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Abstract 
 

The usage of general-purpose processors externally 
attached to routers to virtually play the role of active co-
processors seems a safe and cost-effective approach to 
add active network capabilities to existing routers. This 
paper reviews this router-assistant way of making active 
nodes, addresses the benefits and limitations of this 
technique, and describes a new platform based on it 
using an enhanced commercial router. The features new 
to this type of architecture are transparency, IPv4 and 
IPv6 support, and full control over layer 3 and above. A 
practical experience with two applications for path 
characterization and a transport gateway managing 
multi-QoS is described. 
 
1. Introduction 
 

Most industrial experiences that have tried to apply 
active network concepts to enhance the functionality of 
real routers have shown that the router’s CPU is not the 
best place to run an opened execution environment and 
active applications (see, for instance, [11] demonstrating 
ANTS [13] onto the Accelar routing switches).  The main 
drawback is that the overall performance figures drop 
dramatically due to the extra interruption rate induced by 
active processing. One valid, yet costly,  alternative is the 
usage of ad-hoc active co-processors devoted to this task. 
Thus, in a distributed processing architecture, the router 
CPU would be in charge of routing protocols and system 
management, interface processors would concentrate on 
fast packet forwarding, and finally, active co-processors 
would run active applications. However, given the broad 
scope of active applications to be supported, only 
general-purpose processors could issue the required  
versatility. Another factor to consider in the design of 
this new generation of routers is the active processing 
capacity needed. One estimation could be given by the 
assumption that the minimal capacity expected by the 
users would be at the same level as the latest general-
purpose processors in the market . In this case, however, 

even the best designed modular and expandable internal 
architecture would not be able to integrate but a single 
generation of processors without major structural 
redesign [10].  

Under these assumptions it might be more convenient 
to locate the active processors on hosts directly attached 
to the router through a high-speed local area network. In 
this way, the upgradeability and availability of active 
processors appears to be guaranteed, and packet 
forwarding and active processing functions are kept 
decoupled. This paper defines a framework that develops 
this idea  and shows an implementation whose industrial 
applicability is being assessed. 
 
2. The router-assistant paradigm 
 

With the purpose of defining a pragmatic framework 
to supply basic active networking functions, valid both 
for IPv4 and IPv6, and realistic in an industrial context, a 
new active networking architecture has been developed 
in the context of the IST project GCAP [3]. This 
framework referred to as “router-assistant” architecture is 
based on a set of  design principles selected according to 
its industrial applicability. These principles, and the 
rationale behind them, are the following: 

 
1. Routers divert active packets. In other words, active 

processing is outsourced. Every router wishing to 
enhance its functionality with active extensions can 
delegate this task to a host called Assistant (or, in 
general, a pool of hosts), directly attached to the router 
over a high-speed LAN. This assistant runs the 
execution environment and OS supporting the active 
applications. Hence, active applications may not run 
on the router hardware and, consequently, the 
performance penalty caused to the router is bound to 
the cost of identifying and diverting active packets, 
despite their processing cost (hard to predict in 
comparison with forwarding). Therefore, a primary 
conformance requirement is as simple as requiring the 
router to divert all active packets traversing the router 
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to the assistant, except those coming from the assistant 
itself.  

2. The assistant host processes active packets. A 
packet diverted from the router must be transparently 
input to the execution environment, processed at layer 
3 or above by the active applications running on it. 
This processing ranges from cpu-intensive complex 
payload transformations to simple IP address 
translations, packet filtering or copying. Once 
processed, packets coming from the assistant(s) must 
be forwarded by the router just as any regular packet. 

3. Router and assistant are lightly coupled. For the 
purpose of running active applications on behalf of the 
real router, the assistant must cooperate with the 
router. This cooperation is based on three functions: 
active packet diversion, router state communication 
and Router-Assistant Protocol (RAP) with regular 
packet diversion. However, it is important to note that 
there is a trade-off between functionality available to 
active applications and processing overhead. In order 
to permit a several degrees of coupling, two 
conformance levels have been defined. Level 1, for 
routers supporting only the first two items, and level 2, 
for routers supporting the full three items. 
• Active packet diversion. It has already been defined 

in item 1.  Notice the parallelism found between flow 
diversion to active applications and the flow 
diversion mechanisms found in control protocols that 
set up per-flow forwarding short cuts in MPLS 
antecessors [4]. 

• Router state view. A procedure by which the 
execution environment makes available the router 
state to active applications. This can be done, as 
proposed in [1] for management-oriented 
applications, via SNMP. To avoid causing excessive 
overhead to the router, the execution environment 
itself is the only entity allowed to poll it. Router state 
variables such as interface load, route table, average 
queue length, etc are cached and shared by active 
applications. It is also an interesting option to 
program traps on specific events (e.g. average load 
exceeds threshold, route update, reboot, etc) to 
trigger asynchronous cache updates. It is true that the 
usage of SNMP may cause a considerable processing 
overhead on the router even though its impact is 
regulated by the execution environment. 
Nevertheless, note that this conformance level 1 
feature allows a primary and ubiquitous access to the 
state of the legacy router at no implementation cost. 
Hence, it should not be disregarded so easily, and it 
is adopted as a transition mechanism that can ease 
the router activation process. A more efficient state 
conveyance mechanism based on the router-assistant 
protocol is under study. 

• Router-Assistant Protocol. If processing regular 
packets at layers equal or higher than 3 is a must, a 
more specific protocol where the router must play a 
more active role is required. In this case, the 
assistant must command the router to divert specific 
flows, or to output packets over specific interfaces, 
like in reliable multicast applications. These and 
other control functions enriching the communication 
router-assistant are encapsulated in this protocol. 
RAP runs on top of TCP and extends the API 
provided by the execution environment with flow 
manipulation. Flow CUT and COPY commands 
allow the design of applications that alter or simply 
snoop a flow respectively. 

4. Routing is essentially a router’s task. An execution 
environment defined upon this architecture can easily 
provide active applications with the capability to 
change the route table. However, having into account 
that a router’s primary function is routing and that its 
consistency is tightly linked to the existing routing 
protocol, it seems not advisable to delegate this 
function on a concurrent active entity (unless no other 
routing protocol is running and a specific active 
application is devoted to this task). Furthermore, the 
risk of instability grows if non-active nodes are present 
in the network, as it is normally the case. Therefore 
route changing is made available to applications with 
specially assigned privileges and is not a 
recommended practice. Nevertheless, the route table is 
likely to be an essential information for an active 
application; therefore the assistant must be reported of 
route changes by the router and thereby, the 
applications subscribed to these notifications. 
Consequently, active applications should make use of 
tunnels when they need to override the default routing, 
for example to run traffic engineering procedures or to 
set up an overlaid logical network of active nodes .  

5. Transparent processing of active packets. The IP 
address of the Active Nodes in the path(tree) source-
destination(s) can be transparent to the end users. This 
way an active packet can automatically launch the 
active applications needed to deploy a given service in 
all the active nodes traversed, and forget about 
choosing the right active servers and be unaware of 
network topology. For instance, an active packet can 
fetch enough path information to determine the best 
node to locate a TCP spoofing active entity or any 
other transparent gateway one can imagine.  
To take this feature to practice efficiently, the usage of 
a specific router-alert value to mark active packets is 
recommended for IPv6 (standardized in RFC-2711) 
and IPv4 (non-standard approach, as this value is not 
yet reserved for Active Networks in RFC-2113). This 
way active packets are easily recognized and diverted 
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Figure 1. A target application scenario 

 
to the assistant despite their destination address. In 
level-2 compliant implementations, transparency is 
extended to regular packets. 
Transparency is not compulsory. A user can address a 
specific network node, and active applications, once 
started may open their own sockets to communicate 
with other active nodes or end systems, employing 
explicit addressing. In this case, the usage of multicast 
incremental ring searches or scout packets can be 
useful to locate the nearest active node and establish 
neighborhood. 

6. Transparent processing of non-active flows. In 
principle, any regular flow (not marked as active) 
could be programmed by the end-user or network 
manager to be applied a special processing inside the 
network with the help of the router-assistant protocol. 
This belongs to conformance level 2. Due to 
scalability reasons, this per-flow feature would only 
be suitable for edge routers. 

7. Dynamic code download and persistency. Any code 
loading/execution scheme is feasible in this system. 
However, the recommended method is active packets 
carrying references to code (and security credentials). 
If the code is not loaded yet it can be retrieved by 
existing methods (e.g. https) from code servers or by 
proprietary protocols.  

8. Standard Security Methods. Standard resources 
such IPsec and, mainly, SSL can be used to guarantee 
the basic security objectives of this framework, 
including authentication, confidentiality and even 
non-repudiation. However, there is also an interesting 

trade-off between scalability and security to be 
studied in another work. 

9. Safety checked in advance. From the authors’ 
viewpoint, it does not seem realistic to have any end-
user load just any code into the network in a real 
environment. Practical experience shows that the 
scope and expressiveness of easily verifiable 
programs is rather constrained. Therefore, the 
approach of permitting the user to run registered 
harmless-proofed code on the network seems much 
more realistic. Thus the presumed target scenario is 
one in which a central administration provides active 
services loaded on the fly from a choice of known 
applications that have been provided by the customer 
or network manager. This is in fact a networked 
application service provision (ASP) with many 
analogies in practice, like the Intelligent Networks 
model. Another interesting analogy comes from the 
comparison to the Unix ™ inetd, where a set of 
trusted servers are launched on demand. 

 
Application scenario 
 

To give an idea of the concepts described above and 
its context of applicability, figure 1 shows the internal 
structure of an active node, composed of an enhanced 
router and an assistant, as envisaged by the authors. 
Validated (safe) network services are available at 
replicated secure repositories whose URL is configured 
in advance by the active network manager. The figure 
also shows the most coherent location for these 
programmable nodes: at edge routers. This way
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Figure 2. Overview of SARA software structure 

 
active nodes can help users launch new network services 
(content filtering, content pushing, secure tunneling, 
multimedia relays and translators, etc) on demand in a 
scalable way to add on existing ones deployed statically 
(NAT, firewall, transparent proxies). Such scheme is 
specially suitable for wireless networks, where services 
must keep moving close to mobile terminals: to enhance 
their capabilities (storage, computing and displaying 
capacity), to improve latency (by breaking end-to-end 
retransmissions, caching, etc), and to optimize link usage 
(e.g. pushing, trans-coding), goals difficult to implement 
via server-based approaches. 
 
Discussion 
 

The first advantage of the router-assistant approach is 
the very low development cost required to integrate a 
router with a given host-based execution environment 
featuring location-transparency with a minimum penalty 
on regular packet forwarding performance. In fact, the 
minimal solution only requires that packets with the 
active network router alert option be forwarded to a 
specific interface. This does not interfere with routing 
efficiency of non-active packets at all, since all packets 
are examined for router alert options anyway. A second 
advantage is that forwarding and active processing get 
loosely coupled and hence resource control is less 
critical. Scalability can also be achieved if the concept of 
assistant is extrapolated to, for example, hashing over a 

pool of assistants based on source and destination 
address. 

There are also limitations in this approach. Network 
latency for active packets through such a network made 
of router-assistant nodes is higher than through routers 
with native active support. This can be kept low enough 
for most applications if a dedicated very high-speed LAN 
is used and the assistant load is kept low itself (or the 
execution environment is built upon a real-time OS).  
More importantly, the loose coupling between router and 
assistant hinders those applications that require either 
real-time knowledge of a router’s variable (for instance, 
the output load per millisecond at a given interface) or 
real-time  manipulation of hardware resources (for 
instance, take over the router’s queue management or 
buffering allocation algorithms). Such hard real-time 
procedures and low level control mechanisms are clearly 
out of the scope of this solution, as is the case for most 
existing active network platforms, although there exist 
relevant proposals aimed at this ambitious goal based on 
a common abstraction of a router’s hardware [5]. 

 From our viewpoint, the main axiom to be followed 
to push forward active functions is: do not (even 
partially) replace the router functionality, just try to 
enhance it. 
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3. An implementation : SARA (Simple 
Active Router Assistant) 
 

SARA [6] is an active node prototype developed in 
JAVA (and C) to study the router-assistant paradigm. As 
explained above, the system is capable of transparently 
processing active packets passing through the router 
(packets carrying the router alert option with the Aactive 
Network value). Active packets are diverted by the router 
to the assistant (with no extra encapsulation) where they 
are analyzed. If the target active application is not 
currently loaded on the execution environment, it is 
downloaded from one of a set of code servers and run for 
a lifetime determined by the active packets. Active 
applications are (native) threads and can make use of 
active packet parsing and sending facilities, read any of 
the router state objects available in the mib-2 cache with 
a specified maximum age, use enriched socket functions, 
etc   

The current public release supports IPv4 and IPv6, 
featuring full packet control by active applications, and it 
is router-assistant level 1 compliant.  

One of the most relevant implementation problems 
met during the development of SARA is the limited 
communication facilities of JAVA. The lack of support 
for: IPv4 options (router alert options control), IPv6 
(recently released), and layer 3 control to manipulate 
packets being routed, implied that packets should be 
encapsulated into UDP messages from the router to the 
assistant. In order to save this burden to the router, the 
standard JAVA communication facilities were enhanced 
with IPv4 and IPv6 raw socket support, by making a JNI 
extension in C/linux (see Figure 2). 

Two prototype platforms are available today. One 
fully based on linux (playing both roles: router and 
assistant as a development scenario) and a hybrid 
platform where the router used is an Ericsson-Telebit 
AXI462 running an enhanced kernel adapted to
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Figure 3. Test Scenario 

 
interwork with an active assistant. A main goal of this 
platform is to demonstrate that it is possible to build an 
active network platform based on commercial routers at 
low cost and without a significant drop of performance 
on regular packets. 
 

Figure 3 shows a testing scenario set up to analyze the 
maximum throughput achievable with the prototype 
execution environment. Packet flows were generated by 
an end station, diverted by the router, parsed/registered 
on the assistant, and forwarded to a receiver PC. The 

experience showed that the real bottleneck of the system 
was in JAVA, concretely in the low performance of the 
communications interface to Linux. The proof of this fact 
was the performance gain obtained for using packets of a 
size over the MTU. In this latter case, the kernel takes up 
most of the communication processing work, improving 
the effective throughput (see results in Table 1, obtained 
for the particular hardware components described in 
figure 3). In these conditions, the impact on the router’s 
performance was not significant.  
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Table 1. Effective throughput vs packet size 
 

Packet 
size 
(Bytes) 

Effective 
throughput 
(Mb/s) 

512 10 
1024 20 
2048 22 
3072 28 
4096 31 
5120 33 

 
As a conclusion, from our point of view, JAVA is 

excellent as a platform-independent language to make 
universal active code, but in general it is not appropriate 
to process multimedia data flows generated by sets of 
users (see also [11]). However, we believe that JAVA is 
still the right choice for the control plane of an active 
network architecture, i.e. JAVA is perfect to process 
exclusively active packets, to retrieve the active code and 
drive its execution. Hence, part of this code must look 
like another JAVA active application to the execution 
environment, but most of it must be native code in order 
to process regular packets at the required data rates. 
Finally, it is important to note that Linux may not be the 
best platform to run JAVA. 
 
4. Sample applications 
 

In order to test the behaviour of the node described, 
several simple active applications were developed in 
SARA. One of these applications is called a-clink [7]. 
This tool is a path characterization tool based on the 
freely available clink tool enhanced by active support to 
improve the efficiency and accuracy of estimations 
yielded by existing end-to-end performance estimation 
tools such as pathchar, pchar, clink and nettimer, by 
using active network support. The purpose of a-clink  is 
obtaining per-link bandwidth estimations based on 
probing with different-sized packets sent from active 
nodes, rather than from the source host; this minimizes 
the accumulated error and causes less probing traffic. 
The  experience shows that SARA provides good support 
to the automatic deployment of code along a path and 
enough flexibility to modify any field of a packet 
crossing the network. 

Another important practical example, developed in the 
context of GCAP [3], is a multimedia relay for a JMF-
based videoconference application, that provides ad-hoc 
static IPv4-IPv6 multicast translation that supported a 
pan-European videoconference experiment in January 
2002.  

A third application tested is an intelligent QoS adaptor 
based on entities deployed transparently along the path 

server-receiver. This type of applications are getting 
more and more important in n-to-n multi-QoS multimedia 
flow services over a best effort internet, for example for 
videoconference applications running on end-systems 
with heterogeneous capabilities or different access link 
capacities. One valid option is the usage of layered 
coding and multicast each layer on a different group, 
letting IP reduce the rate of the flow at congested links. A 
second (and complementary) way to implement this 
service, more complex but also more effective in terms of 
overall bandwidth usage is performing intelligent packet 
discard, rate adaptation, transcoding or layer selection, 
etc at network nodes branching to heterogeneous 
receivers on different links. The advantage of this 
approach is that intelligent processing within the network 
can adapt the flow to the specific needs of a subtree of 
receivers and prevent forwarding packets that will never 
reach its destination due to bottlenecks downstream or 
that will not be profitable in the playback. In this case, if 
active node location transparency is enabled, each party 
can multicast its traffic unaware of which network nodes 
in the distribution tree will adapt the flow.  
 
5. Related work 
 

There are many important works demonstrating active 
networks on host-based execution environments and on 
router-based platforms. Let us cite the ones that keep 
some design principles in line with the ones presented in 
this paper or that we consider a good starting point to 
solve problems not addressed by our architecture. 

The ABLE [1] architecture also proposes separation 
between router and active engine, SNMP is employed to 
communicate them, and “blind addressing” scheme offers 
a kind of network transparency. However, its design is 
oriented to Network Management domain and it works at 
application level. Instead, SARA might be located at 
Network level as it allows manages IPv4/6 headers, 
although high level applications are also possible. The 
method to divert active packets is also different as SARA 
employs the Router Alert IP AN option rather than 
filtering based on the ANEP UDP ports. 

[2] introduces the concept of router delegate keeping 
certain similarities with our approach. In this system, the 
delegates provides control plane extensibility by 
controlling how traffic is handled in the data plane 
through a router control interface (RCI) that enables 
changing the router’s behaviour per flow. However, 
unlike in the router-assistant approach, the router itself is 
in charge of the task of packet processing rather than 
delegating it on a external processor. Hence, it fits better 
for applications requiring lower level functions such as 
bandwidth allocation (functionality that must be present 
in this more complex RCI), representing a higher 

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02) 
0-7695-1721-8/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore.  Restrictions apply.



implementation cost on the enhanced router. Another 
difference with this prominent work is that the second 
type of delegate defined to do CPU-intensive processing 
-the data delegate- is defined as a non-location-
transparent server. 

A development of the idea of creating a lower level 
abstraction of router, compared to the one needed by an 
external device as SARA, can also be found in [5]. In our 
context, controlling the router’s hardware makes only 
sense for very specific applications, not for our target 
execution level where applications are supposed to be 
independent and do not alter the normal behaviour of the 
router, except for the functional treatment of certain 
flows.  

Finally, [10] defines an architecture based on NetBSD 
that allows code modules, called plugins, to be 
dynamically added  and configured at run time, and 
provides transparency, like [12]. One of the interesting 
features of this design is the ability to bind different 
plugins to individual flows. A similar concept is found in 
SARA, where active applications request the router a 
specific flow to be diverted and processed by them. 
SARA is not specially designed to support quality of 
service, unlike [10], but, in contrast, it can provide 
transparent active processing and isolation from regular 
packet forwarding tasks at network points where a real 
router is necessary.  
 
6. Conclusions 
 

This paper describes a pragmatic approach to active 
networking that brings a practical set of Active Network 
functionality to routers in a pragmatic and cost-effective 
way. Compared to existing host-based implementations, 
the main advantage of this architecture is the capability to 
provide transparent packet processing from layers 3 to 7 
while preserving performance on regular packets, since 
this latter packets do not have to cross the host running 
the execution environments. Compared to native Active 
Network support in real routers, the advantages of this 
approach are economy, flexibility, scalability and 
isolation of active processing tasks. The architecture here 
described has been tested on a prototype called SARA 
(Simple Active Router Assistant) running a Java-based 
execution environment supporting full packet control 
both for IPv4 and IPv6, in cooperation with an Ericsson-
Telebit AXI462 router. The preliminary results look 
promising and show enough flexibility and performance 
for a fair amount of applications. 
 
6. Acknowledgements 
 

The authors wish to thank J. E. Kristensen, L. Kroll 
Kristensen, and R. Jørgensen from Ericsson-Telebit for 

their comments on the definition of the router-assistant 
architecture, and the implementation of the AXI462 
router software extensions to support an external 
assistant. Many thanks also to M. Sedano and B. Alarcos 
(U. Alcalá) and D. Garduno (LAAS/CNRS) and E. 
Exposito (Ensica), for choosing SARA to develop their 
active applications and their useful feedback.  
 
7. References 

 
[1] D. Raz and Y. Shavit. “Active networks for efficient 
distributed network management.” IEEE Communications 
Magazine, 38(3), March. 2000. 
 
[2] J. Gao, P. Steenkiste, E. Takahashi, A. Fisher, "A 
programmable router architecture supporting control plane 
extensibility", IEEE Communications magazine. March 
2000. 
 
[3] GCAP IST project home page. 
http://www.laas.fr/GCAP 
 
[4] P. Newman, T. Lyon, G. Minshall, “Flow labelled IP: 
connectionless ATM under IP”, Networld-Interop 
presentation. April 1996. 
http://www.ipsilon.com/staff/pn/presentations/interop96. 
 
[5] S. Karlin, L. Peterson. “VERA: An Extensible Router 
Architecture”. IEEE OPENARCH 2001. 
 
[6] SARA home site. http://matrix.it.uc3m.es/~sara. 
 
[7] M. Sedano, B. Alarcos, M. Calderón, D. Larrabeiti. 
“Caracterización de los enlaces de Internet utilizando tecnología 
de Redes Activas”. III Jornadas de Ingenería Telemática. 
Barcelona, September 2001.  
 
[8] R. Jaeger, S. Bhattacharjee, J. K. Hollingsworth, R. Duncan, 
T. Lavian and F. Travostino, "Integrating Active Networking 
and Commercial-Grade Routing Platforms", 2000. 
 
[9] G. Hjálmtýsson, "The Pronto Platform - A flexible 
Toolkit for Programming Networks using a Commodity 
Operating System", IEEE OPENARCH 2000. 
 
[10] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner . 
“Router Plugins. A Software Architecture for Next 
Generation Routers.” SIGCOMM 1998. 
 
[11] Tal Lavian, Phil Yonghui Wang. “Active 
Networking On A Programmable Networking Platform.” 
IEEE OPENARCH 2001.  
 

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02) 
0-7695-1721-8/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore.  Restrictions apply.



[12] D. Scott Alexander, et al , “The SwitchWare Active 
Network Architecture”, IEEE Network Special Issue on 
Active and Controllable Networks, vol. 12 no. 3, July 
1998 
 
[13] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse, 
“ANTS: A Toolkit for Building and Dynamically 

Deploying Network Protocols”, IEEE OPENARCH'98, 
San Francisco, CA, April 1998. 
 
 
 
 

 
 

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02) 
0-7695-1721-8/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore.  Restrictions apply.




