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Carmelo Núñez-Sanz3

1 R.G.E.A., Universidad de Vigo
e-mail:cherves@uvigo.es

2 Facultad de Economı́a y Empresa, Universidad de Salamanca
e-mail:emmam@usal.es

3 Departamento de Economı́a, Universidad Carlos III de Madrid
e-mail:cnunez@eco.uc3m.es

Abstract. We consider an atomless economy in which the continuum of
agents is represented by a real interval. By dividing the interval and asso-
ciating to every agent in each subinterval the same initial endowments and
preferences, we define sequences of discrete economies as approximations
to the initial continuum economy. We obtain convergence results for the
core (or, alternatively, for the set of Walrasian allocations) of the continuum
economy in terms of the cores of the approximating discrete economies.
Finally, we state some counterexamples which provide a boundary for more
general results in this framework.
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1. Introduction

Since Aumann (1964) introduced a model of a continuum economy and
showed the equivalence between the core and the set of Walrasian alloca-
tions, the hypotheses of nonatomicity and perfect competition have been
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joined. The core equivalence theorem has been refined in many directions,
suggesting that there should be a notion of approximation for which the core
allocations of large economies approximate core (or Walrasian) allocations
of atomless economies. These are important matters for the interpretation
of any equivalence theorem, justifying the attention which we give to this
asymptotic analysis.

The aim of this paper is to discretize a continuum economy providing
a framework to deal with finite approximations of the atomless economy
and to present core (or, alternatively, Walrasian equilibrium) convergence
results.

A standard way to handle a continuous variable on an interval (for in-
stance, in order to calculate or approximate a solution) is to discretize it; this
is to partition the interval, associating to each subinterval a single value. In
our case, under the assumption that a finite number of different characteris-
tics will define an approximation to the atomless economy, a precise initial
endowment and a precise preference relation then identify a group of agents
who are considered identical. The common endowment of agents belonging
to the same type must be given by the average real endowment. However,
it is not clear what preference relation should be associated to each small
subinterval representing the same type of agent. In this paper, we address
first the case where the common preference relation is given by an “average”
preference and then we consider the “unanimous” preference.

In order to formalize these ideas, given a continuum economy we define,
for eachn, a new continuum economy with a finite number, namely 2n, of
different agent characteristics. To each one of these new continuum econo-
mies with a finite number of types of agent, we associate a finite economy
with 2n agents. We argue that, asn increases (i.e., as the number of differ-
ent agent characteristics increases or, alternatively, as the number of agents
increases), the initial continuum economy is better approximated by the se-
quence of discrete economies. The main results of this paper are concerned
with necessary or sufficient conditions for an allocation to belong to the core
of the initial continuum economy, in terms of the sequence of allocations in
the core of the associated approximating economies.

A great deal of work has been done on core convergence results, showing
that the proper setting for the theoretical study of competition corresponds
to large economies. In fact, after Debreu–Scarf’s (1963) core convergence
theorem, different formalizations and extensions of Edgeworth’s (1881) con-
jecture have been a major focus of the literature in mathematical economics
during the 70s and 80s (see Anderson (1992) for a survey). In these papers
the theorems state that, for suitable sequences of economies, a measure of the
degree of non-competitiveness tends to zero or, alternatively, an “approx-
imate” decentralization of core allocations in large economies is proved.
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Related works on limit properties of the core include Kannai (1970, 1972)
and Hildenbrand (1974, 1982), who obtain continuity properties of the core
of a market by considering purely competitive sequences of economies (i.e.,
sequences of finite economies for which the number of agents converges to
infinity and the distribution of agents’characteristics in the market converges
to a limit distribution defining an abstract limit economy).

However, we start by considering a continuum economy and then define
a sequence of discrete representations approximating the initial atomless
economy. Moreover, the sequence of discrete economies we define is not
generally a purely competitive sequence of economies converging to the
given continuum economy (as showed in the example given in Sect. 4 and
Examples 5.2 and 5.3 in Sect. 5). Thus, the paper extends the known core
convergence results even if the sequence of discrete economies (obtained
from a continuum economy) is not a purely competitive sequence of econo-
mies converging to the initial atomless economy.

The paper is organized as follows. In Sect. 2 we present definitions and
notation. In Sect. 3 we define sequences of discrete representations of the
continuum economy. In Sect. 4 we present an example, which shows that
the sequences of discrete representations of a continuum economy do not
need to be purely competitive sequences of economies. Therefore, the core
convergence results obtained in this paper cannot be regarded as particular
cases of the well-known core convergence results for purely competitive
sequences of economies. In Sects. 5 and 6 we present the main results of
the paper. In Sect. 5 we study the case in which the common preference
of all agents of the same type is the average preference whereas in Sect. 6
we address the case in which the common preference is the unanimous
preference. In both situations we give examples which provide a boundary
for more general results in this framework.

2. Definitions and notation

We consider a pure exchange economyEc = ((I,A, µ),Xt , ω(t),�t ,

t ∈ I ). The commodity space is the Euclidean spaceR�. Let x = (xh)
�
h=1,

y = (yh)
�
h=1 ∈ R�. If xh ≥ yh for everyh = 1, . . . , �, we writex ≥ y. If

xh > yh for everyh = 1, . . . , �, we writex � y. For simplicity, we assume
that the space of agents is(I,A, µ), whereI is the real interval[0, 1], A
is the Lebesgueσ -algebra of subsets ofI , andµ is the Lebesgue measure.
Each agentt ∈ I is characterized by her consumption setXt = R�+, her
initial endowmentω(t) ∈ R�+, and her preference relation�t .

We state the following assumptions on endowments and preference re-
lations.

3



(H.1) The mappingω : I → R�+, that associates to each agent her initial

endowment, is integrable and
∫
I

ω(t)dµ(t) � 0.

An allocation is an integrable functionf : I → R�+. An allocationf is

a feasible allocation if
∫
I

f (t)dµ(t) ≤
∫
I

ω(t)dµ(t).

A preference relation� is (weakly) monotone ifx ≥ y implies that
x � y; and it is said to be strictly monotone ifx ≥ y andx �= y implies that
x � y. The strict monotonicity on preferences was used in Kannai (1970)
and Hildenbrand (1974), addressing continuity properties of the core and
purely competitive sequences of economies, respectively.

(H.2) The preference relation�t is a complete, continuous and monotone
preorder for every agentt ∈ I.

Note that (H.2) implies that each�t is represented by a continuous and
monotone utility functionU(t, ·) : R�+ → R (see Eilenberg (1941), Debreu
(1954) or Debreu (1983), pp. 105–110). We denote byC(R�+) the set of all
real continuous functions defined onR�+. We endow the setC(R�+) with the
compact-open topology.

(H.3) The mappingU : I → C(R�+), which associates to each agentt ∈
I a utility function U(t, ·) representing her preference relation, is
measurable.

Remark. Note that (H.3) follows from the standard measurability assump-
tion on preferences. To see this, letP denote the set of continuous preference
relations which is a subspace ofC, the space of nonempty closed subsets of
R�+ ×R�+. We consider the closed convergence topology onC. The standard
assumption is that the mappingP : I → P, which associates to each agent
her preference relation, is measurable (seeAumann (1964)). Therefore, there
exists a continuous functionU : P ×R�+ → R such thatU(�, ·) is a utility
function which represents the preference relation�∈ P (see Mas-Colell
(1977)). Then, the functionV : P → C(R�+), given byV(�) = U(�, ·), is a
continuous function (see Wilansky (1983), Theorem 13.3.4). Therefore, the
composition ofP with V, U : I → C(R�+), which associates to each agent
t ∈ I an utility functionUt ∈ C(R�+) representing her preference relation,
is measurable. Thus, by (H.2), Assumption (H.3) is equivalent to the usual
assumption requiring the measurability of the mapping that associates to
each agent her preference relation.

We recall that a coalition of agents is any positive measure subset of the
set of agents. A feasible allocation belongs to the core of the economy if it
is not blocked by any coalition of agents. A coalitionS blocks an allocation
f via another allocationg in the economyEc if
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(i)
∫
S

g(t)dµ(t) ≤
∫
S

ω(t)dµ(t), and

(ii) g(t) �t f (t) for almost allt ∈ S.

We denote by Core(Ec) the set of allocations which belong to the core of
the economyEc. Given a familyF of coalitions, we say that an allocation
f belongs to theF-Core of the economyEc, and we writef ∈ F-Core(Ec)
if it is not blocked by any coalitionS ∈ F .

On the other hand, givena, b ∈ R� let a � b be the vector inR�+ whose
kth coordinate is max{ak − bk, 0}. Given ε > 0, as in Kannai (1970), we
say that an allocationf belongs to theε-Core of the economyEc, and we
write f ∈ ε-Core(Ec) if g(t) �t f (t) for almost allt ∈ S implies that the

inequality
∫
S

g(t)dµ(t) <

∫
S

ω(t)dµ(t)� ε does not hold.

3. Sequences of discrete approximations

As we noted in the introduction, our aim is to analyze discrete approxima-
tions to a given economy with a continuum of agents represented by the real
interval [0, 1]. We observe that a standard way to deal with a continuous
variable on an interval is to make it discrete by dividing the interval into
subintervals and associating to each subinterval a single value.

In our case, given a continuum economyEc, for each positive integernwe
define a continuum economyEn

c with only a finite number of different agent
characteristics. Specifically, we assume that the set of agentsI is divided into
2n pairwise disjoint subintervals, each representing a type of agent. That is,

I =
2n⋃
i=1

I n
i , whereI n

i =
[
i − 1

2n
,
i

2n

)
, if i �= 2n, andI n

2n =
[

2n − 1

2n
, 1

]
. We

refer toI n
i as the set of agents of typei in the economyEn

c . In this economy,
the consumption set isR�+, and the common preference relation and initial
endowment for all the agents of typei are denoted�n

i andωn
i , respectively.

Let En be the discrete economy associated with the continuum economy
En
c , that is,En is an economy with 2n agents. Each agenti ∈ {1, . . . ,2n} is

characterized by her initial endowmentωn
i and her preference relation�n

i .
Observe that an allocationf in our economyEc can be interpreted either

as an allocationf n in En
c , or as an allocationxn = (x1, . . . , x2n) in En,

wherexn
i = f n(t) = 1

µ(In
i )

∫
Ini

f (t)dµ(t) for all t ∈ I n
i . Reciprocally, an

allocationxn in En can be interpreted as an allocationf in En
c or inEc, where

f is the step function defined byf (t) = xi if t ∈ I n
i . In particular, the initial

endowment for the agents of typei in the economyEn
c (or for agenti in En)

is ωn
i =

1

µ(In
i )

∫
Ini

ω(t)dµ(t).
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With xn andf n as above, it is easy to prove that, ifxn is blocked by a
coalitionS in the economyEn, thenf n is blocked by the coalitionSc =

⋃
i∈S

I n
i

in the economyEn
c . Moreover, it is straightforward to show that, under

convexity of preferences,xn ∈ Core(En) iff f n ∈ Fn- Core(Enc ), where
Fn denotes theσ -algebra generated by the subintervalsI n

i , i = 1, . . . ,2n.
For preferences we consider two different scenarios. In Sect. 5, we as-

sume that, for eachn, the preference relation�n
i of agents of typen is

represented by the utility functionUn(t, x) = 1

µ(In
i )

∫
Ini

U(t, x)dµ(t) for

each agentt ∈ I n
i . In this case, we refer to�n

i as the average preference. We
denote the approximationsEn

c andEn to Ec by En

c andEn, respectively, when
we consider this average preference. Observe that, ifU(t, ·) is continuous
(resp., monotone, strictly monotone, concave) for almost allt ∈ I , then
Un(t, ·) is also continuous (resp., monotone, strictly monotone, concave)
for everyt ∈ I and for everyn.

Later, in Sect. 6, we assume the unanimous preference relation. Then,
for eachn the preference relations are defined as follows:

x �n
i y ⇔ x �t y for almost allt ∈ I n

i .

In this case, we refer to�n
i as the unanimous preference. This preference

states that a consumption vector is preferred to another if, in the economy
Ec, it is preferred by almost all the agents belonging to the subintervalI n

i .
When we consider the unanimous preference, we denote the approximations
En
c andEn to the atomless economyEc by Ên

c andÊn, respectively. Observe
that, if�t is continuous (resp., monotone, strictly monotone, convex, strictly
convex) for almost allt ∈ I , then�n

i is continuous (resp., monotone, strictly
monotone, convex, strictly convex) for everyi and for alln. Observe also
that the unanimous preference relation is transitive but, in general, it is not
complete.

4. An example

We consider a continuum economyEc with a single commodity and a con-
tinuum of agents represented by the real intervalI = [0, 1], endowed with
the Lebesgue measureµ. We can construct a Cantor-like setK ⊂ I such
that 0 < µ(A

⋂
K) < µ(A) for every open subintervalA of the set of

agentsI .
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For each agentt ∈ I = [0, 1], let�t be her preference relation, which
is represented by the utility functionU(t, ·), given by

U(t, x) =


x if x ≤ 1,
1 if x ≥ 1 and t ∈ K,

x if x ≥ 1 and t /∈ K.

We denote byC(R+) the set of all real continuous functions defined on
R+. Note that the functionU : I → C(R+), which associates to each agent
t ∈ I her utility functionU(t, ·), is measurable.

We remark that any subinterval of the set of agentsI contains a positive
measure set of agents belonging to the Cantor-like setK and a positive mea-
sure set of agents belonging toI \K. Thus, ify < x andy < 1, then every
agent prefersx rather thany; and, if 1≤ y < x, every subinterval includes
a positive measure set of agents who preferx rather thany, and a positive
measure set of agents who are indifferent betweenx andy. Therefore, for
eachn, both the average preference and the unanimous preference are rep-
resented by the same utility functionUn(t, x) = x for all agents. Thus, this
sequence of preference relations is strictly monotone and does not converge
(in any reasonable topology) to the preference relations which define the
initial continuum economyEc.

We recall that a sequence of finite economies is a purely competitive
sequence of economies if the number of agents tends to infinity, the se-
quence of preference-endowment distributionνn converges weakly to a limit
preference-endowment distributionν, the sequence of mean endowments
converges to the mean endowment given by the limit distribution and this
limit mean endowment is strictly positive (see Kannai (1970) or Hildenbrand
(1974, 1982)).

Thus, the example proves that the sequencesEn andÊn of discrete eco-
nomies obtained fromEc do not result in purely competitive sequences of
economies converging to the limit economyEc. Moreover, since the Cantor-
like setK may have any measure between 0 and 1, the same conclusions
hold for any voting rule which may define an “aggregate” preference for the
sequence of finite economies. Therefore, the core convergence results stated
in this paper cannot be considered as particular cases of the well-known con-
vergence results addressing purely competitive sequences of economies.

5. Average preference

In this section, we consider sequencesEn

c andEn of discrete economies
defined by the average preference. We remark that most of the assumptions
required in this paper are the standard ones for continuum economies: see,
for instance, Aumann (1964, 1966) or Mas-Colell (1977), where a selection
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of utility functions satisfies Assumption (H.3). Observe that the average
preference relation, as defined in Sect. 3, may depend on the criterion for the
selection of the utility functions representing the agents’preference relations
in the continuum economyEc. However, we remark that the results we obtain
do not depend on the utility functions chosen for representing the agents’
preferences in the continuum economy.

5.1. Main results

In this section we prove two main results. The first states necessary condi-
tions for an allocationf to belong to the core of the economyEc, in terms of
the core of its approximating economiesEn andEn

c . The second is a weaker
converse.

Next we state the main result in this section.

Theorem 5.1.Let Ec be a continuum economy under Assumptions (H.1),
(H.2) and (H.3). Let f be an allocation in Ec. The approximation En (resp.,
En

c ) to Ec satisfies the following property:
if xn ∈ Core(En) (resp., f n ∈ Core(En

c )) for all n ≥ n0, then f ∈
Core(Ec).

Remark. Indeed we can see in the proof of the theorem that, if an allocation
f does not belong to the core of the initial continuum economyEc, then
the corresponding allocationxn does not belong to the core of the finite
economyEn for all large enoughn. Therefore, we can conclude that, if
f n ∈ Fn-Core(En

c ) for all n ≥ n0, thenf ∈ Core(Ec).

The corresponding converse of Theorem 5.1 does not hold, as we show
in Sect. 5.2. However, in the case of strictly monotone preference relations,
we can obtain a weaker converse result. For this, we state the following
assumption.

(H.2)′ The preference relation�t is a complete, continuous and strictly
monotone preorder for every agentt ∈ I .

Let P̂ be the set of all strictly monotone and continuous preorders defined
onR�+. Each element�∈ P̂ can be represented by a unique continuous utility
functionU such thatU(x) = ‖x‖ if x belongs to the principal diagonal (see
Kannai (1970)). LetÛ denote the set of all the utility functions obtained as
above. As in Kannai (1970), we consider onP̂ the metricρ given by

ρ(�1,�2) = max
x∈R�+

| U1(x)− U2(x) |
1+ ‖x‖2

whereUi belongs toÛ and represents�i .
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Next, we obtain a weaker converse version of Theorem 5.1 in terms of
theε-Core concept.

Theorem 5.2.Let Ec be a continuum economy under Assumptions (H.1),
(H.2)′ and (H.3). Let U(t, ·) ∈ Û for almost all t ∈ I . If f ∈ Core(Ec) then,
for each ε > 0, there exists n0 such that, for all n ≥ n0, f n belongs to the
ε-Coreof En

c .

5.2. Some counterexamples

Example 5.1. This example shows that the underlying converse result of
Theorem 5.1 is not true. Precisely, we define an economyEc such that there
existsf ∈ Core(Ec), but fn /∈ Core(En

c ) for all n.

By Cantor’s nested intervals theorem we can takeα1, α2, β1, β2, with
0 < α1 < β1 < α2 < β2, such that:

(i) for all odd n and for eachi = i(n), j = j (n) ∈ {1, . . . ,2n}, with
i �= j , such thatα1 ∈ I n

i and α2 ∈ I n
j , we have µ({t ∈ I n

i |t < α1}) >
µ({t ∈ I n

i |t > α1}) andµ({t ∈ I n
j |t < α2}) < µ({t ∈ I n

j |t > α2}), and
(ii) for all evenn and for eachh = h(n), k = k(n) ∈ {1, . . . ,2n}, with

h �= k, such thatβ1 ∈ I n
h and β2 ∈ I n

k , we have µ({t ∈ I n
h |t < β1}) <

µ({t ∈ I n
h |t > β1}) and µ({t ∈ I n

k |t < β2}) > µ({t ∈ I n
k |t > β2}).

Let the economyEc haveR2 as commodity space. Each agentt ∈ [0, 1]
is characterized by her initial endowmentω(t) and her utility function
U(t, (x, y)), given by

ω(t) =
{
(1,0) if t ∈ [0, α1)

⋃[β1, α2)
⋃[β2, 1],

(0, 1) if t ∈ [α1, β1)
⋃[α2, β2),

U(t, (x, y)) =
{

2x + y if t ∈ [0, α1)
⋃[β1, α2)

⋃[β2, 1],
x + 2y if t ∈ [α1, β1)

⋃[α2, β2).

In the economyE2n+1
c , though all agents of typei2n+1 prefer the first

commodity, all agents of typej2n+1 prefer the second one. On the other hand,

in the economyE2n
c while all agents of typeh2n prefer the first commodity,

all the agents of typek2n prefer the second one. It is not hard to show that the
allocationf , given byf (t) = ω(t), belongs to Core(Ec). However,f n /∈
Core(En

c ) for all n. In fact, for eachn the coalitionS2n+1 = I 2n+1
i

⋃
I 2n+1
j

blocks the allocationf 2n+1 viag2n+1 in the economyE2n+1
c , and the coalition

S2n = I 2n
h

⋃
I 2n
k blocksf 2n via g2n in the economyE2n+1

c . The allocations
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gn are defined as follows:

g2n+1(t) =
{
f 2n+1(t)+ (ε2n+1,−ε2n+1) if t ∈ I 2n+1

i2n+1
,

f 2n+1(t)+ (−ε2n+1, ε2n+1) if t ∈ I 2n+1
j2n+1

,

g2n(t) =
{
f 2n(t)+ (ε2n,−ε2n) if t ∈ I 2n

h2n
,

f 2n(t)+ (−ε2n, ε2n) if t ∈ I 2n
k2n+1

,

whereεn is any positive real number such thatgn(t) > 0.
Observe that, although the functionsU andω are piecewise continuous,

they can be chosen to be continuous, leading us to the same claim.

Remark. The example in Sect. 4 shows that the proof of Theorem 5.2 is
not valid if the strict monotonicity assumed on preferences�t is deleted. In
particular, the sequence of average preferences in that example converges, in
the Kannai sense of the metricρ, to strictly monotone preference relations,
which, therefore, differ from the preferences�t considered in the initial
continuum economy. Therefore, Lemma 5 (in the Appendix) does not hold
if �t are not strictly monotone.

6. Unanimous preference

6.1. Main results

Our aim is to obtain sufficient conditions and necessary conditions for an
allocationf to belong to the core of the economyEc, in terms of the cores
of the economieŝEn

c (or Ên) defined by the unanimous preference relation.
For this, we state the following continuity assumption.

(H.4) The mappingU : I → C(R�+), which associates to each agentt ∈
I a utility function U(t, ·) representing her preference relation, is
continuous with respect to the compact-open topology.

The standard assumption on preferences (see Aumann (1964, 1966))
requires the mapping which associates to each agent her preference relation
to be measurable. As we remark after stating Assumption (H.3) this means
that the mappingU is measurable. Measurability ofU implies that, for
ε > 0, the functionU is continuous on a compact subsetK ⊂ I , with
µ(K) > 1− ε. Thus, Assumption (H.4) is stronger than (H.3) and requires
continuity ofU on I and not only on compact sets with measure 1− ε for
anyε > 0.

We will show thatAssumption (H.4) is a necessary condition for the next
theorem (see Example 6.3 in the next subsection).
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Theorem 6.1.Let Ec be a continuum economy under Assumptions (H.1),
(H.2)′ and (H.4). Let f be a continuous allocation in Ec. Then the approxi-
mation Ên

c to Ec satisfies the following property:
if f n ∈ Core(Ên

c ) for all n ≥ n0, then f ∈ Core(Ec).

Remark. In fact we prove that, if an allocationf is blocked by the coalition
S via g in the economyEc, thenf n is also blocked by the same coalition
S and via the same allocationg in the economyÊn

c . Moreover, letf be a
piecewise continuous function with simple discontinuities at a finite subset
of D = {i2−n|i = 0, . . . ,2n; n ∈ N}. The proof above shows that, if
f n ∈ Core(Ên

c ) for all n ≥ n, thenf ∈ Core(Ec).

In order to find necessary conditions for an allocationf to belong to the
core of the economyEc, preference relations are also required to be convex:

(H.5) The preference relation�t is convex for almost all the agentst ∈ I .

We recall that a preference relation� is said to be convex ify � x

implies thatλy + (1− λ)x � x for anyλ, 0 ≤ λ ≤ 1. This is equivalent
to assuming that, ify � x andz � x, thenλy + (1− λ)z � x for anyλ,
0 ≤ λ ≤ 1 (see Debreu (1959)). Thus, as we deal with preference relations
which are representable by utility functions, (H.5) is equivalent to assuming
quasi-concavity of the corresponding utility functions.

The next theorem is a partial converse ofTheorem 6.1. First, we recall that
Fn denotes theσ -algebra generated by the subintervalsI n

i , i = 1, . . . ,2n.
Now, we defineSn = {f : I → R�+|f (t) = fi for all t ∈ I n

i , i =
1, , . . . ,2n}. In other words,Sn is the set of all functions which areFn-
measurable.

Theorem 6.2.Let Ec be a continuum economy under Assumptions (H.1) and
(H.5). Let f ∈ Sn. If f ∈ Core(Ec), then f ∈ Fn-Core(Ên

c ) for all n ≥ n.

6.2. Some counterexamples

Example 6.1. This example is similar to Example 5.1 and shows that the
converse of Theorem 6.1 is not true. Precisely, we define an economyEc

such that there existsf ∈ Core(Ec), but fn /∈ Core(Ên
c ) for all n.

Letα ∈ I be such that, for all oddn and for alli = i(n) with α ∈ I n
i , we

havean
i < α < bni , wherean

i = 2
3

(
i−1
2n
) + 1

3

(
i

2n
)

andbni = 1
3

(
i−1
2n
) +

2
3

(
i

2n
)
. This implies thatµ

({t ∈ I n
i |t < α}) < 2µ

({t ∈ In
i |t > α}) and

µ
({t ∈ In

i |t > α}) < 2µ
({t ∈ In

i |t < α}) for all oddn.
In the same way, by Cantor’s nested intervals theorem, we chooseβ

such that, for all evenn, µ
({t ∈ In

i |t < β}) < 2µ
({t ∈ In

i |t > β}) and
µ
({t ∈ In

i |t > β}) < 2µ
({t ∈ In

i |t < β}).
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We consider the economyEc with the commodity spaceR2. Each agent
t ∈ [0, 1] is characterized by her initial endowmentω(t) and her preference
relation represented by the utility functionU(t, (x, y)), defined as:

ω(t) =
{
(1,0) if t < α or t > β,

(0, 1) if α < t < β,

U(t, (x, y)) =
{

2x + y if t < α or t > β,

x + 2y if α < t < β.

As in Example 5.1, it is clear that the allocationf , given byf (t) = ω(t),
belongs to Core(Ec). However, ifn is an odd number (resp.,n is even), then
the coalitionSn = I n

i , withα ∈ I n
i (resp., withβ ∈ I n

i ), blocks the allocation
f n via gn in the economyÊn

c , wheregn(t) = f (t) for all t . To see this,
observe that if, for example,t ∈ Sn with n odd, then

U(t, f n(t)) =
{

2
(
α − i−1

2n
)

2n + ( i
2n − α

)
2n if t < α,(

α − i−1
2n
)

2n + 2
(

i
2n − α

)
2n if t > α.

Therefore, ift ∈ Sn, thenf (t) is unanimously preferred tof n(t), because
U(t, f n(t)) < U(t, f (t)) for all t ∈ Sn, since max

{
α − i−1

2n , i
2n − α

}
<

2−n+1

3 .

The casen even is much the same.

Example 6.2. This example shows that the continuity off in Theorem 6.1
cannot be dropped. To prove this, we consider a continuum economyEc with
two commodities, and letK be a Cantor subset ofI , with µ(K) > 0, K =
K1
⋃

K2, with µ(K1) = µ(K2), K1
⋂

K2 = ∅, andI \ K =
∞⋃
k=1

(ak, bk).

For each agentt ∈ I , let U(t, (x, y)) = (1+ x)1+β(t)(1+ y)1−β(t), where
β : I → R is the continuous function defined as

β(t) =



0 if t ∈ K,

(t − ak)(t − bk) sin
(

1
(t−ak)(t−bk)

)
if t ∈ (ak, bk).

Let A = {t ∈ I |β(t) > 0} andB = {t ∈ I |β(t) < 0}.
The initial endowments are given by

ω(t) =



(1+ γ, 1− γ ) if t ∈ K1,

(1− γ, 1+ γ ) if t ∈ K2,

(1,0) if t ∈ A,

(0, 1) if t ∈ B.

It is easy to prove that, ifK ⊂ S, then the coalitionS blocks the allocation
f = ω via the allocationg, defined asg(t) = (1,1) if t ∈ K, andg(t) =
f (t) if t ∈ S \K.

12



However,f n ∈ Core(Ên
c ) for all n. To prove this, let us assume that there

exist a coalitionŜ and an allocationg such thatf n(t) = (
f n

1 (t), f
n
2 (t)

) ≺n
t

g(t) = (g1(t), g2(t)). Then,g1(t) + g2(t) > f n
1 (t) + f n

2 (t) for all t ∈ Ŝ,
which is a contradiction.

To see the last inequality observe that we have three possibilites:

(a) I n
i ⊂ A;

(b) I n
i ⊂ B;

(c) I n
i

⋂
A �= ∅ andI n

i

⋂
B �= ∅.

Consideri such thatµ(Ŝ
⋂

I n
i ) > 0. If (a) holds, then the agents of type

i prefer commodity 1 to commodity 2, but they do not have commodity 2
and the inequality follows. Case (b) is similar, and finally, if (c) holds, the
inequality follows because the agents inA (resp., inB) prefer commodity
1 (resp., 2) to commodity 2 (resp., 1).

Example 6.3. Now we give an example which shows that, even if the allo-
cationf is a constant function, Theorem 6.1 does not hold if assumption
(H.4) is dropped.

For this, letA, B be disjoint subsets ofI such thatµ(In
i

⋂
A) > 0 and

µ(In
i

⋂
B) > 0, for all n andi. For example, we can takeA andB as

A =
∞⋃
n=1

2n⋃
i=1

An
i , B =

∞⋃
n=1

2n⋃
i=1

Bn
i

such thatAn
i , Bn

i are non-negligible Cantor subsets ofI n
i , satisfying(

N⋃
n=1

2n⋃
i=1

An
i

)⋂(
N⋃

n=1

2n⋃
i=1

Bn
i

)
= ∅ for all N.

Consider an economyEc with two commodities. Each agentt ∈ I is
characterized by her endowmentω(t) = (1,1), and her utility function,
given by

U(t, (x, y)) =



2x + y if t ∈ A,

x + 2y if t ∈ B,

V (t, (x, y)) if t ∈ I \ (A⋃B).

The preferences of agents outside the setA
⋃

B are not relevant in this
example. We remark that, by construction of the sets A and B, the function
U is not continuous.

It is clear that the coalitionS = A
⋃

B blocks the allocationf = ω.
However,f n ∈ Core(Ên

c ) for all n. This is because, ifg(t) = (g1(t), g2(t))

is unanimously preferred to(1,1) by all t ∈ S with µ(S) > 0, theng1(t)+
g2(t) > 2 for all t ∈ S.

13



Example 6.4. Lastly, we give an example which shows that, for the case of
unanimous preference, an analog to Theorem 5.2 fails if the preferences of
the agents are monotone but not strictly monotone. For this, we show that
the fact that an allocationf belongs to Core(Ec) does not imply that, for
eachε > 0, f n belongs toε-Core(Ên

c ) for all large enoughn.

Consider a continuum economyEc with a single commodity. Each agent

t ∈ I = [0, 1]has as initial endowmentω(t) ∈ R+, such that
∫
I

ω(t)dµ(t) =

1 and
∫ 1

2

0
ω(t)dµ(t) = 2−1 + α, 0 < α ≤ 2−1. The preference relation of

the agentt ∈ I is represented by the utility functionU(t, ·), defined as

U(t, x) =
{

x if x ≤ 2−1 + t,

2−1 + t if x > 2−1 + t.

It is easy to prove that the allocationf , given byf (t) = 2−1+ t , belongs
to the core of the economyEc. This is because any agentt is satiated with
f (t). However, if ε < α, thenf n /∈ ε-Core(Ên

c ) for all n. In fact, we
claim that, for everyn, f n is blocked by the coalitionS = [0, 2−1) via
g(t) = 1 for everyt ∈ S. To prove our point, lettni be the midpoint of
the subintervalI n

i . Then for allI n
i ⊂ S, g(t) = 1 is strictly preferred to

f n(t) = 2−1+ tni for every agentt ∈
(
tni ,

i

2n

)
, and is indifferent for all the

agentst ∈
[
i − 1

2n
, tni

]
.

Appendix: Proofs

Before presenting the proof of Theorem 5.1, we state several lemmas. For
this, for z ∈ Q� we define-(z) = {t ∈ I |U(t, z + ω(t)) > U(t, f (t))},
and-n(z) = {t ∈ I |Un(t, z + ωn(t)) > Un(t, f n(t))} for eachn ∈ N. Let
Z = {z ∈ Q�|µ(-(z)) = 0} and, for each agentt ∈ I , let ψ(t) = {z ∈
R�|U(t, z+ ω(t)) > U(t, f (t))}.
Lemma 1. Let S be a coalition of agents blocking the allocation f in the
economy Ec. Then, for each i ∈ {1, . . . , �+1}, there existαi ∈ Q+, zi ∈ Q�,

and ti ∈ Ŝ = S \ ⋃z∈Z -(z) such that
�+1∑
i=1

αi = 1,
�+1∑
i=1

αizi = 0, and

zi ∈ ψ(ti).
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Proof. As S blocksf , there existsg : S → R�+ such that
∫
S

g(t)dµ(t) ≤∫
S

ω(t)dµ(t) andg(t) �t f (t) for almost allt ∈ S. Asµ(
⋃

z∈Z -(z)) = 0,

Ŝ is a coalition which also blocksf by the same allocationg.

Let co(A) denote the convex hull of the setA. Then
1

µ(Ŝ)

∫
Ŝ

(g(t) −
ω(t))dµ(t) ∈ co

(
(g − ω)(Ŝ)

)
(see Hüsseinov (1987, 1994)). Therefore,

0 ∈ co
(⋃

t∈Ŝ ψ(t)
)
. By Caratheodory’s theorem, one obtains that there

exist αi ≥ 0, andzi ∈ ψ(ti), with ti ∈ Ŝ, i = 1, . . . , � + 1, such that

0 =
�+1∑
i=1

αizi . By continuity and monotonicity of preferences, we can take

αi ∈ Q+ andzi ∈ Q� with
�+1∑
i=1

αi = 1,
�+1∑
i=1

αizi = 0 andzi ∈ ψ(ti).  !

Lemma 2. For each ε > 0 there exists Jε ⊂ I , with µ(Jε) > 1− ε, such
that, for each t ∈ Jε, Un(t, ·) converges to U(t, ·) uniformly on compact
subsets of R�+.

Proof. Forx ∈ R�+, by the Lebesgue differentiation theorem,Un(t, x) con-
verges toU(t, x) for almost allt ∈ I . In particular, for eachx ∈ Q�+ there
existsJ (x) ⊂ I , withµ(J (x)) = 1, such thatUn(t, x) converges toU(t, x)

for all t ∈ J (x). Let J = ⋂
x∈Q�+ J (x). Thenµ(J ) = 1 andUn(t, x)

converges toU(t, x) for all t ∈ J .
On the other hand, by (H.3)U is measurable. Lusin’s theorem guarantees

that, for eachε > 0, there exists a compact setIε ⊂ I , with µ(Iε) > 1− ε,
such thatU is continuous onIε . Note thatµ(Jε) > 1−ε, whereJε = J

⋂
Iε.

We show thatUn(t, x)converges toU(t, x) for all t ∈ Jε, for anyx ∈ R�+.
First, givenx ∈ R�+, let (xk) ⊂ Q�+ be a sequence such thatxk → x. Then,
lim
k→∞Un(t, xk) = Un(t, x) for all n and for allt ∈ I and lim

n→∞Un(t, xk) =
U(t, xk) for all k and for all t ∈ Jε. Moreover, this last convergence is
uniform in k. In fact, letK = {U |Jε (·, xk), k ∈ N}, whereU |Jε denotes
the restriction ofU toJε.AsU is continuous onJε, we conclude thatK is an
equicontinuous set. Therefore, applying Ascoli–Arzela’s theorem, Moore’s
lemma and result IV.8.18 in Dunford–Schwartz (1958), we conclude that
Un(t, x) converges toU(t, x) for all t ∈ Jε and allx ∈ R�+.

Finally, reasoning as before, we see that lim
n→∞Un(t, xn) = U(t, x) for all

t ∈ Jε. That is, following Carathéodory’s notion of continuous convergence
(see Royden (1988), Problem 7.40), ift ∈ Jε, thenUn(t, ·) converges to
U(t, ·) uniformly on compact subsets ofR�+.  !
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Lemma 3.The function Un(·, ·) converges to U(·, ·) almost uniformly on I

and uniformly on compact subsets of R�+. That is, for a compact setK ⊂ R�+,
for each ε > 0 there exists Jε ⊂ I , with µ(Jε) > 1− ε, such that Un(·, ·)
converges to U(·, ·) uniformly on Jε ×K .

Proof. Let ε > 0. By Lemma 2, there existsJ ⊂ I , with µ(J ) > 1− ε
2,

such that, for allt ∈ J, Un(t, x) converges toU(t, x) for all x ∈ R�+, and
this convergence is uniform onK. Given k,mpositive integers, we define

Jk,m =
{
t ∈ J

∣∣∣∣ | Un(t, x)− U(t, x) |< 1

m
for all n ≥ k, x ∈ K

}

Then, by the uniform convergence onK for all t ∈ J , we have thatJ =⋃∞
k=1 Jk,m for all m. So, for eachm, we see that there existsk(m) such that

µ(J \ Jk(m),m) < ε2−m−1. LetJε =⋂∞
m=1 Jk(m),m. Then,µ(J \ Jε) < ε and

therefore,Un(·, ·) converges toU(·, ·) uniformly onJε ×K.  !
Proof of Theorem 5.1. Observe that, if the allocationxn does not belong
to Core(En), then the corresponding allocationf n does not belong toFn-
Core(En

c ), and that Core(En

c ) ⊂ Fn-Core(En

c ). Thus, it is enough to prove
the result forEn.

For this, suppose thatf /∈ Core(Ec). Then, a coalitionS blocksf and,
by Lemma 1, there existαi ∈ Q+ andzi ∈ ψ(ti), i = 1, . . . , �+ 1, with

ti ∈ Ŝ = S \⋃z∈Z -(z) and
�+1∑
i=1

αi = 1, such that 0=
�+1∑
i=1

αizi .

By the definition ofŜ, as zi ∈ ψ(ti), we have thatµ(-(zi)) > 0. So,
there existsα > 0 such thatµ(-(zi)) ≥ α for all i ∈ {1, . . . , � + 1}.
Thus,zi ∈ ψ(t) for all t ∈ -(zi), Therefore, there existBi ⊂ -(zi), with
µ(Bi) <

α
8 , andδ > 0, such thatU(t, zi + ω(t)) − U(t, f (t)) ≥ δ for all

t ∈ -(zi) \ Bi .
On the other hand, there existA ⊂ I , n0 and a compactK ⊂ R� such

thatµ(A) < α
8 andf (t), f n(t), zi + ωn(t) ∈ K for all t ∈ A and for all

n ≥ n0. By Egoroff’s theorem (see Royden (1988)) and Lemma 3, there
exists a set of agentsB ⊂ I , with µ(B) < α

8 , such thatf n(t) → f (t),
ωn(t) → ω(t) andUn(t, x) → U(t, x) uniformly for all t /∈ B and for all
x ∈ K.

For eachε > 0, consider the mapϕ(·, ε) : I → R+ given by

ϕ(t, ε) = sup
x∈K
‖y‖≤ε

| U(t, x + y)− U(t, x) | .

Note thatϕ(t, ε) converges to 0 whenε → 0. LetIε = {t ∈ I |ϕ(t, ε) < δ
4}.

As I =⋃
ε Iε, there existsε0 such thatµ(I \ Iε0) <

α
8 andϕ(t, ε0) <

δ
4 for

all t ∈ Iε0.
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Let-′(zi) =
(
-(zi)

⋂
Iε0

)\(A⋃B
⋃

Bi

)
. Thenµ

(
-′(zi)

)
> α

2 . More-
over,f n (resp.,ωn) converges tof (resp., toω) uniformly on-′(zi). So,
there existsn1 such that‖f n(t)−f (t)‖, ‖ωn(t)−ω(t)‖ < ε0 for all n ≥ n1

and t ∈ -′(zi). By the uniform convergence ofUn(t, x) with t ∈ -′(zi)
andx ∈ K, there existsn2 such that| Un(t, x) − U(t, x) |< δ

4 for all
x ∈ K, t ∈ -′(zi) and n ≥ n2. In the same way, there existsn̂ such
that -′(zi) ⊂ -n(zi) for all i ∈ {1, . . . , � + 1} andn ≥ n̂. Moreover,
µ (-n(zi)) >

α
2 .

On the other hand, for eachi we can writeαi = βi
β

, with βi, β ∈ N and
βi ≤ β. By the definition of-n(zi), for eachn ≥ n̂ andi, there exists a type
subsetT n

i ⊂ {1, . . . ,2n} such that-n(zi) =⋃
j∈T n

i
I n
j . Asµ(In

j ) converges
to zero whenn goes to∞, but simultaneouslyµ (-n(zi)) >

α
2 > 0, we see

that there existsn∗ such that Card(Tni ) > β for all i andn ≥ n∗. Consider
J n
i ⊂ T n

i with Card(Jni ) = βi . Given n≥ n∗, let yn be an allocation that
associates to each agentj ∈ J n

i the consumption vectoryn
j = zi + ωn(tj,i),

with tj,i ∈ I n
j ⊂ -n(zi), 1 ≤ j ≤ βi . Then, the coalitionJ n = ⋃�+1

i=1 J
n
i

blocks the allocationxn for n ≥ n∗ because

�+1∑
i=1

βi∑
j=1

(
zi + ωn(tj,i)

) = �+1∑
i=1

βizi +
�+1∑
i=1

βi∑
j=1

ωn(tj,i)

= β

�+1∑
i=1

αizi +
�+1∑
i=1

βi∑
j=1

ωn(tj,i) =
�+1∑
i=1

βi∑
j=1

ωn(tj,i).  !

Before giving the proof of Theorem 5.2, we present the following two
lemmas.

Lemma 4. Let (�n) ⊂ P̂,�∈ P̂ and let Un, U in Û be the utility functions
representing �n and �, respectively. Then, ρ(�n,�) converges to zero iff
Un converges to U uniformly on compact subsets of R�+.

Proof. For the necessary condition, letε > 0, K be a compact subset ofR�+
andr be such thatK ⊂ B(0, r) = {x ∈ R�+; ‖x‖ < r}. As�n

ρ→�, for each

ε̂ = ε

1+ r2
, there existsn0 such thatρ(�n,�) ≤ ε̂ for all n ≥ n0. Thus,

multiplying and dividing by 1+‖x‖2, we get max
x∈K | Un(x)−U(x) |≤ ε for

all n ≥ n0.
For the sufficient condition, letε > 0. As Un,U ∈ Û , there exists a

constantk, which only depends on�, such thatUn(x) ≤ k‖x‖ andU(x) ≤
k‖x‖ for all n andx ∈ R�+. Let r > 1 be such that

2kr

1+ r2
< ε. As Un

converges toU uniformly onK = {x ∈ R�+; ‖x‖ ≤ r}, there existsn0 such
that max

x∈K | Un(x)− U(x) |≤ ε for all n ≥ n0.
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Then, we show that max
x∈K

| Un(x)− U(x) |
1+ ‖x‖2

≤ ε for all n ≥ n0. If x /∈ K,

as‖x‖ > r > 1, then

| Un(x)− U(x) |
1+ ‖x‖2

≤ | Un(x) | + | U(x) |
1+ ‖x‖2

≤ 2k‖x‖
1+ ‖x‖2

≤ 2kr

1+ r2
.

This allows us to conclude that max
x∈R�+

| Un(x)− U(x) |
1+ ‖x‖2

≤ ε for alln ≥ n0.

 !
Lemma 5. For each agent t ∈ I , let�t (resp.,�n

t ) be her preference relation
in the economy Ec (resp., En

c ), represented by the utility functionU(t, ·) (resp.
Un(t, ·)). Suppose that U(t, ·) ∈ Û for almost all t ∈ I . Then, for every
ε > 0, there exists Iε ⊂ I , withµ(Iε) > 1−ε, such thatρ(�n

t ,�t ) converges
to zero for every t ∈ Iε.

Proof. As U(t, x) = ‖x‖ for all x in the principal diagonal ofR�+ and for
almost allt ∈ I , we see thatUn(t, ·) ∈ Û for all t ∈ I andn.

On the other hand, by Lemma 2, for everyε > 0, there existsIε ⊂ I ,
with µ(Iε) > 1− ε, such thatUn(t, ·) converges toU(t, ·) uniformly on
compact subsets ofR�+ for everyt ∈ Iε. Therefore, applying Lemma 4.4,
we conclude thatρ(�n

t ,�t ) converges to zero for everyt ∈ Iε.  !
Proof of Theorem 5.2. We recall thatf n is a feasible allocation inEn

c and
f n(t) converges tof (t) for almost all t ∈ I . On the other hand, asωn

converges weakly toω, the set{ω,ωn : n ∈ N} is a weakly sequentially
compact subset ofL1(I ). Restricting ourselves toIε, as in the statement of
Lemma 5, withε small enough, it is easy to prove that Lemma 5.3 in Kannai
(1970) holds. Therefore, the proof of Theorem C in Kannai (1970), on con-
sideration of our restriction to the correspondingIε, proves our statement.
 !
Proof of Theorem 6.1. Assume thatf /∈ Core(Ec). Then, there exist a coali-

tion S and g : S → R�+ such that
∫
S

g(t)dµ(t) #
∫
S

ω(t)dµ(t), and

U(t, g(t)) > U(t, f (t)) for all t ∈ S. As ωn converges weakly toω in

L1(I ), there existsn0 such that
∫
S

g(t)dµ(t) ≤
∫
S

ωn(t)dµ(t) for all n ≥ n0.

Moreover, by Lusin’s theorem we can chooseS to be compact andg to be
continuous onS (see Hildenbrand (1974), p. 140).

By the continuity properties ofU ,f andg, there existsε > 0 such that, if
ε̂ = (ε, . . . , ε) ∈ R�+, thenU(t, g(t))− ε

2 > U(t, f (t)+ε̂)+ ε
2 for all t ∈ S.

Sincef n converges tof uniformly onS, there existsn1 = n1(ε) such that
f (t) + ε̂ ≥ f n(t) for all t ∈ S andn ≥ n1; and there existsK, a compact
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subset ofR�+, such thatf (S), g(S), f n(S) ⊂ K. So, by monotonicity of
preferences we see thatU(t, g(t))− ε

2 > U(t, f n(t))+ ε
2 for all t ∈ S.

On the other hand, asU is continuous, there existsδ = δ(ε,K) such that,
if | t − t ′ |< δ andx ∈ K, then| U(t ′, x) − U(t, x) |< ε

2. Let n2 be such
that 2−n2 < δ, and letn̄ = max{n0, n1, n2}. Thus, ifn ≥ n̄ and| t − t ′ |< δ,
thenU(t ′, g(t)) > U(t, g(t))− ε

2 and U(t, f n(t))+ ε
2 > U(t ′, f n(t)).

Note that, ifn ≥ n̄, then| t − t ′ |< δ if t, t ′ ∈ I n
i , whateveri may be.

Therefore,U(t ′, g(t)) > U(t ′, f n(t)) for all n ≥ n̄ andt, t ′ ∈ I n
i . So, we

can conclude that the coalitionS blocksf n via g in the economyEn
c .  !

Next we state a lemma which is used in the proof of Theorem 6.2.

Lemma 6.Assume that �t is convex for almost all t ∈ I n
i . Let S ⊂ I n

i ,
µ(S) > 0. Let g : S → R�+ be a µ-integrable function and let x ∈ R�+ be

such that g(t) �n
i x for all t ∈ S. Then

1

µ(S)

∫
S

g(t)dµ(t) �n
i x.

Proof. Let A = {y ∈ R�+|y �n
i x}. First, we show thatA is a convex set.

For this, lety1, y2 ∈ A. Theny1 �t x, y2 �t x for almost allt ∈ I n
i and

there existS1, S2 ⊂ I n
i , with µ(S1) > 0 andµ(S2) > 0, such thaty1 �t x

for all t ∈ S1 and y2 �t x for all t ∈ S2. Let yλ = λy1 + (1 − λ)y2

with 0 < λ < 1. By convexity of the preferences,yλ �t x for almost all
t ∈ S1

⋃
S2. Thus,yλ ∈ A. ThereforeA is a convex set. Asg(S) ⊂ A and

1

µ(S)

∫
S

g(t)dµ(t) ∈ co(g(S)) (see Hüsseinov (1987, 1994)), we conclude

that
1

µ(S)

∫
S

g(t)dµ(t) �n
i x.  !

Proof of Theorem 6.2. Suppose thatf /∈ Fn-Core(Ên
c ) for somen ≥ n. Then,

there existS ∈ Fn andg : S → R�+ such that
∫
S

g(t)dµ(t) ≤
∫
S

ωn(t)dµ(t)

andg(t) �n
t f (t) for all t ∈ S. Let TS ⊂ {1, . . . ,2n} be such thatS =⋃

i∈TS I
n
i . Theng(t) �n

i fi for all t ∈ I n
i , with i ∈ TS . For eachi ∈ TS , let

gi = 1

µ(In
i )

∫
S

g(t)dµ(t).

Considerg̃ : S → R�+ given asg̃(t) = gi if t ∈ I n
i . By construction, we

see that
∫
S

g̃(t)dµ(t) =
∫
S

g(t)dµ(t). By Lemma 6,gi �n
i fi for all i ∈ TS .

By the definition of unanimous preference�n
i , this is equivalent to the fact

that for eachi ∈ TS there existsSn
i ⊂ I n

i , withµ(Sn
i ) > 0, such thatgi �t fi

for almost allt ∈ I n
i , andgi �t fi , for all t ∈ Sn

i . Therefore, the allocation
f is blocked by the coalitionS in the economyEc.  !
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