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Abstract

Localizing the bioelectric phenomena originating from the cerebral cortex
and evoked by auditory and somatosensory stimuli are clear objectives to
both understand how the brain works and to recognize different pathologies.
Diseases such as Parkinson’s, Alzheimer’s, schizophrenia and epilepsy are in-
tensively studied to find a cure or accurate diagnosis.

Epilepsy is considered the disease with major prevalence within disorders
with neurological origin. The recurrent and sudden incidence of seizures can
lead to dangerous and possibly life-threatening situations. Since disturbance
of consciousness and sudden loss of motor control often occur without any
warning, the ability to predict epileptic seizures would reduce patients’ anx-
iety, thus considerably improving quality of life and safety.

The common procedure for epilepsy seizure detection is based on brain
activity monitorization via electroencephalogram (EEG) data. This process
consumes a lot of time, especially in the case of long recordings, but the ma-
jor problem is the subjective nature of the analysis among specialists when
analyzing the same record. From this perspective, the identification of hid-
den dynamical patterns is necessary because they could provide insight into
the underlying physiological mechanisms that occur in the brain.

Time-frequency distributions (TFDs) and adaptive methods have demon-
strated to be good alternatives in designing systems for detecting neurode-
generative diseases. TFDs are appropriate transformations because they offer
the possibility of analyzing relatively long continuous segments of EEG data
even when the dynamics of the signal are rapidly changing. On the other
hand, most of the detection methods proposed in the literature assume a
clean EEG signal free of artifacts or noise, leaving the preprocessing problem
opened to any denoising algorithm.

In this thesis we have developed two proposals for EEG signal processing:
the first approach consists in electrooculogram (EOG) removal method based
on a combination of ICA and RLS algorithms which automatically cancels
the artifacts produced by eyes movement without the use of external “ad
hoc” electrode. This method, called ICA-RLS has been compared with other
techniques that are in the state of the art and has shown to be a good
alternative for artifacts rejection. The second approach is a novel method
in EEG features extraction called tracks extraction (LFE features). This
method is based on the TFDs and partial tracking. Our results in pattern
extractions related to epileptic seizures have shown that tracks extraction is
appropriate in EEG detection and classification tasks, being practical, easily
applicable in medical environment and has acceptable computational cost.






Resumen extendido en espanol

Resumen extendido en espanol

En este resumen se pretende dar a conocer los objetivos de esta tesis asi como
también una breve descripcion de la metodologia empleada y la organizacion
del documento. De igual manera detallaremos las aportaciones originales,
conclusiones y el trabajo futuro que esta tesis pueda originar.

Introduccién

A dia de hoy, la neuroingenieria es una nueva linea de investigacién que
emerge de la integracion entre la neurociencia clinica y la ingenieria. Este
nuevo campo utiliza la ingenierfa, la simulacién computacional, el andlisis
matematico, las técnicas de imagen y el diseno hardware para solucionar
diferentes problemas en la neurociencia clinica. El objetivo es utilizar las
nuevas propuestas en la ingenieria para descubrir los principios de la fun-
cion neuronal y utilizarlos en el diseno de sistemas de soporte al diagnodstico
médico y terapéutico. La neuroingenieria clinica tiene una gran variedad de
campos activos con objetivos tales como potenciar tratamientos basados en
herramientas de ingenieria y crear nuevos enfoques para el diagnostico de
enfermedades neuronales, tal y como describe Thakor and Tong [2006a].

Descubrir e interpretar los fenémenos bioeléctricos procedentes de la cor-
teza cerebral y la evocada por estimulos auditivos y somatosensoriales, tienen
como finalidad intentar entender como funciona el cerebro y reconocer sus
diferentes patologias. Enfermedades como parkinson, demencia, alzhéimer,
esquizofrenia y epilepsia son motivo de analisis con el objetivo de encontrar
una cura o un diagnéstico médico preciso.

En cuanto a la epilepsia, actualmente la investigacién esta orientada a
aislar, identificar y localizar los focos epilépticos empleando generalmente
senales electroencefalogréficas (EEG), procedimiento previo a un posible tra-
tamiento quirurgico en los casos en que el medicamento no ha sido capaz de
detener la enfermedad. Otra posibilidad para los casos resistentes a medica-
mentos es la deteccion temprana de crisis por métodos automaticos basados
en senales EEG. Detectar o anticiparse a una crisis, son problemas de gran
interés clinico y con alta complejidad tedrica y practica, para lo cual sélo
existen hasta hoy soluciones parciales probadas en un nimero pequeno de
pacientes o en bases de datos no muy grandes.

La mayoria de los métodos de deteccién de epilepsia con senales EEGs,
suponen una senal limpia de artefactos, o proponen un filtrado de la senal
basado en métodos convencionales tales como el filtrado temporal o métodos
adaptativos temporales, siendo habitual el uso de senales de referencia como
el electrooculograma (EOG). Por otra parte, dentro del procesamiento del
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EEG hay otro proceso importante relacionado con la informacion que se va
a extraer de la senal, procedimiento conocido como extraccién de caracteris-
ticas. Se ha de resaltar, que esas caracteristicas extraidas del EEG dependen
directamente del método empleado, que por lo general son transformaciones
de la senal a otros dominios con el objetivo de facilitar la extraccion de “infor-
macién oculta” en el EEG. Dichas transformaciones nos ofrecen subconjuntos
de caracteristicas que pueden ocasionar problemas en el desempeno de un de-
tector, porque existe la posibilidad de extraer caracteristicas parecidas o no
relevantes. Por esa razén, una adecuada seleccion de caracteristicas es de
igual manera tan importante como la extraccién de estas, ya que este pro-
ceso elimina las redundantes que pueden ser consideradas ruido introducido
al sistema.

En el andlisis de senales EEG, las distribuciones tiempo frecuencia (TFD,
del inglés Time-Frequency Distributions) y los métodos automadticos de elim-
inacion de artefactos, han demostrado ser alternativas a seguir en el diseno
de sistemas de deteccién automatica de enfermedades neurodegenerativas.
Las primeras son transformaciones apropiadas para senales no estacionarias
y dindmicas como el EEG, y los segundos evitan el proceso de una inspec-
ci6n visual de formas de ondas o de energia espectral (proceso poco preciso
y costoso que se basa en un analisis subjetivo de las senales y que ademas
hace necesaria la figura de un especialista en el equipo de trabajo).

En esta tesis se proponen dos algoritmos para el procesado EEG: uno de
ellos estd orientado a la extraccién de caracteristicas empleando las TFDs y
el otro es un método de eliminacién automatica de artefactos producidos por
el movimiento de ojos. Ambas propuestas han sido evaluadas frente al estado
del arte actual y han sido probados con diferentes bases de datos. Los resul-
tados son prometedores para el ambiente clinico ya que son practicos y fiables.

Motivacion

A lo largo de los tltimos anos, los departamentos de Teoria de la senal y
Comunicaciones de la UC3M, Ingenieria Eléctrica y Electronica de la UPNA|
y el Departamento de Neurologia y Neurocirugia de la Clinica Universitaria
de Navarra vienen colaborando en sucesivas investigaciones centradas en des-
cubrir e interpretar los fendémenos bioeléctricos originados en la corteza cere-
bral, con el objetivo de aplicar estos estudios al analisis de distintas pa-
tologias, como la enfermedad del Parkinson, Alzheimer o la epilepsia.

Las anormalidades que ocurren en la corteza del cerebro pueden clasifi-
carse, de forma general, segiin su etiologia (por ejemplo, trauma, enfermedad,
toxinas o infecciones). Aunque no siempre existe una respuesta eléctrica cere-
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bral facil de detectar, la mayoria de las enfermedades neurolégicas se manifi-
estan desde niveles celulares y moleculares con actividad magnética medible
fuera del cuero cabelludo, lo cual permite localizar la zona danada del cere-
bro, la causa y su posible funcién fisioldgica.

La actividad neuronal en el cerebro humano se inicia desde las primeras
etapas de desarrollo prenatal. Como ya se sabe, las senales generadas por el
encéfalo son eléctricas en naturaleza y representan no solo la funcién cere-
bral, sino también el estado del cuerpo entero. Una manera de registrar los
potenciales eléctricos generados en el encéfalo -ya sea de forma espontanea
o evocada por algin estimulo- es a través del electroencefalograma (EEG),
exploracion que proporciona estimaciones de la accién sinaptica a grandes
escalas y relacionadas con el comportamiento y la cognicion.

Un caso particular de registro inmediato en el EEG frente a un “estallido”
repentino y asincrono de flujo de corriente eléctrica entre neuronas, sucede
con la epilepsia. Existen formas de ondas cerebrales clasificadas que permiten
diagnosticar la clase de epilepsia ademas de su localizacion en el cerebro. El
andlisis del EEG ha demostrado asimismo cambios de altas a bajas frecuen-
cias en zonas del cerebro de pacientes afectados de alzhéimer.

El EEG tiene informacion que depende tanto del procesamiento como del
momento en que se hace el registro. De igual forma requiere registros con
largos periodos de tiempo, personal especializado, bases de datos con alta
capacidad de almacenamiento e implica una alta carga computacional.

Los primeros resultados han mostrado la necesidad de limpiar la senal
EEG de una forma eficiente y de reducir la cantidad de informaciéon debido
a dos razones fundamentales: (i) el EEG es una senal multi-canal ya que
se registra desde electrodos situados en diferentes posiciones estandarizadas
sobre la cabeza; (i) el EEG puede convertirse a una senal multi-dimensional,
sobre todo cuando se aplica un método de extracciéon de caracteristicas. La
extraccion de informacion compromete una transformacion de la senal a otros
dominios con el objetivo de obtener un niimero de coeficientes representativos
del problema. Cada coeficiente es una dimension adicional que se agrega al
problema y que afecta directamente al coste computacional.

En relacion con las tareas mencionadas anteriormente, los algoritmos
basados en aprendizaje maquina ofrecen soluciones viables para este tipo de
senales en areas de deteccion, clasificacién, extraccion y seleccion de carac-

teristicas, con una variedad de soluciones y de alternativas en el procesado
EEG.
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Ya en el ambiente médico, los fundamentos para un diseno de analisis,
deteccién o clasificacién EEG son simples: (i) una senal de EEG se registra,
(ii) la senal EEG se limpia utilizando métodos de eliminacién de ruido y
algoritmos de rechazo de artefactos, (iii) se extraen caracteristicas del EEG
por algun método o transformacién de la senal y finalmente, (iv) las carac-
teristicas relevantes son seleccionadas.

Objetivos

Inicialmente se ha propuesto el siguiente objetivo general para esta tesis:
disenar un método de detecciéon automatica y de andlisis para senales EEG
con epilepsia. El diseno ha de ser practico, sencillo y fiable para ser apli-
cado en el entorno médico. Para acercarnos a este objetivo general, se hace
necesario entonces llevar a cabo diferentes tareas especificas:

e Recoleccion de datos en el hospital y busqueda de bases de datos uti-
lizados por otros autores.

e Eliminar artefactos y ruido presente en el EEG empleando el anélisis
de componente independiente (ICA, del inglés Independent Component
Analysis).

e Disenar un sistema de rechazo de artefactos en el EEG.

e Analizar las diferentes propuestas en TFDs para senales EEG con
epilepsia.

e Proponer un método sencillo de extraccion de caracteristicas basado en
las TFDs.

e Comparar el desempeno de las caracteristicas propuestas para tareas
de deteccion y clasificacion EEG.

e Aplicar métodos de seleccion de caracteristicas para reducir el coste
computacional.

e Disenar un sistema de deteccion automatica de epilepsia basado en
senales EEG.

Organizacion de la tesis

El capitulo 2 sirve de introduccién a los conceptos fundamentales sobre
el sistema nervioso y la generacion de la senal EEG. Se describen ademas
los conceptos relacionados al analisis visual EEG, artefactos, caracteristicas
anormales del EEG y las diferentes ondas cerebrales. Este capitulo también
incluye las diferentes aplicaciones que se pueden desarrollar empleando las
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senales EEG, como son el soporte al diagndstico médico, deteccién de en-
fermedades neurodegenerativas, deteccién de los potenciales relacionados a
eventos (ERPs, del inglés event related potentials) y los trastornos del sueno.

En el capitulo 3 se introduce el modelo de la senal EEG. Esto incluye re-
visar conceptos de segmentacién de la senal, filtrado y eliminacién de ruido,
extraccion de caracteristicas y seleccion de las mismas. El modelo de la senal
se aborda desde el punto de vista fisico y no lineal. En la seccion de seg-
mentacién de senales, se explica la forma de separar segmentos para senales
invariantes en el tiempo y para senales variables en el tiempo. En la seccion
de filtrado y eliminaciéon de ruido se hace una breve introduccién a las dife-
rentes técnicas en la limpieza del EEG como los filtros digitales, los métodos
de filtrado adaptativo y el andlisis de componentes independientes (ICA).
También este capitulo introduce los métodos de extraccion de caracteristicas
y de seleccioén.

En el capitulo 4 se describen las dos nuevas propuestas que esta tesis
aporta al procesado de senal EEG. Una de ellas es un nuevo método de elimi-
nacién de artefactos producidos por los ojos basado en un esquema ICA-RLS.
La otra propuesta es un nuevo método de extraccion de caracteristicas que
emplea el plano tiempo-frecuencia de las distribuciones tiempo-frecuencia
(TFDs) para extraer informacion.

ICA-RLS tiene dos caracteristicas importantes: la primera, no utiliza senales
de referencia dedicadas, como por ejemplo, el electroocugrama (EOG); y la
segunda, el filtrado adaptativo se hace en el dominio de las fuentes ICA.
Respecto al método de extraccion, este capitulo describe las tres caracteristi-
cas que se extraen : duracién (L), frecuencia (F') y energia (E) de un parcial
principal que se sigue sobre el plano tiempo-frecuencia. Para finalizar, el
capitulo describe la complejidad computacional empleada por los métodos
propuestos, ya que usualmente estas érdenes de complejidad no suelen refle-
jarse en el estado del arte de deteccién para EEG.

En el capitulo 5 se evalian los métodos propuestos en tareas de clasifi-
cacién de segmentos EEG. Para ello, proponemos diferentes problemas de
clasificacién utilizando bases de datos EEG seleccionados en la clinica Uni-
versitaria de Navarra (CUN), asi como otras bases de datos utilizadas por
otros autores en el estado del arte. De igual manera este capitulo evalia
un método de reduccion de dimensionalidad basado en la informacién mutua
(MI, del inglés mutual information) y el método de bisqueda de adelante-
atrds (FB, del inglés forward-backward).

El Capitulo 6 concluye este trabajo con un resumen de las contribuciones
y una breve discusion sobre la labor futura. Finalmente se incluyen cuatro
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apéndices que sirven de referencia tedrica adicional, descripcion de las bases
de datos y de experimentos adicionales que se han realizado.

Conclusiones y lineas futuras

En esta tesis se han desarrollado dos propuestas para el procesado de senal
EEG con el objetivo mejorar las prestaciones en escenarios como la detec-
cién y clasificacion EEG con epilepsia. Uno de los métodos esta disenado a
cancelar de forma automatica los artefactos producidos por el movimiento
de ojos. Este método designado como ICA-RLS, esta basado en una combi-
nacién del algoritmo ICA con el algoritmo adaptativo de minimos cuadrados
recurrente (RLS, del inglés Recursive Least Square). La técnica ha sido com-
parada con otros métodos propuestos en el estado del arte y ha demostrado
ser una buena alternativa para la eliminacion de artefactos producidos por el
movimiento de los ojos. El otro método, denominado extraccion de parciales,
es una propuesta novedosa de extraccién de caracteristicas EEG que emplea
las distribuciones tiempo frecuencia (TFDs). Este método realiza sobre el
plano tiempo-frecuencia un seguimiento de parciales. Los resultados en ex-
traccién de parciales, muestran como esta técnica es apropiada en escenarios
de deteccién y clasificacién EEG, debido a su sencillez en la implementacion,
su coste computacional no muy alto y la relevancia de la informacién que
extrae para la deteccién y clasificacién de la epilepsia, i.e., duracién (L), fre-
cuencia (F') y energia (E) del parcial principal.

Todos los resultados en clasificacion EEG obtenido de los dos métodos,
se han obtenido a partir de una serie de simulaciones con bases de datos
reales y con problemas de clasificacion propuestos en el estado del arte que
estan disenados para evaluar el desempeno de algoritmos que se proponen en
clasificacion EEG.

A continuacién, resumiremos las aportaciones de la tesis y su compara-
cién con el panorama existente en deteccion EEG. Queremos enfatizar que
en los capitulos anteriores ya hemos mostrado las ventajas significativas que
los métodos introducen al estado del arte. Esta seccion solo repasa de una
forma general todas las ventajas y desventajas que los métodos guardan. Fi-
nalmente, concluiremos con las posibles lineas de trabajo que esta tesis ha
generado.

Aportaciones originales
e Eliminacion EOG basado en un esquema ICA-RLS. La eli-

minacion de artefactos producidos por el movimiento de ojos reflejado
en la senal EEG, es un problema con diferentes alternativas de solu-
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cion pero que en su mayoria presentan las siguientes desventajas: las
soluciones propuestas en la literatura con el método ICA, siguen em-
pleando una inspeccién visual de la forma de onda en las fuentes, asi se
determina si una fuente ICA estd o no relacionada con el movimiento
de los ojos. Y los métodos basados en filtrado adaptativo siguen ha-
ciendo uso del electroocugrama (EOG) como senal de referencia. Te-
nemos entonces como inconvenientes: la inspeccién visual requiere del
conocimiento de un experto, y la utilizaciéon del EOG como senal de re-
ferencia implica hardware adicional que registre el movimiento de ojos
(equipo no siempre disponible en los hospitales). Teniendo en cuenta
lo anterior, el método propuesto introduce un importante cambio en el
estado del arte de eliminacién de artefactos.

Por otra parte, ICA-RLS utiliza el error cuadratico medio (MSE, del in-
glés mean square error) y los mapas topograficos cerebrales. Esto hace
que no sea necesario conocer las diferentes formas de onda que
se registran en el EEG por el movimiento de ojos porque solo la fuente
con bajo error y situada en las zona frontal del cerebro se elimina, por
lo que no es necesario la utilizacién o registro del electroocu-
grama (EOG).

Los resultados del método ICA-RLS han mostrado ser eficientes tanto
en senales EEG muy contaminadas por artefactos oculares como tam-
bién en senales con poca presencia de las mismas. Un posible inconve-
niente es el coste computacional que puede ser disminuido si se utiliza
otros métodos existentes para ICA en la literatura. La optimizacion
del método ICA-RLS se ha dejado como trabajo futuro.

e Seguimiento de parciales (LFE). Utilizando las TFDs, el nuevo
método de extraccion ofrece tres caracteristicas a partir de un par-
cial principal: energia, frecuencia y duracién del parcial. En el capi-
tulo 4 se ha mostrado la efectividad del método en tareas de deteccion
de crisis epilépticas. Los resultados mostrados en el capitulo 5 de-
mostraron su buen desempeno en tareas de clasificacion EEG y a la
vez se ha comprobado experimentalmente la posibilidad de combinar
las caracteristicas propuestas con otras del estado del arte como son las
transformadas wavelets y la Fraccional de Fourier.

Ademas del buen desempeno que ha muestrado el seguimiento de par-
ciales, otras caracteristicas adicionales se han conseguido:

— Adaptabilidad del método a cualquier TFD. La extraccion
de parciales esta basada en el seguimiento o “tracking” de parciales
sobre el plano tiempo-frecuencia, lo cual hace que el método sea
independiente de la distribucién que se esté utilizando. Por esa
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razon, puede extenderse a otras aplicaciones que tienen distribu-
ciones adecuadas a un problema. Por ejemplo, se puede extender
el método en el analisis de lesiones de rodilla, donde se utiliza
la distribucién Pseudo Wigner-Ville (PWYV) o para extraer infor-
macién actstica bajo el agua, donde se utiliza habitualmente la
distribuciéon Wigner-Ville (WV).

Soluciéon de problemas en clasificacion EEG empleando
pocas caracteristicas. El seguimiento de parciales LFE resuelve
diferentes problemas en deteccién y clasificacion EEG basandose
en tres caracteristicas extraidas a partir de un parcial principal.
El capitulo 5 ha mostrado varios resultados de un problema de
clasificacién resuelto con pocas dimensiones. Por ejemplo, se hizo
uso de dimensiones D=2 o D=3 para el problema N1 y para los
pacientes 2, 3 y 5 respectivamente. Por otra parte, en los proble-
mas mas complejos como el N2 y N3, las caracteristicas extraidas
a partir del método de seguimiento de parciales fueron escogidas
como relevantes, mostrando una mejora tanto en el desempeno del
clasificador como en la reduccion de la dimension en la matriz de
caracteristicas EEG.

Coste computacional no muy alto para clasificacién EEG.
Teniendo en cuenta que el método extrae tres caracteristicas, por
lo que se tiene una matriz de caracteristicas con dimensiéon D=3,
el computo general en un esquema de clasificacién es bajo. Otros
métodos como la transformada de Fourier, FrFT o wavelets gene-
ralmente utiliza muchos més coeficientes (> 10) para este tipo de
problema.

Posibilidad de combinar las caracteristicas LFE con otras,
para mejorar el desempeno del clasificador. El EEG se ca-
racteriza por ser una senal muy dinamica que presenta estallidos
energéticos o surgimiento de frecuencias de poca duracién. Eso
hace que en determinados problemas, el método LFE no pueda
detectar de forma eficiente esos eventos, haciendo necesario el em-
pleo de otros métodos que son mas apropiados para este tipo de
escenarios. Wavelets y la FrF'T permiten registrar informacion
adicional que el seguimiento de parciales LFE no puede seguir,
ya que ambos métodos se basan en un analisis multinivel. En el
capitulo 5 se ha podido observar que el seguimiento de parciales
LFE ofrece informacion relevante en tareas de clasificacién y que
mejora el desempernio del clasificador cuando se combina con estos
métodos.

Un método estable. El capitulo 5 ha mostrado que los valo-
res A, épocas del EEG, tamano de la ventana de anélisis, etc.,
presentan una buena estabilidad en un rango de valores bastante
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amplio sin alterar considerablemente el desempeno del detector
a clasificador. Esto hace que el método de seguimiento de par-
ciales presente una buena estabilidad frente a cualquier variacion
de estos parametros libres.

e Reduccion de dimensionalidad EEG empleando informacion
mutua (MI) y el procedimiento de bisqueda delante-atras
(FB). La introduccién tedrica expuesta en el capitulo 4 junto con los
experimentos desarrollado en el capitulo 5, dan soporte a la eficacia
de este método en la reduccién de dimensiones para clasificaciéon EEG.
Dos observaciones se pueden derivar de estos experimentos:

— Las caracteristicas LFE aportan informaciéon importante
en problemas de clasificacion EEG. En el capitulo 3 se des-
cribié un método de seleccion de caracteristicas con un criterio
de relevancia basado en la MI. Los resultados experimentales han
mostrado que el seguimiento de parciales LFE aporta tres carac-
teristicas importantes que pueden resolver problemas de clasifi-
cacion empleando una, dos o las tres dependiendo de la compleji-
dad del problema. Se puede entonces concluir que no hay depen-
dencia entre las caracteristicas y que no existe colinealidad entre
ellas, por lo que las caracteristicas LFE introducen informacion
relevante en extraccion de informacion para senales EEG.

— El método de seleccion de caracteristicas basada en MI
y una bisqueda adelante-atris (FB) es una buena alter-
nativa para la reduccién de dimension de senales EEG.
Como se ha podido ver en el capitulo 5, muchos problemas de
clasificacion presentaron una buena reduccion en la dimensién de
la matriz de caracteristicas junto con una mejora en el desempeno
del clasificador.

Lineas futuras

A continuacién presentamos las posibles lineas de trabajo que los dos méto-
dos propuestos en esta tesis abren en el campo del procesado de senal EEG,
como también las posibles extensiones que se pueden derivar de los algoritmos
propuestos:

e Extension del método ICA-RLS a otros artefactos. Aparte de
los artefactos producidos por los ojos, existe otro artefacto que con-
tamina la senal EEG como es el movimiento de musculos. La extension
implica analizar este artefacto desde el plano tiempo-frecuencia y ex-
traer informacion en bandas de frecuencia diferentes para encontrar
las caracteristicas mas relacionadas al artefacto. Por otra parte, se ha
de analizar los mapas topograficos para encontrar las areas activas en
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el cerebro que correspondan al artefacto y determinar los canales de
entrada que han de ser utilizados en el esquema adaptativo.

Automatizacién completa del método ICA-RLS. Como se ha
expuesto en el capitulo 4, el esquema propuesto hace uso de los ma-
pas topograficos cerebrales y del valor MSE para seleccionar la fuente
correspondiente al movimiento de ojos. A continuacién presentamos
los pasos a seguir para lograr una automatizacion completa de nu-
estro método: (i) construir un conjunto de datos EEG con la infor-
macién de localizacién de canales, (i) ajustar un modelo de dipolo
eléctrico para las componentes ICA, (iii) obtener para cada compo-
nente su equivalente del dipolo junto a sus coordenadas y, finalmente,
(iv) calcular las distancias empleando un electrodo de referencia para
asi determinar la fuente que estd mas cerca de los ojos. Un trabajo
inicial de ajuste de modelos dipolo a las fuentes de ICA se describe en
Delorme and Makeig [2004].

Extensién del método LFE a otros escenarios como BCI. La
deteccién de potenciales relacionados a eventos (ERPs) es una tarea
fundamental en las aplicaciones BCI. Por lo general, la forma de onda
ERP es cuantitativamente caracterizada por la amplitud, latencia y su
propagacién en el cuero cabelludo. Esa informacién puede ser anali-
zada desde el plano tiempo-frecuencia de una TFD y ademas se puede
extraer los parciales correspondientes al ERP mediante la extraccion
de caracteristicas LFE . Por esta razon, creemos que el método de ex-
traccion de parciales puede jugar un papel interesante en deteccion y
analisis de ondas ERP.

Clasificacion de diferentes tipos de epilepsia. Hay una exten-
siva clasificacion tanto de crisis epilépticas como del tipo de epilepsia.
Una forma sencilla de clasificarlas es teniendo en cuenta la forma de
como se origina la crisis en la primera fraccion de segundo. Si la crisis
comienza en una regién focal del cerebro es llamada parcial, y si se
inicia por todas las partes del cerebro al mismo tiempo, se denomina
generalizada. Dentro de cada grupo hay diferentes tipos de epilepsia
con caracteristicas diferentes entre ellas. Un analisis de cada epilepsia
puede basarse empleando el método de extraccién LFE. Ese método
permitiria obtener informacién natural de cada epilepsia como bandas
de frecuencia, duracién por crisis y las zonas del cerebro més activas en
crisis. Con esa informacion seria posible clasificar cada tipo de epilepsia
con miras a un posible tratamiento, diagnéstico o cirugia.

Seguimiento de pacientes bajo tratamiento observando la de-
saparicion del parcial dominante. En la presentacion del método
de extraccion de caracteristicas LFE, se observo la aparicion de parcial
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principal de larga duracién sobre el plano tiempo-frecuencia cuando un
paciente sufre una crisis epiléptica. Este parcial puede ser utilizado
para monitorear el efecto de los medicamentos en los pacientes, bajo la
suposicion de que el parcial principal tiende a desaparecer en el tiempo
con la medicacién.

e Anticipacion de las crisis epilépticas. Una persona que sufre de
epilepsia tiene problemas en su vida diaria que afectan a su entorno
familiar, laboral y personal trayendo como consecuencia una baja au-
toestima. Todo esto sucede debido a la inseguridad diaria que ocasiona
el no saber en qué momento puede sufrir una crisis. Por medio de un
sistema de anticipacion al parcial principal que avise o que haga alguna
actividad (chip intracraneano, sistema de automedicacién) se podria
mejorar considerablemente la calidad de vida en un paciente que sufra
de epilepsia.

Ya para finalizar, queremos agregar la importancia de lograr una integracion
del EEG con otras técnicas como la fMRI. En el capitulo 2 se descri-
bieron las ventajas y desventajas de las senales EEG. El EEG tiene una
resolucion espacial baja porque esta limitada al nimero de electrodos. La
técnica MEG presenta una mejor resoluciéon temporal, pero sufre de igual
manera la misma desventaja que el EEG y es econémicamente cara. Con
fMRI se solucionaria el problema de los dos métodos anteriores porque esta
técnica presenta una alta resolucion espacial ya que las areas activas del cere-
bro pueden ser localizadas milimétricamente. La integracion de estas técnicas
es de vital importancia en los estudios de neurociencia, porque permite mejo-
rar la deteccion de otras enfermedades neurodegenerativas como alzhéimer,
parkinson, depresién o demencia senil.
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Chapter 1

Introduction to the detection
problem in EEG signals

1.1 Introduction

An emergent research line arises from the integration between clinical neuro-
science and engineering and is called clinical neuroengineering. This new field
uses engineering, computational simulation, mathematical analysis, imaging
techniques, and hardware based modeling to solve different problems in clin-
ical neurosciences. The goal is to use engineering approaches to uncover
the principles of neural function and to use these principles in the design of
diagnostic and therapeutic systems; research is them necessary from bench
to bedside. Clinical neuroengineering has a variety of active fields with ob-
jectives such as new treatments based on new engineering tools and new
approaches to neural disease diagnosis, as introduced in Thakor and Tong
[2006a].

One important tool for the diagnosis and treatment of mental and brain
diseases and abnormalities is the electroencephalogram (EEG). More than
eight decades have passed since Hans Berger measured the first EEG in hu-
mans and still nowadays EEG is used extensively to evaluate neurological dis-
orders in the clinic and to investigate brain function in the laboratory. Fig.1.1
shows an EEG in the time domain (left) and frequency domain (right). Time
and frequency domains are popular methods in EEG signal analysis.

The identification and interpretation of the bioelectric phenomena origi-
nating from the cerebral cortex and evoked by auditory and somatosensory
stimuli are clear objectives to both understand how the brain works and
to recognize different pathologies. Diseases such as Parkinson’s, dementia,
Alzheimer’s, schizophrenia and epilepsy are studied to find a cure or accurate
diagnosis. Regarding epilepsy, research is aimed at isolating, identifying and
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locating epileptic foci from EEG signals, procedure prior to possible surgi-
cal treatment in cases where the medication has not been able to stop the
disease. Another possibility in drug-resistant cases is the early detection of
seizures by automated methods based on EEG signals. This is a problem of
great clinical interest due to its great complexity, theoretical and practical,
for which only partial solutions exist up to day, and they have been tested
on very small numbers of patients or databases.
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Figure 1.1: EEG signal in time domain (left) and frequency domain (right).
Time and frequency domains are popular methods in EEG signal analysis.

Time-frequency distributions (TFDs) and adaptive methods have demon-
strated to be good alternatives in designing systems for detecting neurode-
generative diseases. Abnormal EEG are considered dynamic signals which ex-
hibits non-stationary behavior with focal or multifocal activity, spikes, sharp
waves, and focal mono-rhythmic discharges. TFDs are appropriate transfor-
mations for this type of signals because they offer the possibility of analyzing
relatively long continuous segments of EEG data even when the dynamics
of the signal are rapidly changing. On the other hand, EEG records usually
vary, not only in different patients but also from a single patient because it
depends on the registration time. Therefore we have to consider adaptive
methods that consider every scenario.

This chapter will introduce our proposals for EEG feature extraction and
preprocessing used in the detection scheme for EEG signals with epilepsy.
We also present the problem statement and the state of the art in EEG
epilepsy detection. Finally, the objectives, previous work and motivation for
this Thesis will be given.

This chapter is organized as follows: Section 1.2 deals with the problem
statement, previous work in epileptic detection on EEG signals are reviewed
in Section 1.3, in Section 1.4 the motivation of this Thesis is presented,
Section 1.5 describes the objectives of this Thesis and in Section 1.6 we
outline the contents of the rest of the Thesis.
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1.2 Problem statement

Epilepsy is considered the disease with major prevalence within disorders
with neurological origin. The recurrent and sudden incidence of seizures can
lead to dangerous and possibly life-threatening situations. Since disturbance
of consciousness and sudden loss of motor control often occur without any
warning, the ability to predict epileptic seizures would reduce patients’ anx-
iety, thus improving quality of life and safety considerably.

Intractable epilepsy is one of the most physically and emotionally de-
structive neurological disorders affecting population of all ages. It is gen-
erally accepted that surgical rejection of epileptic foci is the best solution.
However, before conducting neurosurgery, it is necessary to study the pres-
ence of epileptiform activity, which is distinct from background EEG activity.
The analysis of EEG data and the extraction of information is not an easy
task. EEG recording may be contaminated by extraneous biologically gen-
erated (human body) and externally generated signals (power line, electrode
movement etc.). The presence of this kind of noise or “artifacts” makes it dif-
ficult to discriminate between original brain waves and noise. This problem
motivates a preprocessing step to obtain clean signals before the detection
task.

Another important problem in EEG processing is to figure out which kind
of information or “patterns” we want to extract from the signal. This proce-
dure is known as feature extraction. Extracted features depend considerably
on the method used, which are usually transformations to other domains that
permit the extraction of hidden information in the signal. Care has to be
taken not to extract similar or irrelevant features that could reduced the de-
tector performance or increase the computational load. Therefore, a feature
selection procedure is also necessary to complement the features extraction
procedure.

Other important task in the medical environment to diagnose, classify or
detect abnormalities, is to obtain ictal and interictal patterns. This usually
involves monitoring of the patient during several weeks. Continuous observa-
tion or patient monitoring is a care activity that requires time and expensive
work, being necessary specialized personnel for alerting of possible changes
that a patient may have. When information is stored, there is another ac-
tivity equally important: the analysis of the EEG registers. The specialists
have to analyze waveforms, spectrum and peaks, and based on this analysis
try to determine the pathology that the patient suffers. Usually they use
a video unit. In many instances, there are disagreements among specialists
about the same record due to the subjective nature of the analysis.

The introduction of new techniques and mathematical algorithms in the
EEG analysis can be helpful to design new supporting methods in medical
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decision and diagnosis, thus avoiding tedious analysis of long-term records
and doubts about the brain pathology that a patient suffers.

Nowadays there are many published studies about neurological diseases
detection but these results are very focused on private institutional databases
or rely on impractical numerical methods which are difficult to implement in a
hospital environment. Therefore, the implementation and design of practical
and reliable detection systems are very important in hospitals. This doctoral
thesis, tries to narrow the gap that exists between EEG signal theory and
practical implementation for the medical practice.

1.3 Summary of previous work in epileptic
detection on EEG signals

Some methods of seizure detection were based on detecting strong rhythmic
movements of the patient, but these methods had a limitation: seizures do
not always present strong movements. This limitation led the detection prob-
lem to methods based on EEG signal analysis, for example, detection of large
seizures discharges in several EEG channels by amplitude discrimination was
described by J.R. Ives and Woods [1974]; T.L. Babb and Crandall [1974] de-
signed an electronic circuit for seizures detection from intracraneal electrodes.
However, some seizures do not present EEG changes, therefore seizure detec-
tion only based on EEG analysis was not at all reliable and it was necessary to
combine it with other methods. For example, P.F. Prior and Maynard [1973]
identified on the EEG signal a large increase followed by a clear decrease in
the amplitude and at the same time by large electromyogram (EMG) activ-
ity; A.M. Murro and Meador [1991] described a method based on spectral
parameters and discriminant analysis.

New alternatives for this detection problem are addressed from the point
of view of pattern recognition. Gotman [1982] presented an automatic de-
tection system based on seizure patterns. The drawback of this method is
the necessity of traditional visual inspection of the patterns, being necessary
a careful examination of them by a specialist.

Presently, EEG epileptic detectors have evolved including new techniques
such as neural networks, non-linear models, independent component analy-
sis (ICA), Bayesian methods, support vector machines and variance-based
methods, as described in Guerrero-Mosquera et al. [2010a]. Other group of
methods potentially useful for detecting and analyzing non-stationary sig-
nals are time-frequency distributions (TFDs) Cohen [1995]. These methods
allow us to visualize the evolution of the frequency behavior during some
non-stationary event by mapping a one dimensional (1-D) time signal into a
two-dimensional (2-D) function of time and frequency. Therefore, from the
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time-frequency (TF) plane it is possible to extract relevant information using
methods such as peak matching, filter banks, energy estimation, etc.

On the other hand, most of the detection methods proposed in the litera-
ture assume a clean EEG signal free of artifacts or noise, leaving the prepro-
cessing problem open to any denoising algorithm such as digital filters, inde-
pendent component analysis (ICA) or adaptive schemes using the electroocu-
logram (EOG) as reference signal, in Guerrero-Mosquera and Navia-Vazquez
[2009]. In Chapter 3 we will show the importance of the noise removing proce-
dure and we also introduce adaptive filtering, which is necessary to eliminate
the dependence on visual analysis that generally leads to problems with the
interpretation.

1.4 Motivation

During the last years the Signal Theory and Communications department of
the University Carlos III of Madrid, Electrical and Electronic Engineering
department in the Public University of Navarra and the Neuroscience Unit
Neurophysiology in the University Hospital of Navarra have been working in
successive researches concerning the analysis of different bioelectric phenom-
ena originated at the cerebral cortex with the objectives of applying these
studies to describe new approaches to neural disease diagnosis and treatment
developed through the use of new engineering tools and techniques. These
neurological diseases includes Parkinson, Alzheimer and epilepsy.

EEG signals change continuously and processing every single one requires
a long period of time, more personal, high storage databases, and computa-
tional cost. To improve efficiency, adequate algorithms may be used to high-
light the most pertinent features of epileptic signals. This allows to identify
and classify epileptic seizures faster, and also to see which parts of the brain
are the most affected.

On first results showed a need to reduce the amount of information ob-
tained from EEGs due to the fact that the analysis of all the data requires
a great deal of time and large processing capacity. In order to achieve this
objective, the detection scheme has to allow the extraction of the most rel-
evant features related to epilepsy. Thus, we need algorithms that allow us
to detect, classify or identify epilepsy with a small amount of information
and then improve the efficiency of detection or classification tasks carried
out by analyzing small amounts of information through the use of the most
important features extracted from the EEG signals.

The research team proposed a research line that was approved at Neu-
roscience Unit Neurophysiology in the University Hospital of Navarra. This
design, summarized in Fig.1.2 (left panel), consists in developing different
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algorithms to analyze, detect and anticipate epilepsy seizures with the possi-
bility of applying this design to other neurodegenerative pathologies such as
Parkinson, Alzheimer or the analysis of different sleep disorders. This PhD
thesis studies analysis and detection methods to detect epileptic events in
EEG signals (right panel in Fig.1.2), leaving seizure anticipation methods as
future work.

The design foundations are simple: (i) an EEG signal is recorded, (ii) the
EEG signal is cleaned by some denoising and artifact rejection algorithm,
(iii) features from EEG signal are extracted and finally (iv) relevant features
are selected. Next section explains in detail all objectives proposed in the
design.

Analysis, detection and anticipating system

Figure 1.2: Research line proposed (left panel) and our approach in analysis
and detection methods to epileptic EEG signals developed in this Thesis
(right panel).
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1.5 Objectives

We have proposed the following overall objective in this work: Design detec-
tion and analysis algorithms for EEG signals. This design has to be practical,
simple and efficient to be applied in the medical environment. To achieve this
objective, it is necessary to perform different specific tasks:

e Data collection in the hospital and databases searching used by other
authors.

e Remove artifacts and EEG denoising by independent component anal-
ysis (ICA).

e Design of adaptive EEG artifact removal system.

e Analysis of different time-frequency distributions (TFDs) for epileptic
EEG signals.

e New approach for feature extraction from TFDs to find seizure patterns.
e EEG seizure detection by proposed features.

e Performance comparison of features proposed with different features
extraction methods for EEG signal detection and classification.

e Selection of relevant features for improving detection and classification
tasks by dimensionality reduction methods.

e Design of automatic EEG detection and classification system.

We will restrict ourselves to the development of tools for EEG preprocessing
and features extraction algorithm with the objective of improving detection
or classification performance in EEG signals with epilepsy. These methods
could be extended to other scenarios in EEG processing and their applications
but for this it will be necessary to adapt this methods to the problems which
we want to solve.

1.6 Overview of the rest of the thesis

The computational complexity introduced for the methods proposed will be
shown in Chapter 4. These complexity orders are rarely shown in the state-
of-the-art of EEG detection, therefore we think that our results are more
reliable from the practical point of view.
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In Chapter 2 we introduce the fundamental concepts about the nervous
system and EEG generation. Concepts related to visual analysis of the EEG,
artifacts, abnormal EEG patterns, brain rhythms are described. This chapter
also includes EEG applications such as epilepsy detection, brain computer
interface (BCI), sleep disorders and event related potentials (ERPs).

In Chapter 3 concepts in signal modelling, signal segmentation, filtering
and denoising, feature extraction, feature selection and classification algo-
rithms are reviewed. Signal modelling includes physical model, linear and
non-linear models. Signal segmentation tells us how to separate meaningful
segments in time-invariant signals and time-varying signals. Filtering and
denoising briefly introduce to different techniques for obtaining clean EEGs,
such as digital filtering, adaptive methods and independent component anal-
ysis (ICA). Feature extraction and feature selection introduce to transforma-
tions which we could apply to EEG signal to describe in a clear way the data
and the principle of choosing smaller number of variables among the original
ones.

In Chapter 4 we present two new proposals for EEG signal processing:
a new method for eliminating eyes artifacts from EEG based on ICA-RLS,
and an approach in feature extraction for EEG signals based on a sinusoidal
model. ICA-RLS method has two important characteristics: first, it is not
necessary to use EOG dedicated electrodes, and second, every ICA projection
data is fed into an adaptive filtering. On the other hand, tracks extraction
(LFE features) is a novel approach to EEG detection which is based on
track measurements such as length, frequency and energy (L, F,FE). We
also present results about both eye artifact rejection and epilepsy detection.
These methods could be used in other scenarios such as BCI and EEG seizure
classification.

In Chapter 5 we evaluate the performance of the proposed methods in
classification tasks for EEG segments. For this, we propose different clas-
sification problems using EEG databases recorded at University Hospital
of Navarra as well as others used in previous research. This chapter also
evaluates a method for dimensionality reduction for EEG based on mutual
information and forward-backward procedure.

Chapter 6 concludes this work with a summary of the contributions and
a brief discussion about further work.



Chapter 2

Outline of
Electroencephalography

2.1 Introduction

Neural activity in the human brain starts from the early stages of prenatal
development. This activity or signals generated by the brain are electrical in
nature and represent not only the brain function but also the status of the
whole body.

At the present moment, three methods can record functional and phys-
iological changes within the brain with high temporal resolution of neu-
ronal interactions at the network level: the electroencephalogram (EEG), the
magnetoencephalogram (MEG), and functional magnetic resonance imaging
(fMRI); each of these has advantages and shortcomings. MEG is not prac-
tical for experimental work when subjects may move freely, because of the
large size of magnetic sensors. For image sequences, fMRI has a time reso-
lution very low and many types of EEG activities, brain disorders and neu-
rodegenerative diseases cannot be recorded. On the other hand the spatial
resolution of the EEG is limited to the number of electrodes, as described in
Ebersole and Pedley [2003], Sanei and Chambers [2007].

Much effort has been made to integrate information of multiple modalities
during the same task in an attempt to establish an alternative high-resolution
spatiotemporal imaging technique. The EEG provides an excellent tool for
the exploration of network activity in the brain associated to synchronous
changes of the membrane potential of neighboring neurons. Understand-
ing of neuronal functions and neurophysiological properties of the brain to-
gether with the mechanisms underlying the generation of biosignals and their
recordings is important in the detection, diagnosis, and treatment of brain
disorders.
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Cerebral sources of electroencephalography potentials are three-dimensional
volumes of cortex. These sources produce three-dimensional potential fields
within the brain. From the surface of the scalp, these can be recorded as
two-dimensional fields of time-varying voltage. The physical and functional
factors that determine the voltage fields that these sources produce could

be appreciated in order to locate and characterize cortical generators of the
EEG.

Electroencephalography enables clinician to study and analyze electrical
fields of brain activity recorded with electrodes placed on the scalp, directly
on the cortex (e.g., with subdural electrodes), or within the brain (with depth
electrodes). For each type of recordering, the specialist attempts to determine
the nature and location of EEG patterns and whether they correspond to
normal or abnormal neural activity.

This chapter first presents a brief description of the nervous system and
the electrical activity of the brain (Section 2.2); further details can be found
in comprehensive descriptions of the human brain in Ebersole and Pedley
[2003], Fisch [1999], Sanei and Chambers [2007]. Section 2.3 describes the
EEG machine, which introduces the electrodes, different EEG montages and
filters. A variety of common brain rhythms and waves are presented in Sec-
tion 2.4 which are of special interest in the chapter on brain rhythms, artifacts
and abnormal EEG patterns. In Section 2.6 the summary and conclusions
are given.

2.2 The nervous system

The nervous system is an organ system containing a network of specialized
cells called neurons that gathers, communicates, and processes information
from the body and send out both internal and external instructions that
are handled rapidly and accurately. In most animals the nervous system is
divided in two parts, the central nervous system (CNS) and the peripheral
nervous system (PNS). CNS contain the brain and the spinal cord, and the
PNS consists of sensory neurons, grouping of neurons called ganglia, and
nerves cells that are interconnected and also connect to the CNS. The two
systems are closely integrated because sensory input from the PNS is pro-
cessed by the CNS, and responses are sent by the PNS to the organs of the
body. Neurons transmit electrical potentials to other cells along thin fibers
called axons, which cause chemicals called neurotransmitters that permit the
neuronal function called synapses. These electrical potentials, called as “ac-
tion potentials” is the information transmitted by a nerve that, in one cell,
cause the production of action potentials in another cell at the synapse. A
potential of 60-70 mV with some polarity may be recorded under the mem-
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brane of the cell body. This potential changes with variations in the synap-
tic process. In this sequence, the first cell to produce actions potentials is
called the presynaptic cell, and the second cell, which responds to the first
cell across the synapse, is called the postsynaptic cell. Presynaptic cells are
typically neurons, and postsynaptic cells are typically other neurons, muscle
cells, or gland cells. A cell that receives a synaptic signal may be inhibited,
excited or otherwise modulated. The Fig.2.1 shows the synaptic activities
schematically.

The CNS is a major site for processing information, initiating responses,
and integrating mental processes. It is analogous to a highly sophisticated
computer with the ability to receive inputs, process and store information,
and generate responses. Additionally, it can produce ideas, emotions, and
other mental processes that are not automatic consequences of the informa-
tion input.
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Figure 2.1: Presynaptic and postsynaptic activities in the neurons. An
action potential that travels along the fibre ends in an excitatory synapse.
This process causes an excitatory postsynaptic potential in the following
neuron.

2.2.1 Neural activities

Cells of the nervous system include neurons and nonneural cells. Neurons
or nerve cell communicate information to and from the brain. They are
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organized to form complex networks that perform the functions of the nervous
systems. All nerve cells are collectively referred to as neurons although their
size, shape, and functionality may differ widely. Neurons can be classified
with reference to morphology or functionality. Using the latter classification
scheme, three types of neurons can be defined: sensory neurons, connected
to sensory receptors, motor neurons, connected to muscles, and interneurons,
connected to other neurons.

The cell body is called the soma, from which two types of structures
extend: the dendrites and the azon. Dendrites are short and consist of as
many as several thousands of branches, with each branch receiving a signal
from another neuron. The axon is usually a single branch which transmits
the output signal of the neuron to various parts of the nervous system. Each
axon has a constant diameter and can vary in size from a few millimeters
to more than 1 m in length; the longer axons are those which run from the
spinal cord to the feet. Dendrites are rarely longer than 2 mm. and are
connected to either the axons or dendrites of other cells. These connexions
receive impulses from other nerves or relay the signals to other nerves. The
human brain has approximately 10,000 connexions between one nerve and
other nerves, mostly through dendritic connections.

urons ar urse, not working in ndid i ion, but are intercon-
Neurons are, of course, not work splendid isolation, but are interco
nected into different circuits (“neural networks”), and each circuit is tailored
to process a specific type of information.

2.2.2 Cerebral cortex

The cerebral cortex constitutes the outermost layer of the cerebrum and
physically it is a structure within the brain that plays an important role in
memory, perceptual awareness, attention, thought, consciousness and lan-
guage. Normally, it is called “grey matter” for its grey color and it is formed
by neurons and “gray fibers” covered by a dielectric called myelin. Myelinated
axons are white in appearance, this characteristic is the origin of the name
“white matter,” and it is localized below the grey matter of the cortex. Their
composition is formed predominantly by myelinated axons interconnecting
different regions of the nervous central system.

The human cerebral cortex is 2-4 mm thick. The cortical surface is highly
convoluted by ridges and valleys of varying sizes and thus increases the neu-
ronal area; the total area is as large as 2.5 m? and includes more than 10'°
neurons. The cortex consists of two symmetrical hemispheres—left and right—
which are separated by the deep longitudinal fissure (the central sulcus).
Each cerebral hemisphere is divided into lobes, which are named for the skull
bones overlying each one: the frontal lobe, involved with decision-making,
motor speech, problem solving, and planning; temporal lobe, involved with
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Figure 2.2: Cerebral cortex and its four lobes.

memory, sensory speech, emotion, hearing, and language; the parietal lobe,
involved in the reception, reading comprehension and processing of sensory
information from the body; and the occipital lobe, involved with vision, see
Fig.2.2.

2.3 The EEG machine: An Overview

Since the 1920s, the EEG machine has been the subject of study and de-
velopment, and its use is common in medical practice. Although the basics
elements are similar to those employed in the days of Hans Berger, many of
the components and circuits have been vastly improved by fully computer-
ized systems. The EEG machines are equipped with many signal processing
tools, delicate and accurate measurement electrodes with enough memory
necessary to very long-term recording (several hours), channel machine ex-
pansion (8, 16, 20, 24, 32, 64, etc., even more channels) and invasively or
noninvasively EEG record. Fig.2.3 shows a block diagram of the circuit con-
taining the patient and EEG machine, which consists of both digital and
analogue components. There are two important factors (one biophysical and
one physiological) that limit the EEG interpretation. First, for any scalp
recorded EEG signal there are an infinite number of sources within the vol-
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Figure 2.3: Block diagram of the electroencephalographic machine (with
permission of Ebersole and Pedley [2003]).

ume of the brain that can explain, or “fit,” the scalp recorded signal. There-
fore, one or more generators in different locations in the brain can produce
the same EEG findings at the scalp. This means it is theoretically impossi-
ble to know the location of the EEG generation in the brain with only scalp
recorded information. This is referred to as the inverse problem. In contrast,
if the anatomical source, intensity and orientation of the electrical generators
in the brain are known, then the EEG findings on scalp electrodes can be ac-
curately predicted. This is referred to as the forward problem. However, it is
the inverse problem that the specialist is confronted with in clinical practice.
Because the localization of EEG sources within the brain is so important, the
search for methods to help solve the inverse problem (referred to as source
localization) is currently a central theme in EEG research. Fortunately, in
routine EEG practice a formally trained electroencephalographer can greatly
narrow the number of possible solutions of the inverse problem.

The second factor that limits interpretation is that EEG signal abnormal-
ities sometimes do not appear completely localized in the area of the brain
where the main pathological condition resides. That is, an abnormal cortical
signal may occasionally appear distant from the most prominent functional
or structural damage. For example, the substance of a large structural lesion
(e.g., tumor, stroke, ect.) is typically electrically silent. However, border-



2. QOutline of Electroencephalography 15

ing tissue involved in EEG generation produces the abnormal activity seen.
Indeed, in some cases EEG abnormalities recorded over the middle and ante-
rior temporal areas may occur in the setting of a structural abnormality that
more directly involves deep hemispheric structures or the frontal, parietal or
posterior temporal lobes, as discussed in Fisch [1999].

Despite the two factors explained above, the EEG is at the present time
the tool with more diagnostic applications in clinical environment, because it
has several strong advantages as a tool of exploring brain activity; for exam-
ple, its time resolution is close to milliseconds (very high), it is relatively low
cost and widespread used in clinical enviroment. Other methods of looking at
brain activity, such as positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) have time resolution in order of seconds
or minutes. EEG measures the brain’s electrical activity directly, while other
methods record changes in blood flow (e.g., fMRI, single photon emission
computed tomography (SPECT)) or metabolic activity (e.g., PET), which
are indirect measurements of the brain electrical activity. Taking advantage
of the high-temporal-resolution from the EEG and combining with the high-
spatial-resolution data from the fMRI, it is possible to use both techniques
simultaneously, however, it is necessary a good synchronization between them
because otherwise the data sets do not necessarily represent exactly the same
brain activity. Moreover, there are technical difficulties associated with com-
bining these two modalities such as the need to remove the MRI gradient
artifact present during MRI acquisition and the presence of artifacts (i.e. the
ballistocardiographic artifact that results from the pulsatile motion of blood
and tissue) from the EEG. Furthermore, currents can be induced in moving
EEG electrode wires due to the magnetic field of the MRI.

However, EEG and MEG are a good complimentary methods due to
high-time-resolution techniques and the possibility to obtain data with high
resolution.

2.3.1 Electrodes

Following Sanei and Chambers [2007], only large populations of active neu-
rons can generate potentials high enough to be recordable using the scalp
electrodes. This potentials travel through the human head that consists of
three principals layers: the scalp, skull, brain and many other thin layers
in between (see Fig.2.4). Every layer attenuates the EEG signal, specially
the skull, that approximately attenuates one hundred times more than the
soft tissue. Scalp electrodes are applied after determining their precise scalp
location and after preparing the scalp to reduce electrical impedance.

Electrodes consist of a conductor attached to a wire that leads to a plug
that is inserted into the input of the “all channel control” (see Fig.2.3). Elec-
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Figure 2.4: Resistivities and thicknesses ({2 =ohm) of the three main layers
of the brain (adopted from Sanei and Chambers [2007]).

trodes conduct electrical potentials from the head to the EEG machine with
the help of a conductive paste that connects skin with electrodes. The paste is
a electrical conductor whose functions range from the helping of transmission
of potentials and decreasing the movement artifacts.

Electrodes are made of metal such as tin, silver and gold. Proper elec-
trodes must be good electrical conductors and must be in good contact with
the electrolyte paste that covers the skin. Voltage at any given instant is
obtained as the difference in voltage between 2 electrodes sites on the body,
at least one of which is placed on the scalp.

Another class of electrodes are the depth EEG electrodes. These elec-
trodes are used to define the targets for surgical destruction and as stimu-
lating electrodes for treatment of movement disorders. EEG recording depth
electrodes consist usually of a bundle of fine wires that terminate at different
cylindrical contacts along the length of the depth electrode and thus allow
for recording from different depths.

Apart of these, there are a number of highly specialized electrodes, when
shape and feature depend on the localization or application, for example,
nasopharyngeal, sphenoidal, subdural and epidural electrodes are used to
analyze, detect and localize epileptiform activity.

2.3.2 Jackbox and Montage Selector

Since EEG was first recorded from humans by Hans Berger in 1929, who
used two electrodes applied on the front and back of the head, various sys-
tem have been used over the years. The EEG signal is transmitted from the
patient through conducting electrodes to the electrode board, also called the
electrode box or jackbox. Electrodes are labeled on the jackbox in accordance
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to the Committee of the International Federation of Societies for Electroen-
cephalography and Clinical Neurophysiology (IFSECN), that recommended
a specific system of electrode placement under standard conditions for use in
EEG laboratories. Specific measurements from body landmarks are used to
determine the placement of electrodes. From these anatomical landmarks,
specific measurements are made, and then 10% to 20% of a specified dis-
tance is used as the electrode interval. This enables replication consistently
over time and between laboratories. The American Clinical Neurophysi-
ology Society (formerly the American Electroencephalography Society) has
recommended using a minimum of 21 electrodes in a system called as the
international 10-20 system. Odd-numbered electrodes are placed on the left
side of the head, and even-numbered electrodes, on the right side of the
head. Electrodes are identified according to the brain region proximate to
their location: on the frontopolar region the electrodes are labeled as “Fp;”
frontal, “F;” central, “C;” temporal, “T;” parietal, “P;” and occipital, “O” (See
Fig.2.5).

In many applications such as Brain Computer Interface (BCI) and study
of mental activity it is necessary to use at least a small number of electrodes
related with the regions that correspond to the movement, and the electrode
arrangement usually is based on 10-20 setting system. Fig.2.6 illustrates
a typical set of EEG signals during approximately five seconds of normal
adult brain activity. Note in this figure that even though the EEG signal
contains brain information, sometimes some displayed channels correspond
to electrocardiogram (ECGp and ECGn).

Channel locations

Figure 2.5: Neurophysiology 10-20 System in 2-D (left) and 3-D (right).
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Figure 2.6: Typical set of EEG signals during approximately five seconds of
normal adult brain activity. Note in this figure the existence of two channels
corresponding to electrocardiogram (ECGp and ECGn).

On the other hand, EEG Montages are arrangements of electrode deriva-
tions designed to enhance recognition of EEG patterns. Common montage
types are:

e Bipolar montage. Each channel recorded is obtained by the difference
between two adjacent electrodes.

e Referential montage. Each channel recorded is the difference between
a certain electrode with a designated reference electrode. Do not exist
standard reference position.

e Average reference montage. There is an averaged signal that is used as
the common reference for each channel. This average is obtained from
the average of the outputs of all the amplifiers.

e Laplacian montage. Each channel represents the difference between an
electrode and a weighted average of the surrounding electrodes (“nearest
neighbors”).

Each of these montages has different advantages and disadvantages presented
in Ebersole and Pedley [2003].
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Raw EEG

EEG filtered by low pass 1-15 Hz

EEG filtered by low pass 1-30 Hz

Figure 2.7: Different effects of using filters in the EEG

2.3.3 EEG filters

Filters are used to exclude waveforms of relatively high or low frequency
from the EEG so that waveforms can be recorded clearly and without dis-
tortion. After EEG signals are recorded and amplified, the output is filtered
to eliminate specified frequency components, as described earlier. The high-
pass filter removes components of the signal that have frequencies less than
a specified value and keep the amplitude of the fast waves; the low-pass
filter attenuates components with frequencies higher than a certain value
and keep the amplitude of slow waves. A special filter, a 60 Hz (50 Hz
in Europe) notch filter, is necessary to remove electrical interference gener-
ated by electrical power line. It is desirable in EEG recording to minimize
the use of typical digital filters with low cutoff frequency of 0.1 Hz and a
high cutoff frequency of 70 Hz. Filters distort both the amplitude and the
interchannel phase of signals. Sometimes, artifacts originated from muscle
(commonly high-frequencies) and others artifacts from movement or sweat
potentials (low-frequencies) recommend the use of more stringent filtering.
Fig.2.7 shows how filtering can modify a signal into a nearly uninterpretable
tracing. It is necessary a good documentation in filtering before applying on
the EEG recording, so that the specialist can interpret their possible influ-
ence.
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2.3.4 Amplifiers

In general, EEG machines contain amplifiers that are compound devices
whose function is not only to increase voltage. EEG amplifiers also con-
tain filters, voltage dividers, input and output jacks, and calibration devices.
Owing to the fact that EEG signal amplitudes are very small, the amplifiers’s
sensitivity, defined as the amount of voltage required to deflect the recording
pens a given distance, has units that oscillate between millivolts per centime-
ter or microvolts per millimeter. A typical sensitivity value for the EEG is
7 pV per millimeter, leading to pen deflections of 30 to 20 mm for typical
EEG input voltages.

The frequency response of the EEG amplifier is considered as flat over
a wide range of input values. In practice, the settings that the clinician
chooses for the filters determine the range of linear frequency response. To
avoid distortion, it is advisable to choose an amplifier with linear frequency
response, both high and low frequency components, over the expected range
of input voltages.

Signals from each electrode are led to a differential amplifier that amplifies
a signal difference. This signal difference is a graph of voltage that depends
of the ground electrode on the scalp (type of montage) and another signal in
relation to the same reference. This process eliminates noise voltages present
in both electrodes, and in addition it isolates the two inputs for each channel
from system ground.

2.3.5 Analog and digital conversion

All digital instruments contain analog amplifiers and filters that produce an
EEG signal suitable for digital processing. Digital processing begins with the
transformation of the continuous analog signal into a digital signal. The dig-
ital signal consists of a series of discrete, discontinuous data points separated
by equal intervals of time. This transformation is performed by an analog to
digital converter, or ADC. It has three key attributes that determinate how
accurately the analog signal will be reproduced in digital form:

e the sampling rate (i.e., samples per second according to Nyquist theo-
rem)

e the number of amplitude levels (amplitude resolution in terms of bits)that
can be resolved, and

e the input voltage range (the range of voltage coming from the analog
amplifiers that the ADC is set to analyze)
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2.3.6 The signal display: oscilloscope and computer

Although digital systems can easily output the recorded signal to a variety
of display media, the most practical way of viewing the EEG is on a com-
puter (monitor or flat panel display). According to the American Clinical
Neurophysiology Society the display should have a minimum of 2 pixels of
resolution per vertical millimeter, but there are higher resolution monitor
available.

In summary, EEG enables clinicians to study and analyze electrical fields
of brain activity by recording amplified voltage differences between electrodes
place on the scalp, directly on the cortex (e.g., with subdural electrodes),
or within the brain (with depth electrodes). For each electrical field, the
specialist tries to determine the nature, localization, and configuration of the
generator of EEG patterns and whether there are normal or abnormal neural
discharges.

2.4 Introduction to the EEG analysis

Most of the brain disorders are diagnosed by visual inspection of EEG sig-
nals and the analysis is a rational and systematic process requiring a series of
orderly steps characterizing the recorded electrical activity in terms of spe-
cific descriptors or features and measurements as viewed in Table.2.1. For
example, an EEG from an 8 year old child, some 2 Hz waves are identi-
fied in the awake EEG. This activity must then be characterized according
to their location, voltage, waveform, manner of occurrence, frequency, ampli-
tude modulation, synchrony and symmetry. A change in any of these features
might entirely change the significance of the 2 Hz waves finding this difference
as abnormal.

Some clinical information is required before the EEG analysis is begun, by
example the patient’s age and state. Both age and birth date should be part
of the EEG record. For example, there are clearly defined differences between
the EEG of a premature infant with a conceptional age of 36 weeks, but there
are no important or sharply delineated differences between the EEG of a 3
year old child and that 4 year old child described in Ebersole and Pedley
[2003].

The clinical experts in the fields are familiar with manifestation of brain
rhythms in the EEG signals and it is important to recognize that the identifi-
cation of a particular activity or phenomenon may depend on its “reactivity”
(see Table.2.1). An important element of the recording and its analysis is
the testing of the reactions, or responses, of the various components of the
EEG to certain physiological changes.
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Table 2.1: Essential features of EEG analysis described in
Ebersole and Pedley [2003].

1. Frequency or wavelength
2. Voltage
3. Waveform.
4. Regulation
a. Frequency
b. Voltage
Manner of occurrence (random, serial, continuous)
Locus
7. Reactivity (eye opening, mental calculation, sensory stimulation,
movement, affective state)
8. Interhemispheric coherence (homologous areas)
a. Symmetry
i. Frequency
ii. Voltage
b. Synchrony
i. Wave
ii. Burst

SN

Specification of the reactivity of a given activity, rhythm or pattern is
essential for the identification and subsequent analysis of the activity and may
clearly differentiate it from another activity with similar characteristics. For
example, in healthy adults, the amplitudes and frequencies of brain rhythms
change from one state of the human to another, such as wakefulness and
sleep. Similarly, a series of rhythmic, high voltage 3 to 4 Hz waves in the
prefrontal leads (just over the eyes) occurring in association with arousal in
a young child may be normal, but a similar burst occurring spontaneously
and not associated with arousal may be abnormal.

2.4.1 Brain rhythms and waveforms

The electrical activity of the cerebral cortex is often called as rhythm because
this recorded signals exhibit oscillatory, repetitive behavior. The diversity of
EEG rhythms is enormous and depends, among many other things, on the
mental state of the subject, such as the degree of attentiveness, waking,
and sleeping. The rhythms usually are conventionally characterized by their
frequency range and relative amplitude.

On the other hand, there are five brain waves characterized by their fre-
quency bands. These frequency ranges are alpha («), theta (), beta (53),
delta (§), and gamma () and their frequencies range from low to high fre-
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quencies respectively. The alpha and beta waves were introduced in 1929 by
Berger. In 1938, Jasper and Andrews found waves above 30 Hz that labeled
as “ gamma’ waves. A couple years before, in 1936, Walter introduced the
delta rhythm to designate all frequencies below the alpha range and he also
introduced theta waves as those frequencies within the range of 4-7.5 Hz. In
1944 the definition of a theta wave was introduced by Wolter and Dovey in
Sanei and Chambers [2007].

Alpha waves are over the occipital region of the brain and appear in the
posterior half of the head. The normal range for the frequency of the occipital
alpha rhythm in adults is usually given as 8 to 13 Hz, and commonly appears
as a sinusoidal shaped signal. However, sometimes it may manifest itself as
sharp waves. In such cases, the alpha wave consist of a negative and positive
component that appears to be sharp and sinusoidal respectively. In fact, this
wave is very similar to the morphology of the brain wave called rolandic mu
(p) rhythm.

Delta waves lie within the range of 0.5-4 Hz. These waves appear during
deep sleep and have a large amplitude. It is usually not encountered in
the awake, normal adult, but is indicative of, e.g., cerebral damage or brain
disease.

Theta waves are the electrical activity of the brain varying the range of
4-7.5 Hz and its name might be chosen to origin assumption from thalamic
region. The theta rhythm occurs during drowsiness and in certain stages of
sleep or consciousness slips towards drowsiness. Theta waves are related to
access to unconscious material, creative inspiration and associated to deep
meditation.

Beta waves are within the range of 14-26 Hz and consists in a fast rhythm
with low amplitude, associated with an activated cortex and observed during
certain sleep stages. This rhythm is mainly present in the frontal and central
regions of the scalp.

Gamma waves (sometimes called the fast beta waves) are those frequen-
cies above 30 Hz (mainly up to 45 Hz) related to a state of active information
processing of the cortex. The observation of gamma rhythm during finger
movement is done simply by using an electrode located over the sensorimotor
area and connected to a high-sensitivity recording system.

Other waves frequencies much higher than the normal activity range of
EEG have been found in the range of 200-300 Hz. The localization of these
frequencies take place in cerebellar structures of animals, but they do not
play any role in clinical neurophysiology. Most of the above rhythms may
persist up to several minutes, while others occur only for a few seconds, such
as the gamma rhythm.

Fig.2.8 shows typical normal brain waves. There are also less common
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rhythms introduced by researchers such as Phi (¢), Kappa (k), Sigma (o),
Tau (7), Chi (x), Lambda (\) and transient waveforms associated to two
sleep states, commonly referred to as non-REM (Rapid Eye Movement) and
REM sleep: vertex waves, sleep spindles, and K complexes described in
Sanei and Chambers [2007] and S6rnmo and Laguna [2005].
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Figure 2.8: Typical normal brain waves in the EEG

It is often difficult to understand and detect the brain rhythms and waves
from the scalp EEGs, even with trained eyes. New applications in advanced
signal processing tools, however, should enable analysis and separation of the
desired waveforms from the EEGs. Definitions such as foreground and back-
ground EEG are very subjective and totally depends on the abnormalities
and applications. Possibly it is more useful to divide the EEG signal into two
general categories: the spontaneous brain activity (the “background EEG”);
and brain potentials which are evoked by various sensory and cognitive stim-
uli (evoked potentials, EPs).

2.4.2 Artifacts

Analysis of EEG activity usually raises the problem of differentiating be-
tween genuine EEG activity and that which is introduced through a variety
of external influence. These artifacts may affect the outcome of the EEG
recording. Artifacts originate from a variety of sources such as eyes move-
ment, the heart, muscles and line power. Their recognition, identification,
and eventual elimination are a primary responsibility of the EEG expert.
Even the most experienced neurophysiologist cannot always eliminate all ar-
tifacts in EEG records. However, it is always a major goal to identify the
artifactual activity and be sure that it is not of cerebral origin and should
not be misinterpreted as such.
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Following Ebersole and Pedley [2003] and Fisch [1999], artifacts are gen-
erally divided into two groups: physiological and non-physiological. Physio-
logical artifacts usually arise from generator sources within the body but not
necessarily the brain, for example, eye movements; electrocardiographic and
electromyographic artifacts, galvanic skin response and so on. Biological gen-
erators present in the body may produce artifacts when an EEG recording is
made directly from the surface of the brain. Nonphysiological artifacts come
from a variety of sources such as instrumental and digital artifacts (electronic
components, line power, inductance, etc.), electrode artifacts, environment,
etc.

As technology expands and additional equipment is developed and put
into clinical use, novel artifacts will appear. Then, a correct artifact filtering
strategy should on the one hand eliminate unnecessary amount of information
that has to be eliminated, and on the other hand maintain or ensure that
the resulting information is not affected by undetected artifacts. Sometimes
visual artifacts inspections could be a good alternative in cases when the
artifacts are relatively easy detected by the EEG experts. However, there
is the possibility that during the analysis of EEG databases these patterns
from artifacts cause serious misinterpretation and then reduce the clinical
usefulness of the EEG recordings.

2.4.3 Abnormal EEG patterns

Any variation in EEG patterns for certain states of the subject indicate ab-
normality. This may be due to many causes such as distortion and loss of
normal patterns, increased occurrence of abnormal patterns, or disappear-
ance of all patterns. In most abnormal EEGs, the abnormal EEG patterns
do not entirely replace normal activity: they appear only intermittently, only
in certain head regions, or only superimposed on a normal background.

An EEG is considered abnormal if it contains (a) generalized intermit-
tent slow wave abnormalities, commonly associated in the delta wave range
and brain dysfunctions, (b) bilateral persistent EEG, often associated with
impaired conscious cerebral reactions, and (c) focal persistent EEG usually
associated with focal cerebral disturbance.

The classification of the three categories presented before is not easy
and needs to be extended to several neurological diseases and any other
available information. A precise characterization of the abnormal patterns
leads to a clearer insight into some specific neurodegenerative diseases such
as epilepsy, Parkinson, Alzheimer, dementia and sleep disorders, or specific
disease processes, for example Creutzfeldt-Jakob disease (CJD) described in
Sanei and Chambers [2007]. However, following Fisch [1999], recent studies
have demonstrated that there is correlation between abnormal EEG patterns,
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general cerebral pathology and specific neurological diseases.

2.5 EEG applications

Nowadays there are many applications that have been developed based on
the EEG monitoring and especially in the detection of neurodegenerative
diseases, brain computer interface (BCI) and sleep disorders.

This section presents the most relevant applications developed in the lit-
erature without forgetting that the EEG analysis, as important part within
neuroengineering, is a field that grows day after day in new applications.

2.5.1 Seizures and epilepsy

Epilepsy is a neurological disorder characterized by sudden recurrent and
transient perturbations of mental function (e.g. speech impairment, behav-
ioral disturbances, body movements) that result from excessive neural dis-
charges of a group of brain cells. Patients who are suspected of suffering
epileptogenic foci in their brain are usually subjected to an electroencephalo-
gram (EEG) recording in the hospital. This process records the electrical
activity of the neurons in the brain, and can find or indicate abnormalities
in the nervous central system. Even though the procedure of this technique
has essentially remained the same, EEG data analysis has profoundly evolved
during the last three decades. The common procedure for epilepsy seizure
detection is based on brain activity monitorization via EEG data. This usu-
ally involves identifying sharp repetitive waveforms or rhythmic patterns in
the EEG data that indicate the beginning of the seizure. This process con-
sumes a lot of time, especially in the case of long recordings, but the ma-
jor problem is the subjective nature of the analysis among specialists when
analyzing the same record, as discussed in Acir et al. [2005]. From this per-
spective, the identification of hidden dynamical patterns is necessary be-
cause they could yield insight into the underlying physiological mechanisms
that occur in the brain. In addition, these analyzes could characterize the
non-stationary behavior and isolate abnormal activity in the EEG described
in James and Lowe [2000] with the final objective of developing automatic
seizure detection systems.

Automatic detection of electroencephalographic seizures has been inves-
tigated for years. However, so far, no technique has demonstrated to have
competitive sensitivity and specificity values. The presence of artifacts makes
the detection more difficult. The availability of a good algorithm for seizure
detection would simplify the review of hours and hours of EEG recordings. It
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would also be of great value if the detector could help to distinguish between
real epileptic seizures and artifacts during non-epileptic events.

2.5.2 Brain computer interface (BCI)

Brain-Computer-Interface (BCI) provides a new tool for communication be-
tween the human brain and the external world without any physical contact
and it is oriented to patients who suffer from severe motor impairments (i.e.
head trauma, late stage of Amyothrophic Lateral Sclerosis (ALS), severe cere-
bral palsy and spinal injuries). BCI system may be used as an alternative
form of communication by mental activity.

Following the work of Hans Berger in 1929, in the 1970s, researchers de-
veloped a primitive control system based on electrical activity recorded from
the head. Jacques Vidal from UCLA’s Brain-Computer Interface Laboratory
designed a communication channel effective to control a cursor through a two-
dimensional maze using a single-trial visual-evoked potentials presented in
Sanei and Chambers [2007]. Since 1990s, BCI took a great leap forward, ow-
ing to more detailed knowledge of the EEG signal, other imaging techniques
and rapid advances in computer technology, described in Vallabhaneni et al.
[2005].

From a practical point of view, BCI systems consist of a series of imple-
mentations that generally allow the user to select from a menu of options,
icons or characters on a screen, whether in motion or stoping a cursor of
a dropdown list of options. However, there is a non-trivial problem in the
generation and detection of the EEG control signal.

Other problem is related to non-stationarity in EEG signals coming from
changes of task that could negatively affect the performance of the BCI
systems. Although there are methods proposed to alleviate this problem,
such as the Regularization of Common Spatial Patterns (CSP), described in
Wojcikiewicz et al. [2011], there are still more research to do. But the major
problem in BCI is separating the control signals from the background EEG
because in addition to artifacts and electrical noise there are other undesired
signals such as physiological noise. Meanwhile, the identification of cortical
connectivity, related to different brain activities (or tasks), has to be studied
and exploited.

There are two fundamental and interrelated steps to the design and use
of a BCI: one is the mental process of the user which encodes commands
in the EEG signal, and another is the BCI which, by employing EEG sig-
nal processing (preprocessing, feature extraction, classification), translates
patterns into commands which control the device. Fig.2.9 outlines the basic
components of a BCI. Since the BCI must operate in real time, it is very
important that the signal processing does not introduce large time delays.



28 2. Outline of Electroencephalography

Signal Processing

Signal Digitized Feature

. | Translation
Acquisition | Signa Extraction

Commands

[ BCI Application }

Figure 2.9: Block diagram of the brain computer interface

2.5.3 Sleep disorders

The sleep state is one of the most important items of evidence for diagnosing
mental disease. Sleep is characterized by a reduction on voluntary body
movement, an increased rate of anabolism (the synthesis of cell structures), a
decreased rate of catabolism (the breakdown of cell structures), and decreased
reaction to external stimuli. Sleep is a dynamic process that consists in two
distinct states that reflect different levels of neural activity where each state is
characterized by a different type of EEG activity. Sleep consists of nonrapid
eye movement (NREM) and REM sleep. NREM is further subdivided into
four stages: I (drowsiness), II (light sleep), III (deep sleep), and IV (very
deep sleep). Since NREM and REM are alternating cycles, a complete sleep
cycle, from the beginning of stage I to the end of REM sleep, is necessary for
the brain to remain healthy. Sleep deprivation makes a person drowsy and
unable to carry out mathematical calculations, concentrate, physical good
performance and other tasks. The rapid growth of sleep disorder medicine
has led to an increasing role of the EEG analysis oriented to evaluation of
sleep and sleep disorders.

Following Sérnmo and Laguna [2005], sleep disorders may be caused by
several conditions of medical and physiological origin. It is possible to clas-
sify the sleep disorders in four groups: insomnia (impossibility of maintaining
sleep), hypersomnia (excessive sleep or somnolence), circadian rhythm disor-
ders (i.e. “jet lag”) and parasomnia (deviations in the normal sleep pattern).
Each of the different types of sleep disorder presents certain manifestations in
the EEG, however, not only the EEG is used to sleep analysis. Clinical stud-
ies of sleep disorders relies primarily on two major techniques: the overnight
polysomnogram (PSG) and the Multiple Sleep Latency Test (MSLT) de-
scribed in Ebersole and Pedley [2003]. These two techniques serve as the
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gold standard for sleep evaluation that, in combination with computer based
analysis, make it possible to quantify similarities that may exist between
different types of signals and open the possibility of classifying the sleep
disorders.

2.5.4 Event related potential (ERP)

Event related potential (ERPs) are EEG recordings that reflect the responses
of the brain to events external or internal to the organism, and have remained
as a useful diagnostic tool, in both psychiatry and neurology, being widely
useful in BCI.

ERPs are voltage fluctuations in the EEG whose origin are located in
the brain and are associated in time with a physical or mental event. These
potentials are recorded through electrodes on the human scalp EEG and
currently extracted through filtering and signal averaging, which manifest as
a form of transient waveform whose morphology depends on the stimulation.

Individual ERP presents a very low amplitude with positive deflections
(P) and negative deflections (N), such as the P300 or N400 waves. The digits
indicate the time in terms of milliseconds after the stimuli, i.e. N400 has
the negative deflection near 400 milliseconds after stimulus onset. Evoked
potentials resulting from auditory (AEP), visual (VEP), and somatosensory
(SEP) stimulation are the most commonly used in clinical environment. The
P300 (or P3) component is the most important and studied component of
the VEPs. P300 is a widely used test for cognitive function but its clinical
use remains controversial. Several studies have reported significant differ-
ences between normal and patient populations regarding conditions such as
dementia, head injury, and multiple sclerosis.

One of the principal methods for detecting the P300 wave has been EEG
signal averaging. By averaging, the background EEG activity is canceled and
it may be modeled like random noise while the P300 wave remains basically
unaltered. However, there are limitations to the averaging technique and ap-
plications for which it is not suitable. Other techniques have been employed
such as principal component analysis, independent component analysis and
source localization. Each one with advantages and disadvantages in separat-
ing the P300 components presented in Elting et al. [2003].

2.6 Summary and conclusions

In this chapter the fundamental concepts in the nervous system and the EEG
generation have been briefly explained. Several concepts in visual analysis
of the EEG, brain rhythms, artifacts and abnormal EEG patterns, including



30 2. Outline of Electroencephalography

EEG applications such as epilepsy detection, brain computer interface (BCI),
sleep disorders and event related potentials (ERPs) have been reviewed.

EEG is widely used as a diagnostic tool in clinical routine with an increas-
ing develop of both analytical and practical methods. Its simplicity, low cost
and higher temporal resolution of EEG maintains this tool to be considered
in applications such as epilepsy seizures detection, sleep disorders and BCI.

Future work implies the design of new EEG artifacts elimination methods,
feature extraction to obtain possible hidden information and dimensionality
data reduction.



Chapter 3

EEG signal processing

3.1 Introduction

Since the integration between classical and modern biomedical signal process-
ing with the engineering!, new fields have been activated in a new area known
as “neuroengineering.” As discussed in Thakor and Tong [2006b], Clinical
neuroengineering has active fields such as neural prosthesis, brain computer
interface (BCI), new clinical imaging techniques and treatment tools with
EEG, evoked potentials (EPs), MEG and fMRI. Nowadays, there are sev-
eral processing methods, tools and algorithms for processing EEG signals for
helping devising in new treatments, obtaining new measurements of brain
activity and detecting brain diseases based on EEG signals.

EEG signals not only represent the brain function but also the status of
the whole body, i.e., a simple action as blinking the eyes introduces oscilla-
tions in the EEG records. Then, the EEG is a direct way to measure neural
activities and it is important in the area of biomedical research to understand
and develop new processing techniques.

In EEG analysis, there are crucial considerations to take into account:

e [t is a dynamic signal which exhibits a non-stationary behavior, and it
could be necessary to use signal segmentation or EEG epochs analysis.

e Some abnormal EEG patterns may be normal at younger ages being
necessary detection and classification algorithms.

Apart from EEG pre-processing techniques such as filtering and denoising,

'Examples of classical methods are: discrete Fourier transform (DFT), power spectral
density (PSD) or short-time Fourier transform (STFT). And modern methods such as
wavelet transform, time-frequency distributions (TFDs), idependent component analysys
(ICA), amongst others.

31
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EEG processing could be considered as a “pattern recognition system” con-
sisting of two tasks: feature extraction and classification 2. The aim of the
first ones is to identify “patterns” of brain activity and their results could
be used as input to the classifier. The performance of a pattern recogni-
tion system depends on both the features and the classification algorithm
employed.

In this chapter we will introduce methods for EEG signal pre-processing
and processing. The chapter is organized as follows: Section 3.2 is an
overview of different alternatives in EEG signal modelling, Section 3.3 re-
views some algorithms oriented to eliminate artifacts and noise, sections 3.5
and 3.4 introduce a more theoretical view of algorithms in feature extraction,
Section 3.6 provides some classification algorithms especially with applica-
tions to EEG signals and finally, Section 3.7 gives a summary and conclusions
of this chapter.

3.2 Modelling and segmentation

3.2.1 EEG signal modelling

Modelling the brain activities is not an easy task as compared with mod-
elling any other organ. First literature related to EEG signal generation
includes physical model such as the model proposed by Hodgkin and Huxley,
linear models such as autoregressive (AR) modelling, AR moving average
(ARMA), multivariate AR (MVAR), Prony methods and so on. There are
also methods based on no-linear models such as autoregressive conditional
heteroskedasticity (GARCH), Wiener modeling and local EEG model method
(LEM). More details about the methods described above can be found in
Sanei and Chambers [2007], Celka and Colditz [2002].

Following Senhadji and Wendling [2002], other model relates a sampled
EEG signal X (n) with relevant activities as elementary waves, background
activity, noise and artifacts as:

X(n) :F(n)+iﬂ(n—tpi)+iRj(n—taj)+B(n) (3.1)

where F'(n) is the background activity; the P; terms represent brief duration
potentials corresponding to abnormal neural discharges; the R; terms are
related to artifacts ( discussed later in section 2.2) and B(n) is the measure-
ment noise which is modeled as a stationary process. This model shows all

2For readers unfamiliar with statistical pattern recognition concepts, it is recommend
to read Appendix B.
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the EEG information including the abnormal EEG signal. This is a mathe-
matical model rather than an EEG generation signal model, but facilitates
the manipulation of concepts that are introduced in the next sections.

3.2.2 Signal segmentation

Signal segmentation is a process that divides the EEG signal by segments
of similar characteristics that are particularly meaningful to EEG analysis.
Traditional techniques of signal analysis, for example, spectrum estimation
techniques, assume time-invariant signals but in practice, this is not true
because the signals are time-varying and parameters such as amplitude, fre-
quency and phase change over time. Furthermore, the presence of short time
events in the signal causes a nonstationarity effect.

Non-stationary phenomena are present in EEG usually in the form of
transient events, such as sharp waves, spikes or spike-wave discharges which
are characteristic for the epileptic EEG, or as alternation of relatively ho-
mogenous intervals (segments) with different statistical features (e.g., with
different amplitude or variance). The transient phenomena have specific pat-
terns which are relatively easy to identify by visual inspection in most cases,
whereas the identification of the homogeneous segments of EEG, known as
quasi-stationary, requires a certain theoretical basis. Usually each quasi-
stationary segment is considered statistically stationary with similar time
and frequency statistics. This eventually leads to a dissimilarity measure-
ment denoted as d(m) between the adjacent EEG frames, where m is a inte-
ger value indexing the frame and the difference is calculated between the m
and (m — 1)th (consecutive) signal frames.

There are different dissimilarity measures such as autocorrelation, high-
order statistics, spectral error, autoregressive (AR) modelling and so on, pre-
sented in Sanei and Chambers [2007]. These methods are effective in EEG
analysis but can not be efficient for detection of certain abnormalities due to
the impossibility of obtaining segments completely stationary. It is then nec-
essary to take into account a different group of methods potentially useful for
detecting and analyzing non-stationary EEG signals where the segmentation

does not play a fundamental role such as the time-frequency distributions
(TFDs) (section 3.4.2).

3.3 Denoising and filtering

Biomedical signals in general, but more particularly EEG signals, are sub-
ject to noise and artifacts which are introduced through a variety of external
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influences. These undesired signals may affect the outcome of the record-
ing procedure, being necessary a method that appropriately eliminates then
without altering original brain waves. EEG denoising methods try to reject
artifacts originated in the brain or body such as ocular movements, muscle
artifacts, ECG etc.

Filtering is a signal processing operation whose objective is to process
a signal in order to manipulate the information contained in the signal. In
other words, a filter is a device that maps an input signal to an output
signal facilitating the extraction (or elimination) of information (or noise)
contained in the input signal. In our context, the filtering process is oriented
to eliminate electrical noise generated by electrical power line or extracting
certain frequency bands.

3.3.1 Lowpass filtering

Section 2.3.3 presented in Chapter 2 introduced the concept of filtering in
EEG signals and effects that may result in the EEG when filters are used.
Most frequently EEG signals contain neuronal information below 100 Hz, for
example, epileptic waves lie below 30 Hz, it is possible to remove frequency
components above this value simply using lowpass filters. In the cases where
the EEG data acquisition system is unable to remove electrical noise as 50
or 60 Hz line frequency, it is necessary to use a notch filter to remove it.
Although digital filters could introduce nonlinearities or distortions to the
signal in both of amplitude and phase, there are digital EEG process that
allow corrections of these distortions using commercial hardware devices.
However, it should be better to know the characteristics of the internal and
external noises that affect the EEG signals but these information usually is
not available.

3.3.2 Independent component analysis (ICA)

ICA is of interest to scientists and engineers because it is a mathematical
tool able to reveal the driving forces which underlie a set of observed phe-
nomena. These phenomena may well be the firing of a set of neurons, mobile
phone signals, brain images such as fMRI, stock prices, or voices, etc. In each
case, a set of complex signals are measured, and it is known that each mea-
sured signal depends on several distinct underlying factors, which provide
the driving forces behind the changes in the measured signals. These factors
or source signals (that are primary interest) are buried within a large set of
measured signals or signal miztures. Following Stone [2004], ICA can be used
to extract the source signals underlying a set of measured signal mixtures.
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ICA belongs to a class of blind source separation (BSS) methods for es-
timating or separating data into underlying informational components. The
term “blind” is intented to imply that such methods can separate data into
source signals using only the information of their mixtures observed at the
recording channels. BSS in acoustics is well explained in the “cocktail party
problem,” which aims to separate individual sounds from a number of record-
ings in an uncontrolled environment such as a cocktail party. So, simply
knowing that each voice is statistically unrelated to the others suggests a
strategy for separating individual voices from mixtures of voices. The prop-
erty of being unrelated is of fundamental importance, because it can be gen-
eralized to separate not only mixtures of sounds, but mixtures of other kind
of signals such as biomedical signals, images, radio signals and so on.

The informal notion of unrelated signals can be associated to the more
precise concept of statistical independence. If two or more signals are sta-
tistically independent of each other then the value of one signal provides no
information regarding the value of the other signals. ICA works under this
assumption and this concept plays a crucial role in separating and denoising
the signals.

ICA fundamentals

The basic BSS problem that ICA attempts to solve assumes a set of m
measured data points at time instant ¢, x(t) = [x1(t), 22(t), ..., 2 (t)]" to be
a combination of n unknown underlying sources s(t) = [s1(t), s2(t), ..., s, (t)]".
The combination of the sources is generally assumed to be linear and fixed,
and the mixing matrix describing the linear combination of s(¢) is given by
the full rank n x m matrix A such that

x(t) = As(t) (3.2)
It is also generally assumed that the number of underlying sources is less

than or equal to the number of measurement channels (n < m).

The task of the ICA algorithms is to recover the original sources s(t)
from the observations x(t) and this is generally equivalent to that of finding
a separating (de-mixing matrix) W such that

5(t) = Wx(t) (3.3)

given the set of observed values in x(f) and where §(¢) are the resulting
estimates of the underlying sources. This idealistic representation of the
ICA problem is described in Fig.3.1.

In reality the basic mixing model assumed in Eq.3.2 is simplistic and
assumed for the ease of implementation. In fact, a perfect separation of the
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Figure 3.1: General ICA process applied to EEG signals

signals requires taking into account some assumptions and the structure of
the mixing process:

o Linear mizing: The first traditional assumption for ICA algorithms is
that of linear mixing, a realistic model can be formulated as

x(t) = As(t) + n(t) (3.4)

where A is the linear mixing matrix described earlier and n(t) is addi-
tive sensor noise corrupting the measurements x(¢) (generally assumed
to be i.i.d. spatially and temporally white noise, or possibly temporally
colored noise), as described in James and Hesse [2005].

In a biomedical signal context, linear mixing assumes (generally instan-
taneous) mixing of the sources using simple linear superposition of the
attenuated sources at the measurement channel.

e Noiseless mizing: If observations x(t) are noiseless (or at least the noise
term n(t) is negligible) then Eq.3.4 reduces to Eq.3.2. Whilst this
is probably less realistic in practical terms, it allows ICA algorithms
to separate sources of interest even if the separate sources themselves
remain contaminated by the measurement noise.

e Square mizring matriz: So far it has been assumed that the mixing
matrix A may be non-square (n X m); in fact most classical ICA al-
gorithms assume a square-mixing matrix, i.e. m = n, this makes the
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BSS problem more tractable. From a biomedical signal analysis per-
spective the square-mixing assumption is sometimes less than desirable,
particularly in situations where high-density measurements are made
over relatively short periods of time such as in most MEG recordings

or IMRI.

e Stationary mizing: Another common assumption is that the statistics
of the mixing matrix A do not change with time. In terms of biomedical
signals this means that the physics of the mixing of the sources as
measured by the sensors is not changing.

e Statistical independence of the sources: The most important assump-
tion in ICA is that the sources are mutually independent. Two random
variables are statistically independent if there is a joint distribution of
functions of these variables. This means, for example, that indepen-
dent variables are uncorrelated and have no higher order correlations.
In the case of time-series data, it is assumed that each source is gener-
ated by a random process which is independent of the random processes
generating the other sources.

3.3.3 Adaptive filtering

Digital filters design with fixed coefficients requires well defined prescribed
specifications or the physical knowledge of the problem. However, there are
situations where the specifications are not available, or are time varying and
the optimum design of the filter is not possible. The solution in these cases is
to employ a digital filter with adaptive coefficients, known as adaptive filters.

An introduction of filtering concepts and statistics can be found in Appendix
A.

Adaptive filters are employed in many areas of telecommunications for
such purposes as adaptive equalization, echo cancellation, speech and image
encoding, and noise and interference reduction. Adaptive filters can be imple-
mented by the form of the impulse response such as finite duration response
(FIR) and infinite duration impulse response (IIR) and there are various al-
gorithms to adjust the coefficients. The characterization of adaptive filters
is given by a set of adjustable coefficients and a recursive algorithm which
updates these coefficients as further information (i.e. the statistics) acquired
from the relevant signals, whose choice is normally a tricky task that depends
on the application.

Adaptive filters are considered nonlinear systems and seem to be appro-
priate to non-stationary scenarios such as EEG signals; moreover they are a
good choice on scenarios where the statistical information of the signal is not
well known.
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Figure 3.2: Block diagram of adaptive filter.

The general scheme is illustrated in Fig.3.2 where £ is the iteration num-
ber, z(k) denotes the input signal, y(k) is the adaptive-filter output signal,
and d(k) defines the desired signal. The error signal e(k) is calculated as
d(k) —y(k). This error is then used as an objective function that is required
by the adaptation algorithm in order to determine the appropriate updating
of the filter coefficients, w(k). The minimization of the objective function
implies that the adaptive-filter output signal is matching the desired signal
in some sense. The filter operation can be resumed in three steps:

e From a sample x(k) = [z(k — N),...,z(k)] is done a prediction of
desired signal y(k) = w(k)Tx(k).

e The error of the filter is calculated as e(k) = d(k) — y(k).

e From e(k) is obtained a coefficient actualization w(k + 1) which it will
use to process the next sample x(k + 1).

The coefficient actualization to w(k) is based in minimizing the error e(k) by

an iterative process. A way to quantify this error is by Mean Square Error
(MSE).

Let J(w) denote the MSE function. The goal here is to find the set of
filter coefficients w, which minimize the MSE produced by the filter, i.e.
min J(w) =min{E{e*(k)}}
— min{ E{(d(k) — y())}} (3.5)
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where d(k) is defined as desired signal and y(k) = w(k)"x(k). Eq.3.5 states a
problem that implies several considerations to take into account, full optimal
conditions, stationarity or statistical assumptions. In optimal conditions,
i.e., noise is uncorrelated with the desired signal, the solution of Eq.3.5 is
solved with the optimal Wiener filter, but from an adaptive point of view, it
is necessary an iterative procedure that involves: a) computing the output
of a FIR filter produced by the inner product of a set of filter coefficients,
b) generating an estimation error by comparing the output of the filter to
a desired response and finally adjusting the filter coefficients (tap weights)
based on estimation error thereby closing the feedback loop. There are two
important adaptive algorithms that will be discussed below.

Least Mean Square algorithm (LMS)

Unlike the solution offered by the optimal Wiener filter, the Least Mean
Square algorithm (LMS), introduced by Widrow and Hoff in 1960, does not
require statistical measures such as correlation functions or matrix inver-
sions (see Appendix A.3). Following Haykin [1996], the LMS algorithm also
includes a step size parameter p that must be selected properly to control
stability and convergence speed, mostly because the algorithm suffers ran-
dom variations around the optimum value of the error surface J(w). The
parameter pu, also known as weighting constant, is a inherent value of the
iterative method that represents how fast the algorithm moves toward the
minimum. A simple analysis of the LMS algorithm with its structure and
operation is shown below.

Based on steepest descent algorithm, the update value of the tap weight
vector w(k 4+ 1) may be computed using the simple recursive relation

wk+1)=wk)+pulp—Rw(k)], k=0,1,2,.. (3.6)

where p (correlation vector) and R (correlation matrix) are calculated using
their instantaneous estimates that are based on samples values of the tap
input vector x(k) and desired response d(k). Then, estimations are calculated
as follows:

A~

R(k) = x(k)xT (k) (3.7)

and
p(k) = x(k)d(k) (3.8)

Correspondingly, the new recursive relation for updating the tap weight vec-
tor is as follows:

Wk +1) = Wik) + px(k) [d(k) — X7 (k)wik)]
w(k) + ux(k)e(k) (3.9)
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where

y(k) = w(k)"x(k) filter output (3.10)
e(k) = d(k) —y(k) error (3.11)
w(k) = [wo(k) wi(k) ... wy—1(k)]" filter taps at time k& (3.12)
x(k) = [2(k) (k= 1) 2(k — 2)... z(n — M +1)]"  input data (3.13)
The LMS algorithm can be expressed in three basic relations showed in equa-
tions Eq.3.9 to Eq.3.11, being a member of the family of stochastic gradient

algorithms with low computational complexity and high robustness, as de-
scribed in Poularikas and Ramadan [2006].

Some modifications of the LMS algorithm conceived for improving con-
vergence behavior, reducing computational cost and decreasing the steady
state mean square error are described in Haykin [1996].

Recursive Least Squares Algorithm (RLS)

Another way to solve the problem of linear filtering is based on the Least
Squares (LS) method, which can be seen as an alternative to Wiener filters.

Basically, the recursive implementation of the LS method starts with
known initial conditions and new data samples to update the old estimates.
This process has the objective of finding the best solution to the minimization
problem by minimizing the sum of squares of the difference between the
desired response d(k) and the filter output y(k) defined as e(k) = d(k) —y(k).

It starts so as to minimize a cost function
E(n) =3 B(n, K)le(h)? (3.14)
k=1

where n is the variable length of the observable data and 3(n, k) is a weighting
factor or forgetting factor. Note in Eq.3.14 that it is necessary to know all
the past samples of the input signal “a priori,” especially if a exponential
weighting factor defined as B(n, k) = \"* for k =1,2,...,n is used?.

Thus, the method of exponentially weighted least squares uses the cost
function

E(n) =Y _ NFle(k)|” (3.15)

3 The errors are weighted by a factor A»~* with 0 < A < 1, thus, the error has less
influence in future samples with more distance. The RLS algorithm is based on the LS
estimation of the filter coefficient w(n — 1) by computing its estimate at iteration n using
new data samples to update the old estimates.
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The minimization of Eq.3.15 gives
VuE(n) = =2 X"Fe(k)x(k) (3.16)
k=1

Replacing e(k) in the above equation, equating to zero and writing it in
vector form leads to

R(n)w(n) = p(n) (3.17)
where .
R(n) = Y A" *x(k)x"(k) (3.18)
and

n

p(n) =Y N"Fd(k)x(k) (3.19)

k=1

Finally, Eq.3.17 may be rewritten as follows
w(n) = R (n)p(n) (3.20)

A recursive equation can be developed for updating the LS estimate w(n)
for the tap weight vector at the current time n:

p(n) = Ap(n—1) 4+ d(k)x(n) (3.21)

R(n) = AR(n — 1) + x(n)x" (n) (3.22)

Furthermore, if the inverse of Eq.3.22 is simplified using the matrix inversion
lemma, the next expression is obtained:

B R 'n—Dr(n)r"(n)R ' (n—1)

R7'(n)=<|R'n-1) A+ 17 ()R (n — 1)r(n)

(3.23)

At the end, the recursive equation for updating the tap weight vector can be
written as

w=w(n—1)+ R (n)x(n)a(n) (3.24)

where a(n) is the innovation defined by
a(n) =d(n) —w' (n — 1)x(n) (3.25)
and the error e(n) after each iteration is recalculated as
e(n) = d(n) —w' (n)x(n) (3.26)

The computation of R™'(n) in Eq.3.23 increases computation complexity
although RLS shows improved behavior over LMS when inputs are correlated.
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3.4 Feature extraction

Feature extraction consist in finding a set of measurements or a block of
information with the objective of describing in a clear way the data or an
event presents in a signal. These measurements or features are the fundamen-
tal basis for detection, classification or regression tasks in biomedical signal
processing and is one of the key steps in the data analysis process.

Features constitute a new form of expressing the data, and can be binary,
categoricals or continuous, and also represent attributes or direct measure-
ments of the signal. For example, features may be age, health status of the
patient, family history, electrode position or EEG signal descriptors (ampli-
tude, voltage, phase, frequency, etc.).

More formally, feature extraction assumes we have for N samples and D
features, a matrix N x D, where D represents the dimension of the feature
matrix. That means, at the sample n from the feature matrix, we could ob-
tain an unidimensional vector © = [x1,x9, ... ,xp] called as “pattern vector.”
Several methods in EEG feature extractions can be found in the literature,
see Guyon et al. [2006].

More specifically in EEG detection and classification sceneries, features
based on power spectral density are introduced in Lehmanna et al. [2007];
Lyapunov exponents are introduced in Giiler and Ubeyli [2007]; wavelet trans-
form are described in Subasi [2007], Hasan [2008], Lima et al. [2009] and
Xu et al. [2009]; sampling techniques are used in Siuly and Wen [2009] and
time frequency analysis are presented on Tzallas et al. [2009b], Boashash
[2003], Guerrero-Mosquera et al. [2010a] and Boashash and Mesbah [2001].
Other approach in feature extraction based in the fractional Fourier trans-
form is described in Guerrero-Mosquera et al. [2010b]. It is important to add
that features extracted are directly dependent on the application and also to
consider that there are important properties of these features to have into
account, such as noise, dimensionality, time information, nonstationarity, set
size and so on (Lotte et al. [2007]).

This section emphasizes methods oriented to frequency analysis, without
excluding the time domain that permits to justify the importance of the
frequency analysis and their shortcomings in front of non-stationary signals

like the EEG.
3.4.1 Classical signal analysis tools
A signal could be represented in different forms being for example in time

and frequency. While time domain indicates how a signal changes over time,
frequency domain indicates how often such changes take place. For example,
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let us consider a signal with a linear frequency modulation varying from 0
to 0.5 Hz and with constant amplitude (see Fig.3.3). Looking at the time
domain representation (Fig.3.3 upper) it is not easy to say what kind of
modulation is contained in the signal; and from the frequency domain rep-
resentation (see Fig.3.3 bottom), nothing can be said about the evolution in
time of the frequency domain characteristics of the signal.
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Figure 3.3: Chirp signal using time domain z(¢) (upper) and frequency
domain X (w) (bottom).

The two representations are related by the Fourier transform (FT) as:
X(w) = / x(t)e I dt (3.27)

or by the inverse Fourier transform (IFT) as:
2(t) = / X (w)e 7w (3.28)

Eq.3.28 indicates that signal z(t) can be expressed as the sum of complex
exponentials of different frequencies, whose amplitudes are the complex quan-
tities X (w) defined by Eq.3.27.

The squared magnitude of the Fourier transform , | X (w)
as the frequency representation of the signal x(¢), which allows in some sense
easier interpretation of the signal nature than its time representation.

|2, is often taken

Better interpretation is obtained using a domain that directly represents
frequency content while still keeping the time description parameter. This
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characteristic is the aim of time frequency analysis. To illustrate this, let
us represent the chirp signal explained above using the spectrogram (more
details about this in the following). Note how it is possible to see the linear
progression with time of the frequency components, from 0 to 0.5 (Fig.3.4).
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Figure 3.4: Spectrogram representation of the chirp

3.4.2 Time-frequency distributions (TFD)

In a series of papers (Cohen [1995], Akay [1996]), Cohen generalized the
definition of time-frequency distributions (TFDs) in such a way that a wide
variety of distributions could be included in the same framework. Specifically
the TFD of a real signal z(n) is computed as:

Pt w) = 21 / / A0, 7)B(0, 7)e 1 g dr (3.29)
T J-0J-o0
where,
1 [ T T s
- R PN, 70u
A0, 1) 5 /OO z(u + Q)x (u 2)6 du (3.30)

is the so-called ambiguity function and the weighting function ®(0,7) is a
function called the kernel of the distribution that, in general, may depend on
time and frequency.
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If (6, 7) =1in Eq.(3.29), we have

Pltw) = // rut Dyt — Dy

_ﬁtuWMMT (3.31)
o
where
1 o0
— [ e =5t - 32
o] (t—u) (3.32)
and we know that
/ Pt D) (u— 2)3(t — w)du = (i + L)at(t — 1) (3.33)

If we substitute the Eq.(3.32) and Eq.(3.33) in Eq.(3.31), then we have the
Wigner-Ville distribution (WV) defined as:

1 e .
WV(w,t) = o / o(t+ %)J;*(t - g)e*wm (3.34)

Following Hammond and White [1996], the recurrent problem of the WV is
the so-called crossterm interference, due to bilinear nature of its definition.
These crossed terms tend to be located mid-way between the two auto terms
and are oscillatory in nature.

When ®(6,7) = 1, we have the Wigner-Ville distribution WV (t,w). The
Smooth Pseudo Wigner-Ville (SPWV) distribution is obtained by convolving
the WV (t,w) with a two-dimensional filter in ¢ and w. This transform incor-

porates smoothing by independent windows in time and frequency, namely
Wy, (1) and W,(t):

SPWV(t,w) /W /Wtu—t u+2)
w—§m4‘ww7 (3.35)

Eq.(3.35) provides great flexibility in the choice of time and frequency smooth-
ing, but the length of the windows should be determined empirically accord-
ing to the type of signal analyzed and the required cross term suppression,
as discussed in Afonso and Tompkins [1995].

As proved in Hlawatsch and Boudreaux-Bartels [1992], the SPWV does
not satisfy the marginal properties (see Eq.3.35), that is, the frequency and
time integrals of the distribution do not correspond to the instantaneous sig-
nal power and the spectral energy density, respectively. However, it is still
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possible for a distribution to give the correct value for the total energy with-
out satisfying the marginals, as described in Cohen [1995, 1989]. Therefore
the total energy can be a good feature to detect signal events in the SPWV
representation because the energy in EEG seizure is usually larger than the
one during normal activity.

The TFDs offer the possibility of analyzing relatively long continuous
segments of EEG data even when the dynamics of the signal are rapidly
changing. Taking the most of these, it can extract features from the time
frequency plane such as ridges energy, frequency band values and so on.
However, three considerations have to be taken, presented in Cohen [1995,
1989] and Durka [1996]:

- A TFD will need signals as clean as possible for good results.

- A good resolution both in time and frequency is necessary and as the
“uncertainty principle” states, it is not possible to have a good resolution
in both variables simultaneously.

- It is also required to eliminate the spurious information (i.e. cross-term
artifacts) inherent in the TFDs.

The first consideration implies a good pre-processing stage to eliminate ar-
tifacts and noise. Second and third considerations have motivated the TFD
selection or design, then it is important and necessary to choose a suitable
TFD for seizure detection in EEG signals as well as for a correct estimation
of frequencies on the time-frequency plane. Indeed, it is desirable that the
TFD has both low cross-terms and high resolution. Choosing a distribution
depends on the information to be extracted and demands a good balance
between good performance, low execution time, good resolution and few and
low-amplitude cross terms.

One consideration before using the TFD is to convert each EEG segment
into its analytic signal for a better time-frequency analysis. The analytic
signal is defined to give an identical spectrum to positive frequencies and
zero for the negative frequencies, and shows an improved resolution in the
time-frequency plane, discussed in Cohen [1989]. It associates a given signal
x(n) to a complex valued signal y(n) defined as: y(n) = z(n) + jHT{z(n)},
where y(n) is the analytic signal and HT'{.} is the Hilbert transform.

3.4.3 Wavelet coefficients

The EEG signals can be considered as a superposition of different struc-
tures occurring on different time scales at different times. As presented in
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Latka and Was [2003], the Wavelet Transform (WT) provides a more flexible
way of time-frequency representation of a signal by allowing the use of vari-
able size windows and can constitute the foundation of a relatively simple
yet effective detection algorithm. Selection of appropriate wavelets and the
number of decomposition levels is very important in the analysis of signals
using the WT. The number of decomposition levels is chosen based on the
dominant frequency components of the signals. Large windows are used to
get a finer low-frequency information and short windows are used to get high-
frequency resolution. Thus, WT gives precise frequency information at low
frequencies and precise time information at high frequencies. This makes the
WT suitable for EEG analysis of spikes patterns or epileptic seizures.

Wavelets overcome the drawback of a fixed time-frequency resolution of
short time Fourier transforms. The W'T performs a multiresolution analysis,
Wy f(a,b) of a signal, x(n) by convolution of the mother function ¥(n) with
the signal, as given in Latka and Was [2003], and Mallat [2009] as:

N-1 ,
n —b

Wyx(b,a) = )w* 3.36

i) = 3 ati)w (") (3.36)

U(t)* denote the complex conjugate of ¥(n) (basis function), a the scale
coefficient, b the shift coefficient and a,b € R, a # 0.

In the procedure of multiresolution decomposition of a signal z(n), each
stage consists of two digital filters and two downsamplers by 2. The band-
width of the filter outputs are half the bandwidth of the original signal, which
allows for the downsampling of the output signals by two without loosing
any information according to the Nyquist theorem. The downsampled sig-
nals provide detail D1 and approximation A1l of the signal, this procedure is
described in Hasan [2008].

Once the mother wavelet is fixed, it is possible to analyze the signal at
every possible scale a and translation b. If the basis function W(n) is orthog-
onal, then the original signal can be reconstructed from the resulting wavelet
coefficients accurately and efficiently without any loss of information. The
Daubechies’ family of wavelets is one of the most commonly used orthogo-
nal wavelets to non-stationary EEG signals presenting good properties and
allowing reconstruction of the original signal from the wavelet coefficients, as
described Mallat [2009].

3.4.4 Fractional Fourier transform

Fourier analysis is undoubtedly one of the most used tools in signal processing
and other scientific disciplines and this technique uses harmonics for the
decomposition of signals with time-varying periodicity. Similarly, TFDs are
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very frequently used in signal analysis especially when it is necessary to
eliminate the windowing dependence on non-stationary signals.

In 1930, Namias employed the fractional Fourier transform (FrFT) to
solve partial differential equations in quantum mechanics from classical quadra-
tic Hamiltonians*. The results were later improved by McBride and Kerr in
Tao et al. [2008]. They developed operational calculus to define the FRFT.
The FrFT is a new change in the representation of the signal which is an
extension of the classical Fourier transform. When fractional order gradually
increases, the FrFT of a signal can offer much more information represented
in an united representation than the classical Fourier transform and it pro-
vides a higher concentration than TFDs, avoiding the cross terms components
produced by quadratics TFDs.

FrF'T has established itself as a potential tool for analyzing dynamic or
time-varying signals with changes in very short time and it can be interpreted
as the representation of a signal in neutral domain by means of the rotation
of the signal by the origin in counter-clockwise direction with rotational angle
« in time-frequency domain as shown in Fig.3.5.

Frequency (w)
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Figure 3.5: The relation of fractional domain (u,v) with traditional time-
frequency plane (¢, w) rotated by an angle a.

The FrFT with angle « of a signal x(t), denoted as X, (u) is defined in
Almeida [1994] as:

Xo(u) = /_ (Kot w)dt (3.37)

[e.e]

4A development based on a concept called fractional operations. For example, the
n-th derivative of f(z) can be expressed as d"f(z)/dz™ for any positive integer n. If
another value derived is required, i.e. the 0.5-th derivative, it is necessary to define the
operator d®f(z)/dz®, where the value a could be an any real value. The function [f(x)]"®
is the square root of the function f(x). But d%5 f(z)/dz®® is the 0.5-th derivative of f(z)
(a = 0.5), (df (x)/dz)°® being the square root of the derivative operator d/dz. As it can
be seen, fractional operations is a concept that goes from the whole of an entity to its
fractions.
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where K,(u,t) is a linear kernel function continuous in the angle «, which
satisfies the basic conditions for being interpretable as a rotation in the time-
frequency plane. The kernel has the following properties

Ka(t,u) = Ko(u,t) (3.38)

K_,(t,u) = K* (t,u) (3.39)

K, (—t,u) = ( —u) (3.40)

/ K, (t,u)Kg(u, z)du = K,5(t, 2) (3.41)
/ Ko(t,u) K (t,u')dt = 0(u — u') (3.42)

The FrFT is given by

.

1 — jeota >
(5—6] 2 cota/ z(t)elT COtae]“tcscadt
™ —00

if o is not a multiple of 7

x(t), if a is multiple of 27

[ z(—t), if o+ 7 is multiple of 27

More detailed definitions, proof and further properties of the kernel can be
found in Almeida [1994].

In summary, the FrFT is a linear transform, continuous in the angle o, which
satisfies the basic conditions for being interpretable as a rotation in the time-
frequency plane.

3.5 Feature selection

After feature extraction, it is necessary to select the subset of features that
present better performance or are most useful for a problem at hand, such as
regression, classification or detection. The data acquisition in environments
such as biomedical signals leads to define each problem by hundreds or thou-
sands of measurements leading to obtain high dimensional data with high
computational cost.

As discussed in Guyon and Elisseeff [2003], feature selection is based on
the principle that choosing a smaller number of variables among the original
ones, leads to an easier interpretation. In fact, under the assumption that
reducing the training data® might improve the performance task, the feature

®Concept related to the fact of using a data set (also called data points, samples,
patterns or observations) in order to gain knowledge, learn a task associated with desired
outcomes.
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selection methods also allows a better data understanding and visualization
together with reduction in data measurement and storage.

Feature selection could be summarized in two main tasks: choosing the
relevant features and searching the best feature subset. The first one tries
to solve the question: is a feature (or subset of features) relevant for the
problem? And the second one tries to search the best feature subset among
all the possible subsets extracted from the initial task®. The application
of these two tasks to high dimensional data causes a reduction in the data
dimension, process known as dimensionality reduction.

Besides feature selection, there is another set of methods known as pro-
jection methods that perform the same task but in practice could retain
the problems suffered by high dimensional data, presented in Rossi et al.
(2007, 2006]. Typical projection algorithms are Principal Component Analy-
sis (PCA), Sammon’s Mapping, Kohonen maps, Linear Discriminant Analy-
sis (LDA), Partial Least Squares (PLS) or Projection pursuit, amongst others
( see Duda et al. [2009]).

3.5.1 Subset relevant assessment

This step is mainly based on a relevance criterion that has to be chosen by
some measurement. The best choice for the criterion is certainly to estimate
the performances of the model itself, i.e., an individual feature ranking could
be appropriate at scenarios where the features provide a good performance
by itself and there is the possibility of choosing features associated to high
ranks.

The idea of the “individual relevance ranking” can be clarified by the
following example: Fig.3.6 shows a situation where the feature X5 is more
relevant individually to predict the output Y than the feature Y;. Notice the
importance of choosing the right features to improve the performance of a
task, which in this example is related to prediction of Y.

There are different alternatives in relevance criteria, such as the Pearson
correlation coefficient, mutual information (MI) and wrapper methodology.
Although each method has its advantages and disadvantages, mutual in-
formation has proven to be an appropriate measure in several applications
such as selection of spectral variables, spectrometric nonlinear modelling and
functional data classification, see Gomez-Verdejo et al. [2009], Rossi et al.

6 Although feature extraction and feature selection are different aspects of the pattern
recognition process, it is important to distinguish the difference between them. The first
one aims at building a good feature representation based on several measurements, and
the second one tries to reduce the feature matrix by selecting subsets of features more
useful in determined tasks.
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Figure 3.6: Simple prediction problem. The horizontal axis represents the
feature and the vertical axis the output. It can see that feature X, (left) is
more relevant individually than feature X; (right) in this simple prediction
problem.

[2007, 2006]. Moreover, as discussed in Cover and Thomas [1991], correlation
does not measure nonlinear relations among features and wrapper approach
presents a high computational load. Furthermore, MI could be seen as a
correlation measure applied to determine the nonlinearity among features.

Next section focuses on the well-known concept of MI and shows why this
relevance criterion is applicable for feature selection.

3.5.2 Mutual information (MTI)

Mutual information (MI) measures the relevance between a group of features
X and the variable or output Y. This relationship is not necessarily linear.
As described in Cover and Thomas [1991], the mutual information between
two variables is the amount of uncertainty (or entropy) that is lost on one
variable when the other is known, and vice-versa. The variables X and Y
could be multidimensional, solving the drawback in correlation measurements
that are based on individual variables.

Let px(x) and py (y) be the marginal of probability density function (pdf)
of X and Y respectively, and the joint probability density function of X and
Y is pxy(x,y). If X has X alphabets, the entropy of X is defined as

pr ) log px (z) (3.43)

rzeX

The base of the logarithm determines the units in which information is mea-
sured. Particularly, if the logarithm is base 2 the entropy is expressed in
bits.
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The joint entropy H(X,Y') of a pair of discrete random variables (X,Y)
with a joint distribution px y(z,y) is defined as

== > pxy(,y)logpyx(yl) (3.44)

zeX yey

and the MI between two variables is calculated as

ZZPXY z,y) log ———~ pxy(2,9) (3.45)

EX yey px (z)py (y)

Eq.3.45 gives the relation between X and Y, meaning that I(X,Y) is large
(small) the variables are closely (not closely) related. The MI and entropy
have the following relation, see Cover and Thomas [1991]:

I[(X,Y)=H(Y) - H(Y|X) (3.46)

For continuous variables, the entropy and MI are defined as

H(X) = — / " px (@) log px () (3.47)

pxy (2, y)
I(X,Y) / / px.y(x,y)log @Dy (4 )d xdy (3.48)

Note in Eq.3.45 and Eq.3.48 that it is necessary to know the exact pdf’s for
estimating the MI and this is the most sensitive part in the MI estimation.
Several methods have been proposed in the literature to estimate such joint
densities, see Lotte et al. [2007], Duda et al. [2009]. Next, details of three
estimators that will be used in the following of this section will be intro-
duced briefly: MI based on Parzen windows, the Kraskov method and other
MI estimators derived from Kraskov method and oriented to classification
problems.

MI estimation based on Parzen windows

The Parzen window density estimate can be used to approximate the prob-
ability density functions in Eq.3.45 and Eq.3.48 providing a smoother and
more reliable estimate. Hence, in MI estimation of a multi-class classifi-
cation problem, where x is a multi-dimensional observation with N values
(1 < n < N) that has to be classified among C' classes with class labels
ye(1 < ¢ < C) is calculated as

I(X,Y) :EI(Y)— H(Y|X) (3.49)

— —Zpy ye) log py (y = yc)

N (&

+> % > pyix(y = yelx) log(pyix (¥ = yelx)) (3.50)

n=1 c=1
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As C'is a discrete random variable, its entropy H(Y") can be easily calculated
as
42

prly=y) =5 c=1..C (3.51)

where n. is the number of observations in class ¢ and C' the number of classes.
The entropy H(Y|X) is more difficult to calculate because it is necessary to
estimate py|x(y = y¢/x). Following Kwak and Choi [2002], this conditional
probability from a Parzen estimator with Gaussian window becomes

(x—x;) T2~ (x—x;)
Zieyc eXp (_ 2h2 )

C x—x;) T8 —1(x—x;
D et Zieyc exp (_( : 2h21( )>

Dyix(y = yelx) = (3.52)

where h is the window width and X the data covariance matrix.

Kraskov’s estimator of mutual information

The Kraskov’s method is based on entropy estimates from k-NN statistics”.
Therefore the MI estimation is done directly without first estimating the
pdf’s. A good property of this estimator is that it can be used easily for
sets of features, something necessary in the feature selection procedure. MI
calculation is obtained by estimating H(X), H(Y) and H(X,Y') separately
and using the next equation

[(X,Y)=H(X)+H(Y) - H(X,Y) (3.53)

Let Z = (X,Y) be a random variable with pdf pxy(X,Y) and a set of N
input-output measurements z; = (x;,y;), 1 < i < N, which are assumed
independent and identically distributed (i.i.d) realizations of Z. Following
Kraskov et al. [2004], it is then possible to rank for each point z; its neighbour
by distance d;; = ||z; — zj|| : dij, < d;j, < ..., X and Y having values in

the spaces R or in RY. The algorithm will therefore use the natural norm in

these spaces, i.e., the Euclidean norm?.

Measurement pairs are compared through the maximum norm: if z =
(x,y) and 2’ = (2/,y), then
|2 = 2lloo = max([lz — 2'I[, [y — ¢/'I]) (3.54)

The basic idea of Kraskov method is to estimate I(X,Y’) from the average
distances in the X, Y and Z spaces from z; to its k-NN, averaged over all
2. If 280 = (K0 4F@) is the k-th nearest neighbour of z* (according to

"Explanations about this algorithm are in Appendix B.
8The notation for all metrics will be the same. For example, the norm of v is denoted
|||
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the maximum norm) and 2" and y*@) are the input and output parts of
2k yespectively, a distance called €(i)/2 could be measured from z; to its
k-th neighbour. For example, €,(i)/2 and €,(7)/2 are the distances between
the same points projected into the X and Y subspaces. Obviously, €(i) =
max{e,;(7),€,(7)}. Thus, it is counted the number 7,(7) of points x; whose
distance from x; is strictly less than €(i)/2 and similarly for y instead of z.

After calculating the entropy estimator and some mathematical manip-
ulations, two different MI estimators are describe in Kraskov et al. [2004]
as

[ (7a(n) +1) + ¢(7,(n) +1)], (3.55)

FO(X, ) = 6(N) + (K) - %

1[]=

IO(X,Y) = (N) + (K

= |

1 N
- L lvlesta) + vl (350

where K is the number of nearest neighbours (a parameter of the algorithm),
N is the number of samples in the data set and #(.) is the digamma function
given by

I d
V=T = a0, (3.57)
with -
[(t) = /0 u' " exp ™ du (3.58)

The quality of the estimators presented before is related with the values of
k. With a small value of k, the estimator has a large variance and a small
bias, whereas a large value of k leads to a small variance and a large bias, as
discussed in Kraskov et al. [2004].

MI estimation for classification problems

In the case of classification tasks, Gomez-Verdejo et al. [2009] presented one
approach to use the information given by the training set and to use the
conditional entropy to estimate MI as

C
[(X,C) = H(X) = py(y =y ) HX|Y = y) (3.59)

c=1

Using the Kozachenko-Leonenko estimator, an expression to estimate the
entropy can be obtained (more details in Kraskov et al. [2004]):

N
H=—¢(K)+¢(N) +log Cy + %Zloge(n, K) (3.60)
n=1
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where N is the number of samples in the data set, K is the number of nearest
neighbours, Cy is the volume of a unitary ball, d is the dimensionality of X
and €(n, K) is twice the distance from x; to its k-th neighbor.

Substituting Eq.3.60 in Eq.3.59 it is obtained

A

N
I(X,Y) = —¢(K)+1(N) +log Cy + % > loge(n, K)
n=1

C
> vy =) [—w(K) + p(n.) + log Cy + ni > loge(n, K)]

¢ neEYe

d N
— —)(K) + (N) + log Cy + ~ ; log e(n, K) — (K) — log Cy

> vy =) [wmc) + n% > loge(n, K)] (3.61)

neEYe

After a few manipulations described in Gomez-Verdejo et al. [2009], the MI
estimator is given by

C
HGY) = 9(N) = 5 Y net(n) 2
] c=1 o . y
+N(Kmax - K’rmn + ].) (k:;mm [nZI 1Og 6(7’L7 K) - ; 1;% 10g Ec(n, K)] )

where K,,;, and K,,,, determine the range of K values which is determinated
by cross-validation.

3.5.3 Search procedure

Several search strategies presented in Guyon and Elisseeff [2003] could be
used for finding the most adequate subset of features, such as best-first,
branch-and-bound, simulated annealing and genetic algorithms. Greedy search
strategies such as forward selection, backward elimination or any combina-
tion of them are the most popular. The forward selection method starts
from an empty set and progressively add features one by one according to
some criterion. In a backward elimination procedure one starts with all the
features and progressively eliminates the least useful ones.

With D input features, there are 2P~! possible subsets that should be
studied but this evaluation is unfeasible for large D due to its high compu-
tational cost.
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Forward-backward algorithm

The combination of forward and backward procedures could alleviate the
curse of dimensionality by avoiding the evaluation of features with large di-
mension D (high computational cost). As described in Rossi et al. [2006] this
algorithm works in the following steps:

(1)

The first feature is selected by MI maximization between the original
features [X7, ..., Xp] and the output variable Y

X = arg max {f(Xj,Y)} , 1<j<D (3.63)

where I(X,Y) is the MI estimation of I(X,Y) and X3¢ is the first
variable selected.

Once X3¢ is selected, the next components must be selected taking
this first variable into account. The second variable X3¢ is the one
that maximizes the MI in conjunction with the first one and the output
variable Y':

X;el = argn;(ax{l:({Xfelan}aY)}a 1<j<D, X;# Xlsd
(3.64)

The next steps consisting in selecting the variable X ¢ in the t-th step
given a subset of already selected features

sel sel sel
S: [Xl 7X2 7""X8(t—1):|
then X3¢ is chosen according to

X5 = argrr)l(aX{f({S, Xj},Y)}, 1<j<D, X;¢&58 (3.65)

Assuming that ¢ variables have been selected after the step t, which
means that the last variable selected is X3¢, the backward procedure
consists in checking one by one what happens with the MI when a
variable is removed from the subset S. The variable chosen is the one
(X7¢™) that increases the estimation of the MI when eliminated. In
other words, we apply the next maximization rule is applied after the
forward step t:

XTem = argmax{f({Xfel, o Xl el ...,Xffll},Y)}, 1<j<t,

X G=1 At
if
T{Xe Xl XX Y) > T{XS, L X5 YY) (3.66)

G=10 s
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Search methods must have a stopping criterion. The backward elimination
is more intuitive than the forward selection. For the latter one could use
a permutation test among the features chosen to evaluate if a new variable
presents a significant increase of MI. Another way is to use a ranking algo-
rithm rather than a selection one. These methods are described in Rossi et al.
[2006], Gomez-Verdejo et al. [2009] respectively. However, studying stopping
criteria for this problem exceed the scope of this Phd Thesis and is left as
future work.

3.6 Classification algorithms for EEG signals

Unlike many theoretical approaches that solve certain problems using some
model or formula, many classifiers are based on statistical learning. In such
cases the system should be trained to obtain a good classifier taking into ac-
count that, under the following considerations described in Sanei and Chambers
[2007], classification algorithms do not perform efficiently when:

e the number of features is high,

there is limited execution time for a classification task,

the classes or labels from feature matrix are unbalanced,

there are nonlinearities between inputs and outputs,

data distribution is unknow,

there is no convergence guarantee to best solution (problem not convex
or monotonic).

Up-today, several algorithms in EEG signal classification and detection have
been propose in the literature. For example, Multiple signal classification
(MUSIC) combining EEG and MEG for EEG source localization described
in Mosher and Leahy [1998]; classification of patients with Alzheimer using
Support Vector Machine (SVM) and neural networks (NNs) described in
Lehmanna et al. [2007]; Giiler and Ubeyli [2007] introduced the multiclass
SVM for EEG. Lotte et al. [2007] describes several applications for BCI us-
ing methods such as Hidden Markov Modelling (HMM), Linear Discriminant
Analysis (LDA) and fuzzy logic; Chiappa and Barber [2006] used the Bayes’s
rule to discriminate mental tasks; detection of ERPs using SVM described in
Thusalidas et al. [2006]; Fuzzy SVM (FSVM) is utilized in Xu et al. [2009];
Fisher’s discriminant is introduced in Miiller et al. [2003]. Applications in
epilepsy classification such as Artificial Neural Networks (ANN) described in
Subasi [2007]; k-NN classifier and logistic regression with TFDs are used in
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Tzallas et al. [2009b]; Least Square SVM (LS-SVM) in Siuly and Wen [2009];
Learning Vector Quantization with NN (LVQ-NN) described in Hasan [2008];
Mixture of Experts (ME) and Multilayered Perceptron (MLP) in Subasi
[2007]; an automatic EEG signal classification using Relevance Vector Ma-
chine (RVM) is proposed by Lima et al. [2009].

As showed in Guyon et al. [2006], SVM and its variants have many ap-
plications in different classification scenarios and are a powerful approach for
pattern recognition, showing to be a good alternative for EEG signal classifi-
cation due to their high performance, good generalization compared to other
methods such as NN. The next section will introduce the basic concepts of

SVM classifiers.

Support vector classification

As described by Hearst et al. [1998], the support vector machines (SVMs) are
a promising tool for data classification because of two aspects: first, SVM
have proved to be one of the most appropriate alternative for solving classifi-
cation problems and their solution is supported in statistical learning theory,
see Vapnik [2000], Scholkopf and Smola [2002]. Second, SVM presents high
performance in different practical sceneries. With these aspects, SVM could
be considered as the intersection point between learning theory and practice,
that means that the statistical learning theory can identify rather precisely
the factors necessary to solve the problem in question. Then, with an appro-
priated nonlinear mapping ®(-), the basic SVM idea is to map the training
data nonlinearly into a higher dimensional feature space via & maximizing
the separation between classes as shown in Fig.3.7.

Input space Feature space
A A A
o A,
T \
A *
*
A x X

S S
4 ?

Figure 3.7: The basic idea of the SVM is to map the training data into a
high dimensional space and find a separating hyperplane with the maximal
margin via P.
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The concept of SVM was initiated in 1979 by Vapnik [2000]. Support
vectors classifiers are based on the class of hyperplanes

(W-x)+b=0 weR", bec® (3.67)
corresponding to decision function
f(x) = sign((w - x) + b) (3.68)

where w determines the orientation of a discriminant hyperplane. The as-
sumption of separability means that there exists some set of values w and b,
such that the following constraints hold for all input vectors, given that the
classes are labeled +1 and -1:

w-x; +b>+41, Vy =+1 (3.69)
or
yi(w-x;4+b)—1>0, Vi (3.71)

The number of possible hyperplanes that could correctly classify the training
data is infinite but there is an “optimal hyperplane” that maximizes the
margin of separation between two classes (see Fig.3.8).

The construction of the hyperplane (w - x;) + b = 0 can be solved by
quadratic optimization problem, where w has an expansion w = ) . v;x; in
terms of a subset of training patterns (called support vectors) that lie on the
margin and have all relevant information about the classification problem.
Therefore, it is possible to maximize the margin of the classifier by mini-
mizing ||w||, subject to the constraints given in Eq.3.71. Thus the problem
of training the SVM can be stated as follows: find w and b such that the
resulting hyperplane correctly classifies the training data and the Euclidean
norm of the weight vector is minimized.

To solve the problem described above, one solves the following optimiza-
tion problem:

1
minimize T(W) = §||W||2 (3.72)
subject to yi((w-x;)+b)>1, i=1,...,m. (3.73)
This constrained optimization problem is typically reformulated as a La-

grangian optimization problem. In this reformulation, nonnegative Lagrange
multipliers A = {a1, s, ..., a,} are introduced, yielding the Lagrangian

L(w,b, ) —HW||2 Zal yi((x; - w) +b) —1). (3.74)
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{x| (w-x) +b=-1} Note:
(W-x) +b=+1
=> (W (x—x,) = 2
T -. 1 = (jwir ¢4 =f

X’fﬂ {x | (w- >‘<)‘ +b =0}
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Figure 3.8: A binary classification toy problem consisting in separating dia-
monds from balls, each class with labels {41, —1} respectively. The “optimal
hyperplane” is orthogonal to the shortest line connecting the convex hulls of
the two classes (dotted), and intersects it half-way between the two classes.
If the problem is separable, there exists a weight vector w and a threshold b
such that y;((w-x;)+b) >0 (i =1,...,m). Rescaling w and b such that the
point(s) closest to the hyperplane satisfy |(w-x;) + 0| = 1, it obtains a form
(w,b) of the hyperplane with y;((w - x;) +0b) > 1. Note that in this case,
the margin, measured perpendicularly to the hyperplane, equals 2/||w|| (in
Scholkopf and Smola [2002]).

The Lagrangian L has to be minimized with respect to the primal variables
w and b and simultaneously maximized with respect to the dual variables or
Lagrangian multipliers «;.

Differentiating with respect to w and b

0 0
Gyl w.ba) =0, =

and applying the results to the Lagrangian yields two conditions of optimality,

L(w,b,a) =0, (3.75)

D aiy; =0 (3.76)
i=1

and .
W = Z GYiX (3.77)
i=1

The optimal weight vector wy is described in terms of a subset of the training
patterns, called as Support Vectors, and only those training examples whose
corresponding Lagrange multipliers are non-zero contribute to wq. This re-
sult is obtained from the Karush-Kuhn-Tucker (KKT) conditions described
in Scholkopf and Smola [2002].
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Substituting the optimality conditions, Eq.3.76 and Eq.3.77, into Eq.3.74
yields the Wolfe dual of the optimization problem, consisting in finding mul-
tipliers «; such that

maximaize W(Oz) = ; o — 5 ZJXZ:I aiajyiyj(xi : Xj) (378)
subject to a; >0, i=1,...,m, and Zaiyz- =0. (3.79)
=1

yielding a decision function of the form,

f(x) =sgn <Z iy - (X X;) + b) (3.80)

i=1

Eq.3.78 and Eq.3.79 can be solved mathematically using quadratic program-
ming (QP) algorithms®. However, in many practical situations the datasets
show overlap in the feature space and they are not separable. Fig.3.9 shows
the problem described above. The solution consist in “relaxing” the con-
straints, this means consider as support vector the points that subsequently
fall on the wrong side of the margin due to their lower influence on the
location of the hyperplane. This classifier is known as soft margin classi-
fier described in Scholkopf and Smola [2002], Shawe-Taylor and Cristianini
[2000].

Figure 3.9: The nonseparable case, although exists a nonlinear boundary
that can solve the task.

A very important way to generalize the SVMs to nonlinear decision func-
tion is introducing the concept of kernel function. It is known that the basic
idea of SVMs is mapping the data into some other dot product space called

9Many practical algorithms are found in http://www.support-vector.net or
http://www.kernel-machines.org.
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feature space (F) via nonlinear mapping ®(x), ®(x) : R — F, then the
SVM optimization problem would consist of dot products in this higher di-
mensional space, ®(x;), ®(x;). At the end, the optimization problem only
requires the evaluation of dot products in the feature space computable with
kernel function k(x;,x;) = ¢(x;) - ¢(x;).

There are two aspects to consider: First, the evaluation of the kernel
will be very expensive to compute if F' is high-dimensional, and second, the
mapping ®(x) would not appear in the optimization problem and would never
need to be calculated, or even known. The first consideration can be solved
efficiently by Mercer’s theorem described in Scholkopf and Smola [2002] and
sometimes called reproducing kernel Hilbert spaces (RKHSs). Some examples
of popular suitable RKHS functions are:

e Polynomial kernel
k(x;,x;) = (x] - x; +¢)P (3.81)

e Radial Basis Function Kernel
1 2
k(x;,x;) = exp ~552 )% — x| (3.82)

The second consideration guarantees the classifier performance due to its high
dimensionality that operates the SVM . As shown in Cover [1965], this affir-
mation responds to Cover’s theorem on the separability of patterns, which
essentially says that data cast nonlinearly into a high dimensional feature
space is more likely to be linearly separable there than in a lower dimen-
sional space.

3.7 Summary and conclusions

In this chapter several concepts in the pre-processing and processing of EEG
signals, including signal modelling, signal segmentation, filtering and de-
noising, feature extraction, feature selection and classification have been
reviewed. Although all methods have been described in a brief way, they
are introduced to give a good theoretical grounding in EEG processing and
to better understand the methods proposed and their performance. Signal
processing algorithms for EEG applications have specific requirements in fil-
tering, feature extractions and selections.

The chapter also provides key references for further reading in the field
of EEG signal processing.



Chapter 4

Proposed methods

4.1 Introduction

In the previous chapter we have seen the importance of feature construc-
tion in the data analysis process largely conditioning the performance of any
classifier. More exactly, one should beware of not losing information at the
feature construction stage.

Usually, feature extraction is based on different methods that permit to
combine the temporal information or spatial-temporal information obtained
from techniques such as EEG, MEG, fMRI etc., with the objective of better
analyzing the brain functions. Generally speaking, most of the features con-
sist in measures expressed in coefficients obtained by signal transformation
such as Fourier, wavelets, Lyapunov, fractional Fourier amongst others, but
this information only shows coefficients or values extracted from some trans-
formation that could cause a lost of information from the physical nature of
the problem.

Given the importance of knowing the characteristics of the signal, for ex-
ample, if the signal does not change in some sense (stationary), if it is very
contaminated by noise, lasts a short time or it is explicitly known (determin-
istic); it is very important to use a suitable method that allows to clean the
signal, extract information and at the same time describe the nature of the
signals.

It is well known that time and frequency analysis by themselves do not
fully describe the nature of signals and linear filtering does not offer appro-
priate solutions for EEG signals. A good alternative is to have processing
methods that enable to clean the EEG signal without removing important
information and extract information from distributions that represent time
and frequency together. From this it could be known which frequency con-
tents are changing in time and from it to develop physical and mathematical

63



64 4. Proposed methods

ideas to understand the nature of problem.

Time-Frequency Distributions (TFDs) are robust and compact signal rep-
resentations that provide means for isolating various signal characteristics of
interest in the time-frequency plane. However, TFDs suffer of cross-terms
and the EEGs signals are normally contaminated by eyes or muscle move-
ments, which difficults the interpretation of the time-frequency plane. In this
chapter we introduce two approaches: one of them is a novel method to elim-
inate artifacts originated from eyes movements and the other one is a new
approach to feature extraction based on three measurements extracted from
TFDs. This chapter is organized as follows: Section 4.2 and 4.3 describe the
theoretical fundamentals of both approaches: the first one introduces a new
method for EEG pre-processing based on adaptive filtering and independent
component analysis (ICA), and the second one describes a new approach
in EEG feature extraction that is called tracks extraction. Each section is
accompanied by a series of experiments using EEG signals from epileptic pa-
tients and also discussions and conclusions obtained for each experiment. In
Section 4.4 the summary and general conclusions are given.

4.2 Artifacts elimination using adaptive fil-
tering and ICA

This section describes an adaptive filtering approach in ICA space for elim-
inating EOG contamination'. The principal difference with other methods
for ocular artifacts removal is the use of ICA components as reference inputs
corresponding to the noise that wants to be eliminated. The adaptive filter-
ing works under ICA domain using as a reference signal the EEG electrodes
localized close to the eyes. The experiments are oriented to further analyze
the normalized correlation coefficient between raw EEG and EEG filtered by
ICA-RLS and also the correspondence of these electrodes with ocular arti-
facts using the scalp topographic map as shown in Li et al. [2006]. Similarly,
this approach is compared with other techniques.

Signal generated by eye movements and blink is known as Electroocu-
logram (EOG). This signal frequently appears in the recorded EEG as an
interference, causing serious problems in EEG interpretation and analysis.
To remove the EOG from the EEG, it is convenient to discriminate between
artifacts and brain waves without altering important information of EEG
activity.

On the other hand, many applications such as brain computer interface
(BCI) require online and real-time processing of the EEG signal. The poten-

!This section is based on Guerrero-Mosquera and Navia-Vazquez [2011]
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tial of optimal filtering based on adaptive methodologies that search very effi-
ciently the optimal solution could be used in the EEG signal to optimally per-
form in real time tasks or improve the performance in detection or classifica-
tion for EEG signals as described in Guerrero-Mosquera and Navia-Vazquez
[2009], Erdogmus and Principe [2006] and He et al. [2007].

The standard approach for eliminating interferences in EEG recording
is filtering (typical values: low cutoff frequency of 0.1 Hz and a high cutoff
frequency of 70 Hz). However, linear filtering could distort both amplitude
and interchannel phase of signals overlapping frequency bands of artifacts
with the frequency bands of the EEG. Following Ebersole and Pedley [2003],
the use of filters should always be documented on the EEG recording, so
that the specialist can interpret their possible influence. In general, the use
of filters should be reduced as much as possible, and even better, avoided at
all.

Taking these requirements into account, several authors have published
different methods for automatic removal of EEG artifacts alternative to linear
filtering, using Independent Component Analysis (ICA), e.g.: Iriarte et al.
[2003], Romero et al. [2008], Ghandeharion and Erfanian [2006]; etc. ICA
allows to separate components in complex signals with the possibility of dis-
criminating between artifacts and brain waves. This method is widely used
as a tool to eliminate artifacts with the possibility of combining it with other
methods such as Bayesian classifier or high-order statistics, as described in
Van et al. [2006] and Delorme et al. [2007].

4.2.1 The ICA-RLS method

Independent component analysis (ICA)

The ICA technique appears ideally suited for removing artifacts from EEG in
domains where, (i) the sources are independent, that means, if we employ M
sensors we can separate at least M independent sources, (ii) the propagation
delays from the sources to the electrodes are negligible and (iii) the summa-
tion of potentials arising from different parts of the brain, scalp, and body is
linear at the electrodes, as described Delorme and Makeig [2004]. According
to the work by Makeig et al. [1996], in EEG source analysis, just assumption
(i) is questionable, since we do not know the effective statistical indepen-
dence among the sources obtained from EEG data registered from the scalp.
Moreover, the nature between ocular artifacts and brain signals are differ-
ent therefore ICA method can be used to separate the ocular artifacts and
EEG brain activity into separate components, just as shown the works by
Romero et al. [2008], Ghandeharion and Erfanian [2006], Van et al. [2006],
Delorme et al. [2007] and Iriarte et al. [2003]. Let us assume that EEG data
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X is arranged in a matrix of M sensors or electrodes (rows) by N time points
(columns) data values. The value of M depends on the number of electrodes
used. The objective of the ICA algorithm is to find a separating or unmixing
matrix W such that we estimate the sources as S = WX. The M x M ma-
trix W obtained by ICA is the linear combination of the used channels. The
columns of the inverse matrix W' contain the relative weights of the respec-
tive components at each of the scalp sensors. These weights give the scalp
topographic map of each component and could be a good indicator for select-
ing EOG artifacts, as described in Li et al. [2006] and C.A. Joyce and Kutas
[2004].

A “filtered” EEG can be derived as X' = W™!S”, where S” is the matrix
S’ with the row representing artifact source set to 0. We do not know “a
priori” which row must be set to zero, but the linear filtering scheme in
Fig.4.1 will let us know, as will be shown in what follows. It is important to

know that the spatial order in S’ does not correspond to the spatial order in
X.

There are many well known ICA algorithms that have proven to be ca-
pable of isolating both artifacts and brain signals, for instance those based
on Fast-ICA or kernel-ICA | Infomax ICA, SOBI, fastICA and JADE, in
Li and Sun [2005], Delorme and Makeig [2004]. In this PhD thesis, we used
the Joint Approximate Diagonalization of Eigen-matrices (JADE) that is
based on the diagonalization of cumulant matrices, see Cardoso [1998]. This
algorithm has been successfully applied to processing of real data sets and
EEGs?. An extensive study to identify if other ICA algorithm is more suit-
able exceeds the scope of this thesis and is left as further work.

Adaptive filtering

In conventional adaptive noise cancellation systems, the primary input signal
is a combined signal x(n) + i(n) where z(n) represents the clean signal and
i(n) is the interference. This assumes the availability of a reference signal
r(n) expected to be correlated with i(n) and uncorrelated with x(n) and the
goal is to obtain an output signal e(n) that is the residual after subtracting
from 2(n) +i(n) the best Least Squares estimation of i(n), i(n).

The method proposed here cannot assume that z(n) and i(n) are com-
pletely uncorrelated because we use reference channels that could contain
information of the brain. Initially, ICA projections are obtained from both
EEG data (W matrix in S = WX) and reference data (V matrix in
T' = VR), where R is a P x N matrix that stores measures from the P

2JADE Matlab code and tutorial paper is available in
http://perso.telecom-paristech.fr/ cardoso/guidesepsou.html
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Adaptive noise cancelling in the ICA domain

Figure 4.1: General scheme of automatic EOG noise cancellation using
adaptive filtering and ICA. Processing of signal from sensor “m” is shown,
this scheme has to be run M times in parallel to process all EEG data.

reference electrodes (Fpl, Fp2, F7 and F8, the ones closest to the eyes)
and N time points. These electrodes could register vertical and horizontal
eye movements in the EEG caused by eye blink, saccades, eyes opening and
closing that produce changes of potentials at frontal areas of the brain as
described in Fisch [1999]. Although EOG dedicated electrodes could have
also been used, the use of the Fpl, Fp2, F7 and F8 electrodes as reference
has proved to be a reasonable approach and a more direct method, since
dedicated electrodes are not always available.

Next, every ICA projection data is fed into an adaptive filtering scheme
in Fig.4.1, to be run M times (possibly in parallel), one for every EEG ICA
channel to calculate the M filter outputs. In Fig.4.1, r(n) is a P x 1 vector
storing measures from reference electrodes at time n, h,,(n) is the transversal
filter coefficient vector (also P x 1). x(n) is a M x 1 vector storing measures
from the EEG electrodes, and w,, is the m-th column of the matrix W,
and also with size M x 1. The adaptive filter with weights h,,(n) aims at
estimating the interfering component gm(n) present in the m-th ICA channel
in a Least Squares sense, from the reference signal t'(n). The filter operates
in ICA domain, and the residual signal is:

i i i

e,(n)=s,.(n)—inn) (4.1)

where

~

im(n) = hy, (n)t'(n) (4.2)

Eq. (4.2) represents a transversal spatial filter with four tap weights. We
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adjust the coefficients of the filter by solving:
min NS (i) — hl (i)t (i) 4.3
hm(n){; (8 (1) = g, (4) ())} (4.3)

The solution of Eq.(4.3) is given by the well known Recursive Least Squares
(RLS) algorithm. The use of the forgetting factor A, where 0 < A < 1, allows
to use the algorithm in non-stationary situations described in Haykin [1996].

Finally, the component selected is expected to concentrate most EOG
interference contribution, and must be eliminated by setting to zero the cor-
responding row in matrix S’, to obtain matrix S”. It would also be possible to
eliminate more than one ICA component, but that study exceeds the scope
of this paper and will be proposed as further work.

We have summarized in Table 4.1 the pseudo code of EEG adaptive fil-
tering using RLS and ICA.

Two initial experiments are presented below for evaluating the perfor-
mance of the method proposed in removing EOG artifacts. The first one
consists in evaluating artifact elimination using EEG epochs, and the other
one compares this approach to other techniques under different signal to
noise ratios (SNRs). Chapter 5 will show other results of ICA-RLS filtering
in classification tasks.

4.2.2 Experiment 1: EOG removal on EEG epochs

The aim of this section is to evaluate the performance of the proposed method
in removing EOG artifacts in different problems. Several experiments under
different signal to noise ratios (SNRs), correlation analysis, comparison with
other techniques and EEG segment classification have been performed.

Data and experimental setup

An EEG record containing mainly eye movements activity was selected. The
data was collected from 23 scalp electrodes placed according to International
10-20 system. The sampling frequency was 200 Hz and all registers are from
adults. This EEG presents a high interference on 3 channels and the artifact
ICA component was chosen according to the visual inspection of an experi-
enced neurophysiology. Using the 10-20 International System and following
Fisch [1999], the electrodes with major information about eyes movements
are Fpl, Fp2, F7 and F8, therefore, P = 4 and M = 19 in this experiment.
The electrodes that record the largest potential change in the presence of
vertical eye movements are Fpl and Fp2 because they are placed directly
above the eyes. The electrodes that record the largest potential change when
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Table 4.1: ICA-RLS Algorithm
SRR AR HR Rk R KRRk K
Inputs: X, R, A
Output: X' (filtered EEG)

Comment: ***** JCA pre-processing using JADE *##**
sk sk kot stttk sk sk sk sk sk kot kR sk sk sk sk sk ok sk ok

W = jade(X)
V = jade(R)
S’ = WX
T = VR

>3k Kk ok ok ok ok sk sk sk sk sk koK kokoskosk sk sk sk sk skook skokokokoskok sk sk sk sk skosk skokoskokoskokoskok sk

Comment: Noise cancellation in every channel m =1,..., M

Comment: *¥**¥%%* RT S Tnitialization *¥*******
Sk 3 sk sk ok s ok ok ok ok ok ok sk ok sk sk sk sk koK Sk sk sk sk ok ok sk sk sk ok sk sk ok ok ok

P(0) = 10T
for n — 1 t N
(t'(n) =Vr(n) ICA projection

m(n) =t"(n)P(n—1)
k(n) =m"(n)/(A +m(n)t'(n))
sl (n)=wlx(n) ICA projection
a(n) = s,,(n) = hy,(n — 1Ht'(n)
hm(n) = hm(n —1) + a(n)k(n)
[ P(n) = (P(n—1) = k(n)m(n))/A

Comment: *** Recovery of filtered EEG ***

j = argmin, {Zn i m(n)}
Comment: * Set the j-th row in S’ to zero to obtain S” *
return (X' = W'S")

horizontal (lateral) eye movements are produced are F7 and F8 because they
are approximately lateral to the eyes. These electrodes will be our reference
signals to build R.

A Pentium I with Matlab(©)(V.7) was used for the implementation of
the algorithm in Table 4.1. We explored different values of A and we observed
that this parameter is not critical for the performance of the algorithm (we use
the value A = 0.9 through out the experiments). Although it is an adaptive
method oriented to real-time applications, in this work we just present off-
line results, since to fully extend these results to a time varying scenario, an
adaptive ICA algorithm with epoch processing should be used, and this has
been left as further work.



70 4. Proposed methods

A RAW EEG B

Time [s]

(a)

EEG-ICA ()
1
2 e ot e e g M
3
4
p R—
6 WWMWWWWMWW%M
7
8

ICA projections
e
=i

5 6 7 Timely 8 9 10
(b)

Figure 4.2: Raw EEG data (a) and its ICA decomposition (b). Note in (a)
that the region marked as “B” is affected by ocular movements, marked with
the arrows. In the ICA projections in (b), the EOG contribution has been
mainly concentrated in component 9.

Results

It is shown in Fig.4.2(a) the original EEG with EOG peaks (marked with
arrows in the dotted box B) caused by eye movements on the electrodes Fpl,
Fp2, F7 and F8. Fig.4.2(b) represents the ICA projections of the same EEG
data. Note how it is possible to observe that ICA has been able to separate
the Electrooculogram (EOG) contribution, mainly represented in this case
by the component number 9.

Fig.4.3(a) shows how the ICA-RLS algorithm has been able to eliminate the
artifacts with minor modification of the EEG signals. In fact, as discussed
in Iriarte et al. [2003], Li et al. [2006], ICA has demonstrated minimal dis-
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Figure 4.3: An example of EOG artifact rejection using ICA-RLS and RLS.
The result from ICA-RLS algorithm in (a) shows how the algorithm rejects
the positive pulse corresponding to eye opening and the negative deflection
close to peak since it corresponds to eye closing (dotted box B). Note also
the poor performance of RLS algorithm (b) when applied without ICA pre-
processing and how our method does not introduce significant changes in the
absence of ocular artifacts (dotted box A in (a)).

tortion using measures such as minimal correlation analysis or average wave-
form similarity. On the other hand, the results without ICA preprocessing
(i.e. RLS applied to the EEG signals) are not satisfactory, since the EOG
interference is still present, as shown in Fig.4.3(b) which proves the useful-
ness of ICA. Furthermore, the proposed ICA-RLS method does not affect
those parts of the EEG signals where the EOG is not present (zone A, for
instance).

To illustrate the performance of the algorithm, we calculate the normal-
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ized correlation coefficient between the raw EEG and the EEG filtered by
ICA-RLS for each selected segment A and B in Fig.4.3. This coefficient
informs about the changes in each channel after removing the artifacts de-
scribed in Iriarte et al. [2003]. Table 4.2 shows the correlation between preel-
imination and postelimination of the eye artifact for segment A (without eye
artifact) and segment B (in the presence of eye artifact). Note in this table
the high correlation for the segment A for all electrodes which denotes that
ICA-RLS is not modifying the EEG, and the low correlation in the frontal
electrodes Fpl, Fp2, F3 and F8 in segment B, which indicates that the EOG
has been filtered out.

To further validate the results, we analyze using the topographic scalp
map the projections corresponding to every ICA component. In Fig.4.4 we
have depicted such projections, as well as the MSE value obtained after the
ICA-RLS interference cancellation process (MSE = E{e?(n)}). Observe
that the component number 9 presents the minimum MSE and its projection
presents a maximum activity in the frontopolar region.

Table 4.2: Normalized correlation coefficient between the raw EEG and the
EEG filtered by ICA-RLS for each selected segment A and B in Fig.4.3.

ICA-RLS RLS

Channel | Seg. A | Seg. B | Seg. A | Seg. B
F4 0.9978 | 0.5297 | 0.8992 | 0.9562
Fp2 0.9792 | 0.2596 | 0.9659 | 0.8633
F3 0.9991 | 0.3425 | 0.8999 | 0.8454
Fpl 0.9977 | 0.3006 | 0.9999 | 0.8076
T6 0.9986 | 0.7901 | 0.9114 | 0.8399
T5 0.9951 | 0.9511 | 0.8999 | 0.9009
02 0.9942 | 0.9834 | 0.9102 | 0.9787
01 0.9991 | 0.8913 | 0.9023 | 0.8888
E7 0.9946 | 0.5374 | 0.8699 | 0.8362
F8 0.9850 | 0.3450 | 0.9899 | 0.7963
T3 0.9998 | 0.9601 | 0.9974 | 0.9052

4.2.3 Experiment 2: Comparison of the algorithm with
other techniques

For further validation, the ICA-RLS algorithm is compared against other
techniques. (a) ICA-Least Mean Squares (LMS) algorithm with step adap-
tation equal to 1073. (b) Visual analysis using topographic maps of the com-
ponents. (c¢) ICA-kurtosis method described in Ghandeharion and Erfanian
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Figure 4.4: Topographic map of the components with their MSE values.
Each figure represents the component activity for each projection. Note
that the component number 9, with the minimum MSE, presents a maximal
activity in the frontopolar region.

[2006] and (d) RLS algorithm applied to vertical EOG component as a ref-
erence signal described in He et al. [2004].

Method

Following Clercq et al. [2006], after separating the brain signal B from eye
artifact M according to the visual ICA source analysis of an expert, the EEG
signal X can be expressed as follows:

X(a) =B+ aM (4.4)

when « is a factor that permits to increment the contribution of the eye
artifact signal M. The Root Mean Squared (RMS) value is then:

RMS(B) = ﬁ > > B (k,n) (4.5)

k=1 n=1
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with NV equal to the number of time samples and K equal to the number of
EEG channels. The signal to noise ratio (SNR) measure is defined as:

RMS(B)
SNR = ——————
RMS(aM)
Modifying the « factor we can find different SNRs and eye artifact estima-
tions, B. The performance of this estimations could be expressed in terms of

the relative root-mean-square-error (RRMSE) defined in Clercq et al. [2006]
as:

(4.6)

RMS(B — B)

MSE =
RRMS RMS(B)

(4.7)

Results

Fig.4.5 shows the RRMSE as a function of SNR for different EOG removal
techniques using « values from 0 to 2. Following He et al. [2004], the RRMSE
values from visual analysis, I[CA-RLS, RLS using vertical EOG and ICA-LMS
were 0.06, 0.12, 0.24 and 0.35 respectively. Visual analysis method outper-
formed all methods for all SNRs but requires a human expert to operate.

ICA-kurtosis
RLS

—+— ICA-LMS
—*— ICA-RLS
Visual

RRMSE

i i i i
12 16 2 24

Figure 4.5: Comparison of different EOG artifact removal methods on the
EEG using the RRMSE as a function of SNR.

Among all the automated techniques the ICA-RLS method presented the best
performance. The ICA-kurtosis method, when it is exactly implemented as
described in Ghandeharion and Erfanian [2006], does not present a good per-
formance, although its computation time was fast. However, some changes in
the ICA-kurtosis approach are introduced (named as ICA-kurtosis-modified
from now on), adapting it to our particular problem, it can obtain the results
shown in Fig.4.6.
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ICA-kurtosis-modified

The changes that we have introduced in the ICA-kurtosis-modified method
are:

e Daubechies 8 (db8) is used as mother wavelet (original paper uses
biorthogonal 4.4). This family of wavelets is one of the most commonly
used orthogonal wavelets to process non-stationary EEG signals.

e Fpl, Fp2, F3, F4, F7, F8 and C3 are used as EEG channels (original
paper uses F3, F4, Fz, Pz, C3, Cz and FP1). Following Fisch [1999],
the proposed subset of electrodes contains more information about eye
movement than those proposed by Ghandeharion and Erfanian [2006].

e Kurtosis has been calculated as k(z) = E(x — p)*/o* where o is the
standard deviation of x and p its mean. (the kurtosis formula in
Ghandeharion and Erfanian [2006] is k(z) = E(z*) — 3[E(2?)]?). We
used the equation implemented in Matlab(C) because it is more accurate
since it does not ignore the mean y of the data.

e We used the ICA method based on JADE. Although this method
presents a high computational cost described in Cardoso [1998], it could
be used in real datasets if the extra computation is not a problem (off-
line processing, not real time). Matlab optimized code is available in
the web.

The changes mentioned above lead to an improvement in the performance
of the algorithm (see Fig.4.6) but among all the automated techniques the
ICA-RLS method presented the best performance.

Visual

RLS

—+— ICA-LMS

—*— ICA-RLS

—=&— ICA-Kurtosis modified

0 0.2 0.4 0.6 0.8
SNR

Figure 4.6: Comparison of different EOG artifact removal methods on the
EEG using the RRMSE as a function of SNR.
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The computational cost was also calculated from two points of view: the-
oretical computational complexity estimation and measured computational
time. The computational cost figures are summarized in Table 4.3:

Table 4.3: Computational cost figures for all the implemented methods,
where N is the number of samples.

Computational complexity Time execution [secs]

RLS O(TN?) 45
ICA-LMS O(N*) + O(7N) 41
ICA-RLS O(N*) + O(TN?) 76

ICA-kurtosis ~ O(N3) + O(5N log, N) 26

Computational complexity was estimated assuming that the wavelet anal-
ysis corresponds to decomposition series 5, the adaptive algorithms used 7
reference channels and the ICA method was JADE for RLS, ICA-LMS and
ICA-RLS methods and Infomax for I[CA-kurtosis. Execution time was esti-
mated by running the algorithm on a PC computer with Intel(R) Core(TM)
2 processor, 2.66GHz, 4 Gb RAM and Matlab(©V7.b. It can be observed
that the proposed method is the most computationally demanding method,
but it provides the best performance. Therefore, if the computational cost is
a hard limitation, its use has to be re-considered. If the extra computation
is affordable, then the proposed method should be used.

4.2.4 Discussions and conclusion

ICA-RLS approach gives a new alternative method for eliminating noise with-
out calibration. Furthermore, it is easy to implement, very robust and does
not need expert supervision. By “robust” it means that all the steps used in
the algorithm (ICA decomposition, RLS filtering, etc.) are not facing any ill
conditioning problem or critically depend on a particular parameter choice.
Basically, ICA processing is able to separate the interfering contributions and
grouping them in a separate channel, and the RLS-based interference can-
cellation is very successful in the identification of the main interfering ICA
channel.

Eq.4.3 adjusts the coefficients of the ICA filter based on MSE criteria and
helps us to choose the component to be eliminated. There is the possibility of
assuming that the frontal activity could also be subtracted by the algorithm
but note in Fig.4.1 that all EEG information is contained in the signal x(n).
Then, the algorithm does not fail when there are no artifacts, that is, there
is a high correlation between filtered EEG signal and raw EEG (see Table
4.2).
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In the comparison of ICA-RLS method with other techniques, an im-
provement in the performance of the ICA-kurtosis modified algorithm could
be seen. These changes are due to a priori knowledge of different algorithms
in EEG signal processing. After the experiment, three conclusions can be
extracted: the first is that the modified algorithm has good performance
from the computational cost point of view compared to ICA-RLS method;
the second is that ICA-RLS is the best method in elimination of artifacts
produced by the eye compared with ICA-kurtosis modified. We think that
the decision rule used in Ghandeharion and Erfanian [2006] (total number
of maximums obtained from nine measures) is not adequate for applications
where we are eliminating ICA sources; and the third is that it should be
noted how the modified algorithm may be appropriate for EEGs with less
presence of artifacts (SNRs with high values in Fig.4.6).

As a final conclusion, the results show that methods based on indepen-
dent component analysis (ICA) and Recursive Least Squares (RLS) adaptive
filtering are able to eliminate eye movement artifacts and efficiently rejects
artifacts produced by eye movements. Future work is the performance eval-
uation in larger data set with different types of ocular artifacts and other
activities such as epileptic seizures (next chapter discusses how RLS-ICA
method is suitable as EEG pre-processing step within a classifier).

4.3 The tracks extraction method (LFE fea-
tures)

As previously discussed in earlier sections, the EEG is composed of several
signals with their respective amplitudes and phases. More specifically, the
EEG can be considered as the sum of several monocomponent signals and a
noise component.

Then, it is necessary a method that permits to separate frequency com-
ponents on the time-frequency plane and estimate the values of dominant
frequencies in a reliable manner, extracting the important information.

Next, we present a new approach for EEG feature extractions based on
the tracks extraction method that is based on the possibility of applying a
sinusoidal model to EEG signals.
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4.3.1 The EEG model

As already explained in Section 3.2, an EEG signal can be expressed as
follows:

X(n) :F(n)+Zﬂ(n—tpi)+i:Rj(n—taj)—I—B(n) (4.8)

where F'(n) is the background activity; the P; terms represent brief duration
potentials corresponding to abnormal neural discharges; the R; terms are
related to artifacts and B(n) is measurement noise which is modeled as a
stationary process.

The goal is to obtain neural discharge information (i.e. P, and t, )
corresponding to epileptic seizures from the signal X (n).

If noise and artifacts are successfully eliminated, Eq.4.8 can be approxi-
mated as:
X(n) =~ F(n)+ S(n) (4.9)

where
S(n) =3 Biln—ty) (4.10)

Based on the results of Blume et al. [1984], Freeman [1963], EEG waves rep-
resent the combined activity of many neuronal cells which can manifest as
oscillatory waves. In this sense the EEG signal may be modeled as a collec-
tion of sinusoidal components of arbitrary amplitude, frequency and phase,
such that the elementary wave part in Eq.4.10 can be written as:

S(n) = Ageap|jn¥,] (4.11)

where A, and ¥, represent the amplitude and frequency of the ¢-th compo-
nent (from the L components (waves) conforming the EEG signal), respec-
tively. The amplitudes and frequencies of these components are implicitly
related to the P; terms of Eq.4.10 and a direct form to calculate the Instan-
taneous Frequency (IF) based on the phase estimation of ¥, is:

1 dv,
O — (412
There are several approaches in the literature oriented to find the dominant
frequency of a signal or extracting its IF's, for example, calculating the local
averages using the marginals distributions and densities of time and frequency
as stated Boashash [1992] or Gandetto et al. [2004]; detecting spectral peaks
in terms of the frequency reassignment for speech signals, in Zivanovic [2011];
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other alternatives apply combinations of different algorithms such as Markov
Chain Monte Carlo method, wavelet ridge extraction and Hough transform,
as showed in Carmona et al. [1999] and Barbarossa and Lemoine [1996] re-
spectively; using image processing techniques and peaks extractions as de-
scribed in Rankine et al. [2007], Malarvili et al. [2007] respectively. These
methods have been developed in different scenarios such as biomedical engi-
neering or telecommunications.

In the following section, we introduce another technique for IFs estimation
using the time-frequency plane from the discrete TFDs.

4.3.2 Discrete Time-Frequency Distributions

TFDs provide means for describing various signal characteristics of inter-
est using the most important and fundamental variables in signal processing
such as time and frequency. The time-frequency plane represents the en-
ergy density of the signal, where the most valuable information is encoded
in the instantaneous frequency (IF) that shows the regions where the signal
energy is concentrated and how this density changes with time (see Fig.4.7).
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Figure 4.7: TFDs represent the energy density in both time and frequency
axes. The energy time evolution is showed by red arrow. Left: Time-
frequency plane represented by two-dimensional map. Right: Same signal
by represented by three-dimensional representation.

The figure above is just one example of a FM signal in which the peaks of
energy on the time-frequency plane are easy to “follow”. It is well known that
EEG signals usually present different components and it seems adequate to
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develop a method to be able to identify dominant frequencies on the time-
frequency plane in a simple, robust and reliable way in order to be used in
the clinical setting.

The implementation starts converting the signal X(n) of Eq.4.9 in its
analytic signal X,(n) and mapping this signal in a time-frequency domain
by TFDs.

Next, the Cohen-class TFD is obtained by two steps: first, smoothing the
ambiguity function by the weighting function ®(f,7) and second, applying
the two dimensional (2-D) Fourier transforms to the result. In other words,
the TFD is a 2-D filtering in the ambiguity function that makes possible to
improve the results in IF identification.

Since our EEG records are discrete time signals, the discrete and general
version of TFDs over discrete frequency samples k£ = 0,1,...,2N — 1 can be
calculated using the discrete Fourier Transform (DFT). Although there are
distributions that present a good performance for EEG applications such as
RID, RSPWV, ridges, etc., see Tzallas et al. [2009a], Papandreu-Suppappola
[2003]; it is not our objective to show all the implementations for each TFD.
Here, we present our implementation of the Discrete Smooth Pseudo Wigner-
Ville (DSPWV). More implementations are in Boashash [2003]3.

A simple way to understand the implementation of Discrete SPWV (DSPWYV)
is to start with the Discrete Wigner-Ville (DWYV) distributions, that can be
expressed as follows:

DWV(n,m)=2T. Y  Xu(n+0)X;(n— )" (4.13)

{=—00

where X, is the analytic signal of Eq.4.9, X is its complex conjugate and
n and m are the time and frequency indices respectively. The discrete-time
expressions of the ambiguity function and the weighting function in Eq.3.29
are obtained by sampling at a period 7, such that ¢t = n7T, and 7 = mT.. For
simplicity and without loss of generality, we assume T, = 1.

The definition of Eq.4.13 requires the calculus of the quantity X,(n +
()X} (n—{) from infinite values, which can be a problem in practice. We can
construct a windowed version using a symmetric, normal data window h(m)
of finite interval 2N — 1 as follows:

C[gk), -N+1 < m < N—1
h(k) = { 0, otherwise

Then, the Discrete Pseudo Wigner-Ville (DPWV) distribution of a discrete

3Experiments and comparisons among TFDs can be seen in Appendix C
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time signal is given by:

N-1
DPWV(n,m)=2 Y |g()PPXe(n+0)X;(n— 0)e > mN  (4.14)

(=—N+1

As it is well known, DPWYV has a directly dependency in time by the window
g(¢) that it can be improved by adding a greater degree of freedom. For
this, the discrete smooth PWV (DSPWV, whose notation will be ¥(n,m))
allows independent control of both time and frequency through a separable
smoothing function:

N—-1 N-1
I(n,m) =2 Z 19(0))? Z Xa(n 4 £+ p)XF(n — £ — p)e-izntm/N
{=—N+1 p=—N+1

(4.15)

Eq.4.15 shows a especial difference with the other distributions that keep a
compromise between time and frequency resolution. This compromise is now
replaced by a new compromise between the joint time-frequency resolution
and the level of the cross terms.

4.3.3 Local peaks estimation and linking

From the time frequency plane ¥(n,m) obtained from the analytic signal
X,(n), a procedure starts for localizing the local peaks and linking the fre-
quencies values. Spectral peaks have to be estimated to determine which fre-
quencies are selected to represent the waveform on the time-frequency plane.
As each TFD has a correspond resolution and its inherent cross-terms, the
local peaks estimation involves identifying a shape using enough points for a
given resolution. A practical solution is to detect as many peaks as possible
in a frame, as illustrated in Fig.4.8.

The peak detection procedure uses a magnitude threshold “thr” that could
be found in an empirical way and its value should ensure that practically all
the peaks detected are relevant on the frame.

Once the peaks of the different frames are detected, we proceed to esti-
mate the values of their magnitude and frequency using quadratic interpola-
tion, consisting in quadratically interpolating the maximum peaks per frame
and estimating the peak frequency. This adjustment is done because in the
sinusoidal model it is necessary that the amplitudes and frequencies are sta-
ble, that means, the spectral interpolation looks for samples with maximum
magnitude values and with good frequency representation (the partials). As
discussed in Zolzer [2002], the spectral interpolation uses only samples imme-
diately surrounding the maximum magnitude sample and it is very efficient.
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Figure 4.8: Spectral peaks whose locations are denoted by the crosses.

In order to account for rapid variations in the spectral peaks and even
unequal number of peaks from frame t to frame ¢ + 1, we use the concepts
of birth and dead introduced by McAulay and Quatieri [1986]. This concept
is used to account for the appearance or disappearance of spectral peaks
between frames, such that tracks are formed by connecting peaks between
contiguous frames (see Fig.4.9, upper). By linking peaks which occur at
similar frequencies, it is possible to define tracks along the time-frequency
plane.

A new track is born if the frequency of a peak in the current frame does
not appear in the £A interval of the frequency of that peak in the previous
frame. Similarly, a track dies when a peak in the current frame is not followed
by another peak in the +A frequency interval in the next frame.

Fig.4.9 illustrates the birth and death of frequency tracks formed by con-
necting peaks of similar frequencies between frames (upper) and the result
of applying this method to an EEG seizure segment using the SPWV distri-
bution (bottom).

4.3.4 Feature matrix construction using tracks extrac-
tion

Tracks obtained from time-frequency plane represent relevant information to
be used for tasks such as detection or classification. To this end we propose
to use three features based on Length, Frequency and Energy of the principal
track (L, F, E). Fig.4.9 (bottom) shows the existence of a principal track in
the seizure corresponding to non-normal activity. Similarly in another EEG
record with a duration of 75 secs. (see Fig.4.10), we can observe a longer
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Figure 4.9: Upper: Frequency matching process for determining frequency
tracking in a TFD window. Each path in the graph is called a track. The
birth of a track occurs when there is no partial in the previous frame to
connect a peak in the current frame. Conversely, death occurs when a partial
does not exist in the next frame to connect a peak in the current frame.
Bottom: Peak-matching on the SPWYV from a real EEG segment in a seizure.
There is a principal track (largest length), marked with a thick white line,
and other minor tracks, marked with thinner lines. These tracks serve to
summarize the spectral content on the time-frequency plane calculated by

the SPWYV distribution.

track £ clearly visible during the seizure. These appreciations make it pos-
sible to introduce a new feature based on the duration of the principal track
and use it in the detection task.

Apart from the duration of the principal track, it also becomes necessary
to measure other characteristics such as energy and frequency to bring better
information about the principal track.

After splitting the segmented EEG into K segments, we obtain the values
Ly, Fy, and E}, from each EEG segment and we subsequently construct a three
dimensional feature vector for each segment.

The procedure to be applied to each segment is explained below. The
method is based on a discretized version of the k-th segment in the time
frequency plane, ¥y (n, m), such that the tracks extraction procedure identifies
the coordinates of every track with a dummy variable that is equal to 1 in
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EEG Channel with a seizure
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Figure 4.10: Tracks extraction using a record with a seizure. The figure
shows the EEG in the time domain (upper) and the time frequency domain
using track extraction (middle). The length of the register is 75 secs. Taking
zoom in a window (5 secs.) on three different EEG parts, it can be observed
how a dominant and sustained frequency F' appears when there is a seizure,
while tracks appear discontinuous in the non-seizure periods.

the points that belong to the track:

1, if Ug(n,m) belogs to the (-th track
0, otherwise

T]ﬁg(n, m) = {
The length of the track is computed as:

Lo = Z Z Tye(n,m) (4.16)

the average frequency is
ijg— ZZTk[n m /Lkg (417)

and the energy is

Ekyg = (ZZT&AH, m)ﬁk(n,m))/Lk’g (418)
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We identify the principal track in segment k as the largest track:
' =arg Hl?X{kag} (4.19)

such that the final features for segment k are:

Ly = Liy (4.20)
F=Fpp (4.21)
Ep = Epp (4.22)

Remark: If there is more than one track with the same length, the principal
track is chosen by a largest energy criterion.

Table 4.4 summarizes the pseudo code of EEG tracks extraction using
DSPWYV distribution. The computational cost introduced by LFE features
extractions is in order of O(N?). At the end, if we have an EEG segment
of N points, the total computational cost (TFD + tracks extraction) will be
O(N?log N) + O(N?).

Two experiments are developed in order to show the performance of
the method both time-frequency analysis of epileptic EEG signals and the
epilepsy seizure detection by LFE feature extraction.

4.3.5 Experiment 1: Time-frequency analysis of epilep-
tic EEG signals using tracks extraction

Data and setting

Five EEGs signals from one epileptic patient were used in this study ex-
periment. The EEGs were recorded at the Clinica Universitaria de Navarra,
Department of Neurophysiology (Pamplona, Spain) and all of them presented
a focal epileptiform activity. Raw EEG was sampled at 200 Hz and a low
pass filter was applied, with a cutoff frequency at 20 Hz.

Results

The elimination of undesirable information of the EEG improved our task
detection or EEG feature extraction. For example, Fig. 4.11 shows the re-
sults of three time-frequency representations of an epileptic EEG segment:
SPWYV of the raw EEG in the upper figure, the SPWYV of the preprocessed
EEG in the middle and tracks extraction using preprocessed EEG at the
bottom. Note how the ICA preprocessed EEG produces a SPWV transform
that highlights the non-stationary signal in an epileptic episode permitting
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Table 4.4: Tracks extraction algorithm (LFE features)
sk sk kKRR KRRk K
Inputs: x(t), M, thr, A
Output: X (Feature matrix K x 3)
Comment: *EEEECK Thitialization *HA
sk sk KRRk ok K K

Comment: ** Segmentation and transformation **
Comment: *** HT{.} is the Hilbert transform ****
yk)=xzk+ (G —-1)*«M),0<k<M-1,1<i<t
ya(k) = y(k) + JHT{y(k)}
Comment: Time-frequency transformation for every segment k£ =1,..., K
h = Kaiser windows
g = Kaiser windows
track =0
for k - 1to K
Ui(n,m) = DSPWV (y.(k), h,g) Time — frequency plane
(Comment: Local peak estimation
for kk — 1 tom
(9 mae(kk) = Find-peaks(d (1 : n, kk), thr)
for each ¢ peak
A(?) = Quadratic-interpolation(log ¥ (kk))
{ then F (/)
¢ | Comment: Linking based on birth and dead
if track == 0
track = max(A) born a track
else for each /¢ of A(Y)
F(0) close to F({ —1) £ A?
Yes, extend the track
Not, removal actual peak = track =0 dead a track

\ \

Comment: *** Feature matrix construction ***
1, if Ug(n,m) belogs to the (-th track

0, otherwise
Comment: * Feature extractions *

Lie=>,> Tii(n,m)
V' = argmaxy{ Ly}

Tu(n, m) =

Ly = Lyp
Fyp=Fpp
Ey = Ejp

return (X = [L, F, E])

> 3K Kk kR ok ok Sk sk sk sk sk ok sk kR ok ok sk sk sk sk sk sk sk skokok kol sk sk sk skosk sk skoskoskokokokoskok sk
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Figure 4.11: EEG segment in a seizure. N=1000, and Kaiser 2-D filter
(15,54) was used in SPWV. Upper: SPWV of the raw EEG. Middle: SPWV
of preprocessed EEG. Bottom: Track extraction from SPWYV using prepro-
cessed EEG. Note how it is easier to obtain a principal track (bottom) using
a preprocessed EEG (middle) than a raw EEG (upper). It can also see the
improvement in resolution obtained by this method highlighting the non-
stationary behavior of the seizure.
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Figure 4.12: Three different EEG segments (5 secs. length)(right) and
tracks extraction (left). The frequencies Fj, Fy and Fj correspond to the
higher track I} = [} applying Eq.4.20. For this case of 3 segments, the
largest tracks are stored into a feature vector F' = {Fy, Fy, F3}.
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to better identify the tracks. This improvement is due to the elimination of
considerable contribution of noise, background and artifacts that hide im-
portant information from seizure activity. This enables the task to extract
features and detection of seizure activity, as will be shown in what follows.

Fig. 4.12 shows the results on 3 EEG segments for frequencies extraction
using tracks extraction. Note the correspondence between a larger track
and its oscillatory frequency for each segment, demonstrating the typical
non-stationary behavior during epileptic episodes. For k=1,2.3 we extract
Fy, = F» applying Eq.4.20. At the end, we obtain a frequency vector F' =
{Fl, FQ, Fg}

Fig. 4.13 shows the feature vector in an epileptic EEG record for k = 58
segments, consisting in L , F and E (upper, middle and bottom pannels
respectively) and illustrates how these features grow during the seizure (seg-
ment between the arrows).

4.3.6 Experiment 2: Epilepsy seizure detection using
LFE features

Data and setting

This section uses two EEGs databases: one of them consisting in 7 adult
epileptic patients obtained in a restful wakefulness stage and recorded at
the Clinica Universitaria de Navarra, Department of Neurophysiology (Pam-
plona, Spain). All of them contained focal epileptiform activity, according
to experienced neurologists. 17 EEG records of 24 min. are used taken from
23-th and 25-th channels using the 10- 20 International System of Electrode
Placement with additional anterotemporal electrodes T1/T2. The seizure
lasted for a few minutes. In practice, raw EEG data were digitized at a
sample rate of 200 Hz using a “DAD-32" equipment (La Mont Medical) and
were filtered by a digital low-pass filter with cut-off frequency of 20 Hz. All
computation was carried out off-line in a Pentium III computer, using the
Matlab(©)V.7.5 programming environment.

The other database described in Tzallas et al. [2009a] was used to get
more generalization. A first detection task called N1, used both normal and
seizure EEG segments. An EEG signal of 32.5 min. length was also used
to evaluate the effect of the number of samples in the performance of our
detector. This problem is called N2.

To obtain the threshold values and apply them at the proposed decision
scheme, 6 random EEG records from patient 1 were taken as the training
data. In every EEG register L* was identified as the largest track, and F*
and E* the corresponding frequency and energy values, at the same time
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Figure 4.13: Features extraction for an epileptic EEG register (k = 58
segments). The seizure is localized between the arrows and the EEG was
segmented using n = 5 secs. (Upper) Vector L. (Middle) Vector F. (Bot-
tom) Vector E. The feature vector F' give us information about the relevant
frequency components in a seizure. We can visually choose the larger L* value
(dotted arrow) with its corresponding values in frequency F* and energy E*
to test the classification algorithm in new EEG datasets.
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position as L* in the record. The threshold values selected were the median
values of all L*, I’* and E* measures on the training set. Their L*, F™ and
E* values are depicted in Table 4.5. The obtained thresholds were L = 2.7
secs., F' = 4.13 and £ = 24% and it was used an empirically value A equal
to 0.5 Hz. The rest of the EEG recordings from that patient, plus data from
patients 2 to 7, plus the N1 data collection were used as test data.

Table 4.5: LFE features of different EEG’s from patient 1 during a seizure
(training data).

EEG L* [secs.] F*[Hz] E* %]

1 2 1.7 26
2 3 2.9 37
3 2.5 4.4 28
4 3.2 2.5 32
) 2.6 6.5 1
6 3 3.8 27

Results

Table 4.6 presents the results of sensitivity and specifity, which are defined
as follows:

e Sensitivity: Percentage of EEG segments containing seizure activity
correctly classified.

e Specificity: Percentage of EEG segments not containing seizure activ-
ity correctly classified.

We also used another measure of performance of our detector as a function
of dataset size called “F' score” and defined as:

Fycore = 2 % sensitivity x speci fity/(sensitivity + speci fity) (4.23)

Note the good performance of our method when it is tested with different
EEG data (patients number 2-7 and N1 problem) and how this performance
is also good when it tries to detect epileptic activity from the same patient
(5 EEG’s records from patient number 1).

Since the dataset used in the Table 4.6 is quite small (the larger EEG is
15.01 min. that correspond to 901 samples), a new larger EEG database (N2)
was used to evaluate the effect of the dataset size in the detector. To evaluate
this effect we computed the Receiver Operating Characteristics (ROC) and
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Table 4.6: Sensitivities and Specifities of EEG’s in different patients (test
data).

Patient EEG Seizure Sensitivity [%] Specifity [%] F-score

03:02  00:31 89 97 92.8

00:40  00:11 90 99 94.2

1 15:01  00:22 80 89 84.2
00:58  00:29 30 100 46.1

01:34  00:13 7 94 84.6

2 04:54  00:42 72 99 83.3

3 05:24  01:15 88 93 90.4
4 06:45  01:46 56 97 71

5 05:36  00:44 90 99 94.2

6 10:52  01:43 66 100 79.5
7 04:53  01:31 30 100 46.1

N1 00:46  00:23 97 85 90.6

Average 72.1 96 82.3

The duration of EEG records and epilepsy episode are given in minutes

area under a ROC curve (AUC) for a varying data size. A value of AUC of
0.5 indicates random detections, and a value of 1 indicates perfect detection.
Note how the AUC increases when more data is used, up to a maximum
value of 0.925 (see Fig.4.14, upper).

Following Harrel [2001], a 95% confidence interval for the Fj.p. is es-
timated using N bootstrap datasets®. Each bootstrap dataset is a simple
random sample from 50 to n values selected with replacement from the orig-
inal EEG data (the increment step is 50). Because a bootstrap dataset is
drawn with replacement, some of the original observations are repeated more
than once. The statistics are estimated for each bootstrap dataset and boot-
strap confidence interval was computed as the percentile confidence, where
the endpoints of the 95% confidence interval are given by the 25th and 975th
sorted bootstrap values. For the N2 problem, using N = 1000 and n = 1569
samples, the interval is (0.87, 0.95). Fig.4.14 (bottom) shows the evolution
of Fyeore for N = 1000, the median m = 0.91 (dashed line) and standard
deviation o = 0.0217 (solid line curves represent m + o). Note how the value
of Fieore is more stable when the size of the training dataset increase and
it presents a good percentile bootstrap confidence. Although the percentile
bootstrap illustrated here is one of the simplest bootstrap confidence interval
methods, this experiment in large EEG data discards the hypothesis that our
results are overfitted to the data.

4For readers unfamiliar with statistical pattern recognition concepts such as ROC curve
or bootstrap methods, we recommend to read Appendix B.
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Figure 4.14: Evaluation of the dataset size effect in the N2 detection prob-
lem. (Upper) Receiver operating characteristics (ROC) curves and area under
a ROC curves (AUC) values. Observe the AUC values and note the normal
behavior of the detector with the increasing data size. (Bottom) Confidence
interval estimation for the Fi.,.. using N = 1000 bootstrap samples. Note
how the value of Fj.,.. is more stable when the size of the training dataset
increase and it presents a good percentile bootstrap confidence (0.87, 0.954).
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4.3.7 Discussions and conclusions

A new feature extraction method in epileptic EEG signals relying on track
extraction and analysis in a time-frequency plane is presented. The results
suggest that the method proposed is a powerful tool for extracting features in
EEG signals. The feature vector based on track measurements such as length,
frequency and energy (L, F, ) in every segment is simple and useful for the
detection task. It gives us ¢ tracks on the time-frequency plane 9(n,m) rep-
resenting the true nature of the spectral components and really concentrates
and localizes EEG frequencies with low computational cost. This opens up
the possibility of classifying epileptic EEG channels in a new and promising
way.

In order to account for noise, background, artifacts and seizure activity,
the EEG has been preprocessed using the method discussed in Section 4.2.
As shows Van et al. [2006], ICA has been reported to isolate multiple ictal
components in EEG analysis. Automatic EOG removal has proved to be
useful except when EEG is very contaminated with muscle artifacts because
ICA is not able to eliminate them totally. Muscle artifacts are more difficult
to suppress since its morphology and topography causes a confusion with
the abnormal spikes. Moreover, this problem does not considerably affect
the performance of the detection task because the seizure information is not
too much affected by muscle artifacts. Additionally, a low-pass filter was
chosen because it is possible to detect epileptic activity on low frequencies
and the EEG typically has a frequency content from 1 to 40 Hz, as shown in
Lin and Chen [1996].

We have seen the presence of tracks on the time-frequency plane dur-
ing seizure events as also observed by other authors as Williams et al. [1995].
Boashash and Mesbah [2001] found a time-frequency seizure criteria based on
two calibrations in time and time-frequency domain. However, this section
has proposed a new form of extracting features based on the principal track
by following the ridges (tracks) on the time-frequency plane and obtaining
measures such as duration, frequency and energy. Although some authors
such as Boashash and Mesbah [2001], Rankine et al. [2007] previously pro-
posed the length of the ridge of the main time-frequency EEG component
in a number of applications, including EEG and features such as energy and
other frequency-based features have been widely used in the literature dealing
with EEG, the extraction method proposed here combines just three features
being much simpler than others previously proposed in the literature, since
they need many calibrations or use more features to properly work.

Another important issue is the applicability of the method to any distribu-
tion due to its non-dependency to a particular TFD. For example, the Ridges
Extraction method, which is a good approach for the reassignment method,
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is able to extract relevant information from the time-frequency plane, but
it depends of the values obtained by the reassignment method affecting the
time computation as posted out by Auger et al. [1996]. This problem is also
discussed in Carmona et al. [1999] where the frequency updating is not easy
because it is necessary to modify the ridge detection algorithm.

The technique proposed could also be used in any scenario where differ-
ent types of EEG activity have to be detected and associated to particular
events. In brain computer interface (BCI) applications, the model could be
adopted to detect “brain actions,” e.g. moving up, left, right or down a cur-
sor on a screen using EEG readings. The detection of other brain disorders
could also be tackled as described in Hinrikus et al. [2009], Swarnkar et al.
[2009], Abasolo et al. [2008]. However, further research is needed to validate
the discriminative capability of the tracks extraction features in these new
scenarios.

Since the algorithm takes information from a TFD, it is necessary a suit-
able distribution for EEG signals, subject to the following compromise: high-
quality resolution, good detection and low computation time, as discussed in
Boashash [2003]. With a good TFD choice, the localization of both ampli-
tude and frequency peaks is less problematic. In the next chapter we will
evaluate the Smooth Pseudo Wigner-Ville (SPWV) as the TFD suitable for
EEG signal classification as it provides good resolution, low cross-terms and
is computationally efficient.

Although the detector presented a good performance by the evaluation of
receiver operating (ROC) curves, “Fscore” measure and confidence intervals,
another important issue is how to select the threshold to yield high sensitiv-
ity. The particular values of magnitude threshold and A used during tracks
extraction algorithm do not appreciably affect the results, but a good choice
in these values is required. Likewise, it is necessary a long-term analysis to
understand the epilepsy behavior and to account for all possible L values
(maximum and minimum) in seizure, because our EEG data records were
not very large.

Future works implies the study of a wide range of machine learning meth-
ods to better exploit the features proposed here to finally obtain improved
seizure detections.

4.4 Summary and conclusions

This chapter has presented two new proposals for EEG signal processing: a
new method for eliminating eyes artifacts from EEG based on ICA-RLS, and
an approach in feature extractions for EEG signals based on sinusoidal model.
The results have shown a good performance both in EEG pre-processing and
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feature extraction (LFE). These methods open the possibility of using it in
other scenarios such as BCI and EEG seizure classification.

In the next chapter the combination of two techniques within a Sup-
port Vector Machine (SVM) classifier will be presented and we evaluate our
method with other methods in EEG feature extractions for classification.
This chapter also evaluates the free parameters for each algorithm such as A,
A, overlapping percentage, type of TFD, windowing, amongst others.
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Chapter 5

EEG feature selection and
classification using SVMs

5.1 Introduction

Detection of events on EEG signals such as seizure activity, event related po-
tentials (ERPs), slow wave-sleep (SWS) or oxygen deprivation on fetal EEG,
is important for the diagnosis of abnormalities that may occur in the brain.
Generally, EEG analysis involves examining in detail different waveforms or
extracting hidden information on the EEG signal and eventually taking some
decisions. The analysis of EEG signals often causes disagreements among
specialists and the design of medical support devices that facilitates these
decisions would be highly valued.

Aside from facilitating a medical decision support system, an automatic
detection system also simplifies EEG database analysis. Usually these records
contain EEG with different size, ranging from few minutes to several days.
On the other hand, there are several conditions such as type of patient,
disease, EEG setup, etc, that require considerable skills and time-consuming
procedures in large databases. In addition, EEG detection tasks are not easy
to perform because biomedical signals are dynamic in nature and present a
non-stationary behavior, especially signals from the brain.

In the previous chapter, we have proposed two new methods for EEG
signal processing. One of them is an automatic method for eliminating ar-
tifacts caused by the eyes using the Recursive Least Squares algorithm with
Independent Component Analysis (ICA-RLS). The other one is an approach
for EEG feature extraction that obtains a three-dimensional L, F, E feature
vector by “tracks” extracted from the time-frequency plane. Both methods
can be used in conjunction with other machine learning methods with the
aim of improving the performance tasks such as detection and classification
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of EEG signals.

In this chapter, we evaluate the performance of the methods proposed in
classification tasks for EEG segments. For this, we propose different classifi-
cation problems using EEG databases recorded by ourselves as well as other
used by other authors. These databases will be described later. On the other
hand, we also evaluate tracks extraction using a feature selection method
based on mutual information and forward-backward procedure.

For all problems, we use averages both “F'score” and the area under the
ROC! (AUCQ) achieved jointly by 1000 bootstrap runs and the best design
using support vector machine (SVM). SVM is a technique accepted as the
“state of the art” in machine learning. Bootstrap is a good method to reduce
the risk of overfitting (poor test performance) and can be used to estimate the
confidence intervals, so that F'score average will be a good indicator to assess
the quality of the results obtained by the algorithms proposed (see Appendix
B). All the simulations were performed in Linux Gentoo, Kernel 2.6.x 64
bits with Matlab(©)(V.7b) 64 bits. Although the approaches are oriented to
real-time applications, in this PhD Thesis we present off-line results.

This chapter is organized as follows: Section 5.2 presents a parameters
analysis of the algorithms proposed: for ICA-RLS method, the forgetting fac-
tor A is discussed. For the tracks extraction algorithm, considerations such as
window size, time-frequency distribution to chose, percentage of overlapping,
threshold values of “thr” and A are also discussed. Similarly, we discuss
the value of K for K-NN algorithm and the SVM selected. These charac-
teristics are necessary in feature selection and classification of EEG signals.
Section 5.3 shows the performance of the proposed method with EEG signals
taken from real patients. Based on the results presented in this section, ICA-
RLS method will be suggested as a pre-processing step in classification tasks.
Likewise, this section also compares our feature extraction method with other
most widely used as wavelets and the fractional Fourier transform. Section
5.4 provides an analysis of relevant features by forward backward procedure
using mutual information as relevance criteria. Section 5.5 generalizes the
classification results obtained in previous sections with those obtained by
other authors. Finally, Section 5.6 gives the summary and conclusions of the
chapter.

'ROC is an acronym for Receiver Operating Characteristic, explained in Appendix B
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5.2 Parameter analysis for the proposed meth-
ods

As mentioned in the introduction to this chapter, there are several considera-
tions to take into account for both ICA-RLS filtering and feature extraction.
Obviously, the assignment of initial values can affect the accuracy and perfor-
mance of both methods; therefore the description that these parameters may
have on the implementation of the algorithms is a fundamental matter. On
other hand, this analysis gives rules of thumb for choosing appropriate val-
ues for the initial parameters and to assign reasonable limits to ensure better
results. Next, each algorithm and their parameters are analyzed individually.

5.2.1 ICA-RLS method: )\ and filter order

The RLS algorithm has an excellent steady-state performance in a station-
ary environment and its forgetting factor A, in the case of a non-stationary
environment, uses values 0 < A < 1. Values of A most of the time is chosen
based on a priori knowledge but it is necessary to know its possible influence
in the application. Following Haykin [1996], when A is close to 1, smoother
and slower convergence is observed than with lower values of \. However,
the important fact here is that we are comparing the prediction error of a
bank of filters (all of them running with the same \), and if we reduce or in-
crease A, the behavior of all of them will be analogously modified, ultimately
leading to the selection of the same ICA component as EOG (the one with
the smaller prediction error). Therefore, although the value of A does affect
the behavior of the individual filters, the overall behavior of the procedure
for identifying and removing the component with lowest prediction error is
not affected for a wide range of A\ values. The effects of the forgetting factor
A on the convergence of the RLS algorithm from the point of view of weight
error vector and number of iterations are detailed in Ardalan [1986].

On the other hand, filter order has proved not to be an important factor
in the performance of removing artifacts on the adaptive scheme. Studies
in Puthusserypady and Ratnarajah [2006] have shown that for various SNR
values, the RLS method shows a good performance in different filter orders.
In those experiments, the authors used the ratio of the power of the ocular
artifact being removed from the primary signal to the power in the estimated
EEG.

The measurement called as “R” was defined as follows:

R Zivzl(gv(n) — 8(n))” (5.1)
> o1 82(n)
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Eq.5.1 shows a quantitative comparison of artifact elimination perfor-
mance and higher values of R correspond to better artifact rejection.

Fig.5.1 shows the corresponding curves for RLS algorithm. It is noted
that there is a stability of the RLS algorithm at greater values than 4. Also,
there is an improvement in the algorithm when they are using four reference
channels. In the same figure, we also see the difference of using one or two
reference channels with three or four channels. We think that using only one
or two reference channels have less artifacts’s information. Eye movements
are related to two for the horizontal movements (left and right) and two for
vertical movements (up and down) and since the numerator of Eq.5.1 depends
directly of the estimation, R values could change considerably.

The ICA-RLS approach uses a 4-th filter order with A = 0.9.

25r
2 .
1.5F
14
—%— 1 ref. channel
1r —p— 2 ref. channels
—o— 3 ref. channels
—&— 4 ref. channels
05r

0 1 1 1 1 1 1 J
0 2 4 6 8 10 12 14

Filter order

Figure 5.1: R vs. filter order for RLS algorithm with multiple EOG refer-
ence channels. Higher values of R correspond to better artifact rejection(with
permission of Puthusserypady and Ratnarajah [2006]).

5.2.2 LFE tracks extraction: distributions, EEG epoch
and overlapping

Time-frequency distributions (TFDs) have proved to be a good alternative for
non-stationary analysis of EEG signals. Basically, these methods transform a
time domain signal to a “snapshot” time-frequency plane where it is possible
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to see how the energy and frequencies change over time. For example, Fig.5.2
shows the time evolution of the magnitude of the coefficients of the discrete
Gabor transform for a EEG segment with epilepsy. The color spectrum from
red to blue corresponds to the magnitude from maximum to minimum. In
other words, red areas represent a highest energy concentration than blue
areas.
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Figure 5.2: First burst of epilepsy seen on the time-frequency plane using
an atomic Gabor decomposition (adopted from Guerrero-Mosquera [2011]).

To obtain good results on the time-frequency plane it is necessary: (1)
to choose an appropriate distribution and this depends on the application.
(2) to segment EEG length (epochs), (3) to deal with boundary effects that
could be solved by a suitable window analysis and overlap of samples.

Next subsection discusses in detail each consideration in order to take
clear the distributions to choose and the adjustments necessary to have good
results.

Selection of time-frequency distributions (TFDs)

As showed in Section 3.4.2, each distribution has different resolutions and
suffer cross terms that could significantly affect the results in EEG signal
analysis, specially concerning epileptic activity. Although several authors
have recommended the TFDs as a good alternative to EEG signals analy-
sis, as described in Papandreu-Suppappola [2003], Boashash [2003], we will
explain in more detail the TFDs selection process taking into account charac-
teristics such as resolution, cross terms and computational cost for epileptic
classifications tasks.

TFED analysis computes for each segment a discrete Fourier transform
(DFT) which in turn drives an analysis window. The windows (usually
Hamming, Kaiser or Gaussian) attenuates the leakage effect or spectral edge
that is an important inconvenient for feature extraction method because this
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method relies on “linking peaks.” An initial analysis is presented in Appendix
C, which concluded, in a qualitative way, that distributions based on Wigner-
Ville transform, reassignment method and reduced interference distributions
are appropriate for epileptic detection. The analysis also concluded that
windows such as the Kaiser one presented better resolution both in time and
frequency.

Moreover, the features extracted from each TFD are used as inputs into
a classifier, therefore the computational cost has to be taken into account
and also the performance. The individual analysis for each TFD and its
performance gives us more precise conclusions on which distributions may be
more suitable for EEG signal classifications.

Overlapping effect Overlapping effect
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Figure 5.3: Overlapping effect on the SVM classifier for each TFD. (a)
SPWV, (b) RID and (c) RSPWV. Fj.,. values are the average on 100 boot-
straps runs and vertical lines on the curve represent the standard deviation

bar at each % of overlapping. Database used is N1 problem described in
Appendix D

Table 5.1 shows the results (average and standard deviation) obtained for
each TFD into a classifier scheme. F.,,.. values are the average on 5 bootstrap
runs. The database used is named as “problem N1” and is described in

90
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Appendix D. The feature extractions method used is the tracks extraction.
For simplicity and following Quiroga [1998], each segment length was 5 secs.
and Kaiser windows was used. Fj., measurement was used for both the
selection of SVM parameters (10-folds cross-validation) and evaluation of
each TFD. EEG preprocessing is the raw EEG with artifact rejection by
RLS-ICA method.

Table 5.1: F.,,.. evaluation of different TFDs for N1 problem. Fi.,.. values
are the average on 5 bootstrap runs. Features extraction is based on the
tracks extraction method. EEG preprocessing correspond to raw EEG with
artifact rejection by RLS-ICA method.

Raw EEG Preprocessed EEG Amount of
computation
per segment [secs]
TFD distribution Train Test Train Test
91.82 91.45 98.88 98.72
STFT +0.0224 | +0.0330 | +0.0251 | +0.0371 0.26
. ) 90.95 90.28 93.18 93.91
Pseudo Wigner-Ville (PWV) | oos | 40,0784 | 4£0.0101 | £0.0587 0.29
Sooctromram 89.36 89.02 89.99 89.90 0.0
pectrog +0.0774 | £0.0139 | 4£0.0222 | 40.0452 ‘
77.45 77.28 79.18 79.11
MH Spectrogram +0.0587 | +0.0696 | +0.0989 | +0.0798 0.36
. ) §7.45 87.40 98.61 98.58
Wigner-Ville (WV) +0.0556 | +0.0451 | 4+0.0133 | 40.0310 0.48
. $86.05 86.01 89.10 89.08
Ribaczeck +0.0405 | +0.0906 | +0.0548 | +0.0678 0.54
(M) 77.05 77.03 78.44 78.40
Margenau-Hill +0.0878 | +0.0194 | 40.0505 | +0.0602 0.57
aze 79.53 79.48 80.07 80.01 0.63
& +0.0505 | +0.0533 | +0.0993 | +0.0317 :
89.66 89.66 92.27 92.19
Butterworth 40.0300 | +0.0143 | +0.0588 | £0.0967 0.63
97.91 97.89 100 99.36
Smooth PWV (SPWV) 4+0.0274 | £0.0125 | 4+0.0566 | +0.0084 4.82
S transform 90.35 90.28 91.18 91.11 501
- +0.0778 | +0.0261 | +0.0317 | +0.0287 :
. 97.85 97.82 100 99.57
Reduced interference (RID) 10.0230 | +£0.0545 | +£0.0111 | +0.0068 8.60
R 95.89 95.05 98.32 98.31
Choi-Williams +0.0796 | +0.0680 | 4+0.0809 | +0.0666 9.41
83.75 83.20 87.55 87.41
Affine PWV +0.0887 | +0.0320 | 4+0.0865 | +0.0631 10.24
. 92.75 92.68 98.58 98.51
Reassigned PWV +0.0565 | +0.0531 | 40.0378 | +0.0223 14.15
. 97.89 97.81 100 99.41
Reassigned SPWV 40.0471 | +0.3908 | £0.0194 | 40.0083 21.12
) ) 97.66 97.49 100 99.01
Ridge extractions 40.0483 | +0.0901 | +0.0296 | +0.0127 22.08
) . 79.91 79.88 82.11 82.06 .
Radially Gaussian kernel 40.0163 40.0199 40.0249 | +0.0661 32.01
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Note in Table 5.1 that there are four distributions with good performance
in solving this problem: Smooth Pseudo Wigner-Ville, Reduced Interference
(RID), Reassigned SPWV and Ridge extractions. The Ridge extractions
method also shows a good performance but has a very high computational
cost per segment (22.03 seconds) than the other three distributions. Note
also that EEG preprocessing performed better than raw EEG. Section 5.3
will explain in more detail those results.

Overlapping and EEG epochs

Overlapping is a good option to avoid the boundary effects (spectral leak-
age) that occurs when we are using slide windows analysis on the time or
frequency. Then, it is very important to know what is the appropriate per-
centage of overlapping because we are possibly introducing redundancy in
the problem and this could affect the SVM performance. Fig.5.3 shows the
effect on the classifier for different overlapping values for the distributions:
(a) SPWV, (b) RID and (¢) RSPWV. Note that there is a considerable Fy.oe
increase for values between 20% and 40% for all distributions.

Regarding the EEG epochs, several authors have advised EEG segment
lengths among 1 to 5 seconds that depend on the model or transforma-
tion used, as described in Quiroga [1998], Boashash and Mesbah [2001] and
Guerrero-Mosquera et al. [2010a]. It is important to have into account EEG
epochs and its effect on the classifier because tracks extraction method uses
a feature called as “L” that consists in the partial duration of the tracks.
This duration has to take maximum or minimum values that guarantee the
classifier performance. In other words, we want to eliminate the assump-
tion that using a segment length of 2 secs. implicitly it assumes that the
maximum duration of the seizure is less or equal than 2 sec (after removing
boundary effects). Fig.5.4 shows the effect of EEG epochs on the classifier
for each distribution chosen: (a) SPWV,(b) RID and (¢) RSPWV. Note in
the figure that values from 200 samples (1 secs) ensure a stable performance
of the classifier for the three distributions.

Thresholds: “thr” and A

The tracks extractions algorithm makes a “linking peaks” on the time-frequency
plane using two thresholds: a peak magnitude called in the algorithm as “thr”
and a matching interval £A (see Table 4.4).

The threshold “thr” is used in the process of finding peaks and defines
a spectral peak magnitude. This value determines the total number of can-
didates per frame that are used in the linking peaks process. Very small
values of “thr” can produce an overwhelming number of partials that could
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Figure 5.4: EEG epochs effect on the SVM classifier for each TFD. (a)
SPWV, (b) RID and (c) RSPWV. F.,. values are the average on 100 boot-
straps runs and vertical lines on the curve represent the standard deviation
bar at each epoch length. Database used is N1 problem described in Ap-
pendix D

primarily affect the computational cost of the algorithm. For this reason, we
have to choose an appropriate value of “thr” that leads to small numbers of
partials, while guaranteeing at least enough partials to solve the classification
problem.

In addition, it is necessary to find which frequencies are related to these
peaks. Finding frequencies on the time-frequency plane is limited by the TFD
resolution, so in order to fit the peaks in both magnitude and frequency we
use the quadratic interpolation and thus obtain more data for the location
for each peak. Quadratic interpolation makes a quadratic fit of all maxima
above “thr.” We choose “thr” as the ratio (in dB) between the largest peak
in the frame and the absolute lower threshold.

1000
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Figure 5.5: Linking process on the SPWV distribution (background) for
different values of A, segment length 5 secs and 30% of overlapping. Note
the partial increase on the time-frequency plane (red lines) with increasing

A.
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On the other hand, the detection algorithm proposed in this Thesis de-
tects activities in the low frequencies. In Chapter 4 we showed several time-
frequency planes obtained from epileptic EEGs, where we could see epileptic
activity within the range of 0 — 20 Hz. Therefore, since the matching interval
+A values define the range where a peak may continue in the next frame
and continue as a partial, the value of A is crucial for birth/death process
used in LFE feature extractions.

An initial qualitative analysis is done to observe which is the effect that
produces the different values of A in the creation of partials on the time-
frequency plane. Fig.5.5 shows this effect on the SPWV distribution. Note
in these figures how there is an increasing number of partials as A increases.
This results show the important role that this parameter has on the classifier
performance.

To more clearly assess the working range of A, we propose to evaluate the
effect of this parameter in the output of a classifier (Fig.5.6). The left panel
shows the performance of the classifier when A varies in the range values
between 0-1 Hz with a step increment of 0.1 Hz. In the right panel A values
between 0-10 Hz are covered with a step increment of 1 Hz. Note that there
is clearly a stable working range of A between 0.5 and 1 Hz, which leads
us to conclude that any value between these limits provides a performance
almost equal in the classifier. From here on we will use EEG epochs of 5
secs., A = 0.5 Hz and 30% of overlapping.
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Figure 5.6: Effect of A in the classifier performance. Values between 0-1
Hz with a step increment of 0.1 Hz (left). Values between 0-10 Hz with a
step increment of 1 Hz (right). TFD RID and 30% of overlapping. Fi.ope
values are the average on 5 bootstraps runs and vertical lines on the curve
represent the standard deviation bar at each value of A. Database used is
N1 problem described in Appendix D. Note that there is a stable working
range of A between 0.5 and 1 Hz.

10
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Selection of K value for K-NN algorithm and SVM classifier

Apart from parameters from tracks extraction and RLS-ICA methods, two
issues still remain to be dealt with: parameter K in for the K-NN algorithm
used in estimating the probability density function, and the type of SVM
classifier we will use to evaluate the performance of both methods. K-NN
estimation is necessary to calculate the mutual information (MI) which is the
relevant criteria for the feature selection procedure.

Generally speaking, SVM have proved to be the most appropriate alter-
native for solving the classification problems and their solution is supported
in statistical learning theory Vapnik [2000], Scholkopf and Smola [2002]. In
fact, SVM has reached the best results in both linear and nonlinear form due
to regularization to outliers effect, its simplicity and robustness with respect
to the curse-of-dimensionality.

Based on Liang et al. [2010], Lotte et al. [2007], Giiler and Ubeyli [2007],
SVMs with radial basis function (RBF) have demonstrated a good efficiency
in EEG classification. Although there are results with other kernels, for this
section we will use SVMs with RBF kernel. Determining the most appropri-
ate SVM kernel for solving the EEG classification problems with epilepsy, is
beyond the scope of this thesis and it is not our goal. The parameters o and
C' are calculated by K-fold cross validation (CV) method which is explained
in Appendix B.

On the other hand, it is well know in K-NN estimation that the value of
K is generally dependent on the data. Initially there is no optimal way to
choose the value of K usually this value is found by cross-validation involving
an increase in the computational cost. We propose to evaluate the error rate
of SVM classifier vs the number of neighbors for three databases. That way
we can get K values which ensure a low error rate and classifier’s stability.
This experiment has the following setup: RID distribution, tracks extraction
method with EEG epochs of 5 secs., A = 0.5 Hz and 30% of overlapping
and RBF-SVM parameters was found by 10-folds cross validation. We chose
randomly the databases: patient 6, database 3 and N3 classification problem
that are described in Appendix D. Subsequently, each database has been
partitioned by using 60% for training and the remaining data for test. Results
for each database are showed in Fig.5.7. Note how the error rate decreases
rapidly up to K = 20 for all three databases. From this value we observe no
notable changes in the error rate. At the end, a value of K = 30 was chosen
for all experiments of feature selection.
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Figure 5.7: K-NN performance using a RBF-SVM classifier. Feature matrix
is based on tracks extraction method with RID distribution, EEG epochs of 5
secs., A = 0.5 Hz and 30% of overlapping. RBF-SVM parameters was found
by 10-folds cross validation.

5.3 Clinical evaluation of the proposed meth-
ods

Since the features extraction method and ICA-RLS provide new alternatives
to EEG signal processing , it is important to evaluate the possibilities which
these features offer in comparison with other methods and the effectiveness
in artifact rejection.

So far, we have seen in the previous section, how the pre-processing step
based on ICA-RLS improves the classifier performance (see Table 5.1). This
section we will show the use of EEG data from real patients to evaluate the
EEG preprocessing by both ICA-RLS and tracks extraction. First, we will
use the database 2 (described in Appendix D) which has high ocular arti-
facts contamination and presence of interictal activity. From this database,
we created a feature matrix and individually tested each feature or extraction

50
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method using a SVM classifier. Feature matrix, with dimension (D) equal
to 65, has been formed by three feature extraction methods: tracks extrac-
tion (D=3), wavelet coefficients (D=45) and fractional Fourier coefficients
(D=17). The SVM parameters are found by 10-folds cross-validation and
Fyeore measurement was used for both the selection of SVM parameters and
the performance measures of the classifier. Additionally, each Fj.,.. value
presented in Table 5.2 is the average corresponding to 1000 bootstrap runs.
Distributions chosen are SPWV, RID and RSPWV.

Table 5.2 shows clearly the improved performance obtained with a pre-
processed EEG by ICA-RLS algorithm in all extraction methods. Note that
this improvement is noticeable for the three distributions, but among these,
the best results were obtained using the RID distribution. Another way
to evaluate the methods proposed is using a database with more diversity.
Database 1 (described in Appendix D) has been recorded from different pa-
tients, brain regions and class balance. Results showed in Table 5.3 (raw
EEG) and Table 5.4 (preprocessed EEG) confirm that ICA-RLS adaptive
scheme could be considered as a good alternative for removing artifacts in
the EEG. The results also show the relevance of the LFE features in different
classification problems (patients 1, 2 and 5). For this database, the AUC
measurement was used both in the selection of SVM parameters and in the
performance measurements of the classifier.

Looking for more generalization, we also use the database 3 described in
Appendix D that is frequently cited in the state of art, in Andrzejack et al.
[2001]. Maintaining the same features matrix (D=65) and training the SVMs
with Fl..re measurement, 10-folds cross-validation, 1000 bootstrap runs and
SPWYV, RID and RSPWYV distributions, we obtain the results shown in Table
5.5, Table 5.6 and Table 5.7 respectively?. Finally, although there are some
other methods proposed to EEG extraction in the literature as described in
Sanei and Chambers [2007], we have chosen these algorithms for two rea-
sons: first, both wavelets and the fractional show better results than others
methods, for example: FrF'T has the property that if we increase gradually
the order, we can obtain more information in form of coefficients than the
Fourier transform. Besides, wavelets improves the time-frequency resolution
through multi-resolution analysis. The second reason is that tracks extrac-
tion contains three detectors: energy (E), frequency (F) and track length
(L), which together can solve complex problems and improve the EEG clas-
sification performance apart from offering information closer to nature of the

2The statistical relevance of the results has been verified by means of a Kruskall-Wallis
test, which is a sort of nonparametric ANOVA test that does not assume Gaussianity in the
data under study. In all cases (except between Fractional Fourier (FrF) and LFE+Wavelets
(W) in the N1 case) a p-value smaller than 0.01 has been obtained, thereby rejecting the
null hypothesis that data come from the same distribution. Note in these tables the
difference in difficulty among N1 (easy), N2 and N3 (hard) problems.



Table 5.2: Feature evaluations for database 2. Fj.,.. values average and standard deviations correspond to 1000 bootstrap
runs. Each abbreviation corresponds to the feature(s): (L) duration of track; (F) track frequency; (E) track energy; (LF)
L+F; (FE) F+E; (LE) L+E; (LFE) L+F+E; (W) wavelets coefficients; (FrF) fractional Fourier coefficients. (4) means a
feature combinations.

SPWV RID RSPWV
] Features ‘ Dimension Raw ‘ Pre-processed Raw ‘ Pre-processed Raw ‘ Pre-processed

L 1 54.09 54.90 54.65 55.18 54.88 55.07
40.0036 40.0022 +0.0014 40.0089 40.0067 40.0050

P 1 58.84 58.92 59.26 59.32 58.67 59.01
40.0029 40.0081 40.0088 40.0030 40.0062 40.0046

B 1 69.45 70.13 71.22 73.80 70.14 72.03
+0.0013 +0.0055 +0.0023 40.0079 40.0050 +0.0019

LF 9 61.35 62.36 65.21 69.87 62.07 63.28
+0.0034 +0.0066 40.0068 +0.0015 40.0041 40.0032

FE 9 92.68 93.67 94.32 95.67 93.19 93.99
+4.06 x 1074 +0.0306 +6.80 x 1074 +0.0427 +0.0101 +0.0856

LE 9 91.28 93.05 92.29 94.35 91.25 93.87
+4.06 x 1074 +0.0306 +6.06 x 10~* +0.0427 +0.0101 +0.0856

LTE 3 93.21 96.23 94.32 96.74 92.99 97.04
+0.0184 +0.0183 +0.0520 +0.0113 +0.0885 +0.0253

W A5 93.15 93.21 94.01 94.33 93.01 93.88
+0.0191 +0.0185 +0.0021 +0.0548 +0.0665 +0.0221

0T 17 90.09 91.95 91.22 92.37 91.64 93.04
+0.0263 +0.0287 +0.0525 40.0002 +0.0113 +0.0699

95.23 97.21 96.01 96.95 95.92 96.23
LFE+W 48 +0.0159 +0.0161 +0.0888 +0.0669 +0.0548 +0.0159

93.62 97.56 94.99 98.02 93.77 98.12
LFE+FTF 20 +0.0177 +0.0169 +0.0754 +0.0958 +0.0952 +0.0224

WoLFrF 69 94.29 96.31 94.50 97.08 95.33 96.99
+0.0113 +0.0176 +0.0830 +0.0669 +0.0117 40.0903

All 65 96.92 98.26 97.03 98.99 96.99 98.81
+0.0143 +0.0142 +0.0607 40.0055 +0.0159 +0.0362
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Table 5.3: Feature evaluations for database 1 using raw EEG and RID. AUC values average and standard deviations

correspond to 1000 bootstrap runs.

T F B LF FE TE LFE W FtF | LFEAW | LEBLErE | WHFE ATl

Dim 1 1 1 2 2 2 3 45 17 48 20 62 65
pationt 1 | 5261 42.01 46.80 88.54 85.33 86.21 87.13 85.07 85.94 83.07 88.64 84.99 83.35
40.2212 | +0.8965 | +0.7485 | +0.0865 | +£0.0487 | +0.5454 | +0.0397 | +0.2187 | £0.2856 | +£0.0398 | +0.2231 | 40.1878 | +0.0999

Pationt 2 | 5754 86.42 80.03 85.54 90.14 | 91.92 | 89.70 83.66 83.67 83.56 88.10 78.55 80.80
40.0951 | +0.2008 | +0.2154 | +0.3652 | £0.0165 | £0.1010 | +0.0025 | +0.1235 | £0.0258 | +£0.2027 | +0.0148 | 40.1550 | +0.3002

Pationt 3 | 8577 69.99 75.11 84.94 87.88 90.14 90.12 88.55 85.03 88.01 90.28 89.07 88.55
40.0303 | 4+0.1896 | +0.1580 | +0.2654 | +0.1778 | £0.0369 | +0.0085 | +0.1791 | +0.1444 | +0.0585 | +0.1355 | 40.0333 | +0.1111

Pationt 4 | 5392 67.15 87.90 85.92 86.58 91.93 90.05 88.41 90.09 86.66 90.04 90.80 | 92.73
40.2020 | +0.0369 | +0.3020 | +0.1247 | +0.1565 | +0.1058 | +0.1365 | +0.0584 | +£0.1990 | +£0.1754 | +0.1002 | +0.1452 | +0.1988

Pationt 5 | 56:08 59.03 86.60 83.50 86.77 8842 | 89.99 | 82.09 84.99 83.01 84.44 84.90 82.39
40.1511 | 4+0.0930 | +0.1080 | +0.0505 | +0.1337 | £0.0210 | +0.1452 | +0.1453 | £0.0225 | £0.1111 | +0.1228 | 40.0054 | +0.0365

Pationt 6 | 70-21 35.55 78.34 88.28 87.34 89.07 86.48 86.23 86.56 86.75 84.01 8336 | 89.16
+0.0777 | £0.2001 | +0.0545 | +0.0787 | +0.1012 | +0.1845 | +0.1770 | +0.0666 | +£0.0433 | +0.1288 | +0.0182 | +0.1843 | +0.1121

Average | 82.68 60.02 75.79 86.10 97.34 89.61 88.91 85.66 86.04 85.32 87.58 85.27 86.16

Table 5.4: Feature evaluations for database 1 using a preprocessed EEG and RID. AUC values average and standard
deviations correspond to 1000 bootstrap runs.

L F B LF FB LE LFE W FTF [ LFE+W | LEEAEF | WHEF ATl

Dim 1 1 1 2 2 2 3 45 17 48 20 62 65
Pationt 1 | 512 45.38 4857 89.01 87.61 88.81 90.2 87.2 87.7 87.28 93.20 87.41 87.63
+0.1083 | +0.2207 | +0.2143 | +0.0980 | £0.0953 | +0.0840 | +0.0920 | +0.1040 | £0.1030 | £0.1040 | +0.1050 | 40.1030 | +0.1090

Pationt 2 | 2982 90.33 85.86 87.02 94.08 | 94.23 | 93.77 87.4 88.24 87.22 91.16 82.21 86.91
40.1040 | £0.1006 | +0.1178 | +0.1197 | £0.0109 | £0.0797 | +0.0180 | +0.1200 | £0.1230 | £0.1240 | +0.1090 | 40.1120 | +0.1220

Pationt 3 | 5594 73.29 79.41 87.41 91.85 93.91 94.1 91.9 89.3 93.5 938 93.9 92.8
+0.0425 | +0.0664 | +0.0564 | +0.0511 | +0.0372 | +0.0360 | +0.0320 | +0.0420 | £0.0520 | +£0.0360 | +0.0300 | 40.0330 | +0.0410

Pationt 4 | 8516 69.04 89.32 87.20 88.21 92.23 90.9 90.6 92.1 88.5 93.4 95.3 97.1
+0.0586 | +0.0922 | +0.0526 | +0.0631 | +£0.0549 | +0.0448 | +0.0500 | +0.0710 | +£0.0480 | +£0.0720 | +0.0400 | 40.0360 | +0.0460

Pationt 5 | 89-04 62.54 90.33 88.38 90.06 92.10 | 93.36 87.6 88.2 88.1 884 87.8 87.9
40.0627 | +0.1415 | +0.0644 | +0.0764 | +£0.0648 | £0.0563 | +0.0530 | +0.0781 | £0.0741 | +£0.0800 | +0.0741 | 40.0766 | +0.0758

Pationt 6 | 7469 38.54 80.91 90.19 89.57 91.35 89.15 89.11 89.38 89.55 89.21 89.66 | 92.31
40.0861 | +0.1455 | +0.0698 | +0.0488 | £0.0529 | £0.0446 | +0.0521 | +0.0557 | £0.0545 | +£0.0544 | +0.0541 | 4+0.1249 | +0.1454

Average | 85.46 63.19 79.07 88.20 90.23 92.27 91.53 88.97 88.07 89.39 91.52 90.27 90.71




Table 5.5: Fi.,. values average and standard deviations

correspond to 1000 bootstrap runs using the TFD SPWV.

L F E LF FE LE LFE W% FrF LFE+W | LFE+FrF | WH+EFrF All
Dim 1 1 1 2 2 2 3 45 17 48 20 62 65
N1 67.03 85.68 99.46 86.42 99.74 100 99.36 99.89 98.70 99.40 99.23 99.74 99.66
+0.0626 | 40.0355 | 40.0078 | +0.0357 | +0.0059 | 46.89 x 10~% | +0.0084 | 40.0032 | 40.0120 | +0.0117 +0.0093 +0.0048 | £0.0059
N2 17.19 63.99 80.33 87.27 87.35 88.42 87.45 93.28 99.18 85.01 94.16 98.36 97.96
+0.1769 | £0.1563 | £0.0333 | £0.0345 | £0.0332 +0.0304 +0.0358 | £0.0250 | £0.0089 | =+0.0467 +0.0275 +0.0145 | +0.0151
N3 16.22 9.04 4.88 43.85 55.69 30.44 86.27 82.54 83.59 81.35 88.18 93.23 92.25
+0.0944 | £0.0567 | +0.0156 | £0.1034 | +0.0963 +0.2237 +0.0361 | £0.0459 | £0.0460 | +£0.0474 +0.0378 +0.0270 | £0.0299
Average 33.48 52.90 61.55 72.51 80.92 72.95 91.03 91.91 93.82 88.35 93.85 97.11 96.62

Table 5.6: F.,. values average and standard deviations correspond to 1000 bootstrap runs using the TFD RID.

L E LF FE LE LFE A\ FrF LFE+W | LFE+FrF | WHErF All
Dim 1 1 1 2 2 2 3 45 17 48 20 62 65
N1 67.24 86.95 99.38 92.29 99.82 100 99.57 99.89 98.70 99.91 99.06 99.74 99.36
40.0553 | £0.0357 | 40.0091 | £0.0261 | +0.0041 +0 +0.0068 | £0.0032 | £+0.0120 | £0.0031 +0.0099 40.0048 | £0.0059
N2 36.84 51.99 75.81 87.07 87.41 86.19 83.51 93.28 99.18 92.55 99.74 98.36 98.06
+0.1438 | £0.2895 | +0.0803 | £0.0322 | £0.0320 | £0.0359 | £0.0406 | 40.0250 | =£0.0089 +0.283 +0.0055 +0.0145 | £0.0303
N3 20.14 5.01 9.80 15.79 67.34 64.73 82.13 82.54 83.59 81.36 89.82 93.23 96.02
+0.1019 | £0.0139 | +0.0748 | £0.1204 | +0.1040 | £0.0841 | £0.0449 | 40.0459 | £0.0460 | +0.0434 +0.0303 +0.0270 | £0.0301
Average 41.40 47.98 61.66 65.05 84.85 83.04 88.40 91.91 93.82 91.27 96.20 97.11 97.81

Table 5.7: Fi.,.. values average and standard deviations correspond to 1000 bootstrap runs using the TFD RSPWV.

LF FE LE LFE W FrF LFE4+W | LFE+FrF | WHEFrF All
Dim 1 1 1 2 2 2 3 45 17 48 20 62 65
N1 67.21 85.39 99.75 86.56 99.44 100 99.41 99.89 98.70 99.55 99.22 99.74 99.76
+0.0590 | 40.0364 | 40.0056 | +£0.0342 | +0.0081 | +6.89 x 10=* | £0.0083 | 40.0032 | £0.0120 | +0.0070 +0.0096 +0.0048 | +0.0102
N2 17.73 63.72 80.03 87.49 87.21 88.14 89.71 93.28 99.18 93.69 99.46 98.36 99.16
+0.1766 | £0.1528 | 40.0490 | £0.0345 | +0.0286 +0.0326 +0.0319 | £0.0250 | 4+0.0089 | =£0.0220 +0.0110 +0.0145 | £0.0095
N3 16.51 8.64 4.12 57.95 58.9 63.19 86.09 82.54 83.59 84.21 88.47 93.23 95.56
+0.727 | +£0.0618 | +0.1058 | £0.0863 | +0.1057 +0.2312 +0.0395 | £0.0459 | £0.0460 | =£0.0405 +0.0379 +0.0270 | +0.0265
Average 33.81 52.58 61.30 77.33 81.85 83.77 91.73 91.91 93.82 92.48 95.71 97.11 98.16
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problem. Moreover, this method could be combined with other features and
improve results, as show in Table 5.4 (patients 1, 4 and 5) and Table 5.6 (N2
and N3 problems).

Next subsection discusses the results obtained by the experiments pro-
posed and also analyzes the LFE performance with other extraction meth-
ods.

5.4 Dimensionality reduction of EEG features
matrix by forward-backward algorithm and
mutual information (MI)

In EEG classification problems, one might think that expanding the features
matrix can improve the classifier performance because we are adding new
features or information to the problem. However, it is worth noting that
the size of that features matrix can not grow indefinitely and also adding
new features does not always improve the performance of the classifier. The
reason is simple: there is a possibility that instead of adding new information
to the problem, we are introducing redundancy and this could possible be
taken as noise. Then, the performance of the classifiers may degrade due to
overfitting. Moreover, expanding the features matrix involves increasing the
computational cost, therefore it must be clear what features we must add to
improve the classifier performance.

In practice, we need to know what features are sufficient and appropri-
ate for specific problems but this is usually not easy to know a priori. It is
here when feature selection methods play an important role because these
techniques could reach the following goals through reduction of the feature
matrix improving both the computational cost and performance in the classi-
fier. This means that we do not choose the most potentially relevant, because
the design could be suboptimal or conversely, the subset most useful, because
it may exclude the most important relevant characteristics, as discussed in
Guyon et al. [2006].

This section evaluates each feature (or feature subsets) using a feature
selection algorithm based on forward-backward procedure and mutual infor-
mation (MI) as relevant criteria. We use databases 1 and 3. Several exper-
iments with database 2 showed that it was necessary to use all features to
achieve good performance. Although the N1 problem only needs two features
(LE) to solve the classification problem, this problem was also included in
feature selection analysis to see if there is possibility of finding other subset of
features with same performance (100%). Tables 5.8 to 5.10 show the results
on feature selection using distributions SPWV, RID and RSPWYV. It should
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Table 5.8: F.,.. evaluations achieved by three different MI estimations and
SPWV. Fi.. values average and standard deviations correspond to 1000
bootstrap runs.

Forward-backward selection
Kraskov Parzen Knn

N1 {E, 1 F} LE} [LF.E, 12 WC, 6 FtF}

99.63 4+ 0.0053 100 £5.77 x 104 99.75 + 0.0054
No | (LE.E, 44 WC, 11 FrF} {LFE} {LF.E, 156 WC, 9 [xF}

99.37 +0.0073 87.50 + 0.0339 99.2 £ 0.0082
N3 {3 P} {LF.E} {F.E,1 WC, 5 FrF}

85.35 4+ 0.0363 86.34 + 0.0441 85.59 + 0.0372

Table 5.9: Fi.,. evaluations achieved by three different MI estimations

and RID. Fi.,.. values average and standard deviations correspond to 1000
bootstrap runs.

Table 5.10:

Forward-backward selection
Kraskov Parzen Knn

N1 {E, 1 FrF} {L,E} {F,E, 5 WC, 10 FrF }
99.77 + 0.0013 100+ 0 99.16 + 0.0058

N2 {L,F.E, 1 FrF} {L,F.E} {L,F.E, 2 WC, 5 FrF}
100 =+ 0.0023 83.50 + 0.0552 99.79 + 0.0023

N3 {3 FrF} {L,F.E} {L,F,E, 2 WC, 6 FrF}
85.45+ 0.0116 | 83.34 +£0.0721 99.59 + 0.0356

Fieore evaluations achieved by three different MI estimations

and RSPWV. F,.,.. values average and standard deviations correspond to
1000 bootstrap runs.

Forward-backward selection
Kraskov Parzen Knn

N1 {E, 1 FrF} {L,E} { L,F,E, 12 WC, 6 FrF}
99.77 4+ 0.0403 100 +6.89 x 10~4 99.85 + 0.0494

N2 {L,F,E, 10 WC, 14 FrF} {L,F,E} {L,F,E, 2 WC, 6 FrF}
98.73 4+ 0.0063 89.01 +0.0179 99.12 £+ 0.0053

N3 {3 FrF} {L,F.E} {F,E,1 WC, 5 FrF}
85.29 + 0.0753 86.04 + 0.0775 90.08 + 0.0649

be noted that each method selects different features, but in most cases they
all have been successful considering the F..,.. rate.

The following can be noted from these results:

e For the three distributions the problem N1 is definitely solved with
only two features obtained by tracks extraction method (LFE features).

Parzen

method selected the appropriate features.

e Problem N2 with RID distribution has increased from 99.74% with di-
mension D=20 (see Table 5.6) to 100% with D=4 (see Table 5.9). Sim-
ilarly, problem N3 from 96.02% with D=65 (see Table 5.6) to 99.59%
with D=11 (see Table5.9). The selection method that showed better
performance was the K-NN.

e Comparing Table 5.4 and Table 5.11 for database 1:
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— Patient 1: 91.2% with D=20 to 97.52% with D=5. K-NN method.

— Patient 2: 93.2% with D=3 (LFE) to 91.65% with D=16. Feature
selection method did not improve performance.

— Patient 3: 94.1% with D=3 (LFE) to 91.17% with D=12. Feature
selection method did not improve performance.

— Patient 4: 97.1% with D=65 (all) to 93.13% with D=15. Feature
selection method did not improve performance.

— Patient 5: 93% with D=3 (LFE) to 89.52% with D=4. Feature
selection method did not improve performance.

— Patient 6: 92.3% with D=65 (all) to 93.23% with D=16.

The classification results clearly show the good performance of the LE detec-
tor in N1 problem (100% for all distributions). They also show an increasing
of accuracy with less features in N1 and N2 as well as Patients 1 and 6. results
in patients 2, 3 and 5, with high accuracy with LFE features, do not improve
after the feature selection procedure. In fact, there was a decrease when
one of them was eliminated or when the method added more features. This
validates the importance of choosing suitable features in each classification
problem.

As a conclusion, it is clear that the tracks extraction method together
with the ICA-RLS technique proposed in this Thesis offer a new alternative
for EEG classification with epilepsy. On the other hand, these method have
shown that it can be used with other extraction methods improving the
classifier performance.

5.5 Comparison of classification accuracy

Table 5.12 shows a comparison between our technique and other methods
proposed in the literature. As the merit figure we used the accuracy rate.
The distribution used is the RID. Note that N1 and N2 has reached the
maximum accuracy similarly as other methods but using a lower dimension
of the feature matrix, D=2 and D=4 respectively, and the best approaches
were D=4 for both problems. Something similar happens with N3 that has
increased in accuracy from 99.28% to 99.59% but with a noticeable dimension
reduction (D=11) compared with the best proposal in the literature, which
was D=24.
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Table 5.11: Feature selection using three different MI estimations. AUC
values average and standard deviations correspond to 1000 bootstrap runs.

Forward-backward selection
Kraskov Parzen Knn

Patient 1 {F,E,10 W,1 FrF} {L,F,E,13 FrF'T} { E;2 W2 FrF}

86.84 +0.1073 88.59 4 0.0968 97.52 £+ 0.0991
Patient 2 {F,5 W, 4 FrF} {L,FE, 13 FrF} {4 W}

91.29 4 0.0989 91.65 £ 0.0894 88.27 £0.0114
Patient 3 {F.E,10 W} {L,F E,12 FrF } {4 FrF}

91.17 £ 0.0039 90.54 4 0.0465 89.74 4+ 0.0521

. 1 FrF L,F.E.12 FrF 5 FrF

Patient 4 86.{15 + 0.}658 {93.13 + 0.040} 90.7{7 + 0.3456
Patient 5 {E,14 W,2 FrF} {L,F.E,1 FrF} {3 W,7 FrF}

87.19 4+ 0.0916 89.52 + 0.0765 88.70 4+ 0.0725
Pationt 6 {L,9 W} {LLE,F,;1 W12 FrF} {E,4 FrF}

88.22 4+ 0.0553 93.23 £+ 0.048 89.16 4+ 0.0530

5.6 Summary and conclusions

In this chapter we have shown the classification performance of ICA-RLS
filter and tracks extraction method (LFE features). Also it was illustrated
the validation of some parameters included in the algorithms such as A, A,
TFD, overlapping and EEG epoch. Several experiments have been conducted
using clinical datasets from real patients as well as other datasets. Feature
selection and comparison with other results obtained from other authors are
also presented. Results show that ICA-RLS and tracks extraction method
are suitable techniques to EEG processing and more specifically to epilepsy
detection and EEG segment classification.

Finally, we have to emphasize: RLS-ICA is an efficient method to elim-
inate EOG artifacts produced by eyes movements but has a high computa-
tional cost: O(N*)+ O(7TN?). This cost could be optimized using other [CA
algorithm or reducing the number of reference channels. However, the use of
this algorithm could be restricted just in patients with hard epilepsy detec-
tion because the extra time consuming of this method and its improvement
in classification performance does not justify its use in all patients. More-
over, if we compare the time spent by an expert manually eliminating the
artifacts compared to computational cost of ICA-RLS method, obviously we
will choose the second option for the reasons discussed in Chapter 4.

In our medical environment, the steps that we follow in a classification
problem are: (i) denoising and artifacts removal, (ii) LFE features extrac-
tions, (iii) detection/classification using these features and their combina-
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tions, (iv) if we do not have conclusive results, we add features from wavelets
and fractional Fourier transform, (v) detection/classification using these fea-
tures and their combinations, (vi) we apply dimensionality reduction if nec-
essary.



Table 5.12: Comparison of classification accuracy (in percent) obtained by LFE approach for epileptic seizure detection.

Authors Method Problem Dimension Accuracy

Nigam and Graupe [2004] Non-linear pre-processing filter-Diagnostic neural network N1 2 97.2
Srinivasan et al. [2005] Time & frequency domain features-Recurrent neural network N1 5 99.6
Kannathal et al. [2005b] Entropy measures-Adaptive neuro-fuzzy inference system N1 4 92.2
Kannathal et al. [2005a] Chaotic measures-Surrogate data analysis N1 4 ~90

Polat and Giines [2007] Fast Fourier transform-Decision tree N1 129 98.72
Subasi [2007] Discrete wavelet transform-Mixture of expert model N1 4 95

Chua et al. [2010] High order spectra (HOS)-Gaussian mixture model and Support vector machine N1 6 93.11

Liang et al. [2010] Spectral and Entropy analysis-Linear and Non-linear classifiers N1 16 98.51
Wongsawat [2008] Phase congruency-Linear discriminant analysis N1 1 99
Tzallas et al. [2009b] Time & frequency analysis-Artificial neural network N1 4 100
Guerrero-Mosquera et al. [2010a) LFE-Tracks extractions-Support vector machine N1 2 100

Giiler et al. [2005] Lyapunov exponents-Recurrent neural network N2 4 96.79
Sadati et al. [2006] Discrete wavelets transform-Adaptive neural fuzzy network N2 6 85.9

Liang et al. [2010] Spectral and Entropy analysis-Linear and Non-linear classifiers N2 16 98.67
Wongsawat [2008] Phase congruency-Linear discriminant analysis N2 1 96.5
Tzallas et al. [2009b)] Time & frequency analysis-Artificial neural network N2 4 100
Guerrero-Mosquera et al. [2011] LFE Tracks extractions-Support vector machine and feature selection N2 4 100

Giiler and Ubeyli [2005] Wavelet transform-Adaptive neuro-fuzzy inference system N3 20 98.68

Giiler and Ubeyli [2007] Wavelet transform-Support vector machine N3 24 99.28

Ubeyli and Giiler [2007] Eigenvector method-Modified of mixture of expert model N3 12 98.60
Liang et al. [2010] Spectral and Entropy analysis-Linear and Non-linear classifiers N3 16 85.9
Wongsawat [2008] Phase congruency-Linear discriminant analysis N3 1 91
Tzallas et al. [2009b] Time & frequency analysis-Artificial neural network N3 4 89

Guerrero-Mosquera et al. [2011] LFE Tracks extractions-Support vector machine and feature selection N3 11 99.59
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Chapter 6

Conclusions and future work

In this thesis we have developed two proposals for EEG signal processing in
order to improve the performance in different scenarios such as detection and
classification of epileptic signals. The first approach consists in a combina-
tion of ICA and RLS algorithms which automatically cancels the artifacts
produced by eyes movement without the use of external signals such as elec-
trooculograms (EOG). This method, called ICA-RLS has been compared
with other techniques that are in the state of the art and it has shown to
be a good alternative for artifacts rejection. The second approach is a novel
method in EEG features extraction called tracks extraction (LFE features).
This method is based on the time-frequency distributions (TFDs) and partial
tracking. Our results in pattern extractions related to epileptic seizures have
shown that tracks extraction is appropriate in EEG detection and classifica-
tion tasks, being practical, easily applicable in medical environment and has
acceptable computational cost. Also, the extracted features have important
information that can be used in the diagnosis of epilepsy.

These methods have shown improvements in classification problems in
the EEG databases provided by Hospital of Navarra and in other datasets
proposed in the state of the art. Moreover they could also be considered
for other applications based on EEG signals, as well as detection of other
neurodegenerative diseases.

In preceding chapters we have shown the significant advantages that our
methods have shown in epileptic detection and artifact rejection. In the fol-
lowing we will summarize the main contributions of this thesis, presenting
the advantages and disadvantages of the proposed methods, and conclude
with possible lines of work that this thesis has generated.
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6. Conclusions and future work

6.1

Contributions

ICA-RLS EOG removal. In Chapter 4 we introduced a new method
which exploits the capacity of ICA algorithm in discrimination between
brain waves and noise. Eye movements are reflected in EEG and its
elimination is an important problem. Although there are alternative
solutions, most of them present practical disadvantages, for example:
methods based on ICA need a visual inspection of the source waveforms
to determine if a source is related or not with the eye movement. On
the other hand, an artifact rejection design based on adaptive filtering
typically makes use of the EOG signal as a reference signal which is
not always available in the majority of hospitals. In summary, a vi-
sual inspection requires a knowledge of an expert, and for recording an
EOG signal it is necessary additional hardware. From these points, the
proposed method introduces an important change in the state of the
art of artifact rejection.

The method eliminates the source located at the frontal area in the
brain and that presents the minimum squared error (MSE). The source
with the lowest error and located at the frontal area of the brain is
removed. This makes it not necessary to know the different
EOG waveforms recorded in the EEG caused by eye movements and
implies that it does not requires the use or registration of elec-
trooculograms (EOG) signal.

The results of [CA-RLS method has proved to be efficient both in EEG
strongly contaminated by ocular artifacts and when there is low pres-
ence of artifacts. The main drawback is the computational cost which
was discussed in Section 5.6. This computational cost could be reduced
with further optimization or the use of the algorithm itself could be re-
stricted just in patients with hard epilepsy detection. Testing other
ICA methods proposed in the literature is proposed as future work.

Tracks extraction (LFE). A new feature extraction method has been
presented for EEG signals. Following on the time-frequency plane a
principal track, the novel method extracts three features from this
track: energy, frequency and its duration. Chapter 4 showed the ef-
fectiveness of the method in epilepsy detection. Moreover, Chapter 5
showed the good performance in classification for EEG epileptic seg-
ments. This chapter also explained the possibility of combining LFE
features with other features proposed in the state of art such as wavelet
transforms and Fractional Fourier, with the goal of improving the classi-
fication performance. With the proposed method we have the following
advantages:
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— Adaptability of the method to any TFD. Many applications
use specific TFD to solve detection problems. For example, for
knee injury diagnostic the Pseudo Wigner-Ville (PWV) distribu-
tion has been used, and underwater acoustic signal applications
use the WV distribution. Tracks extraction is based on peak track-
ing on the time-frequency plane without care of the distribution
being used. For that reason, the method may extend to other ap-
plications because it has the capability of extracting new features
and could improve the task performance.

— Problem solving classification using fewer features. Tracks
extraction method solves different problems in EEG detection and
classification based on only three features extracted from the main
track. Chapter 5 showed results where LFE features have solved
the classification problem (N1 problem and patients 2, 3 and 5)
with the best performance. Moreover, more complex problems
such as N2 and N3, after selecting procedure the LFE features
were included in the relevant subset which solve the classification
problem in an optimum way.

— Not very high computational cost for EEG classification.
Given that the method extracts three features, resulting in an
array of features with a dimension D = 3, all the computational
cost into a classification scheme is low. Other methods such as
Fourier transform (FT), wavelets or fractional FT (FrFT) usually
use more features (> 10) for such problems.

— Possibility of combining LFE features with other features
to improve the classification performance in EEG signals.
EEG signals are very dynamic, especially in cases when there are
energy bursts of short duration or rapid frequency changes. Then,
there are certain problems where LFE method cannot detect these
events efficiently, being necessary to add more information from
other methods that could be more appropriate for this type of
scenario. Wavelets and FrFT could improve the tracks extraction
performance because both methods carry out a multilevel analysis.
In Chapter 5 it was observed that tracks extraction method pro-
vides relevant information for EEG classification and it improves
the classifier performance when it is combined with other features.

— Stability. Chapter 5 showed that parameters such as A, EEG
epochs, overlapping and windowing, have a good performance in
a wide range of operative values. This implies that tracks extrac-
tion method presents a good stability against any change of these
parameters.
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e Dimensionality reduction using mutual information (MI) and
forward-backward procedure (FB). Chapter 3 discussed the appli-
cability of these methods to EEG signal processing. This PhD thesis
has demonstrated the effectiveness of this method in EEG dimensional
reduction for EEG classification. Two observations may be derived
from these experiments:

— LFE features really provide important information in EEG
classification problems. Following the features selection meth-
ods described in Chapter 3, the results in this thesis have shown
that tracks extractions provide three important features that can
solve classification problems. We have seen in Chapter 5 some
classification problems solved just using one, two or three fea-
tures depending on problem complexity. So there is no colinearity
among LFE features which means we are avoiding the overfitting
in classification.

— Feature selection method based on MI and FB procedure
are good alternatives for EEG dimensional reduction. As
seen in Chapter 5, many classification problems proposed in this
thesis have shown considerable dimensional reduction and also an
improvement in the classifier performance.

In summary, this thesis provides a set of new methods to EEG signal the-
ory that can be used in EEG detection or classification. These methods
are flexible, simple, and could be successfully extended favorably to other
applications.

6.2 Future work

Beside the main contributions that ICA-RLS and tracks extraction methods
offer to EEG signal processing, we present several extensions or possible
changes that might to improve their shortcomings such as computational
cost, or extend their applications range. For example:

e Extension of ICA-RLS method to other artifacts. Apart from
artifacts produced by eyes movement, there are other artifacts which
contaminate the EEG signal such as muscle movements or electrodes
displacement. This extension implies to work in different frequency
bands and in turn selecting the input signals which are to be used in
the adaptive scheme.

e Full automation of ICA-RLS method. As discussed in Chapter
4, the proposed scheme makes use of topographic maps of the brain
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(visually) and MSE value to select the corresponding source to rejected.
EOG artifacts have an important energy contribution on frontal zone
of the brain. This energy is frequently registered at electrodes closely
to eyes. In EEG data, ICA identifies scalp maps nearly fitting the
projection of a single equivalent current dipole, and is therefore quite
compatible with the projection to the scalp electrodes of synchronous
local field activity. To do that we need: (i) build an EEG dataset with
channel locations, (ii) fit dipole models to ICA components, (iii) obtain
for each component its equivalent dipole and its coordinates and finally,
(iv) calculate distances to determine which source is close to the eyes.
An initial work in fitting dipole models to ICA sources is described in
Delorme and Makeig [2004].

e Stopping criterion in Forward-Backward (FB) algorithm. Both
forward and backward procedure must be given a stopping criterion. In
backward search is quite easily achieved. The purpose being to select
the most informative set of variables. On the other hand, forward
procedure is more difficult to stop. Indeed, it may be considered as a
ranking algorithm (the variables are ordered according to their mutual
information with the output) rather than a selection one, as described in
Rossi et al. [2006]. Moreover, combining the Mutual Information (MI)
criterion with a forward feature selection strategy offers a good trade-off
between optimality of the selected feature subset and computation time.
However, it requires to set the parameter(s) of the mutual information
estimator and to determine when to halt the forward procedure. To
solve these problems, Francoise et al. [2007] proposed to use resampling
methods, a K-fold cross-validation and the permutation test. There
are more alternatives in the literature and all standard search methods
such as simulated annealing and genetic algorithms that could be used
to find relevant subsets. Additionally, there exist non-greedy methods
that maximize the MI between output features and the class labels (e.g.
Hild et al. [2006]) which directly will change the stopping criterion in
the algorithm. Future work implies a deeply analysis of these methods
to compare with the FB algorithm based on MI in EEG signals.

e Extension of tracks extraction to other scenarios such as Brain-
Computer-Interface (BCI). Detecting event related potentials (ERPs)
is a fundamental task in BCI applications. Usually, the ERP waveform
is quantitatively characterized by amplitude, latency and scalp distri-
bution. TFDs offer an new alternative of signal analysis and tracks
extractions gives us relevant information by extracting LFE features
from time-frequency plane. For this reason, we think tracks extraction
could plays an interesting role in detecting ERPs.

e Classification of different types of epilepsy. There are many types
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of epilepsy. A simple way of classifying them is based on the origin of
the crisis in the first fraction of a second. If the crisis begins in a focal
region of the brain it is called partial, if it starts all over the brain at the
same time it is called generalized. Within each group there are different
types of epilepsy with different characteristics between them. An anal-
ysis of each epilepsy may be based on the tracks extraction method.
This method would yield relevant information for each epilepsy such
as frequency bands, duration of crisis and active brain areas in the cri-
sis. This information could be used for epilepsy classification and then
support for possible treatment, diagnosis or surgery.

e Monitoring of treatments. Principal track analysis on the time-
frequency plane for patients with epilepsy and under epileptic medica-
ments could be considered as a new tool for medical supporting. The
principal track can be used to monitor the effect of drugs on patients,
assuming that this track tends to disappear with the treatment.

e Anticipation of epileptic seizures. People with epilepsy have prob-
lems in their daily lives that affect their family, work and personal
relations, resulting in low self-esteem. This problem causes insecurity
because they do not know when a crisis may occur. A warning sys-
tem (intracranial chip, system of self-medication) may be very helpful
because this system could significantly improve their quality of life.

An additional potential field of research is the EEG Integration with
other techniques such as fMRI. Chapter 2 described the advantages and
disadvantages of using EEG signals. The principal drawback of the EEG is
its low spatial resolution because it depends on the number of electrodes.
MEG has a better temporal resolution than EEG but suffers the same disad-
vantage. fMRI solves this problem and its spatial resolution is on the order
of milimeters. The integration of these techniques is of vital importance in
neuroscience studies because this could improve the detection of other neu-
rodegenerative diseases like Alzheimer, Parkinson, depression or dementia.
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Filtering concepts

The definitions showed in this Appendix can be found in most adaptive filter
textbooks, e.g. Haykin [1996].

A.1 Stochastic process

Random signals can only be characterized by probabilistic models or aver-
age performance terms. The mathematic tools that allows us to characterize
these signals are stochastic processes. Examples of a stochastic processes
include biomedical signals, radar signals and noise.

A.1.1 Statistics of stochastic process

A stochastic process is a noncountable infinity of random variables, one for
each t. For a specific ¢, x(t) is a random variable with distribution

F(z,t) = P{x(t) < z}

This function depends on ¢, and it equals the probability of the event {x(t) <
x} consisting of all outcomes y such that, at the specific time ¢, the samples
x(t,y) of the given process do not exceed the number z. The function F'(x,t)
will be called the probability distribution of the process x(t). Its derivate with
respect to x:
OF (x,t)

is the probability density of x(¢). For the determination of the statistical
properties of a stochastic process could be used only certain averages. These
quantities are defined as follows:
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e Mean: p,(t) = E{x(t)}, where E{.} is the expected value of the ran-
dom variable x(t)

e Variance:o,(t) = E{(x(t) — p.(t))*}
e Autocorrelation: R,(t1,ty) = E{x(t;)x(ts)}

e Autocovariance: Cy(ty,ty) = Ry(t1,t2) — pia(t1) pa(t2)

The autocovariance and autocorrelation can be generalized to the case of two
stochastic processes, x(t), y(t), and measure their relationship.

e Cross-correlation: Ry, (t1,t2) = E{x(t1)y*(t2)}, where y* denotes the
complex conjugate of y.

e Cross-covariance: Oy, (t1,t2) = Ry (t1,t2) — pa (1)t (t2)

A.1.2 Stationary process

A stochastic process x(t) is stationary in the strict sense if its statistical
properties are invariant to a shift of the origin. This means that the process
x(t) and x(t + ¢) have the same statistics for any integer c.

The autocorrelation of a stationary stochastic process has the following prop-
erties:

e symmetry pair: R,(t) = R,(—t)
o R:(0) = E{z(t)*}
 Vk, R;(k) < Ry(0)

A.2 The filtering problem

Filters are systems that can be described by a linear equation in differences
that relate filter input signal z(¢) and output signal y(¢):

N

L
agylt — k] = bpxft — (]
k=0 =0

In the filtering problem we can identify the following elements:

e Desired signal d(n). We want to design a filter that produces an
estimate d(n) of the desired signal d(n) using a linear combination
of the data xz(n) such that the mean-square error (MSE) function

E{(d(n) — d(n))*}, is minimized.
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e Input signal x(n) which is related to d(n).
e Impulse response of the filter w(n).

e Measurement error e(n) = d(n) — (x(n) *x w(n)).

The error signal e(n) is then used to form a performance (or objective) func-
tion that is required by the adaptation algorithm in order to determine the
appropriate updating of the filter coefficients. The minimization of the ob-
jective function implies that the adaptive-filter output signal is matching the
desired signal in some sense.

The complete specification of an adaptive system consists of three items:

e Application: The type of application is defined by the choice of the
signals acquired from the environment to be the input and desired-
output signals. The number of different applications in which adaptive
techniques are being successfully used has increased enormously during
the last two decades. For example: echo cancellation, equalization of
dispersive channels, system identification, signal enhancement, adap-
tive beamforming, noise cancelling, and control.

e Adaptive-Filter Structure: The adaptive filter can be implemented
in a number of different structures or realizations. The choice of the
structure can influence the computational complexity (amount of arith-
metic operations per iteration) of the process and also the necessary
number of iterations to achieve a desired performance level. Basically,
there are two major classes of adaptive digital filter realizations, distin-
guished by the form of the impulse response, namely the finite-duration
impulse response (FIR) filter and the infinite-duration impulse response
(IIR) filters.

e Algorithm: The algorithm is the procedure used to adjust the adap-
tive filter coefficients in order to minimize a prescribed criterion. The
algorithm is determined by defining the search method (or minimiza-
tion algorithm), the objective function, and the error signal nature.
The choice of the algorithm determines several crucial aspects of the
overall adaptive process, such as existence of sub-optimal solutions,
biased optimal solution, and computational complexity.

A.3 The matrix inversion lemma

The matrix inverse lemma is an efficient method for computing the least
square solution.
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Let A and B be two positive definite M-by-M matrices related by
A=B'+cCcD'C? (A1)

where D is a positive definite N-by-N matrix and C is an M-by-N matrix.
Then,
A'=B-BC(D+C"BC)'C"B (A.2)

The proof is obtained by multiplying Eq.A.1 by Eq.A.2, i.e., AA™" =1. The
matrix inversion lemma is also known as Woodbury’s identity and states that
for a matrix A defined as Eq.A.1, its inverse can be calculated by Eq.A.2.
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Statistical pattern concepts

B.1 A brief introduction to Machine Learn-

ing

The Machine Learning field evolved from the broad field of Artificial Intelli-
gence, which aims to mimic intelligent abilities of humans by machines®. In
the field of Machine Learning one considers the important question of how
to make machines able to “learn”. Learning in this context is understood
as inductive inference, where one observes examples that represent incom-
plete information about some “statistical phenomenon”. The term learning
machines encompasses many kinds of computational intelligence systems ca-
pable of gathering knowledge by means of data analysis. Learning from data
may be treated as searching for the most adequate model (hypothesis) de-
scribing a given data. A learning machine is an algorithm which determines
a learning model, which can be seen as a function:

Fix =Y (B.1)

The function transforms objects from the data domain X to the set ) of
possible target values. The data domain and the set of target values are
determined by the definition of the problem for which the f is constructed.

The learning model f usually depends on some adaptive parameters some-
times also called free parameters. In this context, learning can be seen as a
process in which a learning algorithm searches for parameters of the model
f, which solve a given task.

The learning algorithm learns from a sequence D of data, defined in the

!This section is based on Riitsch [2004], Hsu et al. [2007] and Guyon et al. [2006]
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space X orin X x Y:

D = {x1,X2,...,Xp} =X (B.2)
D = {(x,51), X2, 2) -, K, ym) } = (X, ) (B.3)

Usually X (called as “pattern”) has a form of a sequence of multidimensional
vectors. A pattern is described by its features x;. These are the characteris-
tics of the examples for a given problem. For instance, in a face recognition
task some features could be the color of the eyes or the distance between
the eyes. Thus, the input to a pattern recognition task can be viewed as a
two-dimensional matrix, whose axes are the examples and the features.

In unsupervised learning (Eq.B.2) one typically tries to uncover hidden
regularities (e.g. clusters) or to detect anomalies in the data (for instance
some unusual machine function or a network intrusion). Unsupervised learn-
ing is used for example in clustering, self-organization, auto-association and
some visualization algorithms. In supervised learning (Eq.B.3), there is a
label associated with each example. This means the learning algorithms use
pairs (X;, y;) where y; is the desired output value for xi. It is supposed to be
the answer to a question about the example. If the label is discrete, then the
task is called classification problem- otherwise, for real valued labels we speak
of a regression problem. Based on these examples (including the labels), one
is particularly interested to predict the answer for other cases before they are
explicitly observed. Hence, learning is not only a question of remembering
but also of generalization to unseen cases.

Pattern classification tasks are often divided into several sub-tasks:

e Data collection and representation.
e Feature selection and/or dimensionality reduction.

e (Classification

B.2 Classification algorithms

Although Machine Learning is a relatively young field of research, there exist
more learning algorithms than we can briefly mention in this section.

B.2.1 Traditional techniques

k-Nearest Neighbor (k-NN) Classification. Here the k points of the
training data closest to the test point are found, and a label is given to the
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test point by a majority vote between the k£ points. This method is highly in-
tuitive and attains- given its simplicity- remarkably low classification errors,
but it is computationally expensive and requires a large memory to store the
training data.

Linear Discriminant Analysis. This method computes a hyperplane in
the input space that minimizes the within-class variance and maximizes the
between class distance. It can be efficiently computed in the linear case even
with large data sets. However, often a linear separation is not sufficient.
Nonlinear extensions by using kernels exist, however, making it difficult to
apply it to problems with large training sets.

Decision Trees. This is another intuitive class of classification algorithms.
These algorithms solve the classification problem by repeatedly partitioning
the input space, so as to build a tree whose nodes are as pure as possible
(that is, they contain points of a single class). Classification of a new test
point is achieved by moving from top to bottom along the branches of the
tree, starting from the root node, until a terminal node is reached. Decision
trees are simple yet effective classification schemes for small datasets.

Neural Networks (NN). NN are perhaps one of the most commonly used
approaches to classification. Neural networks are a computational model in-
spired by the connectivity of neurons in animate nervous systems. A further
boost to their popularity came with the proof that they can approximate
any function mapping via the Universal Approximation Theorem, in Haykin

[1999).

B.2.2 Large margin algorithms

Machine learning rests upon the theoretical foundation of Statistical Learn-
ing Theory, e.g. Vapnik [2000], which provides conditions and guarantees
for good generalization of learning algorithms. Within the last decade, large
margin classification techniques have emerged as a practical result of the
theory of generalization. Roughly speaking, the margin is the distance of
the example to the separation boundary and a large margin classifier gen-
erates decision boundaries with large margins to almost all training examples.

Support Vector Machines (SVMs). This method works by mapping the
training data into a feature space by the aid of a so-called “kernel function”
and then separating the data using a large margin hyperplane. Intuitively,
the kernel computes a similarity between two given examples. Most com-
monly used kernel functions are Radial Basis Function (RBF) kernels. The
SVM finds a large margin separation between the training examples and pre-
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viously unseen examples will often be close to the training examples. Hence,
the large margin then ensures that these examples are correctly classified as
well, i.e., the decision rule generalizes. For so-called positive definite ker-
nels, the optimization problem can be solved efficiently and SVMs have an
interpretation as a hyperplane separation in a high dimensional feature space.

Boosting. The basic idea of boosting and ensemble learning algorithms
in general is to iteratively combine relatively simple base hypotheses- some-
times called rules of thumb- for the final prediction. One uses a so-called base
learner that generates the base hypotheses. In boosting the base hypotheses
are linearly combined. In the case of two-class classification, the final predic-
tion is the weighted majority of the votes. The combination of these simple
rules can boost the performance drastically. It has been shown that Boosting
has strong ties to support vector machines and large margin classification.
Boosting techniques have been used on very high dimensional data sets and
can quite easily deal with than hundred thousands of examples.

B.3 Model selection

To determine the generalization ability of a model one would need to measure
the average risk for the set of all possible data objects. When doing this we
should be aware of the danger of testing models on a single test set (for
example resulting from a rigid partition of the set of all available data to the
training and test parts). Model selection based on testing trained models on
a single test set does not get rid of the danger of overfitting.

A more accurate estimation of the empirical risk can be obtained with
K-fold cross-validation (CV). In this technique we split the set of available
data into n parts and perform n training and test processes (each time the
test set is one of the parts and the training set consists of the rest of the
data). The average test risk can be a good estimate of real generalization
ability of the tested algorithm, especially when the whole cross-validation
is performed several times (each time with different data split) and n is
appropriately chosen. To get a good estimate of generalization ability of a
learning machine, it is important to analyze not only the average test error,
but also its variance, which can be seen as a measure of stability.

B.3.1 Model selection for RBF kernels

The RBF kernel nonlinearly maps samples into a higher dimensional space,
so it, unlike the linear kernel, can handle the case when the relation between
class labels and attributes is nonlinear. Although the linear kernel is a special
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case of RBF kernel, there are some situations where the RBF kernel is not
suitable. In particular, when the number of features is very large For this
case, one may just use the linear kernel.

There are two parameters while using RBF kernels: C' and o. It is not
known beforehand which C' and o are the best for one problem; consequently
some kind of model selection (parameter search) must be done. The goal is to
identify good (C, o) so that the classifier can accurately predict unknown data
(i.e., testing data). Note that it may not be useful to achieve high training
accuracy (i.e., classifiers accurately predict training data whose class labels
are indeed known). Therefore, a common way is to separate training data to
two parts of which one is considered unknown in training the classifier. Then
the prediction accuracy on this set can more precisely reflect the performance
on classifying unknown data.

In K-fold cross-validation, each instance of the whole training set is pre-
dicted once so the cross-validation accuracy is the percentage of data which
are correctly classified. Generally it is recommend a “grid-search” on C and o,
that means pairs of (C, o) are tried and the one with the best cross-validation
accuracy is picked. Researchers have founded that trying exponentially grow-

ing sequences of C' and o is a practical method to identify good parameters
(for example, C = 272,273 ... 215 g =2715 2713 = 93)

B.4 Bootstrap resampling

As described Zoubir and Iskander [2004], the bootstrap is a resampling method
for statistical inference. It is commonly used to estimate confidence inter-
vals, but it can also be used to estimate bias and variance of an estimator
or calibrate hypothesis tests. The principle of resampling could be summa-
rized as follows: let X = {X7, Xs,..., X,,} be a sample, i.e., a collection of
n numbers drawn at random from a completely unspecified distribution F.
When we say “at random” we mean that X;’s are independent and identically
distributed (iid) random variables, each having distribution F. Let 6 denote
an unknow characteristic of F'. It could be the mean or variance of F' or even
the spectral density function. The problem we wish to solve is to find the
distribution of é, an estimator of #, derived from the sample X. This is of
great practical importance as we need to infer 6 based on 6.

One way to obtain the distribution of 6 is to repeat the experiment a
sufficient number of times and approximate the distribution of 0 by the so
obtained empirical distribution. This is equivalent to Monte Carlo simula-
tions. In many practical situations, however, this is inapplicable for cost
reasons or because the experimental conditions are not reproducible.

The bootstrap suggests that we resample from a distribution chosen to be
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close to F'in some sense. This could be the sample (or empirical) distribution
F , which is that probability measure that assigns to a set A in the sample
space of X a measure equal to the proportion of sample values that lie in A.
It is known that under some mild assumptions F approaches I as n — oo.
The principle of the non-parametric bootstrap is based on next steps:

- Conduct the experiment to obtain the random sample
X - {Xl,XQ,. . ,Xn}
and calculate the estimate 6 from the sample X.

- Construct the empirical distribution F', whichs puts equal mass 1/n at
each observation

Xlle,XQZxQ,...7Xn:I'n

e From F, draw a sample

X*={X, X5, X5

n

called the bootstrap resample.

- Approximate the distribution of 0 by the distribution of 6* derived from
the bootstrap resample X'*

With the non-parametric bootstrap, we simply use the random sample X =
{X1,Xs,..., X, } and generate a new sample by sampling with replacement
from X'. Herein, we create a number B of resamples X7, ..., X}. A resample
X ={X7,X;,..., X} is an unordered collection of n sample points drawn
randomly from X with replacement, so that each X has probability n~! of
being equal to any of the X;’s. In other terms,

Prob [ X} = X;|X]=n"", 1<i,j<n
That is, the X are independent and identically distributed, conditional on

the random sample X, with this distribution. This means that X* is likely
to contains repeats.

B.4.1 Confidence intervals by percentile bootstrap

The bootstrap distribution F' is used to estimate bias, estimate a standard
error (SE) or construct a confidence interval for the statistic of interest. The



B Statistical pattern concepts 137

bootstrap estimates of bias, By, and SE, sb, are the empirical estimates cal-
culated from m bootstrap values:

m—1

The percentile confidence interval method uses the /2 and —«/2 quantiles
of F' as a 1 — « level confidence interval for the parameter. A 95% confidence
interval for the mean could be estimated using 1000 bootstrap samples. Each
bootstrap sample is a simple random sample selected with replacement from
the original observations. Because a bootstrap sample is drawn with re-
placement, some of the original observations are repeated more than once in
the bootstrap sample. The statistic is estimated for each bootstrap sample.
Bootstrap confidence intervals can be computed from the set of bootstrap
values in a variety of ways. For example, the percentile bootstrap confi-
dence, where the endpoints of the 95% confidence interval are given by the
25th and 975th sorted bootstrap values. Confidence interval coverage is the
probability that the confidence interval includes the true parameter, under
repeated sampling from the same underlying population. When the cover-
age is the same as the stated size of the confidence interval (e.g. coverage
= 95% for a 95% confidence interval), the intervals are accurate. Empirical
and theoretical studies of coverage have shown that the percentile interval is
accurate in many situations, as described Zoubir and Iskander [2004].

B.5 Receiver Operating Characteristics (ROC)

A receiver operating characteristics (ROC) graph is a technique for visual-
izing, organizing and selecting classifiers based on their performance?. ROC
graphs have long been used in signal detection theory, which in recent years
has seen an increasing use for diagnostic, machine learning, and information-
retrieval systems. ROC graphs plot false-positive (FP) rates on the z-axis
and true-positive (TP) rates on the y-axis. Fig.B.1 shows an ROC graph
with five classifiers labeled A through E. The points of the curve are obtained
by sweeping the classification threshold from the most positive classification
value to the most negative. The AUC is defined as the area under the ROC
curve.

2This section is based on Fawcett [2006]
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Figure B.1: A basic ROC graph showing five classifiers

Several points in ROC space are important to note. The lower left point
(0,0) represents the strategy of never issuing a positive classification; such
a classifier commits no false positive errors but also gains no true positives.
For a fully random classification, the ROC curve is a straight line connecting
the origin to (1,1). Any improvement over random classification results in
an ROC curve at least partially above this straight line. The point (0,1)
represents perfect classification. D’s performance is perfect as shown in the
figure.

Informally, one point in ROC space is better than another if it is to the
northwest (TP rate is higher, FP rate is lower, or both) of the first. Classifiers
appearing on the left-hand side of an ROC graph, near the z-axis, may be
thought of as “conservative”. they make positive classifications only with
strong evidence so they make few false positive errors, but they often have
low true positive rates as well. Classifiers on the upper right-hand side of an
ROC graph may be thought of as “liberal”: they make positive classifications
with weak evidence so they classify nearly all positives correctly, but they
often have high false positive rates. In Fig.B.1, A is more conservative than
B. Many real world domains are dominated by large numbers of negative
instances, so performance in the far left-hand side of the ROC graph becomes
more interesting.

In order to get away from this diagonal into the upper triangular region,
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the classifier must exploit some information in the data. In Fig.B.1, C’s
performance is virtually random. At (0.7, 0.7), C may be said to be guessing
the positive class 70% of the time.

Any classifier that appears in the lower right triangle performs worse
than random guessing. This triangle is therefore usually empty in ROC
graphs. If we negate a classifier-that is, reverse its classification decisions on
every instance-its true positive classifications become false negative mistakes,
and its false positives become true negatives. Therefore, any classifier that
produces a point in the lower right triangle can be negated to produce a
point in the upper left triangle. In Fig.B.1, E performs much worse than
random, and is in fact the negation of B. Any classifier on the diagonal may
be said to have no information about the class. A classifier below the diagonal
may be said to have useful information, but it is applying the information
incorrectly.
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Appendix C

Time-frequency Distributions
(TFDs)

C.1 EEG analysis using Time-frequency Dis-
tributions (TFDs)

As described in Feichtinger and Strohmer [1998], the main argument of TFDs
is that by combining the two different (but actually equivalent) lines of time
and frequency, at the point where they meet, we can create a powerful tool
for the analysis and representation of complex phenomena.

The TFDs are potentially very useful for detecting and analyzing non-stationary
epileptic EEGs. Although visual analysis of raw EEG traces is still the major
clinical tool and the point of reference for other methods, we can relate visual
analysis to mathematics with a time-frequency description.

As there are several TFDs, it is convenient to know the different characteris-
tics that each one presents, and their relationships between each other based
on results applied to EEG. A description and review of many TFDs in the
current literature are detailed below!.

C.1.1 From Fourier to quadratic TFDs

The classical Fourier Transform (FT) analysis is able to achieve infinite fre-
quency resolution, but it does not provide temporal localization information.
Proper description of the EEG often requires simultaneous localization in
both time and frequency domains.

!This section is based on Guerrero et al. [2005]
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The first solution consisted in a time-frequency representation of the signal:

1 [ [ Cior
X(tw) = E/_w /_oo$(7)h(7—t)e dtdr (C.1)

X(t,w) is the Short-Time Fourier Transform (STFT) of the signal z(t). h(7)
is called the windowing function. The squared magnitude of the STFT is the
Spectrogram.

Other method is the Gabor representation that does not assume that the
signal is know at arbitrary time and frequency of points, but at a lattice
points: t = nT, w = kF; where n,k € Z; T is the sampling interval in the
time domain; and F' is the sampling interval in the frequency domain. If so,
a signal z(t) can be expressed as:

w(t)= > Y G(n k)h(t — nT)e>™ 7 (C.2)

n=—00 N=—00

where G(n, k) are the Gabor Coefficients, and h(t — nT)e/?™* T are the syn-
thesis functions.

In 1932, Wigner derived a representation of the phase space in quantum me-
chanics and was the first example of joint time-frequency distributions that
was different from the spectrogram. In 1948, Ville, searching for an “instan-
taneous spectrum” and influenced by the work of Gabor, introduced the same
transform in signal analysis, introduced in section 3.4.2. The WV distribu-
tion is still in use in signal analysis, as described in Papandreu-Suppappola
[2003], and it is utilized in a wide range of applications, including biomedical
signals such as speech recognition, EEGs, heart sounds and muscle sounds,
electrocorticograms, electrogastrogram and temporomandibular joint sounds.
In 1966 Cohen provided an overall class of TFDs based on the Wigner Dis-
tribution (see Eq.3.29) and emphasized its importance in signal processing.
This grouping led to the introduction, by other researchers, of ®(6, 1) called
as “kernel function”, and also provided an important model to obtain many
different types of time-frequency distributions.

A large number of TFDs have been proposed, each differing only in the choice
of the kernel function ®. The lack of a single distribution that is “best” for
all applications and the trade-off between time and frequency resolutions has
resulted in a proliferation of TFDs (see Table C.1).

Since these distributions are quadratic TFDs (QTFEFD), i.e. they are based
on the properties of covariance by shifts in time or frequency, they introduce
cross terms in the time-frequency plane?.

2Matlab toolbox and tutorial are available in http://tftb.nongnu.org/


http://tftb.nongnu.org/

C Time-frequency Distributions (TFDs) 143

Table C.1: Some distributions and their kernels

Name kernel: ®(0,7) Distribution: P(t,w) (Notation: [* = [)
General class (0, 71) i f fA(G,T)@(@, T)e 10t =IvT 49 dr where A(6,T) is
the ambiguity function defined by Eq.3.30
Wigner 1 = [ eTiTox(t + F)x*(t — F)dr
XA _02,2 1 f 1 (7U(u—t)2/7'27j'rw7j9u)
Choi-Williams e /o PN 7\/WA(97 T)e dr
Margenau-Hill COS%@T Re \/%m(t)X*(w)e_jt“’, X*(w) is the FT of z(t)
Kirkwood-Rihaczeck elf7/2 \/%x(t)X* (w)e™itw
inl t+|7]/2
_ Sm267 f A(0,7) —jTw—jbu
Bon-Jordan Tor —|7|/2 EI dr
" 2
Page elfI7l % \/% J:OO z(t)e Wt dt/
. . 2
Spectrogram J h*(u— %T)eﬂeu ’\/% f e YT g(T)h(r — t)dr
h(u+ %T)du
- | [t o
simatvT - w— u
Zhao-Atlas-Marks (ZAM) g(m)|T| =05 3 Ji—|rla g(T)A(0, T)e 7w

C.1.2 The affine class

Most of linear or quadratic TDF's can be defined by the principle of covari-
ance, which is used to obtain a time scale that favors the signal average
analysis of the properties of translation and dilation in time. The next group
of transformations are known as affinity groups, where the action induced on
a signal x (t) is given by

1 t—0b
I(t) — xa’,b’(t) = —l’(—/) (C3)
la'| ~ a
and its Fourier transform is
X(w) = Xy (W) = /|a/|e™Y X (d'w) (C.4)

With the transformations above, it can be shown that when a bilinear distri-
bution is scaled in time €2, (¢, a), then it is invariant to these transformations,
ie. )

t—=0 a

a

qu/yb/ (t7 CL) = Qac(
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An affine transformation can be characterized using a bi-frequency kernel

v

Qu(t, a; 1) = ﬁ//m b ) X (L2 x (YD ity (C6)

with
+oo
Y(v,w) = / (¢, w)e 7 dt (C.7)

[e.e]
Using different values to this kernel, we can obtain Bertrand distribution,
Scalogram, D-Flandrin distribution, etc. These classes may be appropriate
for several applications, but a good interpretation of the time-frequency and
time-scale is necessary.

C.1.3 The reassignment method

In 1995, Auger and Aldrin calculated parameters on the spectral compo-
nents by tracking peaks on the time-frequency plane. As described Flandrin
[1999], the method consisted on extracting a single value to represent a whole
distribution and assigning this value to the geometric center of the domain
over which the distribution is considered. Under this situation, the centroids
calculated at each point TF (¢, f) are displaced to another point (Z, f ) and
can be interpreted as the local instantaneous frequency (IF) and group delay
(GD) of the analyzed signal. Thus, the average energy value of the signal
around each point is not assigned to its geometric center, but to its center
of gravity, which is much more representative than the local distribution of
signal energy.

C.1.4 The Reduced Interference Distribution (RID)

To eliminate the effects of the cross terms, Choi-Williams introduced the TFD
distribution of Cohen Class obtained with a exponential kernel K(0,7) =
e=?7*/7 where (o > 0) is the scaling factor and the cross terms are affected
by this parameter.

The problem with this distribution is that it may not have time and frequency
supports. To overcome this difficulty, a method was proposed that retains
high time and frequency resolution and preserves most of the desirable kernel
requirements including the time-frequency supports. This method, called the
Reduced Interference Distribution (RID), is a cross-shaped low-pass filter,
which satisfies |K (0, 7)| << 1.

There are several window functions that estimates the RID.



C Time-frequency Distributions (TFDs) 145

C.1.5 Optimal Kernel Design (OKD)

It is important to design a TF'D that provides good performance for a variety
of signals. Baraniuk and Jones [1993], proposed a radially Gaussian kernel
design to produce a TFD that adapts to each signal and presents good per-
formance for a large class of signals.

The optimal kernel K,,:(m,n) which is the discretized version of K, (0, 7),
is real, nonnegative and radially nonincreasing.

C.1.6 Other alternatives in time-Frequency analysis

Other time-frequency representation of a time series is the S-transform de-
scribed in Stockwell [1999]. This transformation combines elements of wavelet
and the STFT, from what the S-transform is similar to the STFT, but with
a Gaussian window whose width scales inversely, and whose height scales
linearly, with the frequency.

The S-transform has an advantage in that it provides multiresolution anal-
ysis while retaining the absolute phase of each frequency. This has led to
its application for detection and interpretation of events in time series in a
variety of disciplines such as seismic analysis, ECG artifact elimination and
medical image processing, as described by Schimmel and Gallard [2005].
Besides wavelets, other approaches include the ambiguity function and the
Friedman’s instantaneous frequency density (FIFD), that can be derived from
the reassigned distribution, as described in Cohen [1995, 1989).

Below we present an experimental results of the new techniques developed in
the last decades for time-frequency analysis in the epileptic EEG. The main
goal of including these experiments is shows different characteristics in 33
TFDs in events like detection and epileptic seizures.

C.1.7 Experiments

The dynamic nature of epileptic phenomena causes EEG signals to exhibit
stochastic and non-stationary behavior and the TFDs are potentially very
useful for detecting and analyzing non-stationary epileptic EEGs. We will
show next the ability of TFDs to detect spikes in EEG signals from epileptic
patients.

Data collection

The data setup consists in 6 EEG epileptic records (adult patients) with
focal epileptiform activity obtained while restful wakefulness stage. EEG
records of 3 min and had previously analyzed by experienced neurologists.
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23 channels of EEG have been recorded in each session using the 10- 20
International System of Electrode Placement. Raw EEG data were digitized
at a sample of 200 Hz using “DAD-32" equipment (LA MONT MEDICAL)
and were analyzed using 5 seconds a long segments.
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Figure C.1: Beginning of a seizure. Bands from A to E correspond to
spectrograms with Hamming windows length 17, 101, 171, 251 samples re-
spectively. F: ZAM distributions with Hamming 2-D filter (101,251)

Results

The following figures contain EEG segments obtained with different TFDs.
The frequency band is 0-10 Hz. There are distributions that use 2-D filters
(W, W) with Hamming and Kaiser windows. Note from Fig.C.1 the disap-
pearance of an event as the beginning of the seizure. In Fig.C.1 (band B) a
burst frequency (1.65 sec) can be seen that disappears in the band F. Bands
A-E show the windowing effect in the spectrogram when using different win-
dows. The Zhao-Atlas-Marks (ZAM) distribution (band F) for these values
displays low temporal resolution.

Fig.C.2 shows the comparison between different TFDs based on the Wigner
Ville (WV) distributions. Note that bands A-D keep introducing cross-terms,
and the Reassigned method (band E) shows a nonlinear characteristic with
a continuous sinusoidal like trace. When the nature of the analyzed signal
changes, it is possible to find strong interferences.

The distribution in Fig.C.3 introduce 2-D filtering. It can be observe that
Choi-Williams (bands A and B), the parameter o is an important factor
for improving resolution but has presence of artifacts. Similar results have
presented Bon-Jordan and ZAM distributions. The Reassignment method
provides time-frequency pictures closer to the nature of epileptic signals.
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Figure C.2: Some TFDs of EEG during an epileptic seizure. Kaiser 2-D
filter (15,54) was used and the computed TFDs are: A) Wigner Ville Distri-
bution, B) Pseudo WV windows, C) Smoothed Pseudo WV, D) Smoothed
Pseudo affine WV. Length Morlet Wavelet L=31, 62 and E) Reassigned
Smoothed Pseudo WV. We can observe that TFDs A, B and D introduce
cross-terms (manifested as small energy bumps spread in the time-frequency
plane), while the Reassigned method (E) and SPWV (C) do not present cross-

terms and are able to capture in a better way the non-stationary nature of
the signal.
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Figure C.3: TFds with 2-D filtering. Figures from A to D have a Kaiser
2-D filter (5,241) ms. A. Choi-Williams Distribution with o = 3. B. Choi-
Williams with ¢ = 10. C. Born-Jordan Distribution. D. ZAM distribution.
E. ZAM with Kaiser 2-D filter (3,241) ms

Fig.C.4 shows different results of reassignment. The bands A-E show that
energy trajectories rapidly change from 0 to 8 Hz (aprox.). Similar results
have been obtained with RID (Fig.C.5), but the time-frequency plane reso-
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lution is poor.
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Figure C.4: TF representation of the reassignment method with N=1000.
1-D Kaiser filter of length 25 samples was used. A. Gabor. B.Spectrogram.
C. Pseudo WV.D. Pseudo Margenau-Hill. E. Stankovic distribution with 2-D
Kaiser filter (7,25). F. Pseudo Page.
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Figure C.5: The RID distribution with different kernels using a 2-D Kaiser
filter (7,151): A. Bessel. B.Binomial. C. Hanning. D. Triangular. The RID’s,

shows the dynamic behavior of the EEG and presents identical results with
different kernels

Other distributions with interesting results are shown in Fig.C.6 using the
S-transform and ridges method. In Fig.C.6 (right) we can see several lines
between 0-8 Hz, and Fig.C.6 (left) shows a continuous wave in the same band.
The result with OKD and FIFD shows similar behavior in low frequencies.

Finally, we have analyzed the efficiency of the algorithms introduced before
and compared them with others regarding the average execution time with 5
secs. long EEG segment. The software was implemented on a Pentium IV, 1
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Figure C.6: Epileptic seizure. Right: The S-Transform show several lines
in a lower frequency region. Left: Good resolution by “Ridges” method. Note
the nonlineal characteristic and continuous wave when the crisis occurred.

Ghz, 164 RAM using Matlab(©V6.1. The fastest TFD was the STFT (0.26
sec) and the slowest was the Reassignment Scalogram with Morlet wavelet
(256 sec.) per segment. [See Table C.2].

Table C.2: Computation time of different TFD’s using rectangular non-
overlapping windows. EEG segment length 5 secs.
Time-frequency distribution Computation
time (seconds)

STFET, Spectrogram, WV, PWV, Rihaczeck, 0<t<1
Margenau-Hill (and Pseudo), Page (and

Pseudo), Butterworth, MH Spectrogram

Scalogram, Smoothed Pseudo WV, Cross- 0<t<5
Entropy

Gabor, Choi-Williams, Born-Jordan, ZAM, S- 5 <t <10
Transform, RID’s

Affine PWV, Rectangular, R. Pseudo WV, R. 10 <t <15
Page, R. PMH, R. Stankovic

D-Flandrin, Unter, R. Gabor, R. Scalo, R. t>15
SPWYV, Radially Gaussian Kernel, Ridges,

Skeleton

C.1.8 Discussions and conclusion

Before trying to answer what TFD is the best, the question turns to: what
information do we need about the distributions? To study the characteris-
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tics of the dynamics of epileptic EEG, the Reassignment method, Ridges or
RID’s distributions are suitable. If we are simply monitoring for presurgery
evaluation, the Smoothed PWYV gives good resolution. Choi-Williams, RID,
SPWV or RSPWV are suitable for events detection suc as seizures and al-
though the OKD method is slow (32 seconds) it has an excellent frequency
resolution in low bands.

As conclusion, we can say that choosing a distribution depends on the in-
formation that it wants to be extracted. There are distributions that give
similar results, but they differ in the time required for computation. It is nec-
essary to have a TFD that provides the required information in an efficient
way.



Appendix D

Databases

The performance of the algorithms proposed in this Thesis are assessed on
3 databases for EEG segments classification problems, which have been se-
lected so that there is sufficient diversity in terms of number of samples,
artifacts presence, epileptic activity, unbalanced data and EEG complexity
(connection and disconnection EEG in the same register, ictal activity, etc.).
Each dataset is obtained from different recording regions and from different
physiological and pathological brain states.

The following sections describe the databases used in this Thesis.

D.1 Database 1

The data collection was obtained taking into account: (i) same type of
epilepsy, (ii) activity at different brain areas and (iii) balance of the classes
(seizure and non-seizure). The EEG records of 7 adult epileptic patients were
obtained in a restful wakefulness stage and recorded at the Clinica Universi-
taria de Navarra, Department of Neurophysiology (Pamplona, Spain). All of
them contained focal epileptiform activity, according to experienced neurolo-
gists. EEG data were recorded from 23, 24 and 25 scalp electrodes based on
the 10-20 International System of Electrode Placement with additional an-
terotemporal electrodes T1/T2 (see Fig.D.1). Raw EEG data were digitized
at a sample rate of 200 Hz using a “DAD-32” equipment (La Mont Medical)
and were filtered by a digital low-pass filter with cut-off frequency of 20 Hz.
Table D.1 summarizes the main characteristics of the problem: the notation
for each problem, EEG channels where the record was made and the number
of data in each class (segments with seizure correspond to labels +1), both
in the training set and test.
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10-20 System with 23 channels 10-20 System with 24 channels

10-20 System with 25 channels

Figure D.1: General 10-20 System scheme used for our databases. (a)
System with 23 channels. (b) System with 24 channels. (¢) System with 25
channels

Table D.1: Main characteristics of the database 1.

EEG Notation Train data || Test data
Channel ni1/n_q ni1/n_q
T1,T3,T5 Patient 1 55/151 34/102
F8,T2,T4 Patient 2 39/168 28/110
A2,T4,T6 Patient 3 188/185 139/109
ALF7T1 Patient 4 122/165 81/169
A1,F7,T1,T3 | Patient 5 85/362 57/240
A2 F8,T2,T4 | Patient 6 159/609 101/411

D.2 Database 2

This dataset consist of a large EEG (10000 samples aprox.) that contains
two epileptic seizures, high presence of ocular artifacts, interictal epilepti-
form discharges and a couple of minutes of disconnection of EEG recording.
The EEG recordings were acquired using the standard video-EEG equipment
(23-channel digital EEG) at the Clinica Universitaria de Navarra, Depart-
ment of Neurophysiology (Pamplona, Spain) with LaMont amplifiers “DAD-
32” equipment (LaMont Medical, Madison, WI, U.S.A) and Harmonie soft-
ware (Stellate, Montreal, Quebec, Canada). This register contain generalized
epileptiform activity, according to experienced neurologists. Electrodes were
placed according to the 10-20 system, with additional anterotemporal elec-
trodes in T1/T2 and with both mastoids as reference. Raw EEG data were
digitized at a sample rate of 200 Hz and were filtered by a digital low-pass
filter with cut-off frequency of 20 Hz. Table D.2 summarizes the main char-
acteristics of the problem.
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Table D.2: Main characteristics of the database 2.
Train data || Test data
ny1/n_q ny1/n_q
Two crisis || Database 2 || 2268/6284 | 434/1135

Dataset Notation

D.3 Database 3

The dataset consist of sets of EEG time series: surface EEG signals from
healthy volunteers with eyes closed and eyes open, and intracranial EEGs
from epilepsy patients during the seizure free interval from within and from
outside the seizure generating area as well as intracranial EEG recordings of
epileptic seizures (described in Andrzejack et al. [2001])).

The five sets ((denoted as Z, O, N, F and S) each one containing 100 single-
channel EEG segments each having 23.6 sec duration and sampling rate of
173.61 Hz. Sets Z and O are EEG segments acquired extracranially according
to the international 10-20 system from surface EEG recordings of five healthy
volunteers, with eyes open (Z) and closed (O), respectively (see Fig.D.2 (a)).
Segments in subsets F and N contain seizure-free intervals from five patients
in the epileptogenic zone (F) and from the hippocampal formation of the
opposite hemisphere of the brain (N). Subset S presents seizure activity,
selected from all recording sites exhibiting ictal activity. Sets N, F, and S
have been recorded intracranially. More specifically, depth electrodes are
implanted symmetrically into the hippocampal formation (see Fig.D.2 (b)).
All dataset were recorded with the same 128-channel amplifier system using
an average common reference.

(a)

Figure D.2: Characteristics of electrodes used for dataset 3. Sets Z and
O have been recorded extracranially, whereas sets N, F' and S have been
recorded intracranially. (a) Localizations of electrodes according to the in-
ternational 10-20 system. (b) Scheme of intracranial electrodes implanted for
presurgical evaluation of epilepsy patients (from Andrzejack et al. [2001]).
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The three classification problems created were:

1) The first problem called N1, two classes are examined: normal (Z) and
seizure (S).

2) The second classification problem called N2, includes the classes normal
(Z), seizure-free (F) and seizure (S).

3) In the third problem called N3, all the five classes are used (Z,0,N,F,S).

Table D.3 summarizes the main characteristics of the problems.

Table D.3: Main characteristics of the database 3.

Datasot Notation Train data || Test data
Ny1/n-1 Ni1/n_1

7,5 N1 310/305 192/217
7,F .S N2 272/651 202/412
7,0,N,F,S N3 335/1202 209/815
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