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ABSTRACT

Particle track reconstruction in high-energy physics is used for pur-
poses that include simulation, particle analysis, and particle collision
filtering and recording. The LHCb experiment at CERN is undergoing
an upgrade where improvements are being applied to the detectors,
hardware and software. One of the main changes of this upgrade
includes the removal of the "hardware filter" which used custom elec-
tronics to filter particle collisions, and its substitute: the "software
filter". This new filter is composed of commodity hardware which
must be able to process a data rate of 40 Tb per second in real-time.
Different architectures are being considered to achieve this goal, and
the software used to compute it must be optimized and improved
to achieve the target data throughput. This software filter is used
to reconstruct particle collisions, also known as events, including the
trajectories of the resulting particles, which later are analyzed and
used to help explain problems like the matter-antimatter asymmetry.

This thesis explores different opportunities with multi and many-
core architectures, to improve the throughput processing of particle
collisions, and the maintainability and improvement of the source
code used for it.

The Kalman filter algorithm is widely used in high-energy physics
for particle reconstruction, and the Intel Xeon Phi KNL processor offers
a many-core x86 architecture that is well suited for parallel workloads.
Performance and maintainability improvements are discussed, where
optimization are targeted towards the Intel Xeon Phi processor.

GPU architectures are a good fit for high-energy physics workloads,
where its highly parallel architecture can benefit the throughput pro-
cessing of it. A GPU framework for event filtering is discussed, in
particular the optimizations and changes implemented to a tracking
algorithm to deliver high-throughput.

Finally vectorization opportunities for CPUs are explored by using
data-oriented algorithms and constructs that benefit the vector units
found in x86 processors. A SPMD compiler that resembles program-
ming for GPUs is used to improve the readability and performance of
these algorithms.
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RESUMEN

La reconstruccion de trayectorias en fisica de particulas se usa con
distintos fines entre los que se incluyen la simulacién, el analisis y el
filtrado y recogida de las colisiones entre protones. El experimento
LHCb del CERN se encuentra en pleno proceso de actualizaciéon
en el que cambios y mejoras serdn aplicadas a los detectores, los
procesadores y el software. Uno de los principales cambios incluye
la eliminacién del "filtro hardware" basado en circuitos integrados
especificos para estas aplicaciones, por un "filtro software". Este nuevo
filtro estd compuesto por procesadores de distintas arquitecturas que
deben ser capaces de procesar un ratio de datos de 40 Tb por segundo,
en tiempo real. Distintas arquitecturas estan siendo consideradas para
alcanzar este objetivo, y el software utilizado para procesarlo debe
ser optimizado y mejorado para conseguir alacanzar el objetivo de
rendimiento de procesamiento de datos. Este filtro basado en software
es usado para reconstruir las colisiones entre particulas, también
conocidas como eventos, lo que incluye las trayectorias que se producen
tras la colisién entre protones. Estas son procesadas y analizadas
posteriormente, lo que ayuda a entender y explicar problemas como
la asimetrfa entre materia y antimateria.

En esta tesis se exploran las potenciales oportunidades que ofrecen
las arquitecturas con multiples ntcleos de procesamiento para mejorar
el rendimiento al procesar las colisiones entre particulas y el manteni-
miento y mejora del cédigo fuente usado para ello. El algoritmo filtro
de Kalman es ampliamente utilizado en fisica de particulas para la re-
construccién de particulas, y el procesador Intel Xeon Phi KNL ofrece
una arquitectura x86 con multiples nticleos que esta bien adaptada a
cargas de trabajo paralelas.

Las arquitecturas GPU se adaptan bien a los problemas encontrados
en fisica de particulas, donde su arquitectura masivamente paralela
puede beneficiar el rendimiento de procesado. En esta tesis se discute
un framework software basado en GPUs para filtrado de eventos,
en particular se discuten las optimizaciones y cambios implemen-
tados para un algoritmo de reconstruccién para conseguir un alto
rendimiento.

Finalmente se exploran las oportunidades que presenta la vectoriza-
cién en CPUs utilizando algoritmos orientados a datos y estructuras
que mejoran las unidades de vectorizacién en los procesadores x86.
Un compilador de modelo SPMD que utiliza un modelo similar al uti-
lizado con GPUs, se utiliza para mejorar la legibilidad y rendimiento
de los algoritmos.
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INTRODUCTION

The Standard Model of particle physics (SM) is a very successful
theory that accurately describes how elementary particles and their
forces behave. Yet it struggles to explain some phenomena such
as the nature of dark matter and dark energy, neutrino oscillations
or the asymmetry between matter and antimatter in the Universe,
where the amount of matter exceeds that of the antimatter. Particles
described in the SM are grouped into two categories: fermions and
bosons. Fermions are further categorized into quarks and leptons
each containing 6 particles that are grouped in three families. Bosons
are divided into gauge bosons and the Higgs boson, as shown in
Figure 1.1. This figure represents each elementary particle. Six quarks
are depicted in purple, six leptops in green, four bosons in red and
the Higgs boson in yellow. The mass, charge and spin of each one is
noted at the top left corner of each particle.

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
| Il 1]
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Figure 1.1: The Standard Model or particle physics. Image from [105]

A revision of the SM
is described in [65]

Known as the CP
Violation
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INTRODUCTION

The European Organization for Nuclear Research (CERN) is the
biggest particle physics laboratory in the world. CERN produces and
uses cutting-edge technologies to do research of particle interactions at
every stage of its experiments. CERN studies particle collisions using
the largest and most powerful particle collider, the Large Hadron
Collider (LHC). The LHC is a 27 Km ring buried up to 175 meters
underground where particles collide at nearly the speed of light. Four
big experiments -ATLAS, CMS, ALICE and LHCb- use the LHC to
complete our understanding of the Universe. These experiments use
state of the art technologies to measure the particle collisions in real-
time with high precision, recording tens of millions of collisions per
second. The data from these collisions is then distributed all over the
world through the Grid [92].
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Figure 1.2: CERN accelerator complex, showing all the involved accelerators
that push the particles speed and energy to be injected in the
LHC. Image from [106]

For particles to collide at a speed close to that of light, they need
to be accelerated through different accelerators before they reach the
LHC. An overview of CERN accelerators can be seen in Figure1.2.
Bunches of protons are accelerated to about a third the speed of light
through the LINAC2, these are then passed to the Booster that exit
them at over 9o% the speed of light. The third stage corresponds
to the Proton Synchrotron (PS) which accelerates the bunches over
99.9% the speed of light. The last step is the Super Proton Synchrotron
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(SPS) which energizes the bunches before sending them to the LHC
in opposite directions so these can cross at four points where the
big experiments are located. When bunches of particles cross, only a
number of these collide, producing what we call an event. The LHC
was designed to produce events every 25 ns at a rate of 40 MHz; on
average the LHC operates at 30 MHz or 30 million events per second.
Each event produces new particles that are measured and recorded as
tracks by computers connected to the detectors.

1.1 MOTIVATION

The LHC and its associated experiments are undergoing an upgrade
of its components and technologies until 2021. Different detection
technologies will be upgraded or substituted completely which will
increase the event rate about 5x. The upgraded technologies and the
increased event rate will produce an increase in high-energy physics
data taking by the experiments. Computing technologies are being re-
designed and optimized by the experiments to cope with the expected
increases in data throughput.

The LHCb experiment operates at the LHC and it is also being
upgraded for the next data-taking period. As in previous data-taking
periods, LHCb utilizes a filter which selects and discards particle
collisions. This filters is divided into various steps, each of them
designed to process different amounts of data. A combination of
custom ASICs and x86 processors’ filter was used, with the custom
electronics being used in the first stage of the filter where the data rate
is higher, and software for the x86 stage was used in subsequent stages
where the data rate was already reduced. One of the main changes
involving the upgrade of LHCb is the removal of the ASICs filter to use
a full software trigger based on commodity hardware. The expected
data rate this software filter will need to process is 40Tb/s which
poses a tremendous challenge to compute in real-time. The needed
computing resources were projected for the upcoming upgrade, but
the cost and performance of the software did not deliver the expected
results. In 2016 the computing needs were estimated between 6 and
10 times below the expected processing data rates.

A high-degree of software optimization is needed to reach the de-
sired throughput, and alternative hardware architectures must be
considered to explore the improvements in performance that can be
achieved by switching to alternative processors or coprocessors. New
particle tracking algorithms that take hardware architectures character-
istics can bring performance improvements without sacrificing physics
results and redesigning the existing algorithms or creating new ones
should be considered for the upgrade.

The hypothesis of this thesis can be summarized as follows:
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New algorithms, optimizations and hardware architectures can bring
throughput improvements to the real-time processing of particle tracking
algorithms in the context of high-energy physics. The LHCb experiment can
reach the target 40Tb/s data throughput by implementing these techniques
and hardware before the next data-taking period commences.

1.2 OBJECTIVES

The main objective of this thesis is the development and opti-
mization of particle tracking algorithms that are efficient in multi-
and many-core architectures, and bring throughput performance and
source code improvements for the LHCb experiment in the context of
the next data-taking period.

This general goal can be divided into the following specific goals:

= O1: Explore multi-threading possibilities to parallelize the pro-
cessing of particle tracks.

= O2: Design and optimize algorithms for the Intel Xeon Phi KNL
as a many-core target architecture for LHCb.

= O3: Explore vectorization opportunities in the tracking algo-
rithms of LHCb.

= O4: Implement algorithms for alternative hardware architectures,
such as GPUs and study their performance opportunities.

1.3 STRUCTURE OF THE DOCUMENT

The thesis is organized into three main parts, each with a number
of chapters to make a total of 9. A brief description of the chapters is
presented here:

Part I: The LHCD experiment

Chapter 1: This chapter which briefly introduces CERN and its
context, motivates the thesis and states its objective.

Chapter 2: High-energy physics, CERN, the Large Hadron Collider
(LHC) and the LHCb experiment in particular are introduced. The
main components of the LHCb experiment related to this thesis are
described; including a description of the detector and the subdetectors
used to reconstruct particle tracks. How particle track reconstruction
works at LHCb, its Data Acquisition System, its High Level Trigger
and how these will be upgraded are described as the central work of
this thesis.

Chapter 3: The computing infrastructure and software used at
LHCb to filter, process and analyze particle collisions is described.
The two main software processing frameworks named Allen and
Gaudi. The Worldwide LHC Computing Grid is explained briefly as
one of the main pieces for physics analysis.
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Chapter 4: Particle reconstruction or tracking is presented with
more detail in this chapter, including the specifics of the LHCb experi-
ment. Different particle tracking methods are discussed, the types of
tracks involved in the reconstruction are listed and standard physics
efficiency metrics are introduced which are used later in the thesis.
The Kalman filter algorithm is introduced using a particle as in the
LHCDb experiment would occur.

Part II: Parallel Computing

Chapter 5: Introduces parallel computing and its implications. Par-
allel hardware and software is described, laws and concepts to express
speedup and scalability are explained. Hardware concepts affecting
computing performance are introduced including memory and al-
ternative hardware architectures. The concept and usage of generic
parallel patterns is described.

Part 1II: Particle tracking in high-energy physics

Chapter 6: Kalman filtering on many-core architectures is intro-
duced. The Intel Xeon Phi is used as the main x86 processor during
the whole analysis as one of the candidate hardware architectures
for the upgrade. Different parallelization opportunities are explored
for the Kalman filter, exploring different intra-track implementation
and their effect in the computing performance. The GrPPI library
functionality is expanded and the Kalman filter is reimplemented to
use generic parallel patterns achieving a comparable performance to
the baseline hand-tuned algorithm.

Chapter 7: The Allen GPU framework is introduced and the Compass
algorithm is described. The decoding and tracking kernels for the GPU
are described and implemented, and its throughput performance is
discussed. A throughput analysis is presented for different consumer
and scientific GPUs alongside a CPU implementation of the algorithm.

Chapter 8: Vectorization opportunities are explored in this chapter.
The Allen framework is adapted to compile ISPC algorithms, the
VELO kernels are adapted and implemented to compile for ISPC. The
UT kernels are re-implemented for the ISPC compiler, removing GPU
specific optimizations and focusing on the vectorization capabilities.
The throughput results are discussed.

Chapter 9: The conclusions for this thesis are discussed in this
chapter. The presented work analyzes the usage and impact of multi-
and many-core hardware architectures in the context of high-energy
physics. Different high-performance options are explored in the con-
text of the LHCb upgrade, where a high level of software optimization
is required to meet the target throughput. Multi-threading, GPU accel-
erators and vectorization are applied to different tracking algorithms
and its impact and performance is discussed.
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The Large Hadron Collider beauty (LHCb) [4, 5] experiment is
one of the four big physics detector experiments collecting data at
the LHC in the border between Switzerland and France. The LHCb
detector is a single arm forward spectrometer designed for high-
precision measurements and aims to explore the matter-antimatter
asymmetry problem known as CP violation. The Big Bang should
have produced same quantities of matter and antimatter, which then
would have annihilated leaving nothing. What we observe differs, as
the observable Universe is made out of matter. CP violation partly
explains this phenomena, where some other forces not yet known must
be discovered to explain this asymmetry [30]. LHCb is composed of
various parts which are used to reconstruct particle collisions in detail.
The data collected from these particle collisions allows to study B
mesons, which allows to better understand this particle (and others)
and its different decays to other particles. These decays include
measurements of the CP violation and other parts of LHCb physics
programme. The main parts are:

» Tracking system: it reconstructs the particle trajectories caused by
a particle collision. It measures the vertices where the trajectories
are formed and measures particle momentum.

» Particle identification system: it distinguishes between different
types of particles obtaining the velocity and energy of the pro-
duced particles.

» Trigger system: it filters the events by selecting the interesting
ones for physics analysis.

The LHCb experiment is depicted in Figure 2.1. It shows the al-
ready upgraded subdetectors that will function in the next data-taking
period from 2021. Details on the changes and differences between
the previous and upgraded subdetectors can be found at [37, 38, 88]
The tracking and particle identification subdetectors are presented
alongside the magnet. The tracking system is composed of the VEr-
tex LOcator (VELO), the Upstream Tracker (UT) and the Scintillating
Fibre (SciFi), the particle identification system is composed of the Ring
Imaging Cherenkov (RICH) subdetectors, the Electromagnetic (ECAL) and
Hadron Calorimeters (HCAL), and finally the Muon Stations (M). The
trigger system is composed of the electronics, hardware and software
used to collect and process the data coming from these subdetectors.
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Figure 2.1: Schematic view of LHCb upgrade experiment. Image from [88]

This chapter is structured as follows: In Section 2.1 the tracking
system of LHCb is presented, Section 2.2 introduces the Data Acquisi-
tion System of LHCb, Section 2.3 presents the High Level Trigger, and
Section 2.4 gives a summary of the chapter.

2.1 TRACKING SYSTEM

The process used to reconstruct particle trajectories is known as
tracking. The tracking system at LHCb is composed of various sub-
detectors located at different position in the Z axis. These provide
position information for the generated particle trajectories that cross
the magnetic field region. The measured values allow to get the vertex
of the interaction, the trajectories of charged particles and to obtain a
measurement of their momentum. Sorted by forward direction, this is
from the interaction point onwards, first is the VELO followed by the
UT, the magnet is located in between the UT and the SciFi [103].

2.1.1 VELO

VELO is the subdetector enclosing the interaction point where the
proton-proton collisions occur. It is composed of two halves each
counting 26 silicon pixel detector modules. Each module is composed
by four silicon sensors with a "L" shape around the LHCb beam pipe.
A silicon sensor is composed of three chips with 256 x 256 square
pixels of 55 x 55 um each, giving a total of 41 M pixels as shown in
Figure 2.2. These pixels provide x and y coordinates for the hits of
the particles, where the z coordinate is known by association to the
module that gives the hit measurement [38].
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Figure 2.2: Velo subdetector for the upgrade in schematic view. Image
from [29]

VELO provides measurements for the charged particles that are gen-
erated after a collision and cross the subdetector. The main purposes
of VELO are:

= It precisely measures where the primary and secondary vertices
originate.

= Provides hits to create initial tracks. A hit is a signal
activation of a
= The VELO is not in the region of influence of the dipole magnet, particle crossing a

so the initial tracks measured by the VELO are not bent and  detector.
form only straight lines.

» The upgraded VELO substitutes microstrips for pixels, which
leads to better track reconstruction.

2.1.2 UT

The UT subdetector [88] is composed of four planes, where each
plane is a single sided silicon strip detector. We refer to the four
consecutive planes as UTaX, UTal, UTbV, UTbX respectively, as can
be seen in Figure 2.3. These are sorted into two layers containing 2
planes each, the a and b layers. The X planes are composed of vertical
strips whereas the U and V planes are tilted around the Z axis at +-5°
and —5° respectively. By combining the measurements from the tilted
U and V planes, the Y coordinate can also be determined. Each UT
plane is composed of micro-strip sensors arranged in vertical staves. A
UT plane can be divided into 3 regions with different geometry, where
the inner-most region has a finer granularity, and the outer regions
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Figure 2.3: The four UT planes are presented in this figure. Image from [88]

have coarser granularity. Each stave measures 160 cm high and 10 cm
wide, where various sensors are placed alongside each stave. The
sensors in a stave overlap with their neighbour sensors, to avoid gaps,
and the vertical staves also overlap for the same reason. The X planes
are composed of 16 staves while the U and V are composed of 18
staves. The acceptance of the UT sub-detector is defined by its volume
in space, the UT planes for the UT sub-detector. Only particles that
traverse this volume can leave signals and are measured.

The UT detector serves various purposes in the LHCb experiment:

Reconstructs charged particle trajectories that decay after the
VELO sub-detector.

Reconstructs low momentum particles that are bent by the mag-
net, and go out of acceptance before reaching the SciFi Tracker.

Gives additional information in the form of hits, that can be used
in conjunction with the VELO and SciFi Tracker information to
reject tracks.

As the UT is influenced by the magnet, it can provide momentum
resolution for charged particles.

It can reject low momentum tracks.

Decreases time to extrapolate VELO tracks to SciFi Tracker by at
least a factor of 3.



2.1 TRACKING SYSTEM

Finally, UT plays an important role by marking tracks that won’t
be used by the next tracking detector, the SciFi Tracker. This allows
for a faster processing of the whole track reconstruction in the LHCb
detector.

2.1.3 SciFi

The SciFi subdetector [88] is the tracking system located after the
magnet. It is composed of three stations named T1, T2 and T3. These
stations are under the influence of the magnet region giving a momen-
tum estimate. Each station consists of four detection planes arranged
in a similar fashion to that in the UT. Each plane provides coordinates
measurements, where the two planes in the middle are tilted +5° and
—5° with respect to the vertical axis. Each detector plane contains 12
modules for a total of 144 modules. The plane arrangement is shown
in Figure 2.4.
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Figure 2.4: Arrangement of the SciFi layers. Image from [88]

Detector modules are composed of 2.5 m long scintillating fibres
with a diameter of 250 um which guide photons that are detected by
Silicon Photomultipliers (SiPM). Each detected photon can be associ-
ated to a coordinate for a crossing charged particle or hit, although
more than one photon detection can occur per hit. This process is
represented in Figure 2.5. These fibres are arranged in groups of six
in layers, where each groups is a fibre mat. Fibre mats are the main
component of the SciFi subdetector.

The SciFi tracking system covers a large surface compared to the
other tracking subdetectors, covering 340 m?. It is designed to have a

13
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Figure 2.5: A particle leaves an energy deposit. Image from [108]

very high hit efficiency over 99% and a resolution of at least 1oopum.
The SciFi subdetector serves various purposes for LHCb:

= Reconstructs particles bent by the magnet giving momentum
estimation for charged particles.

It allows to determine precise mass and lifetime resolutions of
particles.

Serves as input for the RICH detector for particle identification.

Measure tracks in the acceptance region not covered by the UT
subdetector.

Reconstruct T, Long and Downstream tracks.

2.2 DATA ACQUISITION SYSTEM

The data acquisition system (DAQ) at LHCb is designed to filter
events in real-time, coping with an input 30 Mhz bunch crossing rate.
The average size of the events is estimated to be 150kB, giving an
expected data rate of 40 Tb/s. This deluge of data is acquired and
filtered by the DAQ), selecting the interesting event for further analysis.
Selecting the interesting events requires a two stage process divided
into the High Level Trigger 1 and 2 (HLT1 and HLT2), each filtering
to different data rates to finally write a data rate of 10GB/s, as seen in
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Figure 2.6. Events are fully reconstructed to decide whether to keep
the event or not, every 13ms [41, 91].

LHCb Upgrade Trigger Diagram
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Figure 2.6: Run 3 trigger. Image from [118]

The upgraded high level trigger (HLT) will consist of two main com-
ponents: the Event-Builder (EB) and the Event-Filter-Farm (EFF). Data
from the subdetectors described in 2.1 is sent to the front-end electron-
ics in the form of data fragments containing the event information.
These fragments are combined to build the events in real-time, in the
EB. The EB is composed of 170 servers connected through a dedicated
high-performance network where each uses two 200 Gbit/s Infiniband
HDR network, made possible by choosing AMD Rome CPUs. The
EB servers compute three main components: a read-out unit reading
the information from the detectors through FPGAs connected to the
subdetectors, a builder unit that gathers the data fragments from the
read-out units to create complete events, and a event manager to
schedule the other two components.

After building the events, these are sent to the EFF for filtering.
These components are presented in Figure 2.7.

The EFF processes the HLT1 and HLT?2 filters to reduce the data
rate. The HLT1 selects events by doing a fast reconstruction of all the
tracks contained in them, and selects based on a PV displacement,
momentum of the tracks and muon identification. The rate of events

15

The muon step is
optional.
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Figure 2.7: Layout of LHCb DAQ. Image from [42]

is expected to be reduced from 30 MHz to 1 MHz. The reduced set of
events is stored in a disk buffer to save the output of the HLT1. The
HLT2 reads the stored events to perform the full reconstruction of the
events asynchronously, to reduce the event rate to 100 kHz. While the
HLT1 filters the events in real-time during the proton-proton collisions,
the HLT2 is processed while there are no collisions. A collision period
can last up to a day, leaving a few hours between collision periods
used by the HLT2 to make further filtering [42].

2.3 HIGH LEVEL TRIGGER

The HLT1 and HLT2 process various track reconstruction algorithms
to perform the selection of events. The HLT1 processes the events
in a synchronous manner to the LHC bunch crossing rate, and thus
does the processing in real-time. The HLT2 performs the processing
asynchronously, when there are no collisions, but still tied to a time
constrain of a few hours. Events are selected and discarded based on
various criteria obtained after the reconsruction of the particles, such
as particles that have a high transverse momentum larger that 2 or 3
GeV. The computing resources planned for the next data taking period
did not increase as expected in terms of GFlops; as a consequence
the LHCb software stack will not be able to cope with the expected
data rate, thus needs to be optimized for the selected hardware [134].
The LHCDb software stack uses the Gaudi framework [31] which is
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Figure 2.8: From LHC bunch crossing rate to analysis

described in Chapter 3. HLT1 reduces the 30 Tb/s data rate, or 30 MHz
event rate to 1 MHz event rate to be used by HLT2. HLT2 computes
a similar but different set of algorithms that perform a more precise
reconstruction using all the subdetectors in LHCb. Events are then
stored for physics analysis and distributed through the Worldwide
LHC Computing Grid [90]. Figure 2.8 shows the steps followed from
the LHC bunch crossing rate to the final storage for analysis, including
the data rates processed at each step.

LHCb software upgrade becomes of critical importance, as com-
pared to the previous data-taking period the data rate is expected to
increase by 85x. The increased data rate comes after the decission
of removing the previous hardware level trigger and moving to a soft-
ware level trigger that performs a full event tracking. The predictions
made for the upgrade in terms of computing power and software
optimization were underestimated. As a result new algorithms are
being developed, and new different EB or EFF architecture designs
are being considered [1].

This thesis work focuses on software optimization of reconstruction
algorithms for multi- and many-core architectures that are being
considered for the EB or EFF. A high level of optimization is needed
to be able to process the 40 Tb/s estimated data rate for the given
hardware computing constrains.

17
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2.4 SUMMARY

This chapter presented the main components of LHCb that are
involved in the particle track reconstruction performed at LHCb. These
components are central to the work of this thesis; the input data used
in the different algorithms comes from these subdetectors and software
is optimized based on the design of them for this thesis. The tracking
subdetectors are undergoing and upgrade for the next data-taking
period (Run3) and these are presented as their upgraded versions. The
DAQ and HLT are also being upgraded and have significant changes,
being the main one the elimination of the hardware trigger that was
used in the two previous data-taking periods. The hardware trigger
will be replaced by a software trigger that will use more complete
information from the detector, allowing for algorithms to make better
filtering decisions to keep or discard events.



LHCB SOFTWARE AND COMPUTING

Particle collisions at LHCb are processed, filtered and analyzed
at different stages through the various software components. LHCb
software is present from the data collection at the detector read-out
electronics, to the particle trajectory reconstruction and identification
in the HLT1 and HLT?2 filters. LHCb software is also used for Monte
Carlo Simulation and for further analysis and distribution through
the Worldwide LHC Computing Grid. Software at the experiment
is developed with the Gaudi framework to write data processing
applications for High-Energy Physics (HEP) experiments [10]. Gaudi
is a High Energy Physics software framework that allows to write
algorithms to perform the tracking and particle identification. It was
used during the the previous data-taking periods at LHCb, it is also
used by other HEP experiments, and it is set to be used by the Future
Circular Collider [35]. Other pieces of software and frameworks
are developed as R&D programs at LHCb to find the most efficient
solution for the next data-taking period. In this section, the building
blocks of LHCb software framework are outlined, as well as the GPU
Allen framework as the novel framework used to process the HLT1.

This chapter is structured as follows: In Section 3.1 the Gaudi
software framework is presented, Section 3.2 gives an overview of the
Allen GPU framework, Section 3.3 briefly explains the Worldwide LHC
Computing Grid, and Section 3.4 gives a summary of this chapter.

3.1 LHCB SOFTWARE FRAMEWORK. GAUDI

The software framework Gaudi provides the architecture to build
different HEP applications, which is used and developed by LHCb
among other experiments. LHCb applications constructed with Gaudi
include Moore and Brunel for online and offline reconstruction respec-
tively. These applications enclose the relevant algorithms and topics
discussed in this thesis. Other applications of Gaudi include the digi-
talization (Boole), analysis (DaVinci) or simulation (Gauss) [14, 43]. The
relationship between these applications is depicted in Figure 3.1.

Gaudi provides algorithms and tools with defined input and output
data to develop the applications. It separates between data objects
and algorithms, where the data objects contain the different inputs
from the detector in the form of matrices and vectors; the algorithms
are used for reconstruction, identification and simulation tasks. By
separating both entities in the framework, different algorithms can be
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Figure 3.1: LHCb software applications based on Gaudi framework

developed independently while maintaining a common structure for
data input and output across the framework.

A common Event and Physics Model is shared between all applica-
tions for consistency; it describes the event and physics data classes
and their relationships. Gaudi is also used by all applications as the
common software framework to build them. The detector description is
used as input for Gauss, Boole and Brunel; it describes the materials,
structure, geometry and calibration of the detector. The conditions
database is used during analysis and particle reconstruction: it contains
the status at some point in time of the detector, which is only valid
for a period of time. Simulations produce hit data or Monte Carlo
Hits that are digitalized before using them in the reconstruction when
executing simulations [124]. The reconstruction of events through
Brunel produces DST (Data Summary "Tape"). Simulation takes most
of the LHCb computing time resources, and it is mainly used outside
of data-taking periods [36].

Algorithms for Gaudi are written in the C++ language; Python is
used to configure the application and define how and which algo-
rithms should run. The reconstruction software at LHCb computes
several algorithms that are organized as an acyclic graph. Groups of
algorithms correspond to different subdetectors and these are com-
puted following the order in which particles traverse the subdetector:
first the VELO, then the UT, then the SciFi. The output of algorithms
in that chain serves as input for the ones that come after.

3.2 HLTI1 GPU ALLEN FRAMEWORK

The Allen framework allows to run a sequence of GPU parallel
algorithms efficiently through a modular and extensible framework.
It accommodates the algorithms for the entire HLT1 as depicted in
Figure 3.2. It shows the dependencies between the algorithms to
reconstruct events in real-time. This sequence includes the tracking
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detectors and the optional Muon stations, as it is done in Moore. Allen
is a multi-threaded framework, where one CUDA Stream runs per
CPU thread, guaranteeing asynchronous execution of events. Different
events are processed independently from each other, allowing for zero
communication between CPU threads or GPU streams [29].

VELO

uT

SciFi

Muon

Allen HLT1 algorithms are categorized to their corresponding sub-
detector: VELO, UT, SciFi and Muon. Raw banks data from every
subdetector is decoded in software before being able to process it.

ra[\)/vegggﬁs —{ Clustering —»| Tracking %Finge?tringy
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Figure 3.2: Algorithms run in HLT1

Tracking algorithms are processed for every tracking subdetector, each
with tracking input information from the previous subdetectors. The
elements presented in Figure 3.2 are described:

= VELO: Raw banks are decoded into fired pixels from the subde-
tector. Only fired pixels are received to keep data transmission
to a minimum. For the VELO decoding, each received raw
bank corresponds to a different sensor. With the fired pixels
decoded, a clustering step is performed. VELO clustering groups
neighbour pixels that may be activated from a crossing charged
particle. The result is a set of hits indicating the coordinates
where the particle crossed the subdetector. These hits are used
to reconstruct the particle trajectory, which for the VELO are
straight lines as these tracks are not under the influence of the
magnetic field.

Find primary vertices: One of the main goals of the VELO
reconstruction is to find the vertices where particle originate
from the proton-proton collisions -the primary vertices-. Other
vertices may originate from particle decays -secondary vertices-
which are not processed by this algorithm.

UT: Raw UT banks are decoded into hits. UT reconstruction
uses the resulting tracks from VELO reconstruction as input.
Using the VELO track, it searches for UT hits that match the
extrapolation of a VELO track to construct UT tracks. These
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tracks present a slightly bent trajectory as UT regions are already
under the influence of the magnet, where various combinations
of hits may result in possible tracks.

n SciFi: as with the other subdetector, the raw banks are decoded
into SciFi hits. For this subdetector, tracks from VELO and UT
are used as input to construct long tracks. As these tracks fully
traverse the magnet region, the problem of matching hits to
VELO or UT tracks becomes an exponential problem due to the
bent trajectory of these particles.

» Kalman filter: with a long track reconstructed a Kalman filter is
applied to the track to better estimate the trajectory and reduce
the error associated with it. At this stage a simplified version of
the Kalman filter is used.

= Muon: raw banks are decoded into Muon hits. Tracks from
VELO and UT are extrapolated to the Muon stations to identify
these tracks as muons.

3.3 WORLDWIDE LHC COMPUTING GRID

The Worldwide LHC Computing Grid (WLCG) provides the LHC
experiments like the LHCb with computing resources for storage,
distribution and analysis data from the data-taking periods. These
resources are distributed across a collaboration of computer centers
comprising institutions, universities and research centres [16, 113].
The WLCG is hierarchically structured by three layers:

» Tier-o: is a combination of CERN Data Center in Geneva, Switzer-
land and the Wigner Research Center for Physics in Budapest,
Hungary.

» Tier-1: is composed of various large data centers.
» Tier-2: are different universities and scientific institutes.

WLCG centers are connected by a dedicated network. The two
Tier-o centers are connected by three 100Gb/s lines. CERN is then
connected to every Tier-1 center using both a high-bandwidth network
called LHC Optical Private Network (LHCOPN) and the LHC Open
Network Environment (LHCONE). This structure is represented in
Figure 3.3. The Tier-1 centers expected to be used by LHCb for the
next data-taking period are:

= IN2P3-CC (Lyon / France)
» FZK-T1 (Karlsruhe / Germany)

= CNAF-T1 (Bologna / Italy)
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Figure 3.3: WLCG Tiers. Image from [98]
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Computing resources for the LHCb experiments come from LHCb
own distributed computing infrastructure, from the WLCG and in-
cludes computing resources given by other providers in a voluntary
basis. From the WLCG, the tape storage resources is provided by
Tier-o and Tier-1 sites only, disk usage is used in Tier-2 sites, and CPU
resources is provided in all levels [90].

The HLT1 at LHCb runs synchronously with the LHC bunch cross-
ing rate; it stores the selected events into a 10 PB buffer. The HLT2
takes as input the selected events from the HLT1 and further reduces
the selection, but in an asynchronous manner. The output from HLT2
is then stored at a rate of 10 GB/s. The final stored output will be in
the order of tens of PB per year and it is stored and distributed by the
WLCG, first by the Tier-o and one Tier-1, then data is reconstructed at
CERN and the Tier-1 [81].
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3.4 SUMMARY

This chapter introduced the main software components used in
LHCb related to this thesis. The two main software frameworks used
for the HLT are introduced: Gaudi and Allen. The Gaudi framework
contains the algorithms for both the HLT1 and HLT2 and is focused
on CPU processing, whereas the Allen framework is focused on GPUs
and the HLT1 algorithms. Gaudi and Allen differ on the events that
can be processed in parallel: while Gaudi can process one event
at a time, Allen is designed to process multiple events in parallel.
These frameworks contain the algorithms to reconstruct the particle
collisions with different levels of detail, and are optimized to deliver
high throughput for different architectures. Finally the WLCG is
shown as it is the software used after filtering the events in the two
steps of the HLT.



LHCB TRACK RECONSTRUCTION

Proton-proton collisions at LHCb produce new particles. HEP
detector technologies are used at LHCb to reconstruct the results from
these collisions, where three main steps can be identified:

= Tracking or particle trajectory reconstruction.

= Vertexing or grouping particles into vertices.

» Particle identification or classifying each particle trajectory to
particle (i.e. electron, muon, pion, etc.).

Figure 4.1: Track in a cloud chamber left by the first identified positron.
Image from [7]

Tracking is discussed in this chapter, specifically for the LHCb ex-
periment. Paths described by charged particles could be bent by the
influence of the magnetic field produced by the magnet, where the
amount of bending a particle experiments is a function of its charge
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Figure 4.2: Various track reconstruction problems. (a) Crossing tracks in
straight lines. (b) Curved tracks reconstruction. (c) Bubble cham-
ber reconstruction. Images from [73] and [12]



4.1 TRACK RECONSTRUCTION AND PATTERN RECOGNITION

and momentum. Early track reconstruction was performed by man-
ually observing the behaviour of particles, or taking photos of the
resulting tracks for later analysis. Figure 4.1 shows the first picture
ever of a positron in a cloud chamber, taken in 1932. This was possible
by using bubble chambers, which allowed to observe such particle
interactions without the need of modern particle detection technology.
A bubble chamber allows charged particles to produce bubbles in a su-
perheated liquid, where their sizes are proportional to the energy loss
of the particle. These bubbles can be photographed to highlight the
particle path [68]. Various examples of track reconstruction problems
are depicted in Figure 4.2. Figure (a) shows straight-line reconstructed
tracks applying a Hough transform algorithm [51]. Figure (b) depicts
the reconstruction of tracks bent by the influence of a magnet. Both
figures present the hits extracted from the subdetector on the left and
the result of applying a reconstruction algorithm on the right as tracks.
Figure (c) shows an example of early track reconstruction using a
bubble chamber [12].

Tracking at LHCb uses hit information from the subdetectors to
compute all the positions and trajectories that are produced in each
event, producing the tracks of the event. LHCb subdetectors provide
x and y coordinates at various points in each subdetector. The z
coordinate is given by the position of each subdetector; the direction
in which particles travel is known as they travel from the interaction
point to the rest of subdetectors. At LHCb there is no time coordinate
as the events are considered to happen instantaneously, each event
separated by 13 ms.

This chapter is structured as follows: In Section 4.1 track recon-
struction and pattern recognition methods are discussed, Section 4.2
presents the track types and the subdetectors involved in tracking,
Section 4.3 introduces the parameters to measure physics efficiency
of algorithms, Section 4.3 presents the Kalman filter algorithm, and
Section 4.5 gives a summary of this chapter.

4.1 TRACK RECONSTRUCTION AND PATTERN RECOGNITION

Track reconstruction in high-energy physics can be performed with
diverse techniques [18], such as the Kalman filter or the Hough trans-
form [144]. Finding tracks in events usually takes most of the time
in this process, and its quality and performance directly impacts the
computing resources needed to perform track reconstruction. Particle
collisions produce new particles that are detected by the electronic
detectors, and these are measured as hit coordinates. The inverse
procedure, to go from hits to tracks, is done with pattern recognition
methods; in general global and local methods are used [97].

Global methods take all hits of the detectors simultaneously and
apply a similar procedure to all of them. This implies the resulting
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solution of the method is independent from the order used to process
the hits, which differs from local methods. Some examples of global
methods are briefly described here.

Template matching are simple mathematical algorithms that can be
applied when the number of possible patterns is finite. Each pattern
can be defined with a template. The number of templates to check
is always the same which makes the computing time needed for
the algorithm independent from the complexity. On the other hand,
when handling big complexity or high granularity problems, template
matching cannot scale well. A tree-search algorithm can be applied
for high granularity problems: a first search is applied with a coarse
granularity, then successive higher granularity searches are used in
the found patterns as seen in Figure 4.3.

T

Figure 4.3: Global method, tree search. Image from [97]

Histogramming is used as a special case of the Hough transform [50].
To extract the features of various hits as the track that connects them,
each hit is represented in parameter space as lines. These lines will
intersect at some point in the parameter space which would reveal the
parameters that correspond to the track the hits belong to, as depicted
in Figure 4.4.

Neural network techniques often look for global patterns [125] which
makes them a good fit for these kind of global methods. A Denby-
Peterson method [48] is briefly described here as an example of a neural
network technique. Hits are connected through the neural network
where a neuron is activated when two hits belong to the same track.
The neuron activation is then defined by an energy function that
gathers information such as the angle between the connected neurons
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Figure 4.4: Histogramming with hits in a track. Image from [97]

or the number of neurons. The Denby-Peterson method works without
the need of the track model; hits are connected as a straight line but
curved lines are also detected.

Local methods differ from global methods in treating all hits the
same way. These methods usually provide a way to extrapolate a
trajectory and use a small set of hits to start the algorithm. Because
local methods do not consider all hits equally these need to differ hits
that can be ghost from real ones.
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Figure 4.5: Two seeding techniques compared side by side. Image from [97]

—

Seeds algorithms create a small tracklet or segment with a small
number of hits to start the tracking. Seeds can be started with different
approaches as shown in Figure 4.5: the example in the left starts in
the layer most distant from the vertex, where hits from different tracks
have more distance between them, and then if uses the closest hit from
the previous layer to form the seed; the right part of the figure uses hits
from distant layers to create the seed which can give better precision
but also increases the multiplicity. This kind of algorithm is commonly
used with a Kalman filter as it follows a similar approach [15]. A
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Kalman filter provides a way to select good hits by reducing the
uncertainty to select the next hit.

Naive track following [97] approaches are used as a very simple
method where a seed is taken as a starting point. The seed is extrap-
olated to the next subdetector where a hit is expected to be, and if a
close hit is found, it is selected. This method presents problems in
situations with high density of hits, as wrong hits can be selected and
many ambiguities arise to select the next hit.

Combinatorial track following [97] uses a tolerance window at each
step, generating a tree of candidates. This local method can give good
results in selecting a true track, at the cost of high computational
complexity.

Track propagation in a magnetic field presents the problem of tracks
that are curved by a magnetic field; some magnetic fields are non-
homogeneous or it is difficult to propagate a track analytically. For
these cases various methods can be used to propagate a track, such as
a parametrized extrapolation given the measurements of the magnetic
field, or a Runge-Kutta method [19, 130].

4.2 TRACK TYPES AND SUBDETECTOR TRACKING

Different types of tracks can be identified in the LHCb experiment.
These are classified according to the subdetectors they traverse. Fig-
ure 4.6 represents a top view of the LHCb experiment, where particles
travel from left to right. The upper part of the figure shows the in-
fluence of the magnetic field across the z axis of the detector. The
lower part of the figure matches the z coordinates of the tracking
subdetectors, the magnetic field and shows a representation of the
different tracks and how these are bent by the magnetic field. Tracks
are classified as follows:

» VELO track: It traverses the VELO subdetector only. If not
matched to hits in other subdetectors, these tracks go out of the
acceptance of these other subdetectors and thus are not detected
by them.

» Upstream track: It traverses both the VELO and UT subdetectors,
going out the acceptance of the SciFi subdetector. These tracks
are also referred to as VeloUT tracks.

n Downstream track: It traverses the UT and SciFi subdetectors.

n T track: It traverses the SciFi subdetector but not the others.
These tracks are not matched to other tracks.

» Long track: It traverses at least the VELO and SciFi subdetectors,
and may have traversed the UT. These tracks give the most
information being the longest, and are the most useful ones.
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Figure 4.6: LHCb magnetic field influence and track types. Image from [39]

In the context of the LHCb experiment, long tracks play an impor-
tant role as they traverse the full magnetic field and therefore have the
most precise momentum information [136].
The interaction point where proton-proton collisions occur is sur-
rounded by the VELO subdetector. Particles that result from these
collisions originate within it, and the tracks are first reconstructed
by the VELO. A percentage of these particles could go out of the
acceptance range of the next tracking subdetector -the UT-, and the
rest of them, in acceptance, produce hits in the tracking subdetectors. A hit is produced
Right after the UT subdetector particles traverse the magnet, where its ~ with high probability,
influence will bend charged particles proportionally to their charge but a small fraction
. ) . may not produce an
and momentum. Its trajectory is then tracked by the SciFi subdetec- civation signal.
tor to get a complete picture of the behaviour of the track from the
collision point to the region after the magnet. With the hit signals
from the subdetectors, the geometry information that defines them
and the influence of the magnetic field at each point, particle tracking
is performed.
Tracking is performed by both the HLT1 and HLT2, where both
use the information from the same subdetectors to reconstruct the
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particle trajectories. Differences in the algorithms used to perform
tracking are defined by a trade-off between computing speed and
physics accuracy. The HLT1 favours a fast reconstruction due to
its synchronous mode of operation; HLT2 computes a more precise
reconstruction with information from more subdetectors which is
possible due to its asynchronous mode of operation. The general
principles to reconstruct tracks at different subdetectors apply for both
HLT1 and HLT2:

» VELO tracking: Uses the hits recorded by the pixel detector mod-
ules to reconstruct VELO tracks. These tracks are straight lines
as the influence of the magnet is paltry in the VELO region. The
vertices where the particles originate can be obtained through
the VELO tracks. VELO tracking is performed first as the initial
reconstructed tracks are used as input for the other tracking
algorithms.

» UT tracking: Hits recorded by the UT planes are used to create
tracklets. These tracklets are matched to the VELO tracks result-
ing in VeloUT tracks which can be bent paths as there is some
influence from the magnetic filed in the UT region.

» SciFi tracking: Also called Forward tracking, the SciFi stations
provide hits that are matched to both VELO and VeloUT tracks
to create long tracks. Tracks reconstructed during the forward
tracking are bent by the magnetic field as these fully traverse the
magnet.

- >

e/

Figure 4.7: Track multiplicity. Image from [53]

Tracking under the influence of the magnetic field results in an
explosion of combinatoric options for the UT and SciFi sub-detectors,
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whereas the VELO reconstructs straight line tracks. Multiple matching
hits need to be considered for each track. This situation is represented
in Figure 4.7, where a real situation would involve hundreds of tracks
per event, making the problem of finding matching hits an exponential
combinatorics problem.

Tracking algorithms are expected to achieve high reconstruction
efficiency, purity and hit efficiency with a low fake and clone rates
for different types of tracks. The computing performance of the algo-
rithms is determined by how many events per second can be processed
for a given hardware configuration. This is a key aspect of event filter-
ing in high-energy physics, specially for the LHCb experiment which
will rely only on software for its event filter system. The combination
of hardware and optimized software for it, will need to process the
30 MHz rate of events in real-time.

4.3 PHYSICS EFFICIENCY

When an algorithm is used to reconstruct a particle trajectory it will
not always reconstruct all particles perfectly: some hits from other
particle trajectories that are close may be used, some hits that belong
to a particle may not be used or noise may interfere in the recon-
struction. During algorithm development, testing and maintenance,
simulated tracks are used to test the accuracy and physics efficiency
of the algorithm. The simulated tracks are generated using Monte
Carlo simulations which produce hits and data used to reconstruct
the tracks, which later can be verified against them. When performing
tracking at LHCb, a particle is considered to be reconstructible accord-
ing to different criteria depending on the subdetector that performs
the tracking algorithm:

s VELO: A minimum of three distinct hits were recorded in the
VELO subdetector.

= UT: A minimum of one hit in one of the x layers and at least
another hit in the u or v layers.

» SciFi: A minimum of six hits is needed. These hits must be
distributed as one hit per station x layer, and at least one hit for
each u or v layers.

Various parameters are measured to determine physics efficiency.
Table 4.1 presents an example of these parameters for different track
types: high reconstruction efficiency, purity and hit efficiency, ex-
plained below, combined with a low clone and fake rate are expected
from a good reconstruction algorithm. These are verified by identify-
ing each hit recorded during the event as follows [129]:

= Track reconstruction efficiency: It is measured with simulation data
comparing the number of tracks correctly reconstructed against
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Table 4.1: Physics efficiency indicators.

Track type Reconstruction Clone Purity Hit
efficiency rate efficiency

Velo 43.16% 0.80% 99.44% 96.66%
Velo+UT 49.45% 0.80% 99.46% 96.65%
Velo+UT, p > 5 GeV  71.67% 0.86% 99.55% 97.46%
Long 60.34% 0.86% 99.51% 96.97%
Long, p > 5 GeV 72.62% 0.83% 99.56% 97.51%
Long from B 81.22% 0.62% 99.47% 97.39%
Long electrons 18.40% 2.76% 97.75% 95.11%

the number of tracks that are reconstructible. To be considered
reconstructed, 70% of the hits on a track need to be associated to
the particle from the Monte Carlo simulation. The reconstruction
efficiency is given as:

Nreconstructed & reconstructible

Nreconstructible

Clone rate: When two or more tracks are associated to the same
Monte Carlo particle, only one is considered to be reconstructed
correctly and the others are counted as clones. The clone rate is
the number of clone tracks relative to all reconstructed tracks.
The clone rate is defined as:

N clone tracks

Nreconstructed tracks

Fake rate: A track is considered fake when it is reconstructed but
it cannot be associated with a Monte Carlo particle. Fake tracks
are also referred to as Ghost tracks. The fake rate is defined as
follows:

Nfake tracks

Nreconstructed tracks
Purity rate: It is determined by the ratio of number of hits from
the reconstructed particle that are found in the real particle, and

the number of hits of the reconstruced particle.

Nhits from real particle

Nhits in reconstructed particle
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= Hit efficiency rate: It is determined by the ratio of number of hits
from the reconstruced particle that are found in the real particle,
and the number of hits of the real particle. It is the ratio between
the hits that correspond to the real particle and the hits in the
real particle:

Nhits from real particle

Nhits in recomnstructed particles

We refer to physics efficiency to describe how good a tracking algo-
rithm performs, analogous to a cost function that uses the described
parameters, reconstruction efficiency, clone, fake, purity and hit effi-
ciency rates. There is no analytical form of such cost function, where
an algorithm is said to attain good physics efficiency if the reconstruc-
tion efficiency, purity and hit efficiencies are high, and the clone and
fake rates are low.

4.4 KALMAN FILTERING

Tracking at LHCb experiment performs a last fitting step applying
a Kalman filter to the track to reduce the error associated with it.
The Kalman filter [86] is a linear quadratic algorithm used at LHCb
experiment to estimate the particle trajectories as they travel through
the detector. The tracking subdetector provides position with an
associated error as inputs for the algorithm. The Kalman filter is one
of the main time-contributors of the LHCb baseline in the HLT1.

A Kalman filter receives measurements as input, typically over time,
which contain an amount of error and noise. It is widely used in
GNSS, guidance and navigation [71, 138], but it can be applied to any
system with uncertainty in its measurements which is also dynamic.
An educated guess about the system is needed to be able to predict
the next step of the system.

At LHCb the Kalman filter does not receive measurements over time
but over the z axis of the detector, as the events are not measured with
a time variable. As particles travel from the interaction point to the
subdetectors the measurements can be sorted and thus the Kalman
filter can be applied.

The Kalman filter prediction, measurement and output is a state
vector X and a covariance matrix P for every iteration. Each iteration in
the LHCb Kalman filter is a hit in a tracking subdetector at a given
z axis position. The state vector X, contains information about the
particle for position (x,y), slope (tx, ty) and charge over momentum

(q/p):

X, =(xytxty q/p) (4.1)
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Each measurement of a state is assumed to be random and Gaussian
distributed, where an error is associated to the measurement in the
form of a covariance matrix P, that indicates the relationship between
the mean values (the most likely ones) of the state i, and the variance
they could have o2. The covariance matrix is always symmetric and it
is described as follows:

PX,X Px,y Px,tx Px,ty Px,q /P
Py x Pyy Py tx Py ty Py,a/p
PZ - Ptx,x Ptx,y Ptx,tx Ptx,ty Ptx,q /P (42)
Piyx Py Piyix  Pryty Piy,q/p

Py/px P p p p

q/py q/ptx q/p.ty q/p.q/p

4.4.1 Predict stage

The Kalman filter is composed of two stages, the Predict and Update.
To predict how a state X, in the next position of the tracking detectors
will be, a Transport matrix F, is used. The state X,_1 is multiplied by
the Transport matrix F, to calculate the next state X,. If every value of
the state is multiplied by a matrix we apply the following property:

Cov(x) =P

Cov(Fx)=FPF' 43)

Considering this property, the state and covariance matrix calculations
are predicted like the following:

Xz = szz—l

(4-4)
P71 =F.P,1F)

The previous equation does not take into account the external in-
fluence that may alter the measurement with elements that are not
related to the state. For the LHCb Kalman filter the magnet creates
a magnetic field which will affect the charged particles. This known
external influence is modelled as a transport vector calculated with a
control vector Ui, and control matrix B,. This vector is added to our
prediction step to correct the known external influence. For the model
to take into account the unknown external influence or noise, a noise
matrix Q is appended as a covariance matrix for the system to model
the noise influence.

The final prediction step with the noise matrix lays as follows:

722 = inz—l + Bz 11z
P, =F.P, FI + Qz
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Figure 4.8: Kalman predict stage track representation

The prediction step in track reconstruction extrapolates the position
where the particle will be at some z position in the direction were
the particle is traveling. This is represented in Figure 4.8. Previous
predictions are represented by a light red dot, and the hit measurement
position of the hit is represented by a red dot. Some measurements
will be very close to the actual prediction, and the final real position
is determined by Kalman filter in the update stage.

4.4.2  Update stage

The prediction stage results in a state and covariance matrix that uses
the previously calculated value (z —1). The update stage calculates
the final state and covariance matrix values that will server as input for
the next iteration by correcting the predicted ones. It combines the
predicted value with the read given by the sensors of the detector, and
gives more weight to one part or the other through the Kalman gain
matrix K. This step takes into account the measurements from the
sensors, which are modelled with a Projection matrix H, that relates

the sensor reads to the state, giving the range of value this could take.

This matrix is applied to the state and covariance as follows:

Xexpected = H; X,

(4.6)
Pexpected = Hz Pz H;—

For the update stage a measurement pre-fit residual {j, is calculated.

It uses the measurements, Projection matrix and observation noise v,
as inputs to calculate it as follows:

QZ :vZ+HZ(XZ_XZ—]) (47)

To give weights to the prediction and the measurements, a Kalman
gain matrix K, is calculated. To calculate it, a pre-fit residual covariance
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S, is calculated. It combines the covariance of the sensor measurement
R., the Projection matrix H, and predicted covariance matrix P, so that:

CHT =P, H]
S, =H, CHT +R, (4.8)
K, = CHT S;!
A e
//
=
i g;ithh,tiJu
Updated

Figure 4.9: Kalman update stage track representation

By putting it all together we get the update step:

—/ — ~
X, =%, +K;. 1,

P, =P,—K, H, P, (49)

The update step is represented in Figure 4.9. The prediction previ-
ously calculated is represented as an extrapolation with the light red
dots. The actual hit measurement, read as an input, and used during
the update step to be combined with the prediction and pondered by
the Kalman gain, is represented as an extrapolation with the red dot.
The real position of the particle is given in the end of the update stage
and usually results in a different position from those predicted and
measured but that more accurately represents the real position where
the particle crossed in that z position.

The final flow diagram from the equations that involve the predict
and update stages is represented in Figure 4.10. Here the prediction
stage is represented at the top of the Figure where the input from the
previous updated node is depicted in blue. This node is then used to
calculate a prediction status and covariance matrix depicted in pink.
The input used to calculate is represented by the letters of the matrices,
with the transport F,, control matrix B, control vector Ui, and noise matrix
Q. represented by pointing to the predict stages were these are used:
for the status or covariance matrix. The update stage is depicted in the
lower part of the figure, were the just calculated status and covariance
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Figure 4.10: Kalman predict and update stages relationship

matrix of the prediction are used as an input to produce the updated
status and covariance result that will be used in the following predict
and update. The Projection matrix H, is used in combination with the
sensor measurement R, to produce the Kalman gain matrix X, which is
used in both the status and covariance matrix update with the pre-fit
residual {j, also used for the status calculation.

4.5 SUMMARY

This chapter presented an overview of track reconstruction, or
tracking, at the LHCb experiment. Different algorithms and methods
are introduced, which are used to obtain the resulting tracks from an
event; some are better suited for more specific types of reconstruction
problems and different results are achieved. The different types of
tracks that can be identified at LHCb are shown, and the indicators

used to measure the efficiency of different algorithms are explained.
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These tracks and indicators vary between the different subdetectors
involved in providing hits for the reconstruction algorithm. Finally
the Kalman filter is explained with more detail as one the main topics
of this thesis: this algorithm is used to produce more accurate tracks
at the expense of extra computing time, and it is used in different
stages of the reconstruction process.
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PARALLEL COMPUTING

Parallel computing is often defined as the ability of one or more
computers to process independent computations simultaneously. At
a hardware level, parallelism is found in different forms: various
independent, network-connected computers can cooperate to compute
tasks in parallel; a multi-core processor contains a number of cores ca-
pable of processing tasks simultaneously; accelerators can be attached
to computers to work in parallel; vector processors; and single cores in
a chip use instruction pipelines and superscalar pipelines to compute
instructions in parallel.
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Figure 5.1: Microprocessor trend over the years. Image from [127]

The motivation to implement more parallelism into chips is related
to Moore’s Law [107], which states that processor manufacturers are
able to put double the number of components per integrated circuit
every 18 months. This prediction still holds true as depicted in Fig-
ure 5.1. During the first years processor manufacturers increased the
clock frequency to continue gaining performance until a point were
the temperature and power required to run at higher frequencies was
not worth it, the free lunch is over. Processor manufacturers continued
doubling the number of transistors every 18 months, but the clock
speed and power consumption flattened or even lowered in favour
of multi-core architectures. Figure 5.1 also shows how manufactures
changed the number of cores put into processors after the frequency
and power stagnated. The number of transistors continued to increase
due to the improvements in the litography process. With the presented
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limitations, processor manufacturers started using the increased num-
ber of transistors to put more cores and slightly reduce the processor
frequency. This is well represented by Graphics Computing Units
(GPUs) which present a high number of processing cores with a lower
clock frequency, but are able to deliver higher Floating Point Opera-
tions per Second (FLOPS). The same tendency is explored with CPU
many-core processors, such as the Intel Xeon Phi that uses the x86
architecture to deliver high core count with reduced clock frequency
to offer higher FLOPS, as explained in Section 5.2.2.2.

Multi- and many-core processors opened new possibilities for soft-
ware programs to exploit this type of parallelism to run programs
faster by dividing them into smaller pieces. To predict how much
faster a program could run, various methods where developed which
are described in Section 5.1.

This thesis focuses on designing and implementing software algo-
rithms for parallel architectures in the context of high-energy physics.
Its research focuses on using the resources offered by different hard-
ware architectures efficiently to achieve high throughput and main-
tainability with parallel technologies. Algorithms can be designed,
changed and optimized around the exposed architectural characteris-
tics of the different platforms to exploit their performance. The main
goal of the real-time LHCb computing is to deliver a combined event
throughput of 40Tb/s for a given hardware configuration. This can
be achieved with different programming languages, frameworks and
technologies; but the chosen hardware architecture limits the available
options and programming models that can be used.

This chapter is structured as follows: In Section 5.1 speedup and
scalability concepts are introduced, Section 5.2 discusses different
parallel architectures concepts including memory and accelerators,
and Section 5.3 gives a summary of this chapter.

5.1 SPEEDUP AND SCALABILITY

A parallel architecture allows to compute a task in less time by
dividing the work, and processing the divisions in parallel. The
amount of time that can be saved by parallelizing tasks, and processing
them with a parallel architecure can be expressed in various ways
and depend on various factors that are explained in this chapter. To
measure the performance of a computation usually the time it takes
to complete is used, which allows to compare different computations
and determine which one is faster. To compare how much faster a
program is, we compare them in terms of speedup:

T
Speedup = — (5.1)
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Equation 5.1 expresses the relative performance between two sys-
tems solving the same problem, each with different resources. n and
m are the number of parallel processors or resources available to com-
pute the same problem. Typically m > n and n =1 is used to express
how much faster a system with m parallel resources is compared to
the sequential one, but other speedup options can be used to compare.
The scalability of a system is determined by its ability to achieve good
speedup when using more parallel resources.

Amdahl’s law [6] gives an upper bound to the scalability a system
could achieve. Under this law, a program’s execution time can be
divided into two parts: the non-parallelizable, sequential work and the
parallelizable work. Given n number of processors to compute the pro-
gram, and being p the parallelizable portion of the program, Amdahl’s
law can be depicted in Equation 5.2:

1
T—p+1

n
n=1 n=2

Figure 5.2: Amdahl’s law representation

Speedup < (5-2)

sequential

n=4

parallel

Figure 5.2 represents how Amdahl’s law limits how fast a program
could run, no mater how many parallel resources are given to the
work. Even on an infinite number of processors, the sequential part
will dominate the computation.

John Gustafson’s view proposes a solution to this problem through
Gustafson-Barsis” law [72]. Rather than viewing the problem to solve
as a fixed-sized problem, Gustafson proposes a law were the parallel
part of the work increases as more resources are put into solving
it, as shown in Figure 5.3. The time to solve the problem remains
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rather constant while the work size increases, which is formalized in
Equation 5.3:

Speedup < 1—p+np (5.3)

n=1 n=2 n=4

Figure 5.3: Gustafson-Barsis’ law representation

sequential

parallel

Both laws apply to different problems. To calculate the speedup
that a single computer node can achieve, Amdahl’s law better predicts
the achievable speedup. For systems composed of various nodes or
systems where resources can be expanded to distribute the work,
Gustafson-Barsis’ law should be used.

A different way of predicting speedup for the work-span model [132]
offers a more realistic prediction for parallel programs. This model
considers that the parallel part of a work cannot be parallelized per-
fectly. It divides the work into tasks and describes the relationship
between them as a graph, as can be seen in Figure 5.4. The important
part of this model is to reveal the critical path of the graph, the shortest
path through the nodes to complete the work. The length of this
critical path determines the achievable speedup. If work is the number
of tasks that define the graph, and span is the critical path of the graph,
the work-span model speedup is given by:

work
span

Speedup < (5.4)
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Figure 5.4: Work-span model representation

5.2 PARALLEL ARCHITECTURES

Parallel computing architectures can be classified based on how
its control flow and data management are arranged. Flynn’s taxon-
omy [62] characterizes various types of architectures as follows:

» SISD (Single Instruction, Single Data): a processor with no parallel
capabilities that computes data sequentially, a scalar processor.

» SIMD (Single Instruction, Multiple Data): a processor that can
handle various data streams in parallel, applying the same in-
struction to different data. Instructions are executed sequentially.

o SIMT (Single Instruction, Multiple Threads): it is a tiled SIMD
type that uses masking to compute in groups of threads.
Although these architectures expose hundreds or thousands
of threads, these blocks of threads actually share control
units and work similarly to other SIMD machines. This is
typically found in Graphics Processing Units (GPUs), and
it is discussed more in detail in Section 5.2.2.1

e SPMD (Single Program, Multiple Data): is a higher level
abstraction compared to SIMD. Various programs run si-
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Figure 5.5: Flynn’s taxonomies

multaneously on different data. Both are not mutually
exclusive, and as the Intel Implicit SPMD Program Com-
piler (ISPC) [116] shows, the SPMD model can be used to
parallelize with the vectorization units.

» MISD (Multiple Instructions, Single Data): different instructions
are applied over the same data stream. It is not very used, and
when used its typically for fault tolerance.

= MIMD (Multiple Instructions, Multiple Data): the most common
type of parallelism, where multiple cores or threads or dis-
tributed computers apply different computations over different
data, simultaneously. This is found in multi-core processors and
distributed systems.
This architecture
classification and This architecture classification is depicted in Figure 5.5. Modern
parallelism levels are computers are typically SIMD and MIMD combined machines that
based on Hennessy oy 510t parallelism in both ways. Parallelism on these architectures
& Patterson
literature [77]
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can be exploited at different levels: instruction, data and thread-
level parallelism. A fourth level of parallelism can be included when
different computers cooperated connected through a network: request-
level parallelism, but it is out of the scope of this thesis. These are
briefly described here:

» [nstruction level parallelism (ILP): This kind of parallelism benefits
from the fact that modern processor circuitry expose multiple
funcional units that can operate in parallel, inside a single core.
It measures the number of instructions that can be executing at
the same time. Modern architectures are already limited by the
level of ILP that can be reached, where the major limiting factor
are the data dependencies between instructions which force the
instruction to run sequentially. Different techniques are applied
to achieve it: superscalar execution utilizes multiple functional
units from the processors core to execute different instructions
simultaneously; instruction pipelining benefits from the division of
instructions into various steps to overlap these steps. Pipelining
allows to deliver more instructions per unit of time without
executing them in parallel.

» Data level parallelism (DLP): When multiple different data can
be provided to the processor, and the processor has dedicated
hardware functional units such as vector units, DLP can be ex-
ploited. It allows to execute the same instruction over different
data in a single instruction; the speedup that can be achieved
depends on the number of data units that can be provided to the
hardware. Processors with vector units and Graphics Processing
Units (GPU) 5.2.2 are examples of hardware that can exploit this
type of parallelism.

= Thread level parallelism (TLP): It allows programmers to schedule
units of execution that progress concurrently or simultaneously
depending on the hardware and software constrains. Two major
types of TLP can be identified: hardware multithreading occurs
when various threads are executed on the same processor and
compete for the hardware resources inside the processor; mul-
tiprocessing schedules the threads to run in different processors
where the execution is separated by the hardware.

A specific optimization that combines both ILP and TLP is Simultane-
ous multithreading or SMT. SMT exploits TLP to try use the functional
units not being used by a thread scheduling a different thread to use
them. Two threads can then run in parallel, to a certain degree, inside
a single core or processor. SMT is highly dependent on the workload
that exploits it and how resources will compete between them [135].
Major processor manufacturers use this technique to improve perfor-
mance, for instance Intel implements it under the name Hyperthreading
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Figure 5.6: AMD implementation of SMT in Zen microarchitecture. Image
from [34]

with up to 4-way SMT in the Intel Xeon Phi, IBM implements up to
8-way SMT with its POWERS, and AMD implements 2-way SMT on
its Zen architecture, as can be seen in Figure 5.6. In this figure, two
threads could run in parallel by using different resources that are
competitively shared.

5.2.1  Memory

Modern computers present various levels of memory; these are orga-
nized in a hierarchical manner. This hierarchy is designed to minimize
the effect of the memory wall [112]: as memory capacity grows larger,
its latency is increased and dominates computations. To address
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this problem a hierarchy of different sized memories is implemented,
where the smaller ones are closer to the processor, presenting orders
of magnitude smaller latencies, as depicted in Figure 5.7. Caches
minimize the memory wall problem but still present problems: these
use a percentage of the silicon chip area, and their effectiveness greatly
depends on the locality of reference.

Latencies Capacity Memory Price / speed
<1 ns 100s B Registers N
expensive
fast
1-10ns | KB - MB Cache |
20 - 100 ns | MB - GB mﬁiﬁiy
cheap
slow
10ms | GB-TB Disk | <7

Figure 5.7: Memory hierarchy and its latencies.

The locality of reference indicates that when a processor accessed
certain memory locations, it will probably access those locations again.
If an application is designed with locality in mind, the probability that
those locations are accessed more frequently increases. These diffeernt
levels of memory store these locations that the processor predicts will
be accessed, and if it succeeds it will take less latency to get that data
to the processor.

Computer architectures can be categorized based on its memory
organization with respect to its processors:

» UMA (Uniform Memory Access): all processors accessing the
memory are equally distant from it. This limits its possible speed,
but simplifies reasoning about how will memory be accessed.
It also limits the possible total bandwidth of the system, as its
access occurs through the same channel for all processors.

= NUMA (Non Uniform Memory Access): part of the memory is
locally closer to one of the processor, so its access to memory
will be faster compared to the others. The memory access time
to certain memory location will be different depending on the
processor that access it. Applications implemented with this
constraints in mind could be faster, but non NUMA aware appli-
cations could potentially be slower. With NUMA more memory
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controllers are available which increases the possible bandwidth
of the system.

According to the memory communication model, computer archi-
tectures can be organized in:

» Shared memory: all processors use the same virtual memory
address space, and memory can be directly accessed.

= Message passing: processors access to different virtual memory
address space, being limited to directly accessing its own mem-
ory.
Multiple data is
processed in the form LHCb HLT will focus on parallel data processing architectures

of independent  (SIMD and MIMD) given the nature of the challenge where multi-
- dre;ze;;f;z:;: ple different data needs to be processed in real-time. Both UMA
and NUMA architectures are being considered, where the NUMA
architectures such as the Intel Xeon Phi or the IBM Power processors
need of specific optimizations to leverage them. Single nodes are
optimized as shared memory machines, leaving the communication
between the nodes out of the scope of this thesis. Single nodes can be
optimized independently as each of them can accommodate hundreds
of independent events.

5.2.2  Accelerators

Accelerators are used in computing for different specific purposes;
all of them share the goal of doing some computation faster by taking
advantage of the specifics of the hardware they were designed for.

GPUsarealsoused ~ There are accelerators for graphics like Graphics Processing Units
Jor general purpose (GPUs), Digital Signal Processors (DSPs) for signal processing or
C‘ZIZJP ggzg general algorithms with Field Programmable Array Gates (FPGAs).

For this thesis we focus on GPUs and the Intel Xeon Phi accelerators.

5.2.2.1 GPUs

GPUs are widely used in scientific and high performance computing
for their massively parallel architecture and support for floating point
operations. These specialized processors have reduced clock speed
compared to CPUs, but are able to include more processing cores
on the chip. This design favours high-throughput computing, which

The NVIDIA V100 is used for some types of computations. A modern scientific GPU

features the Volta like the NVIDIA Tesla V100 features a clock speed of 1.3 GHz, but

architecture. offers more than 5120 compute units. Its architecture is depicted in
Figure 5.8 [84].

A GPU like the V100 features dozens of Streaming Multiprocessors
(SM) as shown in Figure 5.8. These are grouped into Texture Pro-
cessing Clusters (TPCs) which are then grouped into GPU Processing
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Figure 5.8: NVIDIA V1oo Full GPU. Image from [110]

Clusters (GPCs). Pairs of memory controllers are connected to the
High Bandwidth Memory slots and to the L2 cache. Figure 5.9 shows
the architecture of each SM. Memory units are shown in blue where
the L1 cache is shared for four processing blocks, and registers and L0
cache is individual to each. Control units warp scheduler and dispatch
unit manages threads by assigning resources to the compute units in
green. Data transfer between cache and main memory is processed by
the load and store units, with special functional units for operations
such as square roots or cosines. Compute units are depicted in green,
and these divided for floating point in different precisions, integers
and tensor cores for machine learning training [52].

GPUs have been used before in the field of high-energy physics
with success. The ALICE experiment at CERN implemented track
reconstruction in GPUs obtaining different speedups compared to
the previously used hardware [123]. We note how the approach we
follow is different than the one implemented in ALICE, as we aim
to implement the full High Level Trigger to run in GPUs, including
the decoding and tracking of all subdetectors, thus avoiding much of
the needed data transfer between main memory and GPU memory.
Other HEP experiments have seen significant improvements when
using GPUs to amend the performance of online selection [25, 131],
or using a common code base to target both CPUs and GPUs using
OpenCL, which shows the performance improvement of GPUs while
supporting the x86-64 architecture [64].

Other high-throughput scientific fields, such as DNA sequencing,
have improved their computing performance with GPUs. The Arioc
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Figure 5.9: NVIDIA V100 SM. Image from [110]

read aligner showed how using parallel algorithms with GPUs im-
proved DNA sequencing throughput, achieving an order of magnitude
faster alignments [141, 142]. Pawar et al. benchmarked various DNA
sequencing algorithms with different GPU-based tools against a CPU
one; concluding that GPUs will replace CPUs in DNA sequencing
for its higher-throughput processing [114]. Other DNA-related fields
exhibit similar speedups: Samsi et al. [128] demonstrated how a sin-
gle GPU is able to compare millions of DNA samples in seconds,
Cadenelli et al. [26] compared offloading a genomics workload into
FPGAs and GPUs from a CPU, resulting in the GPU outperforming
both, although the GPU consuming more energy.
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Other scientific fields benefit from high-throughput, real-time pro-
cessing in GPUs. Radio telescopes need to filter data in their data
acquisition systems; where software frameworks employing GPUs like
Bifrost [44] have shown significant performance improvements. Other
real-time radio telescope experiments studied the viability of using
GPUs, where they encountered large computing speedups at a local
level, but were limited by I/O when using multiple GPUs [96]. Others
in the same field have successfully implemented GPU optimization
schemes [80] achieving a 6x speedup compared to the CPU scenario,
or used a GPU-based software framework and aggressive optimiza-
tions to be able to process data rates close to 1Tbit/s, like the CHIME
Pathfinder radio telescope [119].

GPUs have also been studied in scenarios requiring real-time pro-
cessing at fusion experiments [94] greatly reducing the wall-time
compared to the CPU version. Real-time split-and-merge executions
have been improved in multi-GPU scenarios by Han et al. [74], and
X-ray computer tomography reconstruction in GPUs has shown how
different optimizations can be implemented and combined to speedup
GPU computations [17].

5.2.2.2 Intel Xeon Phi

The Intel Xeon Phi KNL 7210 self-boot processor offers significant
improvements in scalar and vector performance over its predeces-
sor Knights Corner. It is especially well-suited for highly parallel
workloads thanks to its high bandwidth memory and wide Vector
Processing Units (VPUs) [83]. Specifically, it is equipped with up to
72 Airmont (Atom) cores, each of which comprises two 512-bit vector
units capable of executing AVX-512 SIMD instructions. This processor
can be considered a many-core architecture as compared to other
x86 processors it presents a higher degree of parallelism with more
cores, SMT threads and vectorization units. The chip is thus able to
deliver a theoretical peak double precision floating point performance
of up to 3 TFLOPs. It is important to note that each core offers 4-way
Simultaneous Multithreading (SMT), also known as Hyper-Threading.
Finally, the KNL supports up to 384 GB of DDR4 RAM and 8-16 GB of
Multi-Channel DRAM (MCDRAM), which provides a bandwidth of
400GB/s.

As illustrated in Figure 5.10, the cores are interconnected in a 2D
mesh of tiles, each one integrating two cores that share a 1 MB L2
cache. In order to exploit the resources provided by this architecture,
this mesh can be configured in one of three cluster modes.

» All-to-all mode treats all available memory (DRAM and MC-
DRAM) as a single virtual NUMA node. With this mode, the OS
is not aware of the underlying NUMA architecture, so memory
cannot be explicitly allocated to specific physical nodes.
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Figure 5.10: Intel Xeon Phi Knights Landing SNC-4 cluster mode.

» Quadrant mode divides the mesh into four virtual quadrants,
but they are exposed to the OS as a single NUMA domain. With
this mode, software does not need any further optimization in
order to take advantage of the architecture features.

= SNC-4 mode also divides the mesh into four quadrants. However,
each of them is presented as a different NUMA node to the OS.
This setting offers lower latencies but the software needs to be
NUMA-aware to benefit from it.

Figure 5.10 shows the SNC-4 cluster with Flat memory configuration.
This mode creates 4 clusters with equal number of tiles (two core units)
each. Every cluster groups two NUMA nodes (surrounded by green
boxes) where one is the high-bandwidth memory MCDRAM, and
the other contains both the cores and the DRAM memory. Cores are
represented with tiles, and the memory in orange boxes.

Furthermore, the KNL architecture has the ability to be configured
in one of three memory modes: cache, flat or hybrid. Cache mode
treats the MCDRAM as a traditional last-level cache (LLC), which is
used transparently by the cores on the NUMA node. In contrast, the
flat mode, both DRAM and MCDRAM are on separated NUMA nodes.
Hybrid mode splits the MCDRAM in half, hosting 8 GB for LLC and
the remaining 8 GB for an independent NUMA node, combining cache
and flat mode.

5.3 SUMMARY

This chapter gives an overview of the parallel computing aspects
relevant to this thesis. It covers the motivation to create parallel



5.3 SUMMARY

hardware and software that exploits it, and describes different ways

to measure the gains that can be obtained by parallelizing the work.

The main types of parallel architectures and parallelization levels are
shown, including how memory can be organized both at a physical
and logical level. Finally two main types of accelerators are described
as part of the heterogeneous computing that involves highly parallel
processors: GPUs and the Intel Xeon Phi, both used extensively in this
thesis.
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KALMAN FILTER OPTIMIZATION FOR HEP
WORKLOADS

Various Kalman filter implementations are used at LHCb for differ-
ent stages of the reconstruction algorithms. Both HLT1 and HLT2 use
a Kalman filter at the end of their reconstruction chain; once a track is
reconstructed with the hits from all the subdetectors, the Kalman filter
goes over all the hits in the track. Kalman filters are also used as part
of the reconstruction algorithms of a subdetector, i.e. implementations
of the VELO reconstruction often use a simplified Kalman filter as
part of the process. As part of the HLT2, a vectorized implementation
was developed which is used for developments and optimizations
in this thesis [28]. This Kalman filter algorithm is implemented in
the LHCb framework with the name TrackVectorFitter and provides
a SIMD optimized version for LHCb reconstruction. A standalone
implementation of the algorithm is available under the name cross-
kalman, which provides a way to test the vectorization capabilities
across different hardware architectures. This version implements a
simple parallelization scheme where each event is processed in a
different thread.

This chapter is composed by two main sections:

= Section 6.1: The implementations and optimizations performed
to a reference Kalman filter implementation to parallelize it
intra-event, targeting the SMT capabilities of the Intel Xeon Phi
processor.

= Section 6.2: A version using generic parallel patterns to simplify
its parallelization, simulate a better real-world scenario of real-
time data-taking, and exploit the Intel Xeon Phi characteristics
with the generic parallel patterns implementation.

Some parts of this chapter have been published in the following
journal/conference papers:

» Placido Fernandez Declara et al. «A parallel-computing algo-
rithm for high-energy physics particle tracking and decoding
using GPU architectures.» In: IEEE Access 7 (2019), pp. 91612—
91626. ISSN: 2169-3536. DOIL: 10.1109/ACCESS.2019.2927261

6.1 SMT MULTI-THREAD KALMAN FILTER FOR INTEL XEON PHI

High-energy physics software commonly benefits from an embarrass-
ingly parallel distribution of tasks: there are multiple events per second
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to process and each event produces multiple particle trajectories. Pro-
cessing these workloads involves multiple independent inputs in the
form of different events, particles or tracks, which allows to process
them independent from each other. The LHCb experiment processes
millions of collisions every second, and in the previous runs each event
was processed in parallel as a simple but effective way of distributing
the work for the available hardware. As events get larger and more
collisions are recorded per second after each upgrade, opportunities
for intra-event parallelization will allow for a better optimization of
modern hardware with multiple parallelization levels. Inside each
event, dozens to hundreds of particle tracks are to be reconstructed,
where each track can be processed independently from each other. At
a lower level, the algorithms used to reconstruct these tracks expose
different opportunities for parallelization which can be exploited.

Kalman filters are a naturally sequential problem; the next node can
not be processed until the result from the previous one is computed.
This is the case for problems where nodes of the Kalman filter are
added with each measurement, like a moving object that keeps updat-
ing its position, often in real-time. At LHCb all track measurements
from the detector for each event are received as if these happened
at the same time; there is no time coordinate to be considered. This
particularity allows to process the first, last and all measurements in
between at the same time, which presents opportunities to distribute
the work in a parallel way.

Various levels of parallelization are identified in this thesis for
LHCDb’s Kalman filter. At a higher level it can be divided into three
stages: forward, backwards and smoother. Depending on the imple-
mentation, the operations performed in the backwards and smoother
stages can be combined to form a single step for computing efficiency
reasons, but the same mathematical operations are performed. These
stages correspond to the processing of a full track in one direction,
and can be described as follows:

» Forward: The Kalman filter is applied along the track in forward
direction, from the collision point to the rest of the subdetectors.

» Backwards: The Kalman filter is applied to the same track in
the opposite backwards direction, from the latests subdetectors
(Muon subdetectors) to the collision point.

» Smoother: The resulting states from the forward and backwards fits
are combined to further reduce the error of the track.

This steps can be represented in Figure 6.1, where the forward stage
would process a track from the VELO to the SciFi Tracker, the back-
wards stage would process the whole track in the opposite direction
from the SciFi Tracker to the VELO, and the Smoother stage can be
process in any direction by combining the two. By performing two fits
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in opposite directions and combining the measurements, the resulting
error for the track can be further reduced at the beginning and end
of the track. If only one fit in one direction was to be performed, the
initial covariance matrix which presents a higher uncertainty would
result in the first hits having a higher error. During the forward step the
fitted nodes are saved for later use and computations. While the back-
wards step is processed, as soon as a resulting node is computed it can
be already smoothed. This optimization can be applied for computing
performance reasons in some implementations.

Magnet

Reference node e

O Signal node SciFi
Tracker

RICH
VELO UT
- \F — — ﬂ,
Pre : Main : Post

X
L
Figure 6.1: Reference hits and signal hits with sections of a track.

The input for the Kalman filter are the reconstructed tracks that tra-
versed the tracking subdetectors. The selected hits from the VELO, UT
and SciFi subdetectors are used as the input track the Kalman filter re-
ceives. The VELO and UT subdetectors are separated about one meter
with the RICH being placed in between them. The distance between
the UT and the SciFi amounts for over four meters, accommodating
the magnet in between them. This distance between subdetectors
increases the uncertainty of the filter to correctly predict and update
the next hit position in the track. In some implementations reference
hits are introduced in the regions in between tracking subdetectors
to mitigate the effects of the error in the Kalman filter as depicted
in Figure 6.1. Hits triggered by the tracking subdetectors are called
signal hits, whereas the reference nodes are virtual hits for large track
sections that do not have a subdetector signal. This distinction allows
to differentiate sections of the track where different computations are
applied. When processing a track it can be divided into sections that
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are processed differently, where this sections are identified by the
reference hits.

’ Forward ‘

Pre Main Post

Update

’ Backward ‘

Post Main Pre

Update Update Update

’ Smoother ‘

Main

Figure 6.2: Kalman filter overall steps, with the forward, backward and
smoother, each with various predict and update steps

The processing along the track differs depending on the section of
the track. A different math is applied to the first section of the track
compared to the main and last ones. This presents three versions of
the Kalman filter that can be separated and scheduled in a different
manner. To differentiate these sections of the track, the reference
and signal hits are used: reference hits are virtually placed where
a hit would have been triggered if a tracking subdetector was to be
found in that region; signal hits are the actual hits where tracking
subdetectors are placed. Three sections of the track are distinguished
by the placement of these hits, as depicted in Figure 6.1:

= Pre section: It includes the signal hits until the first reference hit
is found.

» Main section: It includes all reference and signal hits until the
last reference hit is found.
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» Post section: It is composed by the remaining hits from the last
reference hit.

This logical separation for the track can be applied in both forward
and backwards directions depending on the computations being ap-
plied. The overall steps are shown in Figure 6.2. These steps allow
for parallelization opportunities inside a single track and potentially
introduce speedups.

The finest grain of parallelization can be achieved by splitting the
predict and update steps that are found in every Kalman filter, as
explained in Section 4.4. Inside each track and pre, main or post section,
various nodes are processed following the equations that involve these
two final steps. The update step cannot be computed without the result
of the predict step, when both the prediction and the measurement are
combined to give the final results for the node.

Theoretical Peak Floating Point Operations per Clock Cycle, Double Precision
10* T T T

FLOPs per Clock Cycle

INTEL Xeon CPUs +
NVIDIA Tesla GPUs —Jil—
AMD Radeon GPUs —{)—
INTEL Xeon Phis -
. f

2008 2010 2012 2014 2016
End of Year

Figure 6.3: Intel Xeon Phi, Intel Xeon, NVIDIA Tesla and AMD Radeon
architectures FLOPS compared. Image from [126]

As there are thousands of events per second, each containing dozens
or hundreds of tracks, the Kalman filter processing of every track in
real-time is a good candidate for highly-parallel architectures, such
as the Intel Xeon Phi presented in 5.2.2.2. The lower clock frequency
of its architecture allows to introduce a higher number of processing
cores, which increases the maximum theoretical peak floating point
operations per second (FLOPS) compared to a standard Intel Xeon
architecture. This architectural change brings the floating point per-
formance closer to the ones found in GPUs, as seen in Figure 6.3.
This figure shows the evolution in terms of FLOPS for the major GPU
architectures, the Intel Xeon and Intel Xeon Phi architectures. The
Intel Xeon Phi is situated below the top scientific NVIDIA GPU, the
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Tesla P1oo, but closer to it in comparison with the same year Xeon
processor: the E5-2699 v4.
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Figure 6.4: Intel Xeon Phi roofline plot. Image from [115]

The cross-kalman implementation has already vectorization optimiza-
tions implemented, exploiting processor vector lanes efficiently. A
Roofline model [140] of this Kalman filter implementation for the Intel
Xeon Phi indicates that while this implementation is close to the opti-
mal achievable performance, there is still some room for improvement,
as depicted in Figure 6.4. This plot shows the performance of the
application being run and its arithmetic intensity on each axis. The
arithmetic intensity is the number of FLOPS the application computed
for the amount of bytes needed to compute each FLOP, showing how
memory bound an application is. The plot also shows the maximum
performance that an application can reach for that processor as lines
that start diagonal and become horizontal: for a given type of mem-
ory, the diagonal shows how many FLOPS can be achieved if the
accesses for that memory are always successful. The horizontal line
indicates a compute limitation of the processor, where the actual algo-
rithm needs to be changed to improve. For the application to further
improve, three approaches can be followed: maximizing the in-core
performance, maximizing bandwidth or minimizing traffic.

A different insight into the algorithm performance can be analyzed
with its scalability. As shown in Section 5.2.2.2, the Intel Xeon Phi
contains between 64 and 72 cores with 4 hyperthreads each. This is
reflected in Figure 6.5 where the application shows great scalability
while using the cores, but throughput diverges more from the perfect
achievable speedup once the hyperthreads start being used. Although
this behaviour is expected because the hyperthreads need to compete
for resources, an optimized use of the SMT capabilities of the processor
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Figure 6.5: Intel Xeon Phi - Kalman filter scalability plot.

can lead to a good usage of the hypethreads so these continue scaling
well.

Different parallelization schemes are implemented to further paral-
lelize the Kalman filter at different grain levels. As shown in Figure 6.2
the highest level of parallelization consists on running Forward, Back-
wards and Smoother in parallel. Dependencies between the steps exist:
the Smoother cannot be computed without the result from both the
Forward and Backwards; the Backwards step needs the result of the
Forward computations in this implementation. These can be processed
in parallel by using a pipeline pattern, where with the continuous
input of tracks the different stages are processed in parallel.

The following subsections describe the implemented paralleliza-
tion schemes. The implementations go from finer grained to coarser
grained tasks, as different levels of parallelization are identified. All
the parallelization schemes are pipeline patterns, as all the identi-
fied steps depend on a previous step, being the sequential nature
of the Kalman filter with its two stages, predict and update, the hits
that compose a track which need to be processed one after the other,
the sections of the track, or the overall procedure where a track is
processed first in one direction, then the opposite and finally a com-
bination of the two. These pipelines are implemented using Intel
TBB for the parallelization, which includes the pipeline as one of its
patterns. All schemes are based on a already parallel, vectorized and
hand-tuned version of the Kalman filter.



68

Pairs of cores share a
L2 cache.

KALMAN FILTER OPTIMIZATION FOR HEP WORKLOADS

6.1.1 Predict-Update pipeline

At the finer grain level, the predict and update steps both require
from different computations and are separated steps. The update step
presents a dependency of the predict, where a two-stages pipeline
can be used to be filled with the hits from the track. This pipeline is
represented in Figure 6.6 showing how the two stages of the pipeline
are filled with various tracks. A pipeline parallel pattern allows to run
both stages in parallel with a constant input of hits from the tracks, to
feed the two-stage pipeline. The SMT capabilities of the processor can
be exploited by implementing this pipeline. Tracks are scheduled to
run in parallel at the core level, each with core its own L1 cache. As
there are 4 hyperthreads per core and a 2-step pipeline is implemented,
pairs of hyperthreads per core will be scheduled to run the pipeline.

threads to ty

time

Figure 6.6: Predict - Update pipeline

To test the performance of the different implementations an Intel
Xeon Phi 7210 Knights Landing is used. It is configured in Flat
memory mode and Quadrant cluster mode. All benchmarks where
compiled with gcc 6.2.0 and used C++ threads for multithreading.
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As input for the Kalman filter, Monte Carlo simulated events are used,
processing 100000 events for each benchmark.

Implementation 1 Speedup
256 4 Fine grain tasks

64 -
32 -

16

Speedup

1 2 4 8 16 32 64 128 256
Threads

Figure 6.7: Predict - Update parallelization speedup

The results from this implementation are depicted in Figure 6.7.
The scalability shows a slight improvement of performance when
using the physical cores which flattens between 32 and 64 cores; using
more cores does not yield an improvement in throughput from 32
cores. The scalability shows the degradation in performance when
the hyperthreads are scheduled to be used. For this implementation
multiple parallel two-stage pipelines are used for the input tracks,
where predict and update stages for the same track run in the same core.
In the theoretical best scenario where a total of 256 threads are used,
two pipelines for different tracks run in the same core using the four
hyperthreads. This impacts both the L1 and L2 cache performance: the
L2 cache is shared by tiles in the Intel Xeon Phi, each tile containing a
pair of cores, where a total of four tracks compete for cache resources
without sharing any data between them. The L1 cache is affected
in the same way as two different tracks are processed per core. The
degradation in performance from the usage of the hyperthreads can
be analzyed more in detail by running the algorithm in just one core,
isolating it to run with 4 threads. The results are depicted in Figure 6.8,
showing a slight improvement when using two hyperthreads.

For SMT resources, pairs of hyperthreads compete in the same core.

As there are 4 hyperthreads per core, an optimal situation would be
a four-step pipeline instead of a two-step one. In the latter, pairs
of hyperthreads still perform exactly the same computations, either
the predict or update ones, which do not allow to properly share SMT
resources inside the core. Using Intel VTune, a performance analysis
is run to analyze the threads’ behaviour; the results are depicted in
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Implementation 1 Hyperthreads Speedup
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Figure 6.8: Predict - Update parallelization speedup in one core

Figure 6.9. Threads are idle most of the computing time, which indi-
cates that the main bottleneck is the overhead of the parallelization.
Because LHCDb uses a small state vector and covariance matrix, the
actual computation for the Kalman filter in the predict and update
stages can be computed too fast to compensate the overhead of spawn-
ing a thread. The parallelization overhead dominates the computation,
creating a bottleneck.

Figure 6.9: Predict - Update parallelization overhead. X axis indicates time;
Y axis indicates different threads.

6.1.2  Four-stage track sections pipeline

To reduce the parallelization overhead, a different scheme with a
coarser parallelization grain is implemented. As stated before, adding
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more stages to the pipeline would be beneficial to help reduce the
competition for SMT resources between the hyperthreads inside a
core. As the parallelization overhead dominates the computation,
increasing the grain size for the threads would reduce the bottleneck.
To overcome these limitations a different parallelization scheme is
followed, implementing a pipeline of four stages with the input, pre,
main and post stages. This pipeline is depicted in Figure 6.10, where
the four stages of the pipeline are filled using four threads after three
stages.

threads to t to t3
time
Maing
Main,
v Mains

- e

Figure 6.10: Four-stage pipeline

The implementation of this pipeline matches the number of hyper-
threads in each core with the number of pipeline stages, allowing
for different computation workloads across the hyperthreads. The
increased workload where each stage computes various hit nodes
allows for a reduced parallelization overhead.

The scalability of the four-stage pipeline implementation is shown
in Figure 6.11. The throughput performance of this implementation
improved compared to the previous two-stage pipeline implemented
with the predict and update stages. Compared to the original imple-
mentation the scalability remains worse, where both cores and the
hyperthreads present a lower throughput. The workload of the dif-
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Figure 6.11: Four-stage parallelization speedup with input, pre, main and
post stages.

ferent stages in this implementation is very similar as for the SMT
resources: the equations to apply in the different stages of the pipeline
are nearly identical, causing the different threads to compete for the
same SMT resources. As the pre, main and post stages are computing
various nodes each with their own predict and update stages, these
remain very similar in workload. Another bottleneck for the pipeline
is the unbalanced stages of it. As depicted in Figure 6.2, the main stage
concentrates a majority of the hits in the track, making it the slowest
stage and reducing the performance of the other.

To isolate the scalability of the hyperthreads a benchmark in one
core is performed. The results are shown in Figure 6.12. Hyperthreads
throughput outperform the previous two-stage implementation, with
the best improvement found when using all the hyperthreads. The
scalability is shown to be worse with both the cores and the hyper-
threads, exposing the parallelization communication overhead of this
implementation. The bigger grain size makes the overhead smaller
compared to the two-stage pipeline, but the communication overhead
dominates the computation.

The parallelization overhead is depicted in Figure 6.13 which shows
how the overhead still dominates in spite of the bigger grain size. A
group of threads is shown from Intel VTune, where the dark brown
area shows the useful work being done by a thread. It shows how
threads are still idle in all threads, with varying amounts of CPU usage.
Compared to the previous implementation, the CPU usage is higher
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Figure 6.12: Four-stage parallelization speedup in one core with input, pre,
main and post stages.

Figure 6.13: Four-stage parallelization overhead for various threads with
input, pre, main and post stages. X axis indicates time; Y axis
indicates different threads.

for all threads, which confirms the reduced parallelization overhead
for the same algorithm with a different pipeline implementation.

6.1.3 Forward-backwards-smoother pipeline

The final, highest level of parallelization in the presented Kalman
filter increases the grain size to the biggest possible while parallelizing
intra-track. By performing full track fits in the Forward, Backwards and
Smoother stages, each pipeline stage is assigned to process the track
from the first to the last hit in a given direction. An Input and Final

steps stages are included in the pipeline creating a five-stage pipeline.
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This pipeline is represented in Figure 6.14, where all stages of the
pipeline are filled after four stages to process tracks in parallel.
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Figure 6.14: Forward-Backwards-Smoother pipeline

The main workload of the fitting stages includes the stages described
previously without parallelizing them: the pre, main and post stages,
each with their set of predict and update stages for each node, increasing
the grain size of the threads and reducing the parallelization overhead.

The scalability of the five-stage pipeline is depicted in Figure 6.15. It
shows an extra improvement in throughput compared to the previous
implementations. It better scales due to the bigger grain size imple-
mentation, where each stage of the pipeline includes all the stages
from the previous pipelines. The thread communication overhead is
reduced which allows for the tasks to do more work in bigger chunks.
The bigger size of the tasks, where a complete Kalman filter is applied
along the track, better suits the parallelization framework.

The hyperthread usage of the five-stage pipeline is shown in Fig-
ure 6.16. It depicts the usage in a single core with its four hyper-
threads, where the main improvement comes from the usage of the
hyperthreads. The higher number of pipeline stages with different
workloads allow the hyperthreads to better compete for resources
for the different workloads. The thread communication overhead
and pipeline imbalance, dominates the computation when using all
available threads. The Input and Final steps stages hold the smallest
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Figure 6.15: Predict - Update parallelization speedup with Input, Forward,
Backwards, Smoother and Final steps stages.
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Figure 6.16: Predict - Update parallelization speedup in one core with Input,
Forward, Backwards, Smoother and Final steps stages.

workload compared to the main ones, where the forward, backward
and smoother stages remain more balanced between them. A more
balanced pipeline without a stage creating a bottleneck for the others
allows for better throughput processing.
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Figure 6.17: Predict - Update parallelization overhead in one core with Input,
Forward, Backwards, Smoother and Final steps stages. X axis
indicates time; Y axis indicates different threads.

An analysis of the parallel overhead is shown in Figure 6.17, where
the parallel overhead is reduced compared to the previous imple-
mentations. The CPU usage of the different threads is close to being
maximized, which indicates the better parallel utilization of the cores
and hyperthreads with this parallelization scheme. This implementa-
tion achieves a percentage of speedup with every increase in number
of threads used, except for when the processor is using more than 50%
of the threads, this is, when going from 128 threads to 256 threads. As
the resources of every core are being shared between 3 to 4 threads in
this case, some functional units will not be available for every thread
at a given time.

6.1.4 Closing for the SMT multi-threaded Kalman filter

The overhead cost of running various threads to parallelize within
a single track remains too high to compensate the use of the hy-
perthreads. The size of tracks at LHCb experiment is small to be
parallelized with the presented parallelization library, TBB. At the
Kalman filter stage, where input tracks are already reconstructed by
previous algorithms, there is no combinatorics problem to test multi-
ple hit candidates as a good fit for the track. This makes the algorithm
simpler in complexity, where the computing challenge remains in
the big amount of tracks needed to be processed per second. Future
changes and upgrades to the detector will increase the amount and
detail of the collected data, which will naturally increase the grain
size of the tasks of the parallelization schemes presented here. This
will improve the performance of the different pipelines presented here
as the parallelization overhead will be further reduced.

Having explored the parallelization opportunities that the LHCb
Kalman filter presents, a research and development is performed by
exploring how to better express the Kalman filter by using generic
parallel patterns. These generic patterns are optimized to exploit
the architecture of the Intel Xeon Phi, and selected patterns are used
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to utilize a more realistic scenario of event processing that better
represents the real experimental set-up of the experiment.

6.2 PATTERN BASED LHCB-KALMAN FOR THE INTEL KNL

Algorithm development and usage for simulation and data-taking
in high-energy physics experiments go through long life-cycles. The
expected long life cycle of these applications demands, not only a
high degree of performance optimization, but also maintainability and
portability. These goals are, of course, ubiquitous in scientific and
engineering software and numerous solutions have been proposed.
Among these, parallel programming patterns [102] offer a structured
approach to parallel programming similar to software design patterns
[66] by Gamma et al.

This section explores and demonstrates how the aforementioned
goals can be achieved on the use case of LHCb experiment software
framework. More specifically it explores the uses, advantages as well
as limitations of generic parallel programming patterns in the context
of high-energy physics analysis software. As baseline to test it the
standalone cross-kalman application is used as a high-performance
Kalman filter implementation. Furthermore, it focuses on the Intel
Xeon-Phi Knight’s Landing (KNL) platform as a pertinent example of
modern HPC platform and possible choice for LHCb’s computing in-
frastructure upgrade. This specialized processor has been successfully
used in other scientific fields, as an example, GADGET, a toolbox for
computational astrophysics problems [11] uses different data layouts
and vectorization techniques targetting amongst others the KNL plat-
form. Another example presents itself through the work of Madhavan
et al. [95], who adapted molecular dynamics packages, such as NAMD,
LAMMPS, GROMACS and CP2K, for the Phi KNL architecture and
compared the benefits with respect to using a multi-core Intel Xeon
Broadwell processor.

A number of studies exist, which investigate different core and
memory affinity strategies for improving application performance on
multi-/many-core processors.

Dependent and independent thread pinning strategies show im-
provements in performance in [100], and in more recent work applying
dynamic thread affinity between parallel regions at run-time in [101].
Isolating workloads using CPU affinity techniques for performance
and energy efficiency were studied in [117].

Furthermore, a large body of research is found that uses parallel
patterns to enhance the performance and maintainability of scientific
and industrial applications. For example, DMLL, an intermediate lan-
guage that uses parallel patterns was developed for efficient resource
usage on different platforms in [24], whereas code annotations were
also used on stream processing high frequency trading applications
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in [46]. FastFlow, a parallel programming framework has been used
to adapt scientific bioinformatic applications including CPU affinity
techniques in [104].

The adoption of shared-memory parallel frameworks in high-energy
physics is relatively recent. Numerous results improving the per-
formance of DAQs using parallel frameworks have been presented.
GooFit [8] is a highly efficient numerical library, which can make use
of OpenMP and CUDA back ends, offering evaluation functions for
normalization integrals used in particle physics applications. At the
same time, CERN experiments largely rely on TBB or custom C++
implementations to express parallelism [3, 13, 76].

6.2.1  Generic parallel patterns

A parallel pattern has been described as a recurring combination of
task distribution and data access that solves a specific problem in par-
allel algorithm design [102]. Patterns are applied in different areas of
computing such as programming, architecture or compilers. Parallel
patterns in particular are useful to describe, design and implement
systems that expose parallelism at some level, and these are indepen-
dent from the programming language or underlying hardware that
is used: these are generic parallel patterns [99]. Parallel patterns can
be classified into two main categories: data and streaming patterns,
which mainly differ in the information about the size of the collection
to operate with [121], as depicted in Figure 6.18

Data Streaming

Figure 6.18: Data and streaming patterns represented.

» Data parallel patterns: operate over a set of data which size is
known before applying the computation. The dependencies
between the items to operate over in parallel is also known.
Examples of these patterns are Map, Reduce or Stencil.

» Streaming parallel patterns: differ from the data parallel patterns
in that the size of the input is not known in advance, and it
is expected to have a channel where more items to parallelize
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arrive constantly. This scenario adds a level of complexity which
encourages different parallel patterns to be used to make the
computation more efficient. Streaming patterns may have one
or more scheduling elements to distribute the items to be par-
allelized as these arrive. Example of these patterns are Pipeline,
Farm or Filter.
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Figure 6.19: Parallel patterns composition and nesting.

Generic parallel patterns can be composed and nested, where each
defined element could be intra-parallelized with a parallel pattern,
as depicted in Figure 6.19: the figure in the left represents several
pipelines running in parallel with a shared input; the figure in the
right represents a graph of tasks where some elements are replaced
by patterns such as a pipeline or a map. By reasoning about paral-
lelization in terms of these patterns, parallel programming can be
described in a richer manner; taking into account parallel hardware
by design rids the programmer from going into the details about
synchronization and scheduling that parallelization demands. This
allows to introduce changes to the design of a system described in
terms of parallel patterns in a way that scales in both directions.

6.2.2  Parallel patterns for the Kalman filter

These parallel patterns allow to simplify the development and de-
sign of parallel applications. Furthermore it simplifies the process
of testing the impact of different patterns, and offers a catalog of
well-known patterns that better fit in different architectures.

GRPPI is a generic and reusable parallel pattern interface for C++
applications [120]. Specifically, GRPPI takes full advantage of modern
C++ features, metaprogramming concepts and generic programming
to act as a common interface for the execution environments OpenMP,
C++ threads, Intel TBB and CUDA Thrust. Its design allows users to
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leverage the aforementioned execution frameworks, hiding away the
complexity behind the use of concurrency mechanisms. Furthermore,
the modularity of GRPPI permits to easily integrate new patterns,
while combining them to create more complex constructions. Thanks
to these properties, this interface can be used to implement a wide
range of stream-processing and data-intensive applications with rela-
tively little effort. Resulting codes are portable and can be run on any
platform supported by the underlying parallelization frameworks.

;

See '..

(a) Pipeline (b) Farm

Figure 6.20: pipeline and farm pattern diagrams.

In the context of cross-kalman filter, the pipeline and farm data stream
processing patterns are selected as the best candidates to implement
the pattern-based version of the Kalman filter. Figure 6.20 depicts the
diagrams for the aforementioned patterns: the pipeline pattern receives
incoming items in the input, each stage of the pipeline processes an
item and passes it to the next stage until the final one outputs the result
items. The farm pattern applies a function to each item appearing in
the input, where each item can be processed independently from the
others.

Different phases that may run in parallel were identified in Sec-
tion 6.1 for LHCb’s Kalman filter. To apply the generic parallel pat-
terns, a similar structure is used for the selected pipeline and farm
patterns. A more general display of the different phases is shown in
Figure 6.21, summarizing the data flow of the phases of the recon-
struction algorithm with an initial input phase.

From finer to coarser grained tasks, the Kalman filter can be split
at different levels for parallelism. At the lowest level or finer grained,
the amount of work for each step is demonstrated to be too small
to compensate for the parallelization overhead. At a higher level or
coarser grained, the best-case scenario that was tested to parallelize
tracks during the processing is to divide the forward and backwards
with the extra input and latest iterations steps. These can be computed
in parallel using a pipeline pattern as demonstrated. This can be
arranged like that due to the particle trajectories of each event being
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Figure 6.21: Phases of the Cross-Kalman algorithm. Each phase can be de-
composed in logical steps to get more fine-grained parallelism.
The arrows show the order in which the phases and steps must
processed.

independent from each other. At the highest level, each particle
trajectory can be computed sequentially, where the parallelism is
given by processing multiple particle simultaneously. This kind of
parallelism can be exploited by using a farm pattern.

6.2.2.1 Pattern-based implementation

The baseline parallel version of the Cross-Kalman algorithm is
based on a TBB parallel for in charge of individually processing
trajectories, which in turn leverages SIMD processor capabilities as
nested parallelism. However, a data-parallel approach is not well
suited for the LHCb framework, since the data should be processed
as soon as it arrives from the detector in near real-time. Indeed, the
data stream processing paradigm seems to be a better fit for the LHCb
framework.

Also, given the expected long life cycle of this framework, it is worth
using high-level parallel abstractions in order to make the applica-
tion maintainable and portable. Using high-level abstractions when
programming has shown to improve the programming performance
of an application [85][54]. To accomplish these goals, the baseline
application is expressed in terms of GRPPI parallel patterns, allowing
parallelism at both phase and trajectory levels.

Figure 6.22 represents a CK-pipeline where different stages are vi-
sually related to their respective pattern, the different functions can
run in different threads in parallel. The parallelization at stage level
is achieved by means of the pipeline pattern composed with the farm
construction, as shown in Listing 6.1. This composed pattern creates
a pipeline of four stages, where the three last stages are nested farm
parallel patterns. As can be seen, the forward, backward and output
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s ( s
ForwardFn > BackwardFn » OutputFn
F dF BackwardF OutputFn
orwardFn ackwardFn
ForwardFn BackwardFn OutputFn
. . .

Figure 6.22: CK-pipeline

// Pipeline pattern implementation

grppi::pipeline(parallel_execution_native{},
input_func,
grppi::farm(n_thrl, forward_func),
grppi::farm(n_thr2, backward_func),
grppi::farm(n_thr3, output_func)

)

~ L N -

Code 6.1: Parallelism at phase level.

stages, representing pipeline stages, are computed in parallel by the
corresponding farm patterns.

Post 6.03 % Post 5.96 %
Forward Backward
35.11 % 44.63 %

Figure 6.23: Percentage of execution time per algorithm stage. The overall
time is roughly split into three parts, forward, backward and latest
iterations. The former two are dominated by the main iterations.

Since the overall pipeline performance is bound by the throughput of
its slowest stage, it is essential to ensure that all pipeline stages exhibit
a balanced throughput. To improve the overall throughput, worker
threads are distributed proportionally among the nested farm stages
according to their execution times. Figure 6.23 shows the execution
time of the different pipeline stages for the CK-pipeline version. The
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auto inFn = [&] (tbb::flow_control& fc) -> PCx {...};

auto inFilter = tbb::make_filter< void, PCx >
(tbb::filter::serial_out_of_order, inFn);

auto fwdFilter = tbb::make_filter<PCx, PCx>
(tbb::filter::parallel, fwdFn);

auto bwdFilter = tbb::make_filter<PDx, PCx>
(tbb::filter::parallel, bwdFn);

auto literFilter = tbb::make_filter<PDx, void>
(tbb::filter::parallel, literFn);

tbb::parallel_pipeline (numTokens, inFilter & fwdFilter & bwdFilter & literFilter);

Code 6.2: TBB pipeline implementation

second and third pipeline stages consume roughly 35 % and 45 % of
the time, while the latest iterations only consume about 20 %.

4 I
ForwardFn |BackwardFn| OutputFn
ForwardFn |BackwardFn| OutputFn
ForwardFn |BackwardFn| OutputFn

- J

Figure 6.24: CK-farm

Figure 6.24 visually represents the CK-farm, where it can be seen
how forward, backward and output functions run sequentially. The
parallelization at trajectory level makes use of the farm pattern. In this
configuration, all phases of the Cross-Kalman algorithm are collapsed
in a single work task, processed by the different worker threads (see
Listing 6.4). At construction the pattern is assigned two functions. The
first implementing the stream producer, while the second implements
the Kalman filter. Using this pattern, the input function is executed by
a single thread that receives the input data. The data is then forwarded
and distributed among the different worker threads in the farm for the
Kalman filtering.

In general, using GRPPI for expressing parallelism at pattern level
abstracts users from the specifics of the parallel frameworks used un-
derneath. Furthermore, thanks to the high-level pattern interfaces the
application source code is more readable, structured and maintainable
than in the original version.
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hwloc_topology_t topo;
hwloc_topology_init(&topo);
hwloc_topology_load(topo);

hwloc_bitmap_t cpu_set = hwloc_bitmap_alloc();
hwloc_bitmap_set(cpu_set, core_id);
hwloc_set cpubind(topo, cpu_set, HWLOC_CPUBIND_THREAD);

hwloc_bitmap_t numa_set = hwloc_bitmap_alloc();
hwloc_bitmap_set(numa_set, numa_node_id);

hwloc_set_membind_nodeset(topo, numa_set, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_THREAD);

Code 6.3: Example of hwloc for CPU and NUMA affinity.

grppi::farm(p, input_func, process_func);

Code 6.4: Parallelism at trajectory level.

The current GRPPI framework is not yet able to control data locality
nor thread-core affinity. Affinity techniques i) prevent thread migra-
tion; and ii) allow the application to efficiently exploit the memory
bandwidth provided by ccNUMA architectures. Therefore, the abil-
ity of controlling affinity becomes extremely important especially on
architectures such as the Intel Xeon Phi KNL. In the next section, the
extensions made in GRPPI for supporting thread and NUMA affinity
during the pattern execution is described in detail.

6.2.2.2  Support for CPU and NUMA affinity

To support thread and NUMA affinity, the Portable Hardware Local-
ity library (hwloc) [23] is used, a software package providing portable
hierarchical topology abstractions of the underlying architecture in
terms of NUMA nodes, CPU sockets, shared caches, private caches,
SMT, etc. [70]. Thanks to this software, it is possible to set the CPU
and memory affinity to each of the threads involved in a parallel
computation. Listing 6.3 shows an example where the current thread
is pinned to a given core and NUMA node by means of the hwloc APL

To provide support for both CPU and NUMA affinity in GRPPI,
the execution models are extended with two new functions that al-
low defining a set of specific cores and NUMA nodes that a given
thread can use. Listing 6.5 shows the new GRPPI interfaces defined
for establishing the CPU (set_thread_affinity) and NUMA affinity
(set_numa_affinity). As it can be seen, both functions receive two
arguments: the first refers to the thread ID within the execution model
selected, while the second is a C++ std: :vector<T> that determines
the cores or NUMA nodes where the thread can run or allocate mem-
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parallel_execution_native p{};
p.set_thread_affinity(tid, cores);
p.set_numa_affinity(tid, numa_nodes);

Code 6.5: GRPPI interfaces for CPU and NUMA affinity.

ory. Note that these functions call themselves the hwloc routines in
Listing 6.3.

While providing support in TBB for NUMA architectures is possible
using more advanced features, such as tbb::task_arena alongside
TBB task affinity, the GRPPI solution is believed to be much simpler.

Focusing on the KNL architecture and the nature of the Cross-
Kalman algorithm, it is noted that the application can greatly benefit
from thread and data locality techniques if they are properly tuned.
Indeed, memory access latencies can be reduced if data is located on a
NUMA node belonging to the core where the thread runs. To support
these affinity features, the presented pipeline and farm versions of the
Cross-Kalman algorithm are modified to efficiently use the KNL core
and memory architecture with the SNC-4 clustering mode flat memory
mode. This cluster mode of the KNL makes it possible to the spawned
patterns, both CK-pipeline and CK-farm, to efficiently access the mem-
ory that is closest to each cluster. Four instances are spawned, one
on each quadrant and with the corresponding number of threads of
the quadrant. Each instance allocates a parallel_execution_native
execution policy and sets different thread and NUMA affinities de-
pending on the target quadrant where the pattern will be executed.

6.2.2.3 Experimental evaluation

In order to evaluate the behaviour of the implementation, computer
experiments are performed comparing the baseline TBB implementa-
tion with the GRPPI CK-pipeline and CK-farm patterned versions of the
Cross-Kalman algorithm. For the benchmarks the following hardware
and software setup was used:

» Hardware: Intel Xeon Phi 7210 Knight Landing with 64 cores and
256 hardware threads, 214 GB of DRAM and 16 GB of MCDRAM.
A comparison of the different cluster and memory configurations
available is presented for the KNL, and it is determined that the
setup with the best performance for our use-case is SNC-4 and
Flat memory model. SNC-4 allows us to explicitly pin threads
to NUMA nodes and benefit from memory locality. The Flat
memory model enables the programmer to explicitly control
data placement, while Cache mode will move data to MCDRAM
according to the caching policy of the KNL memory management
unit.
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» Software: All benchmarks were compiled with gcc 6.2.0, with
-02 -march=native optimization flags, which was determined to
be the most efficient configuration. GRPPI uses for its execution
environment C++11 threads. The baseline uses Intel TBB for
multithreading and Agner Fog’s Vectorclass [63] for vectoriza-
tion. For instrumentation and profiling Intel VTune Amplifier
2017 was used.

» Benchmark: All benchmarks were run with Monte Carlo simu-
lated events generated using the LHCb simulation framework.
Each test ran 400 000 events, distributed equally across all NUMA
nodes. Each NUMA node hosts one instance of the parallel pat-
tern with at least two threads. For the runs on 1, 2 or 4 cores the
parallel patterns were executed in sequential mode allocating
thus only one thread per pattern. For all tests, a thread local to
the NUMA node loaded the events.
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Figure 6.25: GRPPI with and without NUMA awareness for the CK-farm
pattern. Introducing NUMA awareness has a strong impact on
throughput on the Intel Knights Landing platform.

Each event contains one or more instances or groups of tracks.
The performance of the different implementations is measured as the
throughput of processed events per second.

Figure 6.25 shows the difference in throughput between the Kalman
filter benchmark parallelized using the production version of GRPPI
and the GRPPI+NUMA library. The performance of the two versions
is comparable up to 16 threads. For higher thread counts, however, the
performance of the production, non NUMA-aware version of GRPPI
quickly degrades. The overall performance of the application even
decreases beyond 32 threads. As for the GRPPI+NUMA, note that
the optimizations presented allows the application to deliver good
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performance for the full chip. Note that throughput degrades beyond
128 threads as the KNL cores become oversubscribed (4 hyperthreads
per core).
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Figure 6.26: Throughput comparison for baseline, CK-farm and CK-pipeline

Figure 6.28 shows a comparison of the impact of different parallel
patterns, solving the same problem, on the cache hit rate. While all
three patterns exhibit similar hit rates (about 8o %) for the L1 cache,
note a 7% improvement when using CK-pipeline over the baseline
implementation or CK-farm pattern. The improved hit rate is explained
by the fact that on the KNL architecture, L2 caches are shared by
the two cores of each tile (cf. Figure 5.10). CK-pipeline exerts less
pressure on the shared cache as the two cores of the tile are both
reusing the instances of the same event improving both temporal and
spatial locality of memory access. In contrast, in the baseline and
CK-farm implementations, the two cores of the same tile are always
processing different events at the same time, resulting in a higher
cache invalidation rate.

Unfortunately, demonstrated in Figures 6.26 and 6.27, the improve-
ments in cache efficiency are completely dominated by the paral-
lelization overhead, rendering the CK-pipeline variant significantly less
efficient than the baseline and CK-farm implementations.

A comparison of the performance between the two main GrPPI
pattern based versions with the baseline is presented. Figure 6.26
shows the throughput as a function of the number of threads. As it
can be easily seen, the baseline implementation shows a 10 % higher
throughput. This improved performance could only be achieved by
hand tuning both the code and the execution environment. While
the CK-farm implementation is slightly lower, it was both easier to
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Figure 6.27: Scalability comparison for baseline, CK-farm and CK-pipeline
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Figure 6.28: Comparison of L1 & L2 cache hit rates between the baseline,
CK-farm and CK-pipeline pattern implementations. The pipeline
pattern has a 7 % higher L2 cache hit rate than the other imple-

mentations.
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implement and required no special set-up in the environment. As
mentioned, the performance of CK-pipeline implementation is well
below the other alternatives. Figure 6.27 is focused on the parallel
speedup of the different implementations. Both throughput and scala-
bility benchmarks were performed in a strong scaling scenario. Notice
that despite absolute throughput varying across our different imple-
mentations, their scalability is similar, the parallel efficiency being
84 %, 76 %, 87 % for the baseline, CK-farm and CK-pipeline respectively.
Beyond 64 threads the benchmarks are competing for the resources
of the cores, which are shared among Hyperthreads, which leads to
degradation in performance. The CK-farm implementation, although
being vastly more efficient than CK-pipeline, exhibits a lower parallel
efficiency starting at 8 threads. This behaviour can be explained by
breaking down the total wall-clock times.
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Figure 6.29: A decomposition of the wall-clock times into Kalman filter pro-
cessing, data copies and framework overhead. The framework
overhead in CK-pipeline is substantially higher than the baseline
or CK-farm implementation.

Figure 6.29 depicts a comparison of the wall-clock time broken
down into compute (Kalman filtering), data rearrangement (copies)
and framework overhead between the 3 implementations. Note that,
the times are multiplied by the number of threads to allow us to more
easily compare the runs across the scale. As seen above, the baseline
outperforms both our GRPPI implementations. Overall the TBB imple-
mentation exhibits a lower parallelization overhead, which is ascribed
to TBB’s work-stealing scheduler and KNL specific optimizations in
the framework. The CK-pipeline implementation is dominated by the
overhead in the parallelization framework, which is mostly due to
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Table 6.1: Time spent in the producer and consumer tasks when using 8
threads with the GRPPI farm.

Task type Task Time Percentage on total

consumer_task 2620.818s 98.23 %

producer_task  0.288 s 0.01 %

the pipeline steps being too fine-grained [82]. The aforementioned
decrease in parallel efficiency of the CK-farm implementation can
be seen here as a significant increase of overhead in the framework.
Starting from 8 threads, the CK-farm employs a producer-consumer
architecture to distribute the work packages among worker threads.
The 8 threads are distributed as 2 threads per NUMA node, which
means that effectively only the 4 consumer threads are working, while
the other 4 producer threads are distributing the events. At least
one producer and one consumer thread per NUMA node are needed.
While the producer Table 6.1 shows the CPU time of the consumer
and producer tasks. While the worker threads are executing the con-
sumer tasks, the management threads are mostly idle. The idle time
of the management threads is seen as parallel framework overhead.
The remaining 2 % of CPU time is not reported here, which is spent
elsewhere in the application.

6.3 SUMMARY

This chapter covers two main research efforts that includes both
the LHCb Kalman filter and the Intel Xeon Phi KNL processor: the
parallelization of the algorithm at an intra-track level focusing on
improving SMT usage; and a generic parallel pattern-based implemen-
tation that focuses on the KNL processor and achieving a comparable
performance with improved maintainability.

The intra-track parallelization shows the importance of the intro-
duced overhead when running various tasks in parallel. For tasks that
are too small, the parallelization overhead can dominate the overall
computation, resulting in poor scaling and throughput improvements
or event degraded performance. The LHCb tracks and associated data
structures are shown to be too small to compensate the intra-track par-
allelization. This is demonstrated with different levels of fine grained
tasks: the finer grained tasks show poor performance, but the coarser
grained tasks present good scalability and performance. Scheduling
a parallelization over the full tracks remains the highest throughput
option until tracks hold a larger number of hits, or hits with more
information.

The use of parallel patterns suitable for stream processing of data
in the context of high-energy physics experiments was discussed in
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this chapter. The LHCb proto-application Cross Kalman [27] is used
to study generic parallel patterns through GRPPI and their impact on
computational performance and programmer productivity. The GRPPI
library was enhanced by adding NUMA awareness, including thread
and memory binding using the hwloc APL. GrRPPI allows to easily use
generic parallel patterns through its interface, where otherwise explicit
parallel implementations are needed. The library supports multiple
backends such as C++ threads or OpenMP, with almost no changes to
its interface. Using the enhancements many-core hardware platforms
are targeted, specifically the Intel Xeon Phi Knights Landing.

The implementation shows that through the use of abstractions for
parallel processing, target applications are able to harness the full
capabilities of modern hardware architectures with little effort from
the programmer. The baseline implementation was benchmarked and
compared against two streaming patterns achieving in the best case
comparable performance without the need for hand tuning.

Other GrPPI backends could support NUMA awareness in the
future, and a broader topology awareness through the hwloc API. This
aims to provide a portable solution beyond the C++ threads and Intel
Xeon Phi KNL demonstrated in this work. Other future improvements
include extending patterns to being able to receive more than one
execution model, thus yielding more flexible thread scheduling.

By modifying the proto-application to use streaming parallel pat-
terns instead of data parallel patterns, the implementation models
the real world scenario more closely and is able to better predict
throughput bounds for the LHCb data acquisition cluster. The afore-
mentioned use of abstractions also allows to more easily test other
parallel patterns as well as different back-ends. A broader support for
NUMA architectures can extend GRPPI’s support for a more complete
topology awareness.
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HEP PARTICLE TRACKING WITH GPU
ARCHITECTURES

The LHCb experiment is considering different hardware architec-
tures for the coming upgrade. The compute power will have to
increase to handle the continuous deluge of data from the detector.
The big cost of the necessary increase in compute power, leads to the
exploration of alternative hardware architectures. As heterogeneous
data centers comprised with multi- and many-core CPUs and copro-
cessors/accelerators emerge, LHCb and other CERN experiments are
currently considering different hardware options to reach the afore-
mentioned performance goals for the coming years. The current LHCb
computing farm consists of servers based on the x86-64 architecture.
However, alternative architectures and accelerators are being tested
in different trigger systems [25, 137, 143]. This is an indication that
systems requiring high-throughput can be met in such alternative
architectures.

LHCb computing farm needs to treat 30 million events per sec-
ond, producing around 107 particles per second. Introducing an
architectural change, poses multiple challenges in terms of software
to perform particle tracking in real-time. Existing algorithms must
be redesigned to fully exploit parallel architectures. Furthermore,
the expected long life cycle of these algorithms demands not only
a high degree of performance optimization but also maintainability
and portability. Those goals are ubiquitous in the scientific and en-
gineering software areas and different solutions have been proposed.
Among these, GPU-based approaches have been a successful alterna-
tive in providing high-throughput in different scenarios [32, 111, 122].
This chapter presents the implementation of a data-oriented approach,
focusing on creating algorithms for SIMD (Single Instruction Multi-
ple Data) architectures, minimizing thread divergence, reducing data
movements and memory footprint of the algorithm, which have been
successful strategies to optimize algorithms for GPUs [79, 139]. It runs
as part of the LHCb GPU sequence framework defined in [45], which
allows multiple concurrent GPU stream execution.

This chapter is structured as follows: In Section 7.1 other scien-
tific fields using GPUs are discussed, Section 7.2 introduces the GPU
framework, and Section 7.3 explains how particle reconstruction is
performed for the UT. The following three sections present the follow-

mg:

a) Section 7.4 introduces a parallel version for the decoding of the
raw input data, which ensures coalesced data write patterns and
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produces a sorted SoA data structure, beneficial to the tracking
algorithm.

b) Section 7.5 presents a fast tracking algorithm for high-energy
physics detectors targeting SIMD architectures called Compass.
The proposed algorithm can deal with deviated particle trajecto-
ries by a magnetic field.

¢) Section 7.6 investigates the impact of the algorithm configuration
on the physics quality of the results and analyze its computing
performance on a variety of GPUs and CPUs.

Finally, Section 7.7 gives a summary of this chapter.
Some parts of this chapter have been published in the following
journal/conference papers:

= Placido Fernandez Declara et al. «A parallel-computing algo-
rithm for high-energy physics particle tracking and decoding
using GPU architectures.» In: IEEE Access 7 (2019), pp. 91612—
91626. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2927261

7.1 GPUS IN REAL-TIME, HIGH-THROUGHPUT SCIENTIFIC FIELDS

This work is focused on high-throughput computing workloads,
which is the type of workload high-energy physics experiments like
LHCb have. Other scientific fields also process large datasets and
present similarities with LHCb, this is, they process numerous small
units of work. A discussion of other real-time approaches and scien-
tific applications which deliver high-throughput is discussed in this
section.

GPUs have been used before in the field of high-energy physics
with success. The ALICE experiment at CERN implemented track
reconstruction in GPUs obtaining different speedups compared to the
previously used hardware [123]. Note how the approach followed
in this work is different than the one implemented in ALICE, as
this work contributes to the implementation of the full High Level
Trigger to run in GPUs, including the decoding and tracking of all
subdetectors, thus avoiding much of the needed data transmission
between main memory and GPU memory. Other HEP experiments
have seen significant improvements when using GPUs to amend the
performance of online selection [25, 131], or using a common code
base to target both CPUs and GPUs using OpenCL, which shows
the performance improvement of GPUs while supporting the x86-64
architecture [64].

The performance of DNA sequencing problems has been improved
with GPUs in different high-throughput scenarios. The Arioc read
aligner showed how using parallel algorithms with GPUs improved
DNA sequencing throughput, achieving an order of magnitude faster
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alignments [141, 142]. Pawar et al. benchmarked various DNA se-
quencing algorithms with different GPU-based tools against a CPU
one; concluding that GPUs will replace CPUs in DNA sequencing
for its higher-throughput processing [114]. Other DNA-related fields
exhibit similar speedups: Samsi et al. [128] demonstrated how a sin-
gle GPU is able to compare millions of DNA samples in seconds,
Cadenelli et al. [26] compared offloading a genomics workload into
FPGAs and GPUs from a CPU, resulting in the GPU outperforming
both, although the GPU consuming more energy.

Other scientific fields benefit from high-throughput, real-time pro-
cessing in GPUs. Radio telescopes need to filter data in their data
acquisition systems; where software frameworks employing GPUs like
Bifrost [44] have shown significant performance improvements. Other
real-time radio telescope experiments studied the viability of using
GPUs, where they encountered large computing speedups at a local
level, but were limited by I/O when using multiple GPUs [96]. Others
in the same field have successfully implemented GPU optimization
schemes [80] achieving a 6x speedup compared to the CPU scenario,
or used a GPU-based software framework and aggressive optimiza-
tions to be able to process data rates close to 1Tbit/s, like the CHIME
Pathfinder radio telescope [119].

GPUs have also been studied in scenarios requiring real-time pro-
cessing at fusion experiments [94] greatly reducing the wall-time
compared to the CPU version. Real-time split-and-merge executions
have been improved in multi-GPU scenarios by Han et al. [74], and
X-ray computer tomography reconstruction in GPUs has shown how
different optimizations can be implemented and combined to speedup
GPU computations [17].

The approach presented here for using GPUs in high-energy physics
delivers a parallel tracking algorithm which reconstruct particle tra-
jectories that are bent under the influence of a magnet, describing a
non-straight trajectory. It is focused on achieving high-throughput to
meet the collision rate and real-time constraints of the LHC at CERN.
Other scientific fields have been successful on implementing real-
time high-throughput solutions with GPUs, where fields like DNA
sequencing are already ditching CPU-based architectures to process
their large datasets. Successful results in the HEP fields suggest that
implementing a full filter with GPUs, including the decoding and
tracking of charged particles, is a feasible task that will increase the
filtering throughput capabilities of LHCb.

7.2 GPU FRAMEWORK FOR HLT1

Chapter 3 briefly introduced the Allen and Gaudi frameworks.
Gaudi is the framework used for both HLT1 and HLT2, and it is used
as a base for other applications at LHCb. It supports the execution
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of source code in accelerators or coprocessors [9], allowing GPUs to
interact with Gaudi to run specific applications or algorithms. To
benefit from the GPU architecture it would need to run hundreds
to thousands of events in parallel, as this is the design that Gaudi
implements: each event is processed by one thread. This limitation
would not allow to efficiently process events in GPUs where memory
is scarce compared to the amounts of memory that can be used in
a x86 workstation. Allen framework was created to overcome this
limitation and focus its design around massively parallel accelerators
and processors. It supports CUDA C++ to develop the algorithms, but
the requirements for CUDA features are the minimum supported by
the latest NVIDIA compiler. This allows the source code to be easily
compiled for other architectures, such as x86. It does not renounce to
advanced CUDA features to develop algorithms; the kernels that use
this functionalities to provide better throughput are provided with a
compatible version that supports simple CUDA C++ and older GPUs.

Allen framework is multithreaded, running various events in par-
allel. It is designed to run various CUDA streams in parallel to max-
imize the usage of the hardware. Algorithms run in a non-blocking
asynchronous way, where the communication between the host and
the GPU allows to send and receive data in a concurrent manner.
Data transmission between host and GPU is effectively hidden as
the amount of computation done in the device overcomes that of the
data transmission. Allen is capable of running both CPU and GPU
algorithms, which can be alternated by handling the necessary data
transmission between them. Memory is managed by a custom man-
ager which allocates memory for a whole stream. The custom memory
management provided by Allen allows to overcome the memory limi-
tations of GPUs and greatly reduced blocking in the GPU, as allocation
and deallocation of memory in the device is a blocking operation. To
overcome the memory limitations, dynamic memory allocations are
not allowed in Allen: a size must be given in a predetermined way.
Some kernels are dedicated to compute the sizes of some buffers to
allocate memory for it by the custom memory manager. This design
decision benefits the framework in terms of throughput performance.

7.3 UT PARTICLE RECONSTRUCTION

The UT reconstruction process is part of a chain of algorithms
needed to run all the HLT1. The complete chain of algorithms is de-
picted in Figure 7.1 where the UT is highlighted. The UT subdetector
system is described in Chapter 2. The UT subdetector receives as
input reconstructed VELO tracks and UT raw banks. These raw banks
need to be decoded before the tracking is performed to complete the
whole UT reconstruction.
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Figure 7.1: Complete High Level Trigger 1 sequence of algorithms at LHCb.
The UT algorithms described in this chapter (dotted lines) are
highlighted. UT is the second tracking sub-detector in the chain
of algorithms, and it receives input from the UT raw banks and
the VELO tracks. UT outputs reconstructed tracks for other sub-
detectors.

Particles collide at the interaction point, and the resulting particles
from the collisions are first reconstructed by the VELO sub-detector. A
percentage of those particles travel out of the acceptance range of the
UT, and the rest of them, in acceptance, leave activation signals with
a high probability which are decoded in software to hit information.
Using the VELO tracks and the UT hit information, combined with the
geometry information and magnetic field influence from the magnet,
UT tracking can be performed.

Tracking is performed by finding matching UT hits for every input
VELO track, where a VELO track is a straight line. UT hits are
considered to be compatible with a VELO track, resulting in a curved
track bent proportionally to the track momentum. As the UT sub-
detector is under the influence of the magnetic field, multiple possible
matching hits can be matched for different slightly bent tracks [33].
This situation is represented in Figure 7.2, where a real situation is
better represented with hundreds of tracks, and makes the problem of
finding matching hits an exponential combinatorics problem [22].

The p-Kick method [20] is used to estimate the momentum of the
track. Using it allows to perform a x? fit providing the momen-
tum of the particle. This method is used instead of a Kalman filter,
used in other tracking algorithms, as it yields a better computing
performance [21]. As this algorithm is focused on delivering high
throughput in real-time, a faster method is favoured in comparison
with the Kalman filter used in the HLT2 discussed in the previous
chapter. To take into account the magnetic field during the algorithm,
look-up tables are used, which give quick access to the influence of
the magnetic field in different parts of the particle trajectory. Using
the look-up tables, the deflection a track is expected to experience can
be determined.
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VELO+UT Track
Extrapolations

VELO

L. uT

Figure 7.2: VELO track extrapolation to UT hits. A VELO track can be
associated to various UT hits, where the UT track extrapolation
does not necessarily follow a straight line. This leads to high
combinatorics between the hits in the four panels, holding the
main complexity of the algorithm.

A UT tracking algorithm is expected to achieve a high reconstruc-
tion efficiency with a low fake and clone rates for various types of
tracks. The computing performance of the algorithm is determined by
how many events per second can be processed for a given hardware
configuration. This is a key aspect of event filtering in high-energy
physics, especially for the LHCb experiment which will only rely on
software for its event filter system. The combination of hardware and
optimised software for it will need to process the 30 MHz rate of
events in real-time.

7.4 UT DECODING

Before being able to execute the tracking algorithm, the raw input
from the subdetector needs to be decoded into hit information. The
decoding step needs to perform efficiently to run in real-time. This is
parallelised by processing different chunks of raw input using GPUs,
as it is a fundamental previous step for the tracking algorithm.

UT detector data is encoded into raw banks, in a highly compact
format, containing the information required to obtain the UT hits.
These raw banks are decoded into the parameters that define a UT hit.
These are reduced to the minimum necessary to run the UT tracking
algorithm, lowering the memory footprint of the algorithm. The
decoded parameters are the following:
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» LHCbID: a unique 32 bit identifier for the hit, which indicates
the spatial position of the detection element.

= ZatY = 0: the Z coordinate of the hit at the Y = 0 position,
which is the centre of the panel in the Y axis. The Z coordinate
indicates the panel for a specific hit.

» X at Y = 0: similarly to the previous parameter, this is the X
position at the centre of the panel in the Y axis. This coordinate
is given by the activated strip in a sector and it is different for
the U and V layers.

» yBegin and yEnd: as the UT subdetector is a strip detector where
the strips are arranged vertically, the specific Y coordinate of a
hit cannot be obtained. Instead, a range on the Y axis delimits
where the hit is located.

= weight: the uncertainty of the hit position.

The decoded parameters are stored in a structure of arrays (SoA).
A SoA layout is used for storing the hits in a coalesced manner to
maximise the memory bandwidth usage. To access the hits efficiently,
a separated array is used to store the offsets between the hits. Using
the offsets, one is able to determine which panel wants to refer to when
accessing the hits, and so every GPU thread can access its specific hit.
Events are computed by processing them in parallel, assigning single
events to single blocks to distribute them in the GPU. An event results
in various tracks, where different nested parallelisation schemes are
applied for different kernels, which are described here.

Table 7.1: Kernel configuration for UT decoding. events_in_execution are
the number of selected events to process, where array_size is
defined as the events_in_execution x 84. 84 is the number of
pre-defined sectors, where the number 4 used in various kernels is
the number of panels. Threads with two arguments is the kernel
execution configuration for thread blocks and threads in a block.

kernel blocks threads
calculate number of hits events_in_execution (64,4)
prefix sum reduce (array_size +511)/512 256
prefix sum single block 1 1024
prefix sum single scan ((array_size+511)/512) —1 512
pre-decode events_in_execution (64,4)
find permutation (events_in_execution, 84) 16
decode raw banks in order | (events_in_execution,4) 64

Decoded hits are grouped into sector groups, which are composed
of various sensors. Each sector group carries a number of hits that
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are guaranteed to be within certain X coordinates. Within a sector
group hits are not sorted by X coordinate, making it faster to sort by
avoiding the arrange of all hits inside the sector group. This also allows
for quick look-up of hits in the tracking algorithm, targeting specific
sector groups and searching hits only in those. Hits are sorted into
pre-defined regions of the sector groups, then sorted by Y coordinate
within the sector group. The whole decoding process is divided into
7 GPU kernels, where the configuration in Table 7.1 was found to be
the fastest for the UT decoding.

» Calculate number of hits: the first kernel uses pre-defined regions
in the X axis, where the regions in the center of the panel are
narrower due to the increased number of tracks expected based
on previous LHCb data takings. Raw banks are processed to
calculate the number of hits, used to create the array to store the
offsets between the hits in memory, in a coalesced manner. To
process the raw banks in parallel a two-dimensional kernel is
set, parallelising over the raw banks and over the number of hits
in each raw bank.

» Prefix sum: a parallel prefix sum of the hits is implemented,
specifically a two-step Blelloch scan composed of a reduce and
down sweep operations. It results in an array with the sums
of the offsets, so their positions and sizes can be obtained [75].
After doing the prefix sum the total number of hits is obtained,
which allows us to pre-allocate the memory for the hits. The
prefix sum is implemented here in three separate kernels, as
shown in Table 7.1.

s Pre-decode: using the data structure created during the prefix
sum, the coordinates of the hits for each raw bank can be de-
coded. Parallelising over the raw banks and over the number of
hits in each raw bank, the strip information to get the subdetec-
tor region, panel and sector of the hit is extracted. Using this
information the X at Y=o, and yBegin coordinates are decoded to
delimit the hit in the Y axis.

» Find permutation: it calculates the required permutations to sort
the hits by Y coordinate, based on their decoded Y coordinate
limits. Hits are sorted within every group defined by the previ-
ously decoded X coordinate. An insertion sort is implemented in
shared memory, storing the Y coordinate in it, and parallelising
over the hits found in each sector group.

» Decode raw banks in order: to perform the actual decoding of the
UT hits, a gather operation is used. It gets geometry and panel
information from the subdetector, and stores the parameters in
a coalesced manner. The hit information is stored in its correct
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position using the pre-defined X coordinate regions and the
permutations calculated in the previous kernel. For this kernel, a
parallelisation over the hits found on each layer is implemented.

7.5 COMPASS TRACKING ALGORITHM

The Compass tracking algorithm was designed so it can be configured
by two parameters: the number of sectors to search for hit candidates,
and the number of valid found candidates to test to form a track.
Different configurations of these parameters give a configurable trade-
off between computing and physics efficiency performance.

Compass is focused on the SIMD many-core parallelism offered by
GPUs and its memory characteristics to develop a high-throughput
algorithm. To achieve high-throughput, tracking on thousands of
tracks in parallel is performed in real-time, where each particle tra-
jectory can be computed independently one from each other. The
implementation benefits from this to design the algorithm around a
SIMD model, where GPUs implement it in a SIMT (Single Instruction
Multiple Thread) execution model. The operations needed to calculate
the particle trajectories require arithmetic and matrix operations with
single precision floating point numbers, where GPUs have shown
to offer speed-ups in scientific computations. The decoded window
ranges stored are accessed in a SoA data layout. Other multi-threaded
architectures like modern x86-64 should also benefit from a SoA lay-
out, as the access pattern by the different threads also benefit from
data locality and coalesced access. The NVIDIA Profiler was used to
optimize and find the spots to parallelize.

Compass is divided in two main components: searching for the UT
window ranges in the indicated sectors, and using those window
ranges to perform the tracking. In both cases, VELO tracks are used
as input, and are extrapolated to the UT panels.

7.5.1  Search UT windows

UT window ranges are defined by the indexes of two hits, one at
the beginning of the window and the other at the end, where hits
in between these two are considered for creating a track. The search
for UT windows is performed using the information about how hits
are sorted during the decoding. A two-dimensional kernel is used
to search the windows: the first dimension parallelises over the four
UT panels, where the second does it over the input VELO tracks. The
kernel is defined like this to optimize for the windows’ ranges to be
stored in SoA layout, where different kernel configurations are tested,
concluding this one to yield the best performance. Window ranges
are stored in a coalesced manner for a panel, where panels are also
stored contiguously between them. The two-dimensional kernel is
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used to favour the access pattern, first over the panels, then over the
different tracks. This configuration was found to be faster than setting
the kernel the opposite way, or just parallelising over the tracks in a
one-dimensional kernel.
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Figure 7.3: UT window ranges: representation of a VELO track extrapolation
to a sector. Window ranges are set for the sector and its neigh-
bours. Several hits lie within the range of the windows, which
are considered for UT tracking

For each input VELO track, the extrapolation to the UT panels is
calculated taking into account the magnetic field. The extrapolation
defines the sector group in the UT to search for. Since sector groups are
sorted by X into known regions, a binary search is used to efficiently
locate the region where the extrapolation is pointing to. With the
region delimited by X, a tolerance window based on the VELO track
extrapolation is used to delimit the Y region. Searching with two
binary searches over the Y axis, one to delimit the beginning of the
region and another to delimit the end of it, leaves us with the window
range that indicates the valid UT hits for the associated VELO track.
Only two pointers to the hits are used to indicate a window range,
instead of storing all the valid hits or pointers to all valid hits. Finally
the window range is refined by checking the hits to be valid within
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the VELO tolerance window. Iterating forward for the beginning hit,
and backwards for the end hit, hits are tested to meet the conditions
for the VELO track tolerance. This calculation is performed here to
reduce the window ranges, which was found to be faster compared
to only perform it in the tracklet finding kernel. When computing
the tracking kernel combinations between the hits in different panels
are tested. Using a larger window range during the tracking has a
larger impact in the complexity to compute the kernel compared to
refining the window range during the window search. As the hits in a
sector group are not sorted, the VELO tolerance check has to still be
performed again in the tracking kernel because hits could be out of
the tolerance window.

When looking for window ranges, a VELO track may be outside
the UT acceptance region or may be directed in backwards direction,
making the track unsuitable for UT tracking. When a thread is as-
signed to a track that meets any of those conditions, the whole thread
is left unused until the rest of the threads in its warp finish finding the
window regions. Some threads are left unused for every event, low-
ering the throughput capacity of the algorithm. To maximize thread
occupancy, an array of pointers to tracks in shared memory is used,
which is filled with valid tracks only. The array is filled until it holds
at least the same amount of tracks as number of threads per block.
Windows are searched parallelising over the array of pointers to valid
tracks, maximizing thread occupation.

3 sectors window ranges
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Figure 7.4: Memory layout of window ranges. A beginning hit, and a size are
stored per window range, using 16 bits for each element. In this
figure, a 3 sectors window ranges is shown, where each elements
has a size of 16 bits, making it a total of 96 bits for all the elements
of a panel.

The window search is implemented to look for hits in one, three
or five sectors. This is done because it was found that the number
of hits selected in only one sector to be insufficient to achieve good
enough physics performance. The selected sector and its neighbours
are used to get hit candidates, as can be seen in the Figure 7.3. If the
extrapolated VELO track is pointing to a sector close to the borders of
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the UT panel, less sectors are searched. The window ranges are stored
in a pre-allocated memory space, as the number of sectors to use and
VELO track is already known, so they can be stored in parallel for
every thread. When an invalid window range is found, it is stored
with (-1, -1), indicating that no valid hits were found. By doing this
the kernel presents a lower branching ratio, leaving a similar code path
for all tracks searching the windows, making it efficient for GPUs.

Finally, window ranges are stored as pairs composed of a beginning
hit and the size of the window. As the implementation iterates over
the hits in the window, knowing in which window the hit starts and
the size of the window is all the information needed to access the hits.
To store the hit and the size of each window two signed 16-bit types
(short) are used. The hit index is set to be relative to its own track,
for all the possible indexes to fit in a short type, thus reducing the
memory footprint. Hit pointers and window range sizes are stored
grouped so all hits are contiguous between them, and per track, as
can be seen in Figure 7.4.

7.5.2  Tracklet finding

To perform UT tracking, a search for the best compatible hits needs
to be performed in all the UT panels to form a tracklet. A tracklet
is composed of at least 3 hits on different panels. The combination
that best matches the extrapolation from the VELO track is searched,
considering the influence of the magnetic field that introduces a small
kink in the particle trajectory. The window ranges calculated in
the previous kernel are used to find a tracklet of one hit per UT
panel, allowing for one missing UT hit. The main complexity of
Compass lies in the tracklet search, where compatible hits between all
panels are tested for compatibility, increasing the multiplicity of the
combinations.

When a valid hit is found in the first panel, it is selected to be
combined with a valid hit from the third panel. If a valid hit is also
found in the latter, the slope formed between them is calculated. The
just calculated slope and the one of the VELO track are used to define
a tolerance window in the second and fourth panels. Compatible hits
are searched in these panels to form the final tracklet, as can be seen
in Figure 7.5. Finding a third hit is enough to from a tracklet, where a
tracklet of four is preferred if it is found. The complexity of tracklet
search is O(n3), as the search for third and fourth hits are not nested
between them. The tracklet search is performed both in forward and
backwards directions, where the same algorithm is applied changing
the order of the panels. Forward and backwards search is merged
into one single loop, where hits are searched first in forward direction
and if no hits are found, the backwards direction is tested to find a
tracklet.
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The algorithm may be configured to use more than one window
range, in this chapter for one, three or five window ranges. Instead
of looping independently over the ranges to find a tracklet, these are
combined into one single loop, as if these were one single range. A
pointer to a selected hit within a window range is used to iterate. The
ranges are combined so the central one is used first, then its immediate
neighbours. If five sectors were selected, the sectors in the extremes
are searched the last. Forward and backward searches are combined,
as it was found this way of iterating over the hits to be faster than
performing two separate searches for forward and backward direction,
as thread divergence is removed. The searches for every VELO track
are parallelized, where all the threads in a warp will have to wait if
a divergent branch is encountered in one of the threads. When the
hit search is split into two loops, a divergent branch is introduced
if different tracks are searching in forward and backward direction
within a warp. A small divergent branch is introduced at the beginning
of the loop when combining the window ranges. This is done to set
the pointer to the correct hit, which allows the warp to run all tracks
in a parallel fashion even if they diverge in both ranges or direction.

forward backwards

UTbX UTbV UTau UTaX UTbX UTbV UTaU UTaX

Figure 7.5: Tracklet finding kernel. Combinatorics between all 4 panels when
searching for hits candidates to form a tracklet are shown. The
fine dotted line represents the slope between the two first hits
found in the first and third panels. The coarse dotted line repre-
sents the VELO track slope. A tolerance window defined by them
is calculated to search for a tracklet.

Compass implements a configurable number of search hit candidates
that will be considered. When a valid tracklet is found, if more than
one candidate was configured, the next valid hits within the window
ranges are tested to form a different tracklet. For every tracklet the
x? fit of the track is obtained in combination with the VELO track. If
more than one tracklet is found, a selection is performed favouring
tracklets with 4 hits instead of 3, and with the lowest x? fit value.
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The algorithm keeps searching for a better tracklet according to the
configured hit candidates value.

Compass is parallelised over the VELO tracks, where each thread
processes the tracklet search for each track. When processing VELO
tracks, a similar filtering mechanism is applied as when searching
for the window ranges explained in subsection 7.5.1. It differs in the
conditions to save a valid track, looking for the track to be within
UT acceptance, not backwards and to have at least one valid window
range. Only the size of the window range is checked to be different
from —1 to indicate a window range with at least one valid hit.

The implementation takes advantage of the GPU shared mem-
ory to cache the window ranges, as these are accessed during the
tracklet search. A shared memory array of size num_threads x
num_panels X size_window_range is used to accommodate all the
window ranges in a block. As in the search window ranges kernel,
the window ranges are stored using a signed 16-bit type to save in
memory. When processing a valid track, the window ranges for that
track are copied to its correct position relative to the block size into
shared memory, where only the pointers to the shared memory array
are used afterwards. This was found to be faster in all the tested
configurations and GPUs.

When a final tracklet is selected as the best one, the found hits
are stored and associated to its VELO track as a VELO+UT track.
Alongside the hits, the charge of the particle, calculated from the
momentum of the track from the x? fit, and the index of the track
within the event are stored, obtained by atomic addition of the track
number for this event.

7.5.3 CPU implementation

A CPU version of Compass tracking is implemented to compare
its computing performance against the baseline GPU implementa-
tion. To port the algorithm part of the structure of the algorithm is
modified. The GPU specific optimizations are removed, which can-
not be exploited in a non-GPU architecture. On the baseline GPU
version thread divergence is minimized and store various structures
into shared memory, whereas the impact of branches is minimized by
design in a CPU architecture compared to a GPU architecture [93] [49].
The impact of using shared memory and caching the window ranges
in the ported version is considered to be better managed by the large
caches found in a modern CPU, compared to the ones in the GPUs.
The computation of searching window ranges and tracklet finding
is not split into separated kernels, where the window searches are
calculated for every VELO track in-place before doing the tracklet
search. This is done to benefit from cache locality, as the just calcu-
lated window ranges will be used by the tracklet search algorithm.
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This section covers the performance and physics efficiency evalu-
ation of the proposed algorithms. Multiple micro-benchmarks are
conducted using different configurations for both the number of sec-
tors and the number of candidates.

7.6.1  Experimental setup

Four GPUs and a x86-64 CPU were used for the benchmarks. Two
consumer-grade GPUs of different generations and two server-grade
GPUs are employed. A dual socket server-grade CPU is used for the
Compass tracking CPU implementation. The specifics of the hardware
are detailed in Table 7.2.

The software relies on CUDA 10.0 and gcc 7.3.0 under the -03 opti-

misation flag. The following compilation flags were used: -use_fast_math

-expt-relaxed-constexpr and -maxrregcount=63. The use of those
flags were beneficial for the overall execution time of the algorithm [109].
All the benchmarks use the same sets of Monte Carlo simulated
events, generated using the LHCb simulation framework. Two differ-
ent testbeds of events are evaluated: the minbias set for throughput
performance and the BsPhiPhi to check reconstruction efficiency. The
minbias (minimum bias) set is a realistic simulation of the current ex-
pected physics, where data rate and therefore computing performance
obtained with it match the realistically expected one. The BsPhiPhi
set contains more tracks from the rare decay Bs — ¢¢. This allows
to determine the track reconstruction efficiency for these physically
interesting decays with higher statistical significance. It is important
to highlight that the same reconstruction efficiency can be achieved
in both testbeds. However, more minbias samples would be needed
to obtain the same number of tracks from the rare B; — ¢¢ decay.
Each set contains 1,000 events. For the throughput measurements, 40
iterations over the minbias events are performed to get a sustained
throughput. Both server grade GPUs are set to ECC (Error-Correcting
Code) memory disabled. The evaluation metrics shown in this chapter
correspond with the average value of 10 consecutive executions.

7.6.2  Compass tracking physics performance and throughput

The computing performance of the algorithm is measured in terms
of throughput of events per second. Different configurations of the
algorithm are evaluated, taking measurements when looking into 1, 3,
and 5 sectors and different number of hit candidates for 1 to 16 when
looking for a better tracklet.

The obtained physics efficiency is shown in Table 7.3 for the long
and VELO+UT tracks. A focus on the long tracks is given, as these
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Table 7.2: GPU and CPU hardware employed for the evaluation. Two
high-end consumer graphics cards (GeForce GTX 1080Ti and
GeForce RTX 2080Ti), two server-grade cards (Tesla T4 and
Tesla V100), and an Intel Xeon CPU are compared. It shows the
number of cores of each processor, where for the GPUs it counts
the CUDA cores only (no RT cores or Tensor cores are used in the
benchmarks). The MSRP (manufacturer suggested retail price) is
used for each hardware unit used here. The price for a single Intel
Xeon CPU is shown, whereas for the benchmarks a dual socket
server with two Intel Xeon CPUs is used. This is reflected in the
price performance figure.

. Max freq. Cache | DRAM | TDP | MSRP
Unit # cores
(GHz) | (MiB - L2) (GiB) | (W) ($)
GeForce 10.92
3,584 1.67 2.75 250 699
GTX 1080 Ti GDDR5
GeForce 1352 154 6 10.92 250 | 1,199
RTX 2080 Ti ’ ' GDDRj5 '
Tesla 2,560 1.59 6 16 70 | 2,350
T4 ’ ' GDDR6 '
Tesla V1oo 5,120 137 6 16 250 | 83899
V100 HBM2
Intel Xeon 20 3.50 25 (L3) 64 160 | 2,145
E5-2678W v3 DDR4

are the preferred ones for analysis. Long tracks carry more informa-
tion about the momentum resolution. The VELO+UT tracks are also
analyzed, as these are constructed with the two main inputs of the
Compass algorithm, VELO tracks and UT hits [89]. Note how for the
3 sector cases, when searching for more hit candidates, the physics
efficiency improves. The biggest improvements are achieved in track
reconstruction efficiency, where the clone rate increases by less than
0.1% in all cases. Note how the reconstruction efficiency gains flattens
when using more hit candidates. While the number of hit candidates
is increased exponentially, the track reconstruction efficiency gains do
not follow the same increase pattern, but the opposite. This behaviour
matches our expectations, as in most of the cases, the best tracklet is
found in the first set of hit candidates, and therefore, the subsequent
ones do not yield a better hit tracklet as often. Calculating the subse-
quent tracklets has an impact on the throughput performance even
if no better tracklet is found, where the physics performance does
not improve. The fake rate decreases when using more sectors and
candidates, with differences in the range of 1% across the whole scope
of benchmarks. Note how the impact of both changing the sectors and
candidates has little effect on the clone and fake rates, whereas it has
a big impact in the reconstruction efficiency rate.
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Table 7.3: Comparison between searching in 1, 3 or 5 sector groups, and
using 1 to 16 hit candidates. Two type of tracks are compared:
long tracks and VELO+UT tracks. For each type of track, the
track reconstruction efficiency and track clone rate achieved are
presented. The obtained fake rate for each case is also shown.
Number of | Number of Long tracks VELO+UT tracks Fake rate
sectors candidates || reco. efficiency clone rate | reco. efficiency clone rate
1 71.91% 0.36% 61.88% 0.32% 7.73%
2 76.53% 0.36% 69.99% 0.32% 7.78%
1 sector 4 79.09% 0.31% 74.31% 0.32% 7.70%
8 80.36% 0.34% 76.58% 0.35% 7.61%
16 80.52% 0.34% 77.04% 0.35% 7.52%
1 84.70% 0.39% 66.87% 0.32% 7.64%
2 90.07% 0.38% 75.61% 0.33% 7.62%
3 sectors 4 93.31% 0.35% 80.32% 0.32% 7.52%
8 94.72% 0.36% 82.66% 0.35% 7.43%
16 94.94% 0.36% 83.19% 0.35% 7.33%
1 85.23% 0.39% 67.10% 0.31% 7.70%
2 90.65% 0.38% 75.84% 0.32% 7.67%
5 sectors 4 93.89% 0.35% 80.52% 0.32% 7.56%
8 95.27% 0.36% 82.87% 0.35% 7.47%
16 95.49% 0.36% 83.40% 0.35% 7.38%

The reconstruction efficiency achieved when searching in one sector
does not reach 90% for long tracks nor 80% for VELO+UT tracks for
any number of hit candidates. These reconstruction efficiency does not
meet the requirements for the LHCb UT reconstruction, and therefore,
the one sector configuration is discarded in the following analysis.

Figure 7.6 plots the differences in throughput between all the config-
urations, using 3 and 5 sectors, and from 1 to 16 candidates. Note how
searching for more candidates decreases the throughput, as it needs to
iterate over more hits in a O(n?3) algorithm to find a better hit tracklet.
The performance degrades more when using more candidates, con-
trary to what was observed with the physics performance, where the
gains were very small by doubling the number of candidates when
using the bigger number of candidates. When searching for more
hit candidates, the hit tracklet needs to be constructed, and their x?
calculated, even if for most of the cases the last calculated hit tracklet
does not improve over the previous one.

The difference in performance between the four evaluated GPUs
devices is highlighted. The 1080Ti and Tesla T4 have a comparable
performance despite of the difference in terms of number of cores.
The comparable performance between the two cards is attributed
to the bigger cache size encountered in the Tesla T4 and its faster
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Figure 7.6: 3 vs 5 sectors Compass tracking comparison. Throughput compar-
ison between the two consumer grade GPUs, two server grade
GPUs and a dual socket Intel Xeon CPU, comparing with 1 to
16 number of hit candidates. The throughput shown here corre-
sponds to running the Compass algorithm. The figure in the left
plots the throughput when looking for hits in 3 sectors. The right
figure depicts the throughput when looking for hits in 5 sectors,
adding an extra neighbour sector on each side with respect to the
3 sectors case.

GDDR6 memory. The difference in thermal design power (TDP) is
very significant, where the 1080Ti consumes 3x more compared to
the Tesla T4 to deliver a comparable throughput. The difference in
performance between the 1080Ti / T4 compared to the 2080Ti is bigger
than the difference found between the 2080Ti and the Tesla V100, with
closer comparable performance when using 5 sectors compared to 3.
Tesla V100 outperforms the rest of the GPUs due to its High Bandwith
Memory (HBM) and increased number of cores, having double the
number of cores compared to the T4, 15% more compared to the
2080Ti, and 30% more compared to the 1080Ti as show in Table 7.2.
One generation difference for the high-end consumer cards yields
double the throughput for the 1080Ti compared to the 2080Ti for this
algorithm.

Note the difference in performance for comparable physics efficiency
on different results. A comparable physics efficiency is observed in
the long tracks between the 5 sectors - 8 candidates case, and the
3 sectors - 16 candidates case. Taking the Tesla Vioo as reference
example, a difference in performance of roughly 15% (500k vs 585k)
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is observed, whereas the difference in physics efficiency is below
1%. The throughput differences change between the tested hardware
for different number of candidates and sectors. Not that for compa-
rable physics performance, the 5 sectors version performs better in
throughput.

The Compass tracking algorithm is ported so that it runs on archi-
tectures other than the GPUs, to perform a cross-architecture tracking
performance comparison. The CPU version differentiate from the GPU
version in the implemented optimizations but computes the same algo-
rithm and uses the same data layout and access patterns, as explained
in 7.5.3. OpenMP is used to parallelise over the events and tracks,
following the same parallelisation scheme as in the GPU version. All
cores are ensured to be used in both the CPU and GPU versions for
the comparison. Note how the parallelisation differs in the SIMD
approach of the GPUs compared to the multi-threaded version of the
CPUs, where the CPU version relies on the improvements made by the
compiler due to the SoA data layout to exploit the SIMD capabilities
of the CPU. The performance difference between a dual socket Intel
Xeon CPU and the 1080Ti GPU and Telsa T4 is found to be up to 3x
faster for the GPUs, up to 6x faster for the 2080Ti, and more than
6x faster for the Vioo. Note how the CPU version of the algorithm
degrades less its performance compared to the GPUs when increasing
both the number of sectors and candidates. This is attributed to better
branch prediction in the CPU, and the impact of divergent threads
on the GPU, where the GPU runtime performance is affected more
by the increased number of branches, and the work imbalance keeps
warps active with low occupation, due to the increased number of
candidates and sectors.

Figure 7.7 plots the price performance ratio for the different target
GPUs. This figure shows the case for best physics performance with
5 sectors, using 16 hit candidates. It is normalised to the Tesla V100
and compares the other analysed hardware accelerators in terms of
achieved speedup in terms of price/performance. Note how the price
performance achieved for all the evaluated hardware is given for
its MSRP with the prices shown in Table 7.2. Tesla V1ioo performs
the worst in all the tested GPUs for its price performance, while it
achieves the best throughput. Note the comparable price performance
between the server grade Tesla GPUs compared to the consumer
GPUs, where the consumer GPUs perform around 5x better than the
server grade ones despite their differences in throughput. Note a 1.7x
speedup between the Tesla V100 and the Tesla T4, and a 1.15x speedup
between the 1080Ti and the 2080Ti, being the consumer grade GPUs
close in price performance despite the 2080Ti doubling the 1080Ti
in throughput. The achieved price performance speedup between
the Tesla V100 and the 1080Ti is 5.9, and 6.7x for the 2080Ti. The
2080Ti obtains the best price performance due to the achieved high
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Figure 7.7: Price performance ratio for Compass in GPU. All prices are fac-
tored to MSRP price indicated in Table 7.2. The price performance
of the 5 sectors case is compared, for the best physics efficiency
case with 16 candidates.

throughput and low unit price. The 2080Ti delivers a throughput
close to the Tesla V1ioo with significant less price due the lack of some
server-grade characteristics such as HBM or ECC memory.

7.6.3 UT decoding and tracking performance

Figure 7.8 shows the speedup achieved for various iterations of
optimizations, compared to the initial GPU implementation. Various
small improvements and optimizations are grouped into the 11 steps
presented in Figure 7.8. The first working version that implements
the main ideas of the algorithm is refered to as baseline implementation
and it applies various optimization on top of it to achieve the final
2.6x speedup. For floats unroll, the biggest improvement of 35%
is observed. Various small modifications were first applied to the
algorithm: mainly changing all the floating point variables to single
precision ones, unrolling some loops manually, and by giving compiler
hints with the use of #pragma. Note how the change from double to
single precision does not affect the physics efficiency. The reduced
complexity of the window range search was done by splitting the
algorithm in various kernels and re-writing the tracklet finding to be
simpler to process when searching in more than one sector, to get
a 28% improvement. The window ranges storage was improved to
be windows SoA to get an extra 15%, and configured it to store only



76 EXPERIMENTAL EVALUATION

base implementation
floats unroll

reduced complexity
windows soa

windows shared mem
active tracks shared mem
refine

join loops

data oriented decoding
kernel tuning

data-oriented short tracking

1.00 125 150 1.75 2.00 2.25 250 2.75
Speedup

Figure 7.8: Incremental optimizations speedup. Speedup achieved after ap-
plying different optimizations to the baseline code. A maximum
speedup of 2.6x is achieved in the final version, compared to
the baseline implementation. Various small optimizations and
changes are grouped into steps.

one hit and the size of the window, sorting them to be efficient for
the access pattern. The windows to shared memory are copied to cache
them and improve the access pattern when searching the tracklet. The
speedup achieved by filtering the tracks in the shared memory array is
23%, shown in active tracks shared mem. When calculating the window
ranges, the window is refined by checking the hits in both extremes,
instead of calculating all the window range validity in the tracking
algorithm. The complexity of the tracklet finding was further reduced
by joining the loops and reducing thread divergence, where it got to
2.37x. Various small optimizations were grouped to the raw bank
decoding, making the data types smaller, aligned and more efficient
to be a data oriented decoding. An extra 16% was improved by tuning
the kernel parameters of all the kernels in the decoding and Compass,
changing to multi-dimension kernels and changing how the kernels
are parallelised. Finally, The memory footprint was reduced and the
copies made faster by reducing further the data types, by storing types
in signed 16-bit instead of 32-bits structures to get the final overall
speedup of 2.6x.

Figure 7.9 depicts the runtime distribution of both kernels used
to perform the decoding and the kernels of the Compass tracking
algorithm. The distribution is shown for the best physics case, 5 sectors
- 16 candidates, where it encountered similar runtime distributions
when using different configurations and different GPUs. Note how
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Figure 7.9: Kernels time contribution. Runtime distribution of all the ker-
nels used to compute the decoding and Compass algorithm. The
best physics efficiency case is used here, with 5 sectors and 16
candidates for the NVIDIA 2080Ti case.

Compass tracking runtime is dominated by the window searching
algorithm compared to the tracklet finding. The refining of window
ranges was moved from the tracklet finding to the window range
search, increasing the time contribution of the kernel while improving
the overall throughput. Note how the complete decoding of the UT
hits accounts for more than half the time needed to compute the whole
UT sequence.

Finally the complete implementation explained in this chapter is
shown, with the decoding and tracking in GPU compared to the
equivalent algorithms found in LHCb baseline implementation. It
is acknowledged that the results compared here have changed and
improved since the publication of these numbers in [47] used for the
comparison, where more recent results are not found or published.
Comparable conditions are set as those found in [47], where the
same Global Event Cut is applied in this implementation, filtering
a selection of events, at the beginning of the chain, thus reducing
the amount of processing the tracking algorithms need to do. Data
preparation kernels are added after the full UT chain is processed, in
the form of a prefix sum and consolidation steps to leave the tracks in
coalesced memory for the algorithms using UT tracks as input. The
LHCDb baseline implementation uses a Intel Xeon E5-2630 v4, which
delivers a top throughput of 12,400 events per second for the full
sequence. Combining the time contributions of the UT decoding and
tracking for peak throughput yields the results shown in Figure 7.10.
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Figure 7.10: Basline LHCb vs GPU decoding + Compass tracking throughput
speedup comparison. Throughput speedup of the full UT chain
of kernels, including the decoding and Compass tracking, com-
pared to the baseline LHCb CPU implementation as stated in
Section 7.10. The LHCb baseline (blue) is compared with the
Compass over different GPUs (green).

These results are compared to the full UT decoding and Compass
tracking presented in this chapter. The throughput speedup shown
corresponds to our Compass implementation using the configuration
for 5 sectors and 8 candidates. Both the Tesla T4 and 1080Ti achieve
roughly a 3x speedup, where the latter performs slightly better than
the T4. The 2080Ti achieves a speedup of 6.5x and the Tesla Vioo
achieves the best speedup at 7.4x. The obtained physics results in
both implementation are comparable, but yield different results due
to the different algorithms used.

7.7 SUMMARY

The presented algorithm, Compass, is designed for parallel GPU
architectures with focus to perform efficiently on GPUs. It is designed
so that it maximises throughput processing on GPUs by being data-
oriented, minimizing branching, reducing the memory footprint of
the algorithm and taking advantage of the architectural characteristics
of GPUs.

A SIMD parallel UT raw data decoding algorithm is presented; it is
data-oriented and specifically optimized for GPUs. It demonstrated a
new hit organization that stores hits in SoA, in a parallel and coalesced
manner, where groups of hits are sorted into regions for fast decoding.
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It benefits from the new hit organization to search efficiently for sector
regions, defining window ranges that indicate where compatible hits
are found. Windows are stored efficiently for parallel architectures.

Compass is designed to be configurable in both number of sectors to
search for, and number of hit clusters to test for a tracklet. The physics
efficiency results are shown when searching in one sector, proving
it to yield too low reconstruction efficiency rate to be considered for
performance benchmarks. The performance for searching in three and
five sectors is compared and tested with different number of hit candi-
dates. The algorithms are validated with Monte Carlo simulated data
to verify the physics performance of the results, getting comparable
physics performance.

A CPU tracking implementation was developed and analysed our
algorithm in different parallel architectures, focusing on GPU architec-
tures and comparing them against the parallel CPU implementation
of the same algorithm. The differences in performance across the
analysed hardware are shown. A physics performance close to 95%
in track reconstruction is achieved with various configurations of the
algorithm, where a configuration using 5 sectors and 8 hit candidates
yields a throughput of 231k events per second in the 1080 Ti, 222k
in the Tesla T4, 454k in the 2080 Ti, 499k in the Tesla V100 and 92k
in the dual socket Intel Xeon CPU, for the Compass tracking. The
5% of tracks that were not reconstructed correctly do not satisfy the
assumptions and selections made in this algorithm. These are not due
to computational precision, as has been verified switching from single
to double precision obtaining the same results.

This configuration is considered to be the best trade-off for this
algorithm considering the achieved physics efficiency and the per-
formance. The baseline LHCb results are compared for the full UT
decoding and tracking, where our GPU implementation delivers up to
7.4x more throughput with the Tesla V100, and 6.5x when comparing
with 2080Ti.
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The Allen’s framework was designed around massively parallel
hardware architectures, specifically for GPUs. These architectures
benefit from data-parallel algorithms that are well suited for parallel
computations. Algorithms developed to compute the HLT1 with
Allen’s framework follow a data-oriented design: its data layout is
optimized with small aligned structures, and to have the data that is
most accessed coalesced, so that groups of threads access a contiguous
chunk of memory efficiently. Data access and processing of these
algorithms is optimized to have a small memory footprint, and the
GPU shared memory is used whenever possible to further reduce
the latency to access these structures. While these principles have
been demonstrated to be successful with GPUs in the context of high-
energy physics under Allen’s framework, its performance under other
architectures remains to be exploited.

The same principles of data locality and optimization apply to other
parallel architectures. For instance the main target architecture in
high-energy physics, x86 processors, have a high degree of parallelism
that can be leveraged by the programmer. Optimizations for multi-
threading are common in current software in HEP, and efforts to utilize
the vector units are developed to achieve higher throughput per chip.
Vectorization or SIMD processing allow the programmer to compute
multiple data that will compute the same instruction at the same time.
This principle is similar to what GPUs use, where groups of threads,
warps in the CUDA programming language, compute multiple data
over various thread that have simpler control units.

Allen’s framework design allows the chain of algorithms that com-
pute the full HLT1 to compile for both GPU and CPU architectures [2].
Compilation for CPUs in Allen supports basic multithreading, and
does not vectorize the algorithms; any vectorization performed by
the compiler is in the form of auto-vectorization, which often give
poor performance gains. Vectorizing the source often requires the
writing of intrinsics and manual tuning for the compiler to be able
to efficiently vectorize. Support for different vector instruction sets
such as SSE4, AVX or AVX-2, which are only available in different
processors, requires extra effort or the intermediate library to support
it. The same target source code in Allen is able to exploit all threads in
a GPUs through its warps in an efficient manner, but when compiled
for CPUs these do not map to vector lanes, and the vectorization
units will remain underutilized. Explicit support in the form of vector
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instructions, intermediate libraries or directives is needed to efficiently
exploit these resources.

This chapter is structured as follows: In Section 8.1 the Intel Implicit
SPMD Program Compiler is introduced, Section 8.2 explains how the
Allen framework is adapted to include ISPC algorithms, Section 8.3
explains how the ISPC kernels are implemented, Section 8.4 presents
the evaluation of the implemented algorithms. Section 8.5 gives a
summary of this chapter.

Some parts of this chapter have been published in the following
journal/conference papers:

= Placido Fernandez Declara and ]J. Daniel Garcia. «Compass
SPMD: a SPMD vectorized tracking algorithm.» 2020. Accepted
for publication at CHEP 2019 Proceedings, Adelaide, Australia

8.1 INTEL IMPLICIT SPMD PROGRAM COMPILER

SIMD programming or vectorization can enhance the performance
of an application by using the available vector processing units of a
processor. To achieve this, it applies the same operation or instruction
in various data lanes that hold different data. For larger number
of available lanes in a CPU, more performance can be achieved. A
different approach from auto-vectorization, intermediate libraries,
intrinsics or in-line assembly is explored in this chapter.

The Intel Implicit SPMD Program Compiler (ISPC) [116] uses a
variant of the C language to write sequential-like algorithms, but its
execution model executes various program instances that run in parallel
through the vector lanes. It presents an alternative way to exploit
vectorization units by writing algorithms in a similar way as for GPUs.
Cross-compilation is supported for Windows, Linux, MacOS, Android,
iOS, PlayStation 4 and FreeBSD. It abstracts the programmer from the
different widths that may be supported by different processors. Only
a flag in the compiler needs to be changed for it to target the specified
vectorization instruction set.

ISPC offers a similar approach to these languages, but offers some
differences:

» The source code written before, or in between foreach() control
structures will map predictably to a hardware thread.

» The iterations of SPMD foreach() will map to single hardware
threads.

» Inside a single kernel, foreach() clauses can be nested inside
for() loops.

When implementing an ISPC program the variables that will run
with different data values across the vector lanes are explicitly indi-
cated through the keywords uniform and varying. This allows the
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typedef float<3> float3;

export void chi2_ispc (
uniform const size_t N, uniform float chi2 [],
uniform float3 x [], uniform float3 y [],
uniform const float m, uniform const float q) {
foreach(i =0 ... N) {
varying float3 expected_y = m * x[i] + q;
chi2[i] = (y[i]l.x - expected_y.x) + (y[i].x - expected_y.x) +
(y[il.y - expected_y.y) + (y[i].y - expected_y.y) +
(y[il.z - expected_y.z) + (y[i]l.z - expected._y.z);

Code 8.1: ISPC source code sample

compiler to better optimize the generated assembly to produce a vec-
torized version of the source code. ISPC includes other constructs that
allow to compute efficiently with the SPMD model. An ISPC example
is depicted in Figure 8.1 which shows what appears to be a C language
program with extra reserved words. In this example, input variables
are marked as uniform to indicate that these will hold the same value
for all the vector lanes. The foreach construct indicates a parallel loop
that will compute a different result for the variable expected_y and
populate the chi2 array with different values for each vector lane.

"gang" view:
uniform float a; [:]

varying float b; [ bo | b1 |b,|[bs]|

a * b; [bo[B: [b:]55] * [Fo [0 [0 [50]
if (b <n) { [obo]b.[B3bs]<[n]n ]
return b, return |b0|b1-b3|

A "gang" is a group of program  "gang" size
instances that run in parallel €

>

through the vector units. |67| 2 |21|87|
Similar to a CUDA "warp".

Figure 8.1: ISPC gangs

A key concept to ISPC are gangs. These are analogous to warps in
the CUDA language, and are a group of program instances that run
in parallel through the vector lanes. As shown in Figure 8.1 the way

a gang interprets variables differs from it being uniform or varying.
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For varying variables a gang will apply operations with the vector
instructions for all the elements in parallel. This applies to control
flow elements like an if, where if an element of the gang does not
meet the condition it is masked to not take the result into account,
even if it will be computed. ISPC adds a series of special constructs
for control flow like foreach, foreach_tiled() or cif among others.
The foreach() statements in ISPC indicates the part of the code that
will be vectorized if the appropriate varying variables are used in it.
It is interoperable with C/C++ which allows to compile an algorithm
with ISPC and use it with a C/C++ regular source code.

ispc < ispc 1.13.0 v @ -02-opt=fast-math -math-lib=fast --target=avx2

A~ %output..~ YFilter..v B Libraries~ < Addnew..> 4 Addtool...~

laned ints2 hithums: I VeALravLLiizo AUIS;  yIS, L
:r{slgne. m LENums; Firem— 92 vpmovsxdg ymmi5, xmm3
. oat z; —— 93 vpaddq ymm3, ymmi5, ymm7
i 94 vpaddgq ymmi@, ymm4, ymmé
= vmov r9, xmmie
struct Velo_TrackletHits { o q
igned int16 hits[3]; 96 vpextrq r8, xmmi0, 1
.unslgne ’ 97 vextractil2g xmm2, ymmi®, 1
98 vmovg  rii, xmm2
99 vpextrq ri4, xmmz, 1
: 100 vmovq rbx, xmm3
void track_seeding( 101 vpextrq rcx, xmm3, 1
uniform const float* hit_Xs, N
102 vextractiizg xmm2, ymm3, 1
uniform const float* hit_Ys,
103 vmovq  rax, Xxmm2
uniform const float* hit_Zs,
form const Velo_Module* uniform module_data 104 vpextrq rsi, xmmz, 1
unt — - . 105 movzx  edi, word ptr [r9]
uniform const int16* he_candidates,
106 vmovd xmm2, edi
uniform const int16* h2_candidates, N
; 107 vpinsrw xmm2, xmm2, word ptr [r8], 1
uniform int8* hit_used, N
f N d int32* tracklet tPoint 108 vpinsrw xmm2, xmm2, word ptr [rii], 2
uniform uns%gne }” racklets_insertPointer, 109 vpinsrw xmm2, xmm2, word ptr [r14], 3
uniform unsigned int32* uniform ttf_insertPointer, .
110 vpinsrw xmm2, xmm2, word ptr [rbx], 4
uniform Velo_TrackletHits* tracklets, N
< : 111 vpinsrw xmm2, xmm2, word ptr [rcx], 5
uniform unsigned int32* tracks_to_follow, N
P N d int16* hi ind 112 vpinsrw xmm2, xmm2, word ptr [rax], 6
unlfcrm uns%gned }”tsz’ *;" 10?5, 1 b £ hit 113 vpinsrw xmm3, xmm2, word ptr [rsi], 7
uniform unsigned in uniform local_number_of_hits s UBEGRE WD WIESy SIIeral pE [ € 45
) 115 vpaddq ymm4, ymm8, ymmd
vmov r9, xmmd
// Also add other side ﬁg vpexgrq B s, @
foreach (hi_rel_ index = © ... module_data[3].hitNums) { ! !
. X . - . 118 vextracti12g xmma4, ymm4, 1
const unsigned int32 hl_index = module_data[3].hitStart + hi_rel_index; 119 VT L, S
const int16 he_size = he_candidates[2*h1_index + 1]; 120 - exgr r14' SO, 1
const int16 h2_size = h2_candidates[2*h1_index + 1]; 1 vgovq q rbx' xmmz’
if (hit_used[hl_index] == © && hO_size>0 && h2_size>0) { !
n A 122 vpextrq rcx, xmmz, 1
foreach_active(active_i) { .
- . i . . 123 vextracti12g xmm2, ymm2, 1
uniform const unsigned int32 current_hit = *local_number_of_hits;
hi_indices[current_hit] = hi_index; [ | 124 vmovg rax, xmm2
AL G, o0 e ’ 125 vpextrq rsi, xmm2, 1
(tocatnunbe i Ro N IEs); 126 movzx edi, word ptr [r9]
3 127 vmovd xmm2, edi
} 128 vpinsrw xmm2, xmm2, word ptr [r8], 1
} 129 vpinsrw xmm2, xmm2, word ptr [ri1], 2
} 130 vpinsrw xmm2, xmm2, word ptr [r14], 3

Figure 8.2: ISPC assembly vector instructions

Other SPMD programming languages - compilers include CUDA,
OpenCL, Vulkan Compute or DirectX Compute Shader. The advan-
tage of these languages is that they allow to write sequential-like
kernels that are compiled to target SIMD or SIMT architectures in an
efficient manner, both from the performance and programmability
point of view. Figure 8.2 presents a ISPC kernel and the generated
assembly on the right part of the image using Godbolt [69]. Lines
are highlighted with different colors in the ISPC source code, which
are then mapped using the same color to the generated assembly
code. In this example similar flags to those used in this chapter are
used to generate the assembly: -02 -opt=fast-math -math-lib=fast
-target=avx2-i32-8. The -target flag indicates the compiler which
vector instruction set to try to compile for, followed by mask size and
gang size to be used. Table 8.1 depicts the available target - mask size
- gang size options indicating its corresponding ISA (Instruction Set
Architecture).
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Table 8.1: ISPC ISA targets with mask and gang size combinations

SSE2 SSE4
sse2-1i32x4 sse4-i8x16
sse2-1i32x8 sse4-i16x8
ssed4-i32x4
sse4-132x8
AVX AVX2
avx1l-132x4 avx2-1i32x4
avx1l-i32x8 avx2-1i32x8
avx1l-i32x16 avx2-1i32x16
avx1l-164x4 avx2-1i64x4
AVX-512 NEON
avx512knl-132x16 | neon-1i8x16
avx512skx-1i32x8 neon-il6x8
avx512skx-1i32x16 | neon-132x4
neon-1i32x8

ISPC central feature are the uniform and varying keywords. When
programming ISPC kernels, one way to start using an algorithm
is to declare everything uniform, so that the application will not
vectorize at all, but it will work as a regular sequential algorithm.
From there, one can analyze the loops and parts of the code that
are good opportunities for vectorization and change those to use
varying variables and pointers to indicate the compiler that those can
be vectorized and hold different values inside the foreach() loops.
This way small expensive loops can be easily vectorize, but also big
loops can be adapted for vectorization. Pointers in ISPC need special
attention as these take a pair of uniform, varying keywords. The first
one indicates if the pointed structure is to be vectorized or not, and
the second one would indicate if the actual pointer is to be vectorized
or not, like the following: varying structx uniform pointer, where
a uniform pointer is used pointing to a varying varying data structure.
ISPC also offers "coherent" control flow structures, like cif and cfor,
to indicate that an specific control flow structure is expected to be
coherent, this is, that the executing instances in parallel are expected
to offer the same result for those control flow structures.

8.2 ADAPTING ALLEN FOR ISPC ALGORITHMS

To accommodate and include ISPC algorithms into Allen, the frame-
work needs to be modified to adapt for CPU algorithms that support
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spmd_velo_search_by_triplet_t,
spmd_velo_weak_tracks_adder_t,
copy_and_prefix_sum_single_block_velo_t,
copy_velo_track_hit_number_t,
prefix_sum_velo_track_hit_number_t,
spmd_consolidate velo_tracks_t,
spmd_ut_calculate_number_of_hits_t,
prefix_sum_ut_hits_t,
spmd_ut_pre_decode_t,
spmd_ut_find_permutation_t,

Code 8.2: ISPC and GCC algorithms interleaved

cudaCheck(cudaMalloc (
(void=x*) &m_dev_beamline.get(), data.size()));

m_dev_beamline.get() =
reinterpret_cast<float+>(memalign (256, data.size()));

cudaCheck (cudaMemcpy (
m_dev_beamline.get(),
data.data(), data.size(),
cudaMemcpyHostToDevice));

std: :memcpy(m_dev_beamline.get(), data.data(), data.size());

Code 8.3: Memory allocation and copies change from GPU to CPU

kernels compiled with different compilers, in this case with CUDA’s
nvcc, gcc and ispc. Algorithms can be interleaved when configuring
a sequence of algorithms for the Allen framework as shown in List-
ing 8.2. For the algorithms to be efficient by avoiding memory copies
between the host and the device, a chain of kernels that run on the
CPU is used in this chapter.

Adding algorithms that are compiled to be executed in the GPU
device is also supported, but when calling the specified GPU kernel,
memory needs to be manually managed between the CPU and the
GPU. If going from a GPU to CPU kernel or the other way around, a
cudaMemcpyAsync () must be performed when invoking the algorithm
indicating cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost. The
allocation of all the other resources used in the Allen framework from
the GPU need to be adapted and allocated for the CPU by replac-
ing all the cudaMalloc() and cudaMemcpy () as depicted in Listing 8.3.
This changes include beamline, magnetic field, geometry information,
all constants used across the framework, base pointers for the data
structures, and all the raw input data from the different subdetectors.
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for (int event_number = 0;
event_number < host_buffers.host_number_of_selected_events[0];
++event_number)

{

state.invoke(

arguments.offset<dev_ut_hits>(),
arguments.offset<dev_ut_hit offsets>(),
reinterpret_cast<int8_t+>(arguments.offset<dev_velo_track hits>()),
reinterpret_cast<int8_t+>(arguments.offset<dev_velo_states>()),
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reinterpret_cast<ispc: :SPMDPrUTMagnetToolx>(constants.dev_ut_magnet_tool),

constants.dev_magnet_polarity,
constants.dev_ut_dxDy.data(),
constants.dev_unique_sector_xs.data(),

reinterpret_cast<ispc::UT_TrackHits*>(arguments.offset<dev_ut_tracks>()),

event_number,
host_buffers.host_number_of_selected_events[0]);

Code 8.4: Casting types for ISPC.

The ISPC compiled kernels are added through a modified add_ispc_library()

CMake function similar to the one provided by the Intel ISPC compiler.
In this function the targets can be set, it handles different operating
systems flags and it handles the outputs and linking of the generated
library. ISPC algorithms added for Allen use their own namespace
and can be called explicitly with ispc::spmd_algorithm, which al-
lows to differentiate them from the non vectorized CPU version of the
algorithm or the GPU version. To include all ISPC kernels a header
file containing the files for a specific subdetector is included, which
simplifies the process of adding the library. Some data types need to
be explicitly casted for the compiler to know that the number of bits
used in the framework when allocating types will match the data type
used inside ISPC algorithms. ISPC uses some modified data types to
be explicit about its size. For integer types int8, int16, int or int32
and int64 are used by ISPC.

Finally when invoking an ISPC kernel some data types, like byte
for int8_t, need to be type casted to be explicit about its type to align
it with the ISPC type. The compiler will not allow structs to be
passed as an argument unless these are type casted to the equivalent
ISPC type. This is represented in Listing 8.4. Note how arguments
are here indicated as dev instead of host. This is done to keep the
same argument pointers for both the GPU and the CPU, in this case
where only CPU kernels are being used the CPU simply becomes the
device. Constant arrays (lines 10,11,12 in Listing 8.4) are also indicated
as device (dev_), but can be accessed here by the CPU as the allocations
are changed to use the host main memory.

ISPC includes the
unsigned
counterparts for this

types
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__shared__ float s_y_begin[UT::Decoding::ut_max_hits_shared_sector_group];

if (sector_group_number_of_hits > 0) {
__syncthreads();

for (uint i = threadIdx.x;
i < sector_group_number_of_hits;
i += blockDim.x)
{
s_y_begin[i] = ut_hits.yBegin[sector_group_offset + i];

}

__syncthreads();
find_permutation(...);

Code 8.5: Shared memory usage within Allen GPU framework

83 SPMD TRACKING ALGORITHMS IN ALLEN

In this chapter all kernels from the VELO and UT subdetector
are adapted from its GPU implementations to CPU and ISPC imple-
mentations. For the CPU implementations a simplified translation is
performed by the Allen framework, where the specific GPU constructs
are replaced by equivalent standard C++ constructs. This is achieved
by using a header file that substitutes the CUDA constructs in the
framework.

The VELO and UT kernels are rewritten to compile for the IPSC
compiler. These ISPC kernels benefit from the same principles that
are applied to the GPU Allen algorithms: data-oriented algorithms
that use coalesced memory, data structures that are optimized for the
algorithms access patterns, reduced branching to minimize divergence,
and other optimizations that are described in Chapter 7. These kernels
are mapped to warps when used in the default Allen framework. For
the ISPC Allen development these kernels will map to vector lanes of
the target processor.

For the VELO and UT (Compass) algorithms to run in a different
architecture, all GPU-specific optimizations need to be removed. Vari-
ous algorithms are implemented to benefit from shared memory in the
GPU, i.e. the Compass algorithm uses this memory to cache hits that
indicate the search windows used to find compatible hits. As CPU
cache memory cannot be manually managed in the source code as in
the GPU, this optimization is removed in all kernels and the host’s
main memory is used instead. Hits are directly accessed as these are
stored and the CPU will cache them. This is represented in Figures 8.5
and 8.6.

Figure 8.5 shows a representative case of the GPU usage of the shared
memory, which includes the __syncthreads() calls to synchronize
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uniform float s_y_begin[UT_Decoding_ut_max_hits_shared_sector_groupl];

if (sector_group_number_of_hits > 0) {
foreach (i = 0 ... sector_group_number_of_hits) {
s_y_begin[i] = ut_hits.yBegin[sector_group_offset + i];
}

find_permutation(...);
}

Code 8.6: uniform memory usage within Allen ISPC framework

the CUDA block for the shared memory correctness and avoid race
conditions. Memory barriers used in the GPU to synchronize running
threads and guarantee correct execution in parallel, are not needed for
the Compass algorithm; gangs run in parallel, but these use the vector
instructions of the processor which are forced to run all the elements
at the same time, removing the need for synchronization in these
cases. Memory barriers are offered by ISPC, but these are used to
avoid data races between threads. Figure 8.6 shows the implemented
version of the same piece of functionality. The shared_memory array is
changed to a uniform array that uses the same type and parameters.
uniform is used to guarantee that the content of the array will be the
same for all the vector lanes. ISPC runtime model does not need to
explicitly synchronize for uniform arrays that are shared by a vector
lane, so all synchronization calls are removed. This occurs because all
change from one program instance are visible to the other program
instances in the same gang. Finally, a foreach() call is used to process
the elements in parallel with the vector lanes.

The ISPC compiler supports C language features with some extra
extensions for the vectorization support, but C++ language features are
not supported. As CUDA supports C++ and it is used extensively in
the different Allen algorithms, the ISPC algorithms need to be adapted
to replace the pieces of the source that use C++ features. This includes
functions that are implemented with template metaprogramming
and class constructors and methods. This is depicted in Listing 8.7
for templates, where the CUDA Allen function is implemented as a
template for any T type. In the ISPC implementation function calls
like this one are implemented for every needed data type, and the T
type is replaced in multiple functions by float, int and others.

When re-implementing the algorithms for ISPC, several functions
need to be duplicated as different argument types can be used for
that function. In this specific case, it is not because the function
was implemented as template, but because ISPC can use different
combinations of uniform and varying for arguments and return types.
This causes multiple functions to be repeated in functionality, with the
same data types used but with different ISPC attributes depending
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1 template<typename T>
> __host__ __device__ int binary_search_leftmost(

3 const T* array,

4 const uint array_size,

5 const T& value)

6 |

7 int1=@;

8 int r = array_size;

9 while (1 < r) {

10 const int m= (L + r) / 2;
11 const auto array_element = array[m];
12 if (value > array_element) {
13 1=m+1;

14 } else {

15 r=m,

16 }

17 }

18 return 1;

19}

Code 8.7: Template usage in GPU Allen framework

1 namespace UT {

2 struct HitOffsets {

3

4 __device__ __host__

5 uint sector_group_offset(const uint sector_group) const
6 {

7 assert(sector_group <= m_number_of_unique_x_sectors);
8 return m_ut_hit_offsets[sector_group];

9 }

10 }

u}

Code 8.8: CUDA function for host and device
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unsigned int32 UT_HitOffsets_sector_group_offset (
const UT_HitOffsets& hit_offsets,
const unsigned int32 sector_group)
{
assert(sector_group <= hit_offsets.m_number_of_unique_x_sectors);
return hit _offsets.m_ut_hit offsets[sector_group];

uniform unsigned int32 UT_HitOffsets_sector_group_offset (
uniform const UT_HitOffsets& hit_offsets,
uniform const unsigned int32 sector_group)
{
assert(sector_group <= hit_offsets.m_number_of_unique_x_sectors);
return hit_offsets.m_ut_hit_offsets[sector_group];

unsigned int32 UT_HitOffsets_sector_group_offset (
uniform const UT_HitOffsets& hit_offsets,
const unsigned int32 sector_group)
{
assert(sector_group <= hit_offsets.m_number_of_unique_x_sectors);
return hit_offsets.m_ut_hit_offsets[sector_group];

Code 8.9: ISPC function with uniform and varying variants.

if the arguments or return types are part of a vector computation or
from a scalar computation. This situation is depicted with an example
in Listings 8.8 and 8.9.

Listing 8.8 shows a simple offset calculation function inside a C++
struct that can run both the host and the device. When implementing
this function for the ISPC compiler, a function name that indicates the
equivalent namespace, struct and original function name is used to
distinguish it from other structs and namespaces. The arguments are
also changed, as the C language does not allow to include functions
inside a struct, so an extra argument to return the correct value is
included as an argument. The function is replicated three times with
different combinations of return values and arguments, as the function
is used in the Compass algorithm in different contexts where may use
an argument running in a vector lane or may need to return a value
to be used in a vector lane. In the third implemented version of the
function a combination of varying and uniform arguments is used.
Note that if a uniform value is needed to be return by a function,
all arguments used in the body of the function need to be passed as
uniform as well.

Gangs run in parallel using the vector lanes. Basic math operations
are computed for all the elements, but when control flow structures are
introduced inside a gang, the flow of the program can diverge leading
to different instructions needed to be applied; the same problem
applies for GPUs. The ISPC compiler computes the values that do not
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const uintl6_t value = raw_bank.data[hit_index_inside_raw_bank];
const uint32_t nStripsPerHybrid =
boards.stripsPerHybrids[raw_bank.sourceID];
const uint32_t channellD =
(value & UT::Decoding::chan_mask) >> UT::Decoding::chan_offset;
const uint32_t index = channelID / nStripsPerHybrid;

Code 8.10: CUDA half type and composed value.

const unsigned intl6 value = raw_bank.data[hit_index_inside_raw_bank];

const unsigned int32 nStripsPerHybrid =
boards.stripsPerHybrids[raw_bank.sourceID] != 0 ?
boards.stripsPerHybrids[raw_bank.sourceID] : 1;

const unsigned int32 channellD =
(value & UT_Decoding_chan_mask) >> UT_Decoding_chan_offset;

const unsigned int32 index = channelID / nStripsPerHybrid;

Code 8.11: CUDA half type and composed value.

meet a condition if at least one element of the gang meets it. For most
situations it will not cause a problem, other than the performance
implications of the divergence. In some cases, because the vector
instructions are doing the actual computation of the value that did not
meet the condition, arithmetic exceptions can be raised. This situation
is depicted in Listings 8.10 and 8.11.

Listing 8.10 shows the CUDA version where to calculate the vari-
able index, a division between channelID and nStripsPerHybrid is
computed without raising any exception or error. The ISPC version
presented in Listing 8.11 shows the same index calculation, but when
getting the value nStripsPerHybrid it is checked to be different from
zero to avoid dividing by it later. As explained, if the gang size is set
to be eight, and there are only seven values to compute, the last value
will still be computed (but discarded at the end of the computations)
and the division by zero will cause an exception. These cases are
implemented specifically for the corner cases that may arise during
the implementation of the ISPC VELO and UT algorithms. In all cases
the arithmetic exception was caused by a division by zero.

As a data-oriented algorithm, types that do not need to use more
space than necessary in variables, are in some cases stored as half
types. For instance the UT Pre Decode kernel benefits from this opti-
mization, where the ISPC compiler offers support for half types with
specific functions to convert from float_to_half() or half_to_float
using the IEEE 16-bit floating-point format. The half type does not
exist in the ISPC compiler and math operations with it are not possible,
needing a conversion to float to operate and then converting back to
half. A composed value is used to store two half types in a 16-bit
type. For the ISPC compiler the supported types for this operation
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const half_t yBegin = __float2half(pOY + numstrips * dp0diY);
const half_t xAtYEqO_local = __float2half(numstrips * dpQdiX);
const short+ yBegin_p =

reinterpret_cast<const short+>(&yBegin);
const short+x xAtYEqO_local_p =

reinterpret_cast<const short+>(&xAtYEqO_local);

const short composed_0 = yBegin_p[0];

short composed_1 = xAtYEqO_local_p[0];

const bool sign_0 = composed_0 & 0x8000;

const bool sign_1 = composed_1 & 0x8000;

if (sign_0 ~ sign_1) composed_1 = -composed_1;

const int composed_value =

((composed_0 << 16) & OxFFFFOO00) | (composed_1 & OxOOQ00FFFF);
const float+ composed_value_float =

reinterpret_cast<const float+>(&composed_value);

ut_hits.yBegin[hit_index] = composed_value_float[0];

Code 8.12: CUDA half type and composed value.

are int16, where the float 32-bit types can be stored in the regular
way. Less precise functions are offered by ISPC as _fast functions,
but for this implementation the higher precision result is preferred. A
type casting issue is encountered when doing this conversion in some
cases, and explicit type casts are needed when operating over the
int16 types holding the half value. For bit comparisons these need
to be cast to int32 to avoid precision problems. This is highlighted in
Listings 8.12 and 8.13.

Listing 8.12 depicts an example from Allen on how to use the half_t
type supported by CUDA language. The function __float2half()
is used to store a 16-bit value. The value is then casted as a 16-bit

const int1l6 composed_0 = float_to_half(pOY + numstrips * dpOdiY);
intl6é composed_1 = float_to_half(numstrips * dp@diX);

const bool sign_0 = composed_0 & 0x8000;

const bool sign_1 = composed_1 & 0x8000;

if (sign_0 ~ sign_1) composed_1 = -composed_1;

const unsigned int32 composed_value =

((((unsigned int32) composed_0 << 16) & OxFFFFO0O00) |
(((unsigned int32) composed_1) & OxQ000FFFF));

ut_hits.yBegin[hit_index] = floatbits(composed_value);

Code 8.13: ISPC "half" type usage and composed value.
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short integer type, and a mask is used to get the bits for the sign
of the integer type. Then a composed value that stores both 16-bit
type is stored in a 32-bit int type using masks to store the bits for
each type at the beginning and the end of the 32-bit type. In the
ISPC implementation, the language provides a special function, as in
the CUDA language, to covert from a float to a half type, but this
is directly stored in a 16-bit integer type, a int16 type in ISPC. The
composed value is created in a similar way but ISPC needs explicit
casting to 32-bit types when joining both 16-bit types to avoid loosing
information in the process, which was not needed in CUDA. Finally,
in ISPC the included floatbits() functions is used to store this value
as a float with a bit-to-bit representation, to not loose information.
It is different from doing a simple casting (float) a, and would
correspond to doing *((float *)&a) in the C language.

Other changes include manually implementing some functions
found in the C++ standard library that are included with CUDA.
When calculating the pointers for the data structures and its off-
sets, the sizeof() function needs to be considered for every case, as
sizeof(uniform struct) is different from sizeof(varying struct).
Other C++ specific constructs like lambda functions need to be re-
placed by normal C functions to work with ISPC, often making the
code harder to read and maintain.

Finally an optimization process is applied to vectorize loops fol-
lowing similar principles to those applied with the GPU kernels. All
kernels arguments are flagged as uniform for the entry function, but
data structures that are then processed in parallel by the vector lanes
are flagged as varying to allow the compiler to efficiently use the
vector units. The performance that can be extracted from the ISPC
compiler in the form of vectorization, highly depends on the correct
designation of the uniform and varying variables. These allow the
programmer to reason about the data structures, the access patterns,
and how loops will be vectorized to extract the performance. While all
the input argument pointers of the kernels are flagged to be uniform,
as it is enforced by the ISPC model, inside the kernel some of the
data structures these pointers point to are flagged as varying for the
foreach() loops to compute them in parallel.

For the algorithms implemented in ISPC in this chapter a selection
of the kernels was found to improve the throughput performance
compared to the CPU non-ISPC versions. This matches what is ob-
served with the GPU algorithms, where some kernels are found to be
faster when these run on the CPU as sequential versions compared
to the parallel one implemented for the GPU. Not all algorithms and
workloads are well suited for parallel processing. For this reason a
selection of the kernels that improved the performance compared to
the non-ISPC version is used to achieve higher throughput.
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8.4 EVALUATION

To benchmark the performance of the ISPC algorithm in the adapted
Allen framework, a sequence of algorithms that computes all VELO
and UT algorithms is prepared. The algorithms include the decoding
of the raw input data for both subdetectors, data preparation algo-
rithms, and the tracking algorithms. All kernels run on the CPU, but
as explained in the previous section a selection of ISPC algorithms is
used, whereas the others are compiled as standard CPU algorithms.
The list of algorithms is depicted in Table 8.2. Algorithms that are
naturally sequential, such as the prefix sum, were expected to run
faster for its sequential implementation. Other algorithms were found
to be faster without the ISPC compiler by swapping the algorithms
and measuring the throughput performance of both.

Table 8.2: IPSC and non-ISPC algorithms used for the VELO and UT tracking.
The ISPC algorithms are identified by the spmd_ prefix.
non-ISPC algorithms ISPC algorithms

init_event_list
global_event_cut
spmd_velo_estimate_input_size
prefix_sum_velo_clusters
spmd_velo_masked_clustering
velo_calculate_phi_and_sort
velo_fill_candidates
spmd_velo_search_by_triplet
spmd_velo_weak_tracks_adder
copy_and_prefix_sum_single_block_velo
copy_velo_track_hit_number
prefix_sum_velo_track_hit_number
consolidate_velo_tracks
spmd_ut_calculate_number_of_hits
prefix_sum_ut_hits
spmd_ut_pre_decode
spmd_ut_find_permutation
ut_decode_raw_banks_in_order
spmd_ut_search_windows
spmd_compass_ut
copy_and_prefix_sum_single_block_ut
copy_ut_track_hit_number

prefix_sum_ut_track_hit_number

consolidate_ut_tracks

To run the benchmarks an Intel Xeon(R) E5-2678W-v4 processor is
used in the CPU measurements. The framework is compiled using
NVIDIA’s nvcc 10.0 compiler; kernels are compiled both with GCC
9.0 and ISPC 1.12 for each ISPC and non-ISPC version. The achieved
throughput performance is depicted in Figure 8.3. In this figure, CPU
measurements are shown in blue on the left, where the target vector
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instruction set is indicated in the X axis. A scalar version without
vectorization is used as baseline to compare the scalability of the
other implementations. The vectorized benchmarks are run using the
instruction sets SSE4, AVX-1 and AVX-2, where the AVX-512 is not
tested as the processor does not support it. The fastest configuration
of mask size and gang size is used for each instruction set that is tested
here. Three GPUs are included in the scalability measurements to
compare two SIMD (or SIMT) processors that run the same algorithms.
These are depicted in three different shades of green to indicate that
these are different processors each.

Compass throughput speedup

[ Intel Xeon E5-2678W Instruction set
[ GPU model o
6.0 X 1
5.0 X
GPU / Allen R&D
O 4.0 X 1
£
[
3.0 X 1
2.0 X1
1.0 X 4 ,—‘

T T T T T T
scalar SPMD SPMD SPMD Tesla RTX Tesla
SSE4 AVX1 AVX2 T4 2080Ti V100

Instruction set / GPU model

Figure 8.3: Performance comparison

The CPU performance achieves more than 2x speedup with the
AVX-2 target instruction set. Some performance losses are expected,
compared to the ideal speedup, due to tracks that are filtered early in
the algorithms. As the nature of these algorithms is to filter events,
some algorithms will discard tracks early in the computation and
vector lanes will be unused for the rest of the loop computation of
that track. Other losses are expected from branching, where the
vector units are impacted negatively, as with GPU processors. Kernels
like the candidates finding one present a reduced gang usage due to
multiple conditional clauses that are needed by the algorithm and
vector lanes are wasted. Finally, as not all kernels are vectorized using
the ISPC compiler, a significant fraction of the running kernels will not
experience any throughput improvement. This limits the maximum
speedup that can be achieved with the given configuration of kernels
and the given ratio between ISPC and non-ISPC kernels.
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For the same benchmark, all the used GPU processors achieve
higher throughput compared to the highest throughput CPU AVX-
2 throughput. Lower performance GPUs like the Tesla T4 offer a
core count of 2560, whereas the E5-2678W-v4 offers 12 cores and
24 threads for computations. Even with AVX-2 256 bit wide vector
units that allow to load 8 floats at a time, the number of elements
processed in parallel is far from the GPU one. CPUs offer a better
instruction level parallelism and higher clock frequencies compared
to the GPUs. Higher end GPUs like the Tesla Vioo achieve over
6x higher throughput compared to the scalar CPU version of the
algorithms.

8.5 SUMMARY

The ISPC compiler offers an alternative to the intermediate libraries,
intrinsics or in-line assembly to make an efficient usage of the vector
processing units available in CPUs. Programming for its language, a C
language variant with extensions, resembles the approach followed by
languages like CUDA or OpenCL, where similar principles to achieve
good vector units usage apply.

In this chapter all kernels for the VELO and UT subdetectors from
the Allen framework are implemented for the ISPC compiler, includ-
ing compiled versions without using the ISPC compiler and no explicit
vectorization. The SPMD model allows to write the algorithm as if
these are sequential, and then reason about the parallel loops and re-
gions of code that can be indicated for the compiler to vectorize them,
explicitly. This model benefits from data-parallel algorithms with
coalesced memory, and data-aware access patterns and data layouts
in an efficient manner both from the performance and programmer
efficiency point of view. The effort required to write the algorithms
resembles those to make GPU kernels, but the limitations of the C
language enforce practices that may be more error prone such as
function duplication or the absence of member functions. A simpler
set of language features is exposed compared to C++, as only the C
language features and the needed extensions for explicit vectorization
are used. The main advantage is the better readability and main-
tainability compared to writing intrinsics or intermediate libraries,
while offering comparable performance to these solutions. The com-
piler allows to easily change between gang sizes and mask sizes to
adapt to the specifics of the algorithm, which resembles to the kernel
launch configuration of CUDA, where different block sizes and groups
of threads offer differences in performance. Furthermore, the ISPC
compiler integrates performance warnings that are displayed to the
programmer to warn about patterns that may degrade performance
when using the vector units.
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The chain of algorithms tested in this chapter achieve more than
a factor 2 compared to the non-vectorized version. The increased
throughput is the result of the parallelization of loops inside the
kernels in an analogous way as in the GPU version of Allen. The
available target instructions sets exhibit different levels of perfor-
mance improvements, where the widest vector width setting offers
the biggest improvement. The same algorithms are compared for both
their CPU/ISPC and GPU implementations, showing the performance
improvements for the CPU, but highlighting the performance benefit
of the GPUs for massively parallel workloads. HEP workloads expose
a high degree of parallelism due to the multiple particles and hits that
can be processed in parallel. For workloads that need to process high
data rates in real-time, vectorization technologies offer an important
advantage to better use the available CPU chip.
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CONCLUSIONS AND FUTURE WORK

This chapter summarizes the presented work of this thesis and
presents an analysis and final conclusion. It shows the publications
that were produced during the course of the PhD and lead to this
thesis. Future directions are discussed as a continuation from this
work.

9.1 SUMMARY

This thesis covered new advances and developments in the com-
puting high-energy physics research field. The LHCb experiment at
CERN, Switzerland, is undergoing an upgrade for its next data-taking
period in 2021. This upgrade will pose a tremendous challenges in
terms of computing; a data rate increase of 40x compared to the
previous data-taking period forces both the hardware and software
to be upgraded, optimized, and improved to cope with a target data
throughput of 40 Tb per second. The upgrade change that has the
biggest impact on the computing capabilities is the removal of the
previously used hardware trigger to replace it with a full software trigger.
This software trigger needs to process the full data rate in real-time
to select and discard useful proton-proton collisions. To achieve this
goal, parallel hardware architectures and efficient software for them
play a central role in accelerating LHCb’s computing capabilities. Im-
provements in hardware and software were taken into account during
the planning for the upgrade. However the expectations were not met
in terms of computing cost needs and software optimizations, and
new approaches were considered including new algorithms, code base
modernization and alternative hardware architectures.

This thesis work covers improvements and optimizations of algo-
rithms and software for parallel architectures in the context of LHCb's
experiment upgrade. It is structured in three main parts:

» Part 1. The LHCD experiment: This part covers the main pieces
of the experiment involved in this thesis. The detector and its
tracking subdetectors are covered, including the Data acquisition
system and the High Level Trigger. These are the elements that
provide the measurements for the particle collisions are run
the software to filter them in real-time. The computing infras-
tructure used at LHCD is introduced, highlighting the software
frameworks that run the algorithms to reconstruct particle tra-
jectories: Gaudi and Allen. Particle track reconstruction and its
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particularities at LHCb are introduced to describe the methods,
algorithms and metrics used to perform it.

Part 2. Parallel computing: This thesis is focused around parallel
computing, including the parallelism found in hardware proces-
sors and how software can leverage this parallelism to improve
the usage of this chips, and deliver software that runs faster for
the given algorithms. Main aspects from this processors that
influence software performance are covered, in particular two
main hardware accelerators are covered for this thesis: the Intel
Xeon Phi and GPUs.

Part 3. Particle tracking in high-energy physics: This part covers
the improvements and optimizations performed for various al-
gorithms, using different techniques, frameworks and parallel
architectures. Three main contributions are covered here:

* The studies on the parallelization of the Kalman filter inside
each track processing, and with different parallelization
schemes. In collaboration with Intel Corporation through
CERN Openlab, Intel hardware and software were studied
to be candidate technologies for the upgrade. Intel Xeon
Phi KNL architecture was used as a target, as it offers a
many-core x86 architecture well suited for massively par-
allel tasks were vector units, high core count and 4-way
hyperthreading could provide high throughput. Three lev-
els of parallelization are presented, from finer to coarser
grain sized, and different pipeline configurations.

As LHCD algorithms are expected to have a long life-cycle
with years in between data-taking periods, good perfor-
mance and maintainability are key aspects of LHCb soft-
ware stack. An implementation that uses generic parallel
patterns for the Kalman filter is presented in this thesis,
where the patterns offer an abstraction that is optimized for
the Intel Xeon Phi to be architecture-aware, and improves
readability while minimizing the possibility of incurring in
errors. A comparable performance is achieved compared to
the baseline while hiding the parallelization details.

¢ Different hardware architectures are considered for the up-
grade, for instance accelerators such as GPUs present solid
alternatives to the x86 architecture. During this thesis con-
tributions are made to LHCb’s Allen framework, which
offers an alternative software framework that is compact
and optimized for parallel data-oriented algorithms. Com-
pass is shown as a decoding and tracking algorithm for the
Allen framework. The algorithm is designed and imple-
mented to be efficient for massively parallel architectures,
in particular for GPUs. A throughput analysis is presented



9.1 SUMMARY

with results from various scientific and consumer GPUs,
achieving a throughput of more than 7x compared to the
baseline CPU version.

* Vectorization opportunities are studied within the Allen
framework, extending it to support SPMD kernels and al-
gorithms that can be used in an heterogeneous computing
environment. Memory efficient and data-oriented princi-
ples are extended from the GPUs to CPUs to benefit from
vectorization. The Intel Implicit SPMD Program Compiler
(ISPC) is used to implement VELO and UT algorithms. By
using the language provided by ISPC loops can be explicitly
vectorized, and a performance improvement over 2x com-
pared to the scalar CPU version is achieved when mixing
vectorized and non-vectorized kernels that are processed
with the CPU. A performance study is presented with a
comparison against the GPU implementations of Allen.

The hypothesis presented in Section 1.1 was successfully achieved:
The developed algorithms, chosen hardware and applied improvements and
optimizations for the LHCD experiment, delivered over the target 40 Tb/s data
throughput before the next data-taking period started. The contributions of
this thesis were crucial to reach this goal, in particular to successfully
deliver a high-performance GPU framework, Allen, and its algorithms.

The objectives presented in Section 1.2 were met as presented here:

» Ox: Various multi-threading possibilities to parallelize the processing
of particle tracks have been explored. During the optimization of
the Kalman filter algorithm, different parallelization schemes
were analized and discussed. This resulted in three different
parallel implementations with different tasks grain sizes, where
the goal was to improve the usage of the SMT capabilities of the
processor. An implementation of this Kalman filter with generic
parallel patterns was delivered, improving the maintainability
and readability of the source code while achieving a comparable
performance.

» O2: Various implementations of the Kalman filter have been optimized
for the Intel Xeon Phi KNL. The Kalman filter being one of the
main time contributors to LHCb HLT computing, was selected
as a target to improve with the selected processor. As part
of the High Throughput Computing Collaboration with Intel,
various Intel technologies were selected to improve computing
performance for the upgrade.

» O3: Vectorization opportunities have been explored with different
tracking algorithms of LHCb. As part of the development of the
Allen framework and the algorithms for it, vectorized algorithms
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have been developed to leverage the data-oriented design of
the Allen framework. A SPMD model approach was used to
improve the performance and usage of the vector units available
in the CPU, with an improvement of over 2x in throughput.

» Oy4: New algorithms have been implemented for GPU architectures
and their performance have been studied. The development of a
GPU framework, Allen, was designed from the beginning to
efficiently use GPU accelerators with the goal of delivering a
high-throughput compact solution. The Compass algorithm was
designed and developed as a data-oriented algorithm that is
optimized for GPUs. It delivered an improved performance over
7x the throughput compared to the baseline solution with CPUs.

The use of different high-performance technologies such as higher
parallelism, multithreading, vectorization and accelerators in the con-
text of high-energy physics, is a necessary evolution that bring per-
formance and efficiency improvements. To process data rates of up
to 40Tb/s in the LHCb experiment, in real-time, an heterogeneous
solution provides the benefits of different architectures for different
workloads and use cases. The Allen GPU framework project and its
algorithms started during the development of this thesis, under the
time constraint of the next data-taking period of LHCb, Run3, and was
successfully designed and implemented by a small team of developers
including myself. This project was selected by the LHCb collaboration
to be the framework to process the HLT1 for Run3.

LHCb solution will be a high-performance heterogeneous comput-
ing solution. The Allen framework proved to be compact, efficient
and flexible; it is able to compile its algorithms for different architec-
tures, and different compilers and algorithms can be used. This is
demonstrated in this thesis with the inclusion of CPU vectorized algo-
rithms with the ISPC compiler. As different parallel architectures and
parallelization models are used in scientific computing fields like high-
energy physics, abstractions are needed to target different processors
or parallelization libraries. Approaches like generic parallel patterns
help to reduce the effort needed to implement current and future algo-
rithms that are efficient for parallel architectures. In the context of the
software used in the Large Hadron Collider experiments, its software
will be maintained and used during several years or decades, while
multiple different people reading, using and changing the source code.
The importance of maintainable and high-performance solutions is
bigger for this kind of projects. This is shown in this thesis with the
parallelization of the Kalman filter and the use of generic parallel
patterns, providing a solution that is comparable in performance but
uses abstractions for the parallelization. This solution is optimized for
a particular processor, the Intel Xeon Phi, as part of a joint effort with
Intel and CERN Openlab.
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LHCb computing for fine grained tasks remains a challenge as
the data structures and sizes of the events recorded by the detector
are not big in size. The computing challenge is posed by the high
data rate generated by the 40 million collisions every second, where
multiple tracks per collision need to be reconstructed, in real-time.
In future upgrades, experiments like LHCb will be able to record
more information and with a higher detail, which will generate bigger
events that will open further possibilities to parallelize.

This thesis contributed in prominent fields of high-performance com-
puting to help the LHCb experiment achieve its computing goals. It
has shown how accelerators, vectorization, multithreading and generic
parallel patterns can be applied to high-energy physics algorithms
and scenarios with success.

9.2 DISSEMINATION

A list of publications and research contributions produced during
the work of this thesis is presented here:
Publications:

» Placido Fernandez et al. «Parallelizing and Optimizing LHCb-
Kalman for Intel Xeon Phi KNL Processors.» In: 2018 26th Eu-
romicro International Conference on Parallel, Distributed and Network-
based Processing (PDP). IEEE. 2018, pp. 741-750. DOI: 10.1109/
PDP2018.2018.00121

» Placido Fernandez Declara et al. «A parallel-computing algo-
rithm for high-energy physics particle tracking and decoding
using GPU architectures.» In: IEEE Access 7 (2019), pp. 91612—
91626. ISSN: 2169-3536. DOIL: 10.1109/ACCESS.2019.2927261

» Placido Fernandez Declara and J. Daniel Garcia. «Compass
SPMD: a SPMD vectorized tracking algorithm.» 2020. Accepted
for publication at CHEP 2019 Proceedings, Adelaide, Australia

= Roel Aaij et al. «Allen: A High-Level Trigger on GPUs for LHCb.»
In: Computing and Software for Big Science 4.7 (2020). DOIL: 10.
1007/s41781-020-00039-7

Posters:

» Placido Fernandez Declara. «CompassUT: study of a GPU track
reconstruction for LHCb upgrades.» 2019. URL: https://cds.
cern.ch/record/2665033. Poster presented at Winter LHCC
sessions, CERN, Switzerland

= Placido Fernandez Declara. «Compass SPMD: a SPMD vector-
ized tracking algorithm.» 2019. URL: https://cds.cern.ch/
record/2699802. Poster presented at CHEP 2019, Adelaide,
Australia
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Talks at international conferences:

» Placido Fernandez Declara. Fast Kalman Filtering: new approaches
for the LHCb upgrade. Tech. rep. 2018. URL: http://cds.cern.ch/
record/2631784

Technical reports:

» LHCb Collaboration. LHCb Upgrade GPU High Level Trigger
Technical Design Report. Tech. rep. CERN-LHCC-2020-006. LHCB-
TDR-021. Geneva: CERN, 2020. URL: https://cds.cern.ch/
record/2717938

I am also a co-author in a number of LHCb related papers. The full
list can be found at:

» Placido Fernandez Declara. Google Scholar profile. https://
scholar.google.com/citations?user=Ygkg_7YAAAAJ. 2020

9.3 FUNDING

= CERN Openlab’, a public-private partnership between CERN
and ICT companies. In collaboration with Intel Corporation
through the High-Throughput Computing Collaboration (HTCC)?.

= CERN LHCDb experiment3.

= Madrid Regional Government, CABAHLA-CM (ConvergenciA
Big dAta-Hpc: de Los sensores a las Aplicaciones) grant number
S2018/TCS-4423.

» University Carlos III of Madrid Strategic Action on Programming
Models for Software Improvement (ref. 2013/00196/002).

= Spanish MINISTERIO DE ECONOMIA Y COMPETITIVIDAD
through project grant TIN2016-79637-P TOWARDS UNIFICA-
TION OF HPC AND BIG DATA PARADIGMS.

» EU Project ICT 644235 "REPHRASE: REfactoring Parallel Hetero-

geneous Resource-Aware Applications".

9.4 FUTURE DIRECTIONS

The work presented in this thesis can be extended in its different
contributions, and parts of this thesis are adopted by the LHCb exper-
iment to be used in the coming years. In particular the developments

1 https://home.cern/science/computing/cern-openlab

2 https://openlab-archive-phases-iv-v.web.cern.ch/technical-area/
data-acquisition-online

3 http://lhcb-public.web.cern.ch/
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in the Allen framework and GPU algorithms will be extended for its
use in the next data-taking period from 2021. The Allen framework
can implement further optimizations to achieve a higher performance
which will allow to integrate more detailed algorithms and data from
other subdetectors to help make better filtering decisions. The SPMD
implemented algorithms with Allen are the base to integrate hetero-
geneous capabilities further to the Allen framework. Compilation
for other GPU vendors, different CPUs or other accelerators can be
achieved with solutions like SYCL or Alpaka, where all architectures
would benefit from the data-parallel design of the framework to make
an efficient use of the processors.

The author of this thesis has continued working at CERN, Switzer-
land, in the development of future experiments. In particular the
author is working for the Future Circular Collider (FCC) and the Com-
pact Linear Collider (CLIC). This future experiments are developing
the tools and frameworks needed for the future challenges in particle
physics. The experience and research of the work of this thesis in
tracking algorithms and framework development will be applied by
the author in these developments.

143






BIBLIOGRAPHY

[1]

[2]

R Aaij, S Benson, M De Cian, A Dziurda, C Fitzpatrick, E Gov-
orkova, O Lupton, R Matev, S Neubert, A Pearce, et al. «A
comprehensive real-time analysis model at the LHCb experi-
ment.» In: Journal of Instrumentation 14.04 (2019), Po4006.

Roel Aaij, Johannes Albrecht, M Belous, P Billoir, T Boettcher,
A Brea Rodriguez, D vom Bruch, DH Pérez, A Casais Vidal,
DC Craik, et al. «Allen: A High-Level Trigger on GPUs for
LHCb.» In: Computing and Software for Big Science 4.7 (2020).
DOI: 10.1007/s41781-020-00039-7.

M Abolins, R Abreu, R Achenbach, M Aharrouche, G Aielli,
A Al-Shabibi, I Aleksandrov, E Alexandrov, BM Allbrooke, A
Aloisio, et al. «The ATLAS Data Acquisition and High Level
Trigger system.» In: Journal of Instrumentation 11 (2016).

A Augusto Alves Jr, LM Andrade Filho, AF Barbosa, I Bediaga,
G Cernicchiaro, G Guerrer, HP Lima Jr, AA Machado, ] Magnin,
F Marujo, et al. «The LHCb detector at the LHC.» In: Journal of
instrumentation 3.08 (2008), S08005.

S Amato, S Topp-Jorgensen, G Carboni, R Schwierz, V Zerkin, S
Haider, D George, A Petrolini, Ian C McArthur, L Paoluzi, et al.
LHCb Technical Proposal: A large hadron collider beauty experiment
for precision measurements of CP violation and rare decays. Tech.
rep. 1998.

Gene M Amdahl. «Validity of the single processor approach to
achieving large scale computing capabilities.» In: Proceedings
of the April 18-20, 1967, spring joint computer conference. ACM.
1967, pp- 483-485.

Carl D Anderson. «The positive electron.» In: Physical Review
43.6 (1933), p. 491.

R. E. Andreassen, W. M. de Silva, B. T. Meadows, M. D. Sokoloff,
and K. A. Tomko. «Implementation of a Thread-Parallel, GPU-
Friendly Function Evaluation Library.» In: IEEE Access 2 (2014),
pp. 160-176. ISSN: 2169-3536. DOIL: 10 . 1109 / ACCESS . 2014 .
2306895.

Alexey Pavlovich Badalov et al. «Coprocessor integration for
real-time event processing in particle physics detectors.» PhD
thesis. Universitat Ramon Llull, 2016.

145


https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1109/ACCESS.2014.2306895
https://doi.org/10.1109/ACCESS.2014.2306895

146

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

GAUDI& Barrand, I Belyaev, P Binko, M Cattaneo, R Chytracek,
G Corti, M Frank, G Gracia, ] Harvey, Eric Van Herwijnen, et al.
«GAUDI—A software architecture and framework for build-
ing HEP data processing applications.» In: Computer Physics
Communications 140.1-2 (2001), Pp. 45-55.

F. Baruffa, L. lapichino, N. J. Hammer, and V. Karakasis. «Per-
formance Optimisation of Smoothed Particle Hydrodynamics
Algorithms for Multi/Many-Core Architectures.» In: 2017 In-
ternational Conference on High Performance Computing Simulation
(HPCS). July 2017, pp. 381—388. po1: 10.1109/HPCS.2017.64.

Pierre L Bastien and Lawrence A Dunn. «Global transforma-
tions in pattern recognition of bubble chamber photographs.»
In: IEEE Transactions on Computers 100.9 (1971), pp. 995—1001.

G Bauer, B Beccati, U Behrens, K Biery, O Bouffet, ] Branson,
S Bukowiec, E Cano, H Cheung, M Ciganek, et al. «The data-
acquisition system of the CMS experiment at the LHC.» In:
Journal of Physics: Conference Series. Vol. 331. 2. IOP Publishing.
2011, p. 022021.

I Belyaev, Ph Charpentier, S Easo, P Mato, ] Palacios, W Poko-
rski, F Ranjard, and ] Van Tilburg. «Simulation application for
the LHCb experiment.» In: arXiv preprint physics/0306035 (2003).

Pierre Billoir. «Progressive track recognition with a Kalman-
like fitting procedure.» In: Computer Physics Communications
57.1-3 (1989), Pp- 390-394-

Ian Bird. «Computing for the large hadron collider.» In: Annual
Review of Nuclear and Particle Science 61 (2011), pp. 99-118.

Javier Garcia Blas, Monica Abella, Florin Isaila, Jesus Car-
retero, and Manuel Desco. «Surfing the optimization space of a
multiple-GPU parallel implementation of a X-ray tomography
reconstruction algorithm.» In: Journal of Systems and Software 95
(2014), pp. 166-175.

Rudolf K Bock, H Grote, and D Notz. Data analysis techniques for
high-energy physics. Vol. 11. Cambridge University Press, 2000.

E Bos and E Rodrigues. The LHCD track extrapolator tools. Tech.
rep. 2007.

E Bowen and B Storaci. VeloUT tracking for the LHCb Upgrade.
Tech. rep. LHCb-PUB-2013-023. CERN-LHCb-PUB-2013-023.
LHCb-INT-2013-056. Geneva: CERN, Apr. 2014. URL: http:
//cds.cern.ch/record/1635665.

Espen Eie Bowen, Barbara Storaci, and Marco Tresch. VeloTT
tracking for LHCb Run II. Tech. rep. LHCb-PUB-2015-024. CERN-
LHCb-PUB-2015-024. LHCb-INT-2014-040. Geneva: CERN, Apr.
2016. URL: http://cds.cern.ch/record/2105078.


https://doi.org/10.1109/HPCS.2017.64
http://cds.cern.ch/record/1635665
http://cds.cern.ch/record/1635665
http://cds.cern.ch/record/2105078

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

BIBLIOGRAPHY

Espen Eie Bowen, Ulrich Straumann, Nicola Serra, Olaf Steinkamp,

and Barbara Storaci. «Upstream Tracking and the Decay B® —
K+t utu at the LHCb Experiment.» Presented 26 Jan 2017.
PhD thesis. University of Zurich, Oct. 2016. URL: http://cds.
cern.ch/record/2261918.

Frangois Broquedis, Jérome Clet Ortega, Stéphanie Moreaud,
Nathalie Furmento, Brice Goglin, Guillaume Mercier, Samuel
Thibault, and Raymond Namyst. «<hwloc: a Generic Frame-
work for Managing Hardware Affinities in HPC Applications.»
Anglais. In: PDP 2010 - The 18th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Computing. Ed. by
IEEE. Pisa Italie, Feb. 2010. URL: http://hal.inria.fr/inria-
00429889/en/.

Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K.
Sujeeth, Christopher De Sa, Christopher Aberger, and Kunle
Olukotun. «Have Abstraction and Eat Performance, Too: Opti-
mized Heterogeneous Computing with Parallel Patterns.» In:
Proceedings of the 2016 International Symposium on Code Genera-
tion and Optimization. CGO "16. Barcelona, Spain: ACM, 2016,
PP- 194—205. ISBN: 978-1-4503-3778-6. DOI: 10.1145/2854038.
2854042. URL: http://doi.acm.org/ 10 . 1145 /2854038 .
2854042.

Dorothea vom Bruch. «Online Data Reduction using Track and
Vertex Reconstruction on GPUs for the Muze Experiment.» In:
EPJ] Web of Conferences. Vol. 150. EDP Sciences. 2017, p. 00013.

Nicola Cadenelli, Zoran Jaksi¢, Jorda Polo, and David Carrera.
«Considerations in using OpenCL on GPUs and FPGAs for
throughput-oriented genomics workloads.» In: Future Genera-
tion Computer Systems 94 (2019), pp. 148-159.

Daniel Hugo Campora Pérez. «A high-throughput Kalman
filter for modern SIMD architectures.» In: Euro-Par Workshops.
2017, in press.

Daniel Hugo Campora Perez. «LHCb Kalman filter cross archi-
tecture studies.» In: J. Phys.: Conf. Ser. Vol. 898. LHCb-PROC-
2017-041. 2017, P. 032052.

Daniel Hugo Campora Pérez, Niko Neufeld, and Agustin
Riscos Nufiez. «A Fast Local Algorithm for Track Reconstruc-
tion on Parallel Architectures.» In: 2019 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW).
2019, pp. 698—707. DOI: 10 .1109/IPDPSW.2019.00118. URL:
https://doi.org/10.1109/IPDPSW.2019.00118.

Laurent Canetti, Marco Drewes, and Mikhail Shaposhnikov.
«Matter and antimatter in the universe.» In: New Journal of
Physics 14.9 (Sept. 2012), p. 095012. DOIL: 10.1088/1367-2630/

147


http://cds.cern.ch/record/2261918
http://cds.cern.ch/record/2261918
http://hal.inria.fr/inria-00429889/en/
http://hal.inria.fr/inria-00429889/en/
https://doi.org/10.1145/2854038.2854042
https://doi.org/10.1145/2854038.2854042
http://doi.acm.org/10.1145/2854038.2854042
http://doi.acm.org/10.1145/2854038.2854042
https://doi.org/10.1109/IPDPSW.2019.00118
https://doi.org/10.1109/IPDPSW.2019.00118
https://doi.org/10.1088/1367-2630/14/9/095012
https://doi.org/10.1088/1367-2630/14/9/095012

148

BIBLIOGRAPHY

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

14/9/095012. URL: https://doi.org/10.1088%2F1367-2630%
2F14%2F9%2F095012.

Mark Cattaneo. GAUDI-The software architecture and framework
for building LHCb data processing applications. Tech. rep. 2000.

Zhenhua Chen, Jielong Xu, Jian Tang, Kevin A Kwiat, Charles
Alexandre Kamhoua, and Chonggang Wang. «GPU-accelerated
high-throughput online stream data processing.» In: IEEE Trans-
actions on Big Data 4.2 (2018), pp. 191—202.

Mourad Chouaki. Analysis of Low-Momentum Upstream Tracking
for the LHCb upgrade. Tech. rep. Ecole Polytechnique Fédérale de
Lausanne, June 2016. URL: https://1phe.epfl.ch/oschneid/
cours /2015 - 2016 / rapports _TP4 / TP4b _Mourad _ Chouaki _
UpstreamTracking_jun2016.pdf.

Mike Clark. «A newx 86 core architecture for the next gen-
eration of computing.» In: Hot Chips Symposium. 2016, pp. 1—
19.

M Clemencic, B Hegner, and C Leggett. «Gaudi evolution for
future challenges.» In: J. Phys. : Conf. Ser. 898.4 (2017), 042044.
3 p. DOL: 10 .1088 /1742 - 6596/898/4/042044. URL: http:
//cds.cern.ch/record/2297285.

M Clemencic, ] Palacios, and N Gilardi. LHCb Conditions Database.
Tech. rep. LHCb-PROC-2006-004. CERN-LHCb-PROC-2006-004.
Geneva: CERN, Feb. 2006. URL: https://cds.cern.ch/record/
1442972.

LHCb Collaboration. LHCb PID Upgrade Technical Design Report.
Tech. rep. CERN-LHCC-2013-022. LHCB-TDR-014. 2013. URL:
https://cds.cern.ch/record/1624074.

LHCb Collaboration. LHCb VELO Upgrade Technical Design Re-
port. Tech. rep. CERN-LHCC-2013-021. LHCB-TDR-013. Nov.
2013. URL: http://cds.cern.ch/record/1624070.

LHCDb Collaboration. «<LHCb detector performance.» In: Inter-
national Journal of Modern Physics A 30.07 (2015), p. 1530022.

LHCb Collaboration. LHCb Upgrade GPU High Level Trigger Tech-
nical Design Report. Tech. rep. CERN-LHCC-2020-006. LHCB-
TDR-021. Geneva: CERN, 2020. URL: https://cds.cern.ch/
record/2717938.

T Colombo, A Amihalachioaei, K Arnaud, F Alessio, L Brarda,
JP Cachemiche, D Cdmpora, S Cap, L Cardoso, F Cindolo, et
al. «The LHCb Online system in 2020: trigger-free read-out
with (almost exclusively) off-the-shelf hardware.» In: Journal
of Physics: Conference Series. Vol. 1085. 3. IOP Publishing. 2018,

p- 032041.


https://doi.org/10.1088/1367-2630/14/9/095012
https://doi.org/10.1088/1367-2630/14/9/095012
https://doi.org/10.1088%2F1367-2630%2F14%2F9%2F095012
https://doi.org/10.1088%2F1367-2630%2F14%2F9%2F095012
https://lphe.epfl.ch/oschneid/cours/2015-2016/rapports_TP4/TP4b_Mourad_Chouaki_UpstreamTracking_jun2016.pdf
https://lphe.epfl.ch/oschneid/cours/2015-2016/rapports_TP4/TP4b_Mourad_Chouaki_UpstreamTracking_jun2016.pdf
https://lphe.epfl.ch/oschneid/cours/2015-2016/rapports_TP4/TP4b_Mourad_Chouaki_UpstreamTracking_jun2016.pdf
https://doi.org/10.1088/1742-6596/898/4/042044
http://cds.cern.ch/record/2297285
http://cds.cern.ch/record/2297285
https://cds.cern.ch/record/1442972
https://cds.cern.ch/record/1442972
https://cds.cern.ch/record/1624074
http://cds.cern.ch/record/1624070
https://cds.cern.ch/record/2717938
https://cds.cern.ch/record/2717938

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

Tommaso Colombo, Paolo Durante, Domenico Galli, Umberto
Marconi, Niko Neufeld, Flavio Pisani, Rainer Schwemmer,
Sébastien Valat, and Balazs Voneki. «The LHCb DAQ upgrade
for LHC Run3.» In: IEEE Transactions on Nuclear Science (2019).

Gloria Corti, Marco Cattaneo, Philippe Charpentier, Markus
Frank, Patrick Koppenburg, Pere Mato, Florence Ranjard, Ste-
fan Roiser, Ivan Belyaev, and Guy Barrand. «Software for the
LHCb experiment.» In: IEEE transactions on nuclear science 53.3
(2006), pp. 1323-1328.

Miles D Cranmer, Benjamin R Barsdell, Danny C Price, Jayce
Dowell, Hugh Garsden, Veronica Dike, Tarraneh Eftekhari,
Alexander M Hegedus, Joseph Malins, Kenneth S Obenberger,
et al. «Bifrost: A Python/C++ Framework for High-Throughput
Stream Processing in Astronomy.» In: Journal of Astronomical
Instrumentation 6.04 (2017), p. 1750007.

D. H. Campora Pérez, N. Neufeld, A. Riscos Nuifiez. «A fast lo-
cal algorithm for track reconstruction on parallel architectures.»
IPDPS workshops, to appear. 2019.

Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli, and
Massimo Torquati. «Data stream processing via code anno-
tations.» In: The Journal of Supercomputing (June 2016). I1SSN:
1573-0484. DOIL: 10.1007 /511227 - 016 - 1793 - 9. URL: https:
//doi.org/10.1007/s11227-016-1793-9.

Michel De Cian et al. Status of HLT1 sequence and path towards
30 MHz. Tech. rep. LHCb-PUB-2018-003. CERN-LHCb-PUB-
2018-003. Geneva: CERN, Mar. 2018. URL: http://cds.cern.
ch/record/2309972.

Bruce Denby. «The use of neural networks in high-energy
physics.» In: Neural Computation 5.4 (1993), pp- 505-549.

Youcef Djenouri, Ahcene Bendjoudi, Zineb Habbas, Malika
Mehdi, and Djamel Djenouri. «Reducing thread divergence in
GPU-based bees swarm optimization applied to association
rule mining.» In: Concurrency and Computation: Practice and
Experience 29.9 (2017), e3836.

Richard O Duda and Peter E Hart. Use of the Hough transforma-

tion to detect lines and curves in pictures. Tech. rep. Sri Interna-
tional Menlo Park Ca Artificial Intelligence Center, 1971.

Richard O Duda and Peter E Hart. «Use of the Hough transfor-
mation to detect lines and curves in pictures.» In: Communica-
tions of the ACM 15.1 (1972), pp. 11-15.

Luke Durant, Olivier Giroux, Mark Harris, and Nick Stam.
Inside Volta: The World’s Most Advanced Data Center GPU. https:

//devblogs.nvidia.com/inside-volta/. Published: 2017-05-
10.

149


https://doi.org/10.1007/s11227-016-1793-9
https://doi.org/10.1007/s11227-016-1793-9
https://doi.org/10.1007/s11227-016-1793-9
http://cds.cern.ch/record/2309972
http://cds.cern.ch/record/2309972
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/inside-volta/

150

BIBLIOGRAPHY

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Rutger M Van der Eijk. «Track reconstruction in the LHCb
experiment.» PhD thesis. NIKHEF, Amsterdam, 2002.

Pierre Estérie, Joel Falcou, Mathias Gaunard, and Jean-Thierry
Lapresté. «Boost. simd: generic programming for portable
simdization.» In: Proceedings of the 2014 Workshop on Program-
ming models for SIMD/Vector processing. ACM. 2014, pp. 1-8.

Placido Fernandez Declara. Fast Kalman Filtering: new approaches
for the LHCb upgrade. Tech. rep. 2018. URL: http://cds.cern.
ch/record/2631784.

Placido Fernandez Declara. «Compass SPMD: a SPMD vector-
ized tracking algorithm.» 2019. URL: https://cds.cern.ch/
record/2699802. Poster presented at CHEP 2019, Adelaide,
Australia.

Placido Fernandez Declara. «CompassUT: study of a GPU
track reconstruction for LHCb upgrades.» 2019. URL: https:
//cds.cern.ch/record/2665033. Poster presented at Winter
LHCC sessions, CERN, Switzerland.

Placido Fernandez Declara. Google Scholar profile. https://
scholar.google.com/citations?user=Ygkq_7YAAAAJ. 2020.

Placido Fernandez Declara and ]. Daniel Garcia. «Compass
SPMD: a SPMD vectorized tracking algorithm.» 2020. Accepted
for publication at CHEP 2019 Proceedings, Adelaide, Australia.

Placido Fernandez Declara, Daniel Hugo Perez Campora, Javier
Garcia-Blas, Dorothea Vom Bruch, | Daniel Garcia, and Niko
Neufeld. «A parallel-computing algorithm for high-energy
physics particle tracking and decoding using GPU architec-
tures.» In: IEEE Access 7 (2019), pp. 91612—91626. ISSN: 2169-
3536. DOI: 10.1109/ACCESS.2019.2927261.

Placido Ferndndez, David del Rio Astorga, Manuel F Dolz,
Javier Fernandez, Omar Awile, and ] Daniel Garcia. «Paralleliz-
ing and Optimizing LHCb-Kalman for Intel Xeon Phi KNL
Processors.» In: 2018 26th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP). IEEE.
2018, pp. 741—750. DOL: 10.1109/PDP2018.2018.00121.

Michael Flynn. «Flynn’s Taxonomy.» In: Encyclopedia of Parallel
Computing. Ed. by David Padua. Boston, MA: Springer US,
2011, pp. 689—697. I1SBN: 978-0-387-09766-4. DOIL: 10.1007/978-
0-387-09766-4_2. URL: https://doi.org/10.1007/978-0-
387-09766-4_2.

Agner Fog. «C++ vector class library.» In: URL: http://www.
agner. org/optimize/vectorclass. pdf (2013).


http://cds.cern.ch/record/2631784
http://cds.cern.ch/record/2631784
https://cds.cern.ch/record/2699802
https://cds.cern.ch/record/2699802
https://cds.cern.ch/record/2665033
https://cds.cern.ch/record/2665033
https://scholar.google.com/citations?user=Ygkq_7YAAAAJ
https://scholar.google.com/citations?user=Ygkq_7YAAAAJ
https://doi.org/10.1109/ACCESS.2019.2927261
https://doi.org/10.1109/PDP2018.2018.00121
https://doi.org/10.1007/978-0-387-09766-4_2
https://doi.org/10.1007/978-0-387-09766-4_2
https://doi.org/10.1007/978-0-387-09766-4_2
https://doi.org/10.1007/978-0-387-09766-4_2

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

BIBLIOGRAPHY

Daniel Funke, Thomas Hauth, Vincenzo Innocente, Giinter
Quast, P Sanders, and D Schieferdecker. «Parallel track recon-
struction in CMS using the cellular automaton approach.» In:
Journal of Physics: Conference Series. Vol. 513. IOP Publishing.
2014, p. 052010.

Mary K Gaillard, Paul D Grannis, and Frank ] Sciulli. «The
standard model of particle physics.» In: Reviews of Modern
Physics 71.2 (1999), S96.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-oriented Soft-
ware. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995. 1SBN: 0-201-63361-2.

Gaudi source code. https://gitlab. cern.ch/gaudi/Gaudi.
Accessed: 2020-06-07.

Donald A Glaser. «Some effects of ionizing radiation on the
formation of bubbles in liquids.» In: Physical Review 87.4 (1952),
p- 665.

Matt Godbolt, Rubén Rincén, Patrick Quist, Austin Morton,
Jared Wyles, Chedy Najjar, Simon Brand, and Filipe Cabecinhas.
Compiler explorer. 2017.

Brice Goglin. «Exposing the Locality of Heterogeneous Memory
Architectures to HPC Applications.» In: 1st ACM International
Symposium on Memory Systems (MEMSYS16). Washington, DC,
United States: ACM, Oct. 2016. DOI: 10.1145/29896081.2989115.
URL: https://hal.inria.fr/hal-01330194.

Paul D Groves. «Principles of GNSS, inertial, and multisen-
sor integrated navigation systems, [Book review].» In: IEEE
Aerospace and Electronic Systems Magazine 30.2 (2015), pp. 26—27.

John L Gustafson. «Reevaluating Amdahl’s law.» In: Communi-
cations of the ACM 31.5 (1988), pp- 532-533.

VKAVYV Halyo, Patrick LeGresley, P Lujan, V Karpusenko, and
A Vladimirov. «First evaluation of the CPU, GPGPU and MIC
architectures for real time particle tracking based on Hough
transform at the LHC.» In: Journal of Instrumentation 9.04 (2014),
Pogoo05.

Wookhyun Han, Hoon Sung Chwa, Hwidong Bae, Hyosu Kim,
and Insik Shin. «GPU-SAM: Leveraging multi-GPU split-and-
merge execution for system-wide real-time support.» In: Journal
of Systems and Software 117 (2016), pp. 1-14.

Mark Harris, Shubhabrata Sengupta, and John D Owens. «Par-
allel prefix sum (scan) with CUDA.» In: GPU gems 3.39 (2007),

pp- 851-876.

151


https://gitlab.cern.ch/gaudi/Gaudi
https://doi.org/10.1145/2989081.2989115
https://hal.inria.fr/hal-01330194

152 BIBLIOGRAPHY

[76] B Hegner, P Mato, and D Piparo. «Evolving LHC data pro-
cessing frameworks for efficient exploitation of new CPU ar-

chitectures.» In: Nuclear Science Symposium and Medical Imaging
Conference (NSS/MIC), 2012 IEEE. IEEE. 2012, p. 513.

[77]1 John L Hennessy and David A Patterson. Computer architecture:
a quantitative approach. Elsevier, 2011.

[78] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and El-
mar Wasle. GNSS—global navigation satellite systems: GPS, GLONASS,
Galileo, and more. Springer Science & Business Media, 2007.

[79] Cheng-Liang Hsieh, Lucas Vespa, and Ning Weng. «A high-
throughput DPI engine on GPU via algorithm /implementation
co-optimization.» In: Journal of Parallel and Distributed Comput-
ing 88 (2016), pp. 46-56.

[80] Xinyi Hu and Yaqun Zhao. «Gridding Algorithm in ARL Based
on GPU Parallelization.» In: Proceedings of the 6th ACM/ACIS
International Conference on Applied Computing and Information
Technology. ACM. 2018, pp. 13-18.

[81] Mikhail Hushchyn, A Baranov, S Roiser, K Arzymatov, and
A Ustyuzhanin. «]JOP: The LHCb Grid simulation: Proof of
concept.» In: J. Phys.: Conf. Ser. Vol. 898. 2017, p. 052020.

[82] Intel TBB Documentation - Controlling Chunking. 2016. URL: https:
/ / software . intel . com/ en - us / node / 506060 (visited on
10/09/2010).

[83] James Jeffers, James Reinders, and Avinash Sodani. Intel Xeon
Phi Processor High Performance Programming: Knights Landing
Edition. Morgan Kaufmann, 2016.

[84] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P
Scarpazza. «Dissecting the nvidia volta gpu architecture via
microbenchmarking.» In: arXiv preprint arXiv:1804.06826 (2018).

[85] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. «High-Level
Programming Abstractions for Distributed Graph Processing.»
In: IEEE Transactions on Knowledge and Data Engineering (2017).

[86] R.E.Kalman. «A New Approach to Linear Filtering and Pre-
diction Problems.» In: Journal of Basic Engineering 82.1 (Mar.
1960), Pp- 35—45. ISSN: 0098-2202. DOI: 10.1115/1.3662552.
URL: http://dx.doi.org/10.1115/1.3662552 (visited on
09/05/2017).

[87] Donald E. Knuth. «Computer Programming as an Art.» In:
Communications of the ACM 17.12 (1974), pp. 667-673.

[88] LHCb Collaboration. LHCbh Tracker Upgrade Technical Design Re-
port. Tech. rep. CERN-LHCC-2014-001. LHCB-TDR-015. CERN,
Feb. 2014. URL: http://cds.cern.ch/record/1647400.


https://software.intel.com/en-us/node/506060
https://software.intel.com/en-us/node/506060
https://doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://cds.cern.ch/record/1647400

BIBLIOGRAPHY 153

[89] LHCb Collaboration. <Measurement of the track reconstruction
efficiency at LHCb.» In: Journal of Instrumentation 10.02 (2015),
Pozo07.

[9o] CERN (Meyrin) LHCb Collaboration. Computing Model of the
Upgrade LHCb experiment. Tech. rep. CERN-LHCC-2018-014.
LHCB-TDR-018. Geneva: CERN, May 2018. URL: http://cds.
cern.ch/record/2319756.

[o1] LHCb Trigger and Online Upgrade Technical Design Report. Tech.
rep. CERN-LHCC-2014-016. LHCB-TDR-016. May 2014. URL:
https://cds.cern.ch/record/1701361.

[92] Massimo Lamanna. «The LHC computing grid project at CERN.»
In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment

534.1-2 (2004), pp-. 1-6.

[93] Huanxin Lin, Cho-Li Wang, and Hongyuan Liu. «On-GPU
thread-data remapping for branch divergence reduction.» In:
ACM Transactions on Architecture and Code Optimization (TACO)
15.3 (2018), p. 39.

[94] Tautvydas Maceina, Paolo Bettini, Gabriele Manduchi, and
Mauro Passarotto. «Fast and efficient algorithms for computa-
tional electromagnetics on GPU architecture.» In: IEEE Transac-
tions on Nuclear Science 64.7 (2017), pp. 1983-1987.

[o5] P. Madhavan, P. Young, and S. Chang. «Performance of Scien-
tific Simulations on QCT Developer Cloud: A Case Study of
Molecular Dynamic and Quantum Chemistry Simulations.»
In: 2017 IEEE 4th International Conference on Cyber Security and
Cloud Computing (CSCloud). June 2017, pp. 18-21. boIL: 10.1109/
CSCloud.2017.54.

[96] Alessio Magro. «A Real-Time, GPU-Based, Non-Imaging Back-
End for Radio Telescopes.» In: arXiv preprint arXiv:1401.8258

(2014).
[97] Rainer Mankel. «Pattern recognition and event reconstruction
in particle physics experiments.» In: Reports on Progress in

Physics 67.4 (2004), p- 553-
[08] Fabienne CERN Marcastel. WLCG. Tech. rep. 2013.

[99] Timothy G Mattson, Beverly Sanders, and Berna Massingill.
Patterns for parallel programming. Pearson Education, 2004.

[100] A.Mazouz, S. A. A. Touati, and D. Barthou. «Performance eval-
uation and analysis of thread pinning strategies on multi-core
platforms: Case study of SPEC OMP applications on intel archi-
tectures.» In: 2011 International Conference on High Performance
Computing Simulation. 2011, pp. 273-279. DOI: 10.1109/HPCSim.
2011.5999834.


http://cds.cern.ch/record/2319756
http://cds.cern.ch/record/2319756
https://cds.cern.ch/record/1701361
https://doi.org/10.1109/CSCloud.2017.54
https://doi.org/10.1109/CSCloud.2017.54
https://doi.org/10.1109/HPCSim.2011.5999834
https://doi.org/10.1109/HPCSim.2011.5999834

154

BIBLIOGRAPHY

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Abdelhafid Mazouz, Denis Barthou, et al. «Dynamic thread
pinning for phase-based OpenMP programs.» In: European
Conference on Parallel Processing. Springer Berlin Heidelberg,
2013, pp-. 53—64. ISBN: 978-3-642-40047-6. DOIL: 10.1007/978-3-
642-40047-6\_8.

Michael McCool, James Reinders, and Arch Robison. Structured
Parallel Programming: Patterns for Efficient Computation. 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.

ISBN: 9780123914439.

Andrea Merli. «Search for CP violation in the angular distri-
bution of A — pn~ntn baryon decays and a proposal for
the search of heavy baryon EDM with bent crystal at LHCb.»
Presented 23 May 2019. May 2019. URL: http://cds.cern.ch/
record/2687820.

C. Misale. «Accelerating Bowtie2 with a lock-less concurrency
approach and memory affinity.» In: 2014 22nd Euromicro In-
ternational Conference on Parallel, Distributed, and Network-Based
Processing. Feb. 2014, pp. 578-585. por: 10.1109/PDP.2014.50.

MissM]J, Cush. Standard Model of Elementary Particles. [Online;
accessed July 4, 2020]. 2020. URL: https://commons.wikimedia.
org/wiki/File:Standard_Model_of_Elementary_Particles.
svg.

Esma Mobs. The CERN accelerator complex-August 2018. Tech.
rep. 2018.

Gordon E Moore et al. Cramming more components onto integrated
circuits. 1965.

Janine Muller. «The LHCb SciFi Tracker: studies on scintillating
tibres and development of quality assurance procedures for the
SciFi serial production.» PhD thesis. Dortmund U.[, 2018.

NVIDIA Corporation. CUDA Toolkit Documentation. NVIDIA
Corporation, 2019. URL: https://docs.nvidia.com/cuda/.

Tesla NVIDIA. NVIDIA Tesla Vioo GPU Architecture. 2017.

J. Nieto, D. Sanz, P. Guillén, S. Esquembri, G.de Arcas, M.
Ruiz, J. Vega, and R. Castro. «High performance image ac-
quisition and processing architecture for fast plant system
controllers based on FPGA and GPU.» In: Fusion Engineer-
ing and Design 112 (2016), pp. 957 —960. ISSN: 0920-3796. DOIL:
https://doi.org/10.1016/j . fusengdes . 2016 . 04 . 004.
URL: http://www.sciencedirect.com/science/article/pii/
50920379616302848.

Andreas Nowatzyk, Fong Pong, and Ashley Saulsbury. «Miss-
ing the memory wall: The case for processor/memory inte-
gration.» In: 23rd Annual International Symposium on Computer
Architecture (ISCA’96). IEEE. 1996, pp. 90—90.


https://doi.org/10.1007/978-3-642-40047-6\_8
https://doi.org/10.1007/978-3-642-40047-6\_8
http://cds.cern.ch/record/2687820
http://cds.cern.ch/record/2687820
https://doi.org/10.1109/PDP.2014.50
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://docs.nvidia.com/cuda/
https://doi.org/https://doi.org/10.1016/j.fusengdes.2016.04.004
http://www.sciencedirect.com/science/article/pii/S0920379616302848
http://www.sciencedirect.com/science/article/pii/S0920379616302848

[113]

[114]

[115]

[116]

[117]

[118]
[119]

[120]

[121]

[122]

BIBLIOGRAPHY

Stuart Keble Paterson. «<LHCb distributed data analysis on the
computing grid.» PhD thesis. University of Glasgow, 2006.

Shrikant Pawar, Aditya Stanam, and Ying Zhu. «Evaluating the
computing efficiencies (specificity and sensitivity) of graphics
processing unit (GPU)-accelerated DNA sequence alignment
tools against central processing unit (CPU) alignment tool.» In:
Journal of Bioinformatics and Sequence Analysis 9.2 (2018), pp. 10—
14.

Daniel Hugo Cdmpora Pérez, Omar Awile, and Cédric Potterat.
«A high-throughput Kalman filter for modern SIMD architec-
tures.» In: European Conference on Parallel Processing. Springer.
2017, pp- 378-389.

Matt Pharr and William R Mark. «ispc: A SPMD compiler

for high-performance CPU programming.» In: 2012 Innovative
Parallel Computing (InPar). IEEE. 2012, pp. 1-13.

A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma. «An-
alyzing the Impact of CPU Pinning and Partial CPU Loads on
Performance and Energy Efficiency.» In: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing.
2015, pp. 1-10. DOIL: 10.1109/CCGrid.2015.164.

Miguel Ramos Pernas. LHCb trigger in Run 3. Tech. rep. 2020.

Andre Recnik, Kevin Bandura, Nolan Denman, Adam D Hincks,
Gary Hinshaw, Peter Klages, Ue-Li Pen, and Keith Vanderlinde.
«An efficient real-time data pipeline for the CHIME Pathfinder
radio telescope X-engine.» In: Application-specific Systems, Ar-
chitectures and Processors (ASAP), 2015 IEEE 26th International
Conference on. IEEE. 2015, pp. 57-61.

David del Rio Astorga, Manuel F. Dolz, Javier Fernandez, and J.
Daniel Garcia. «A Generic Parallel Pattern Interface for Stream
and Data Processing.» In: Concurrency and Computation: Practice
and Experience (2017), n/a-n/a. ISSN: 1532-0634. DOL: 10.1002/
cpe.4175. URL: http://dx.doi.org/10.1002/cpe.4175.

David del Rio Astorga, Manuel F Dolz, Javier Ferndndez, and
J Daniel Garcia. «A generic parallel pattern interface for stream
and data processing.» In: Concurrency and Computation: Practice
and Experience 29.24 (2017), €4175.

Daniele Rogora, Michele Papalini, Koorosh Khazaei, Alessan-
dro Margara, Antonio Carzaniga, and Gianpaolo Cugola. «High-
Throughput Subset Matching on Commodity GPU-Based Sys-
tems.» In: Proceedings of the Twelfth European Conference on
Computer Systems. EuroSys "17. Belgrade, Serbia: ACM, 2017,
PP- 513-526. ISBN: 978-1-4503-4938-3. DOL: 10.1145/3064176 .
3064190. URL: http://doi.acm.org/10 . 1145/ 3064176 .
3064190.

155


https://doi.org/10.1109/CCGrid.2015.164
https://doi.org/10.1002/cpe.4175
https://doi.org/10.1002/cpe.4175
http://dx.doi.org/10.1002/cpe.4175
https://doi.org/10.1145/3064176.3064190
https://doi.org/10.1145/3064176.3064190
http://doi.acm.org/10.1145/3064176.3064190
http://doi.acm.org/10.1145/3064176.3064190

156

BIBLIOGRAPHY

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

David Rohr, Sergey Gorbunov, Volker Lindenstruth, ALICE
Collaboration, et al. «GPU-accelerated track reconstruction in
the ALICE High Level Trigger.» In: Journal of Physics: Conference
Series. Vol. 898. IOP Publishing. 2017, p. 032030.

S Roiser and C Bozzi and. «The LHCb Software and Computing
Upgrade towards LHC Run 3.» In: Journal of Physics: Conference
Series 1085 (Sept. 2018), p. 032049. DOI: 10.1088/1742- 6596/
1085/3/032049. URL: https://doi.org/10.1088%2F1742 -
6596%2F1085%2F3%2F032049.

David E Rumelhart, Geoffrey E Hinton, and Ronald ] Williams.
«Neurocomputing: Foundations of research.» In: ch. Learning
Representations by Back-propagating Errors (1988), pp. 696—699.

Rupp, Karl. FLOPs per Cycle for CPUs, GPUs and Xeon Phis.
[Online; accessed June 15, 2020]. 2016. URL: https: //www .
karlrupp.net/2016/08/flops- per-cycle- for-cpus-gpus-
and-xeon-phis/.

Rupp, Karl. 42 Years of Microprocessor Trend Data. [Online; ac-
cessed June 14, 2020]. 2018. URL: https://www.karlrupp.net/
2018/02/42-years-of-microprocessor-trend-data/.

Siddharth Samsi, Brian Helfer, Jeremy Kepner, Albert Reuther,
and Darrell O Ricke. «A linear algebra approach to fast DNA
mixture analysis using GPUs.» In: High Performance Extreme
Computing Conference (HPEC), 2017 IEEE. IEEE. 2017, pp. 1-6.

Manuel Tobias Schiller. «Track reconstruction and prompt K
production at the LHCb experiment.» Dissertation, Heidelberg
University., 2011.

Mary C Seiler and Fritz A Seiler. «Numerical recipes in C:
the art of scientific computing.» In: Risk Analysis 9.3 (1989),
pp- 415—416.

Priya Sen and Vikas Singhal. «Event selection for MUCH of
CBM experiment using GPU computing.» In: India Conference
(INDICON), 2015 Annual IEEE. IEEE. 2015, pp. 1-5.

Yossi Shiloach and Uzi Vishkin. «An O (n2log n) parallel max-
flow algorithm.» In: Journal of Algorithms 3.2 (1982), pp. 128—
146.

Herb Sutter. «The free lunch is over: A fundamental turn to-
ward concurrency in software.» In: Dr. Dobb’s journal 30.3 (2005),
pp. 202—210.

CERN The LHCb Collaboration. Upgrade Software and Comput-
ing. Tech. rep. CERN-LHCC-2018-007. LHCB-TDR-017. Geneva:
CERN, Mar. 2018. URL: http://cds.cern.ch/record/2310827.


https://doi.org/10.1088/1742-6596/1085/3/032049
https://doi.org/10.1088/1742-6596/1085/3/032049
https://doi.org/10.1088%2F1742-6596%2F1085%2F3%2F032049
https://doi.org/10.1088%2F1742-6596%2F1085%2F3%2F032049
https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/
https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/
https://www.karlrupp.net/2016/08/flops-per-cycle-for-cpus-gpus-and-xeon-phis/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
http://cds.cern.ch/record/2310827

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

BIBLIOGRAPHY

Dean M Tullsen, Susan ] Eggers, and Henry M Levy. «Simul-
taneous multithreading: Maximizing on-chip parallelism.» In:
ACM SIGARCH computer architecture news. Vol. 23. 2. ACM.

1995, pPp- 392—403.
J Van Tilburg and M Merk. «Track simulation and reconstruc-

tion in LHCb.» PhD thesis. VRIJE UNIVERSITEIT, 2005. URL:
http://cds.cern.ch/record/885750.

Matthias Vogelgesang, Lorenzo Rota, Luis Eduardo Ardila
Perez, Michele Caselle, Suren Chilingaryan, and Andreas Kop-
mann. «High-throughput data acquisition and processing for
real-time x-ray imaging.» In: Developments in X-Ray Tomography
X. Vol. 9967. International Society for Optics and Photonics.
2016, p. 996715.

JONG-HOON WON, Dominik Dotterbock, and Bernd Eiss-
feller. «Performance Comparison of Different Forms of Kalman
Filter Approaches for a Vector-Based GNSS Signal Tracking
Loop.» In: Navigation 57.3 (2010), pp. 185-199.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo
Wu, Andy Riffel, and John D. Owens. «Gunrock: A High-
performance Graph Processing Library on the GPU.» In: SIG-
PLAN Not. 51.8 (Feb. 2016), 11:1-11:12. I1SSN: 0362-1340. DOI:
10.1145/3016078.2851145. URL: http://doi.acm.org/10.
1145/3016078.2851145.

Samuel Williams, Andrew Waterman, and David Patterson.
«Roofline: an insightful visual performance model for multi-
core architectures.» In: Communications of the ACM 52.4 (2009),
pp. 65-76.

Richard Wilton, Tamas Budavari, Ben Langmead, Sarah ] Whee-
lan, Steven L Salzberg, and Alexander S Szalay. «Arioc: high-
throughput read alignment with GPU-accelerated exploration
of the seed-and-extend search space.» In: Peer] 3 (2015), e808.

Richard Wilton, Alexander S Szalay, Xin Li, and Andrew P
Feinberg. «Arioc: GPU-accelerated alignment of short bisulfite-
treated reads.» In: Bioinformatics 34.15 (Mar. 2018), pp. 2673—
2675. ISSN: 1367-4803. DOT: 10.1093/bioinformatics/bty167.
URL: http://oup.prod.sis.lan/bioinformatics/article-
pdf/34/15/2673/25230719/bty167 . pdf

Jingzhou Zhao, Zhen An Liu, Wenxuan Gong, Pengcheng Cao,
Wolfgang Kuehn, and Thomas Gessler. «New version of high
performance Compute Node for PANDA Streaming DAQ sys-
tem.» In: arXiv preprint arXiv:1806.09128 (2018).

157


http://cds.cern.ch/record/885750
https://doi.org/10.1145/3016078.2851145
http://doi.acm.org/10.1145/3016078.2851145
http://doi.acm.org/10.1145/3016078.2851145
https://doi.org/10.1093/bioinformatics/bty167
http://oup.prod.sis.lan/bioinformatics/article-pdf/34/15/2673/25230719/bty167.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/34/15/2673/25230719/bty167.pdf

158

BIBLIOGRAPHY

[144]

[145]

Alexander Zlokapa, Abhishek Anand, Jean-Roch Vlimant, Javier
M Duarte, Joshua Job, Daniel Lidar, and Maria Spiropulu.
«Charged particle tracking with quantum annealing-inspired
optimization.» In: arXiv preprint arXiv:1908.04475 (2019).

LHCb experiment. Allen framework source code - Gitlab. 2020.
URL: https://gitlab.cern.ch/lhcb/Allen.


https://gitlab.cern.ch/lhcb/Allen

	Dedication
	Dedication
	Acknowledgments
	PublishedAndSubmitted
	OtherMerits
	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Acronyms
	 The LHCb experiment
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of the document

	2 LHCb experiment
	2.1 Tracking system
	2.1.1 VELO
	2.1.2 UT
	2.1.3 SciFi

	2.2 Data acquisition system
	2.3 High Level Trigger
	2.4 Summary

	3 LHCb Software and Computing
	3.1 LHCb software framework. Gaudi
	3.2 HLT1 GPU Allen framework
	3.3 Worldwide LHC Computing Grid
	3.4 Summary

	4 LHCb Track Reconstruction
	4.1 Track reconstruction and pattern recognition
	4.2 Track types and subdetector tracking
	4.3 Physics efficiency
	4.4 Kalman filtering
	4.4.1 Predict stage
	4.4.2 Update stage

	4.5 Summary


	 Parallel Computing
	5 Parallel computing
	5.1 Speedup and scalability
	5.2 Parallel architectures
	5.2.1 Memory
	5.2.2 Accelerators

	5.3 Summary


	 Particle tracking in high-energy physics
	6 Kalman filter optimization for HEP workloads
	6.1 SMT multi-thread Kalman filter for Intel Xeon Phi
	6.1.1 Predict-Update pipeline
	6.1.2 Four-stage track sections pipeline
	6.1.3 Forward-backwards-smoother pipeline
	6.1.4 Closing for the SMT multi-threaded Kalman filter

	6.2 Pattern based LHCb-Kalman for the Intel KNL
	6.2.1 Generic parallel patterns
	6.2.2 Parallel patterns for the Kalman filter

	6.3 Summary

	7 HEP particle tracking with GPU architectures
	7.1 GPUs in real-time, high-throughput scientific fields
	7.2 GPU framework for HLT1
	7.3 UT particle reconstruction
	7.4 UT decoding
	7.5 Compass tracking algorithm
	7.5.1 Search UT windows
	7.5.2 Tracklet finding
	7.5.3 CPU implementation

	7.6 Experimental evaluation
	7.6.1 Experimental setup
	7.6.2 Compass tracking physics performance and throughput
	7.6.3 UT decoding and tracking performance

	7.7 Summary

	8 Vectorized SPMD algorithms
	8.1 Intel Implicit SPMD Program Compiler
	8.2 Adapting Allen for ISPC algorithms
	8.3 SPMD tracking algorithms in Allen
	8.4 Evaluation
	8.5 Summary


	 Conclusions
	9 Conclusions and future work
	9.1 Summary
	9.2 Dissemination
	9.3 Funding
	9.4 Future directions

	 Bibliography


