparametric, where the main actor is the empirical distribution Fn.

Our approach can be considered as something in the middle, because we use a

semiparametric approximation Q̂Qn.

The inverse of Q̂Qn provides a consistent estimator of VaR for the distribution

function F. In this case,

dVaRVaRp ¼
inffx j FnðxÞ � 1 � pg, 1 � p � FnðunÞ

un þ
ŝs
ðMlÞ
n ðunÞ

ĵjðMlÞ
n ðunÞ

��
p

1 � FnðunÞ

��ĵj
ðMlÞ
n ðunÞ

� 1

�
, 1 � p> FnðunÞ

: ð43Þ

8><>:

Table 4 Empirical power for ad hoc thresholds.

F0 x(700) x(800) x(900) x(950)

t30 0.49 0.48 0.45 0.44

t10 0.48 0.48 0.46 0.46

t5 0.54 0.50 0.49 0.47

t1 0.64 0.58 0.52 0.49

Empirical power for a family of Student t-distribution functions, with different ad hoc threshold choices

for a sample size n ¼ 1000. F0 denotes the data-generating process. Bootstrap replications B ¼ 1000,

Monte Carlo simulations m ¼ 1000, significance level a ¼ 0.05.

364 Journal of Financial Econometrics



When the distribution function is regularly varying (j > 0), the tail of

Q̂Qn is modeled as a Pareto distribution and the inverse of F is consistently

estimated by

dVaRVaRp ¼
inf fx j FnðxÞ � 1 � pg, 1 � p � FnðunÞ

un

�
1 � FnðunÞ

p

�ĵj
ðMlÞ
n ðunÞ

, 1 � p> FnðunÞ
: ð44Þ

8><>:
The uncertainty of these estimates can be measured by bootstrap confidence

intervals, since the exact finite sample distribution function of Vn ¼
ffiffiffi
n

p
ð dVaRpVaRp �

VaRpÞ is not known and its asymptotic distribution depends on nuisance param-

eters. Let Jnðx, Q̂QnÞ be the bootstrap approximation of the exact distribution of Vn.

A two-sided, equal-tailed confidence interval for VaRp, at a significance level a, is
therefore given by

CIaðVaRpÞ ¼ dVaRVaRp �
1ffiffiffi
n

p J�1
n 1 � a

2
, Q̂Qn

� �
, dVaRVaRp �

1ffiffiffi
n

p J�1
n

a

2
, Q̂Qn

� �� �
, ð45Þ

where J�1
n ð1 � a, Q̂QnÞ is the 1 � a bootstrap quantile.

4.1 Data Features

The data we use to illustrate how the methodology proposed in this article can be

applied consist of five financial indexes of major stock markets over the period

December 19, to April 20, Frankfurt (Dax), London (FTSE-100), Madrid (Ibex),

Tokyo (Nikkei), and New York (Dow Jones). These data have been collected from
http://www.freelunch.com. The observations considered for the analysis are the

logarithmic returns measured in percentage terms and denoted as rt:

rt ¼ 100 ðlog Pt � log Pt�1Þ,

where Pt is the original price at time t. For calculating ease, the negative observa-

tions (losses) are depicted in the positive tail.

A first glance to the standard statistic for kurtosis shows that most of these

series are leptokurtic. For instance, the Dax index has a coefficient of corrected

kurtosis of 5.70; FTSE, 1.34; Ibex, 3.88; Nikkei, 2.77, and the Dow Jones has a
coefficient of 3.25. Traditionally this measure has been considered an indicator

of heavy tails. Nevertheless, the coefficient of kurtosis does not provide us with

adequate information about the source of the heaviness. The tail index, however,

provides this kind of information, focusing on a particular tail. For instance, j > 0

corresponds to distributions where that tail has a polynomial decay [a more

detailed discussion can be found in Shiryaev (2001)].

Table 5 presents nonparametric bootstrap confidence intervals for the tail

index [see Equation (25)] obtained by the different approaches investigated
throughout the article.

From Table 5, it appears that the tail index j is greater than zero, indicating

the existence of heavy right-hand side tails (corresponding to losses). The only
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exception is the Ftse index, where there are some reasonable doubts. For that

reason, in the next table the VaR is calculated under both the GPD and PD

methodologies.
In Table 6 we provide pointwise estimates and confidence intervals for VaR

under four different approaches. The first two correspond to the methods devel-

oped in this article, and the last two correspond to the standard empirical meth-

odologies that will be used here as a benchmark.

From Table 6, three conclusions can be obtained: (i) Comparing our two

approaches and taking into account the results of the previous table, the PD

method outperforms the GPD from an efficiency point of view, given that

the point estimates are very similar. This is the expected result under the presence
of heavy tails. (ii) The approach based on the empirical distribution is less

efficient compared to the PD method. The main reason is the lack of observations

coming from the tail, something that our PD method overcomes by properly

parameterizing the tail. (iii) The approach based on gaussianity, as expected,

is very conservative in the sense of requiring a lesser amount of capital

(smaller VaR).

Table 6 Bootstrap confidence intervals for VaR.

VaR GPD PD Fn Gaussian

Dax [3.57; 4.16; 7.83] [3.48; 4.25; 4.93] [2.96; 4.33; 5.04] [3.52; 3.62; 3.71]

Ftse [2.81; 3.04; 3.40] [2.83; 3.05; 3.31] [2.83; 3.08; 3.32] [2.65; 2.78; 2.85]

Ibex [3.25; 3.92; 4.69] [2.94; 3.91; 4.62] [3.02; 4.50; 5.80] [3.08; 3.19; 3.32]

Nikkei [3.69; 4.24; 8.30] [3.33; 4.31; 5.00] [4.09; 4.73; 5.95] [3.75; 3.79; 3.83]

Dow Jones [1.47; 2.09; 2.60] [1.56; 2.09; 2.49] [1.36; 1.90; 2.15] [1.55; 1.73; 1.97]

Confidence intervals (a ¼ 0.05) and pointwise estimation of the VaR for the different financial returns

calculated with different methodologies: our GPD and PD approaches, nonparametric approach Fn, and a

parametric approach based on a gaussian assumption. The VaR indicates the percentage of return

losses with p ¼ 0.01 and a holding period of 1 day. The data covers the period December 19, 1994 to

April 20, 2001. Bootstrap samples B ¼ 1000.

Table 5 Bootstrap confidence intervals for tail index.

ĵjðMlÞ
n ðuðWPÞ

n Þ ĵjðHÞ
n ðuðWPÞ

n Þ ĵjðPÞn ðuðPÞn Þ ĵjðMlÞ
n ðxð 95

100nÞÞ

Dax [�0.02; 0.24; 0.84] [0.30; 0.31; 0.36] [�0.50; �0.37; �0.20] [�0.13; 0.22; 0.65]

Ftse [�0.57; �0.26; 0.04] [0.07; 0.11; 0.12] [�0.44; �0.28; �0.08] [�0.54; �0.29; 0.13]

Ibex [�0.12; 0.28; 0.87] [0.32; 0.37; 0.38] [�0.43; �0.21; �0.04] [�0.04; 0.46; 0.90]

Nikkei [�0.13; 0.11; 0.55] [0.33; 0.34; 0.39] [�0.34; �0.19; �0.03 ] [�0.25; 0.07; 0.50]

Dow Jones [�0.11; 0.63; 1.52] [0.33; 0.41; 0.44] [�0.24; �0.22; �0.03] [0.05; 0.76; 1.72]

Bootstrap confidence intervals (a ¼ 0.05) and pointwise estimation of the tail index j for stock returns

over the period December 19, 1994, to April 20, 2001. Bootstrap samples B ¼ 1000.
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5 CONCLUSION

Risk and uncertainty are not the same thing [see Granger (2002)] and therefore

they need to be characterized by different measures. It is accepted that variance is

well designed to capture the latter, but not the former. To measure risk, in other

words, to respond to the question ‘‘if things go wrong, how wrong they can go?,’’

it is first necessary to find an answer to the question ‘‘Which extreme values are

really extreme?’’ This is the main goal of this article, where, following Pickands
(1975) methodology, we not only formally define the set of extreme observations

of a particular sequence, but also, by means of a hypothesis test, we define the

extreme values of any sequence of the same length and with the same distribution

function. Identification of the extreme observations allows us to estimate risk

measures such as VaR very accurately, as well as to make inferences on different

tail parameters of interest. Extensions to dependent data and to multivariate

extremes constitute current research by the authors.

APPENDIX

Proof of Theorem 1 Let {Un} be a sequence of independent and identically

distributed (i.i.d.) uniform random variables on [0, 1] and let l be a parameter in

0 < l < 1. Define the empirical process BnðtÞ ¼
ffiffiffi
n

p
ðUl;nðtÞ �UlðtÞÞ with Ul;nðtÞ¼

1
n

Pn
i¼1

�
1fl<ti�tg

1
n

Pn
j¼11ftj>lg

�
. This process has a binomial distribution Bin(n, Ul(t)). By

the Donsker theorem or empirical central limit theorem, Bn(t) converges weakly to

N(0, Ul(t)(1 �Ul(t))), therefore the finite dimensional distributions are normal for

any fixed t 2 [0,1]. In addition, the process is tight due to the uniform continuity of

the distribution function U and of Ul(t). This implies that Bn(t) converges weakly

to a mean-zero gaussian process ZUl
ðtÞ. It only remains to find the asymptotic

covariance function,

covðBnðsÞ,BnðtÞÞ¼cov½
ffiffiffi
n

p
ðUl;nðsÞ�UlðsÞÞ,

ffiffiffi
n

p
ðUl;nðtÞ�UlðtÞÞ�,

with 0 < s, t < 1. As Ul(t) is constant given t2 (0, 1), the covariance function boils

down to

covðBnðsÞ, BnðtÞÞ ¼
n

ð1 �UnðlÞÞ2
cov

1

n

Xn
i¼1

1fl<ti � sg,
1

n

Xn
i¼1

1fl<ti � tg

 !
:

The observations {t1, . . . , tn} are i.i.d., and therefore covð1fl<ti � sg, 1fl<tj � tgÞ ¼ 0
with i 6¼ j. The covariance function is in this case

covðBnðsÞ, BnðtÞÞ ¼
1

ð1�UnðlÞÞ2
covð1fl<ti�sg,1fl<ti� tgÞ ð46Þ

¼ 1

ð1�UnðlÞÞ2
½Eð1fl<ti�minðs;tÞgÞ�Eð1fl<ti�sgÞEð1fl<ti� tgÞ�

¼ ðUðminðs, tÞÞ�UðlÞÞ�ðUðsÞ�UðlÞÞðUðtÞ�UðlÞÞ
ð1�UnðlÞÞ2

, ð47Þ
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with 0 < s, t < 1. Therefore Bn(t) converges weakly to the distribution of a mean-

zero gaussian process ZUl
ðtÞ with covariance function given by

covðZUl
ðsÞ, ZUl

ðtÞÞ ¼ ðminðs, tÞ � lÞ � ðs� lÞðt� lÞ
ð1 � lÞ2

: ð48Þ

For F continuous and strictly increasing, we can define un ¼ F�1(l). Construct

x1, . . . , xn i.i.d. from F via xi ¼ F�1(ti) and let Fn(x) denote the empirical distribu-
tion function based on x1, . . . , xn. By the monotonicity of F,

Pn
i¼11fun<xi�xg ¼Pn

i¼11fFðunÞ< FðxiÞ�FðxÞg and therefore Fun;nðxÞ defined in Equation (19) satisfies

Fun;nðxÞ ¼ Ul;nðtÞ with x ¼ F�1(t). Then the process Bn(t) becomes equal to the

process
ffiffiffi
n

p
ðFun;nðyÞ � FunðyÞÞ with y ¼ x � un [see Equations (19) and (20)] and the

covariance function is

covðZFunðy1Þ, ZFunðy2ÞÞ ¼
ðFðminðy1, y2ÞÞ � FðunÞÞ � ðFðy1Þ � FðunÞÞðFðy2Þ � FðunÞÞ

ð1 � FðunÞÞ2
,

ð49Þ

with y1 ¼ F�1(s) and y2 ¼ F�1(t).
Under the null hypothesis Fun ¼ GPDj;sðunÞ, the empirical process Sn(y)

amounts to
ffiffiffi
n

p
ðFun, nðyÞ � GPDj;sðunÞðyÞÞ and the covariance function of the limit-

ing process is

covðZFunðy1Þ, ZFunðy2ÞÞ ¼
GPDj;sðminðy1, y2ÞÞ

1 � FðunÞ
� GPDj;sðy1ÞGPDj;sðy2Þ: ð50Þ

Proof of Lemma 1 Let 0 < a < 1 be the significance level of the test and consider

L(x,F) continuous and strictly increasing. By definition

PfTn >L�1ð1 � a, FÞg ¼ a,

with L�1(1 � a,F) the 1 � a asymptotic quantile. &

Consider Ln(x,Qn) the bootstrap approximation of Ln(x; F) and L�1
n ð1 � a, QnÞ

its 1 � a quantile. Therefore if supx2R jQnðxÞ � FðxÞ j �!
p

0, then L�1
n ð1 � a, QnÞ!

L�1ð1 � a, FÞ with probability one and by Slutsky’s theorem

PfTn >L�1
n ð1 � a, QnÞg ! PfTn > L�1ð1 � a, FÞg ¼ a: ð51Þ
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