
A practical approach to network-based processing1 2

D. Larrabeiti, M. Calderón, A. Azcorra, M. Urueña
University Carlos III of Madrid

{dlarra,maria,azcorra,muruenya}@it.uc3m.es

1 Most of this work has been funded by the IST project GCAP (Global Communication Architecture and Protocols for new QoS services over IPv6
networks) IST-1999-10 504. Further development and application to practical scenarios is being supported by IST project Opium (Open Platform for
Integration of UMTS Middleware) IST-2001-36063 and the Spanish MCYT under projects TEL99-0988-C02-01 and AURAS TIC2001-1650-C02-01.
2 Disclaimer: this paper reflects the view of the authors and not necessarily the view of the projects referred.

Abstract

The usage of general-purpose processors externally
attached to routers to virtually play the role of active co-
processors seems a safe and cost-effective approach to
add active network capabilities to existing routers. This
paper reviews this router-assistant way of making active
nodes, addresses the benefits and limitations of this
technique, and describes a new platform based on it
using an enhanced commercial router. The features new
to this type of architecture are transparency, IPv4 and
IPv6 support, and full control over layer 3 and above. A
practical experience with two applications for path
characterization and a transport gateway managing
multi-QoS is described.

1. Introduction

Most industrial experiences that have tried to apply
active network concepts to enhance the functionality of
real routers have shown that the router’s CPU is not the
best place to run an opened execution environment and
active applications (see, for instance, [11] demonstrating
ANTS [13] onto the Accelar routing switches). The main
drawback is that the overall performance figures drop
dramatically due to the extra interruption rate induced by
active processing. One valid, yet costly, alternative is the
usage of ad-hoc active co-processors devoted to this task.
Thus, in a distributed processing architecture, the router
CPU would be in charge of routing protocols and system
management, interface processors would concentrate on
fast packet forwarding, and finally, active co-processors
would run active applications. However, given the broad
scope of active applications to be supported, only
general-purpose processors could issue the required
versatility. Another factor to consider in the design of
this new generation of routers is the active processing
capacity needed. One estimation could be given by the
assumption that the minimal capacity expected by the
users would be at the same level as the latest general-
purpose processors in the market . In this case, however,

even the best designed modular and expandable internal
architecture would not be able to integrate but a single
generation of processors without major structural
redesign [10].

Under these assumptions it might be more convenient
to locate the active processors on hosts directly attached
to the router through a high-speed local area network. In
this way, the upgradeability and availability of active
processors appears to be guaranteed, and packet
forwarding and active processing functions are kept
decoupled. This paper defines a framework that develops
this idea and shows an implementation whose industrial
applicability is being assessed.

2. The router-assistant paradigm

With the purpose of defining a pragmatic framework
to supply basic active networking functions, valid both
for IPv4 and IPv6, and realistic in an industrial context, a
new active networking architecture has been developed
in the context of the IST project GCAP [3]. This
framework referred to as “router-assistant” architecture is
based on a set of design principles selected according to
its industrial applicability. These principles, and the
rationale behind them, are the following:

1. Routers divert active packets. In other words, active

processing is outsourced. Every router wishing to
enhance its functionality with active extensions can
delegate this task to a host called Assistant (or, in
general, a pool of hosts), directly attached to the router
over a high-speed LAN. This assistant runs the
execution environment and OS supporting the active
applications. Hence, active applications may not run
on the router hardware and, consequently, the
performance penalty caused to the router is bound to
the cost of identifying and diverting active packets,
despite their processing cost (hard to predict in
comparison with forwarding). Therefore, a primary
conformance requirement is as simple as requiring the
router to divert all active packets traversing the router

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

to the assistant, except those coming from the assistant
itself.

2. The assistant host processes active packets. A
packet diverted from the router must be transparently
input to the execution environment, processed at layer
3 or above by the active applications running on it.
This processing ranges from cpu-intensive complex
payload transformations to simple IP address
translations, packet filtering or copying. Once
processed, packets coming from the assistant(s) must
be forwarded by the router just as any regular packet.

3. Router and assistant are lightly coupled. For the
purpose of running active applications on behalf of the
real router, the assistant must cooperate with the
router. This cooperation is based on three functions:
active packet diversion, router state communication
and Router-Assistant Protocol (RAP) with regular
packet diversion. However, it is important to note that
there is a trade-off between functionality available to
active applications and processing overhead. In order
to permit a several degrees of coupling, two
conformance levels have been defined. Level 1, for
routers supporting only the first two items, and level 2,
for routers supporting the full three items.
• Active packet diversion. It has already been defined

in item 1. Notice the parallelism found between flow
diversion to active applications and the flow
diversion mechanisms found in control protocols that
set up per-flow forwarding short cuts in MPLS
antecessors [4].

• Router state view. A procedure by which the
execution environment makes available the router
state to active applications. This can be done, as
proposed in [1] for management-oriented
applications, via SNMP. To avoid causing excessive
overhead to the router, the execution environment
itself is the only entity allowed to poll it. Router state
variables such as interface load, route table, average
queue length, etc are cached and shared by active
applications. It is also an interesting option to
program traps on specific events (e.g. average load
exceeds threshold, route update, reboot, etc) to
trigger asynchronous cache updates. It is true that the
usage of SNMP may cause a considerable processing
overhead on the router even though its impact is
regulated by the execution environment.
Nevertheless, note that this conformance level 1
feature allows a primary and ubiquitous access to the
state of the legacy router at no implementation cost.
Hence, it should not be disregarded so easily, and it
is adopted as a transition mechanism that can ease
the router activation process. A more efficient state
conveyance mechanism based on the router-assistant
protocol is under study.

• Router-Assistant Protocol. If processing regular
packets at layers equal or higher than 3 is a must, a
more specific protocol where the router must play a
more active role is required. In this case, the
assistant must command the router to divert specific
flows, or to output packets over specific interfaces,
like in reliable multicast applications. These and
other control functions enriching the communication
router-assistant are encapsulated in this protocol.
RAP runs on top of TCP and extends the API
provided by the execution environment with flow
manipulation. Flow CUT and COPY commands
allow the design of applications that alter or simply
snoop a flow respectively.

4. Routing is essentially a router’s task. An execution
environment defined upon this architecture can easily
provide active applications with the capability to
change the route table. However, having into account
that a router’s primary function is routing and that its
consistency is tightly linked to the existing routing
protocol, it seems not advisable to delegate this
function on a concurrent active entity (unless no other
routing protocol is running and a specific active
application is devoted to this task). Furthermore, the
risk of instability grows if non-active nodes are present
in the network, as it is normally the case. Therefore
route changing is made available to applications with
specially assigned privileges and is not a
recommended practice. Nevertheless, the route table is
likely to be an essential information for an active
application; therefore the assistant must be reported of
route changes by the router and thereby, the
applications subscribed to these notifications.
Consequently, active applications should make use of
tunnels when they need to override the default routing,
for example to run traffic engineering procedures or to
set up an overlaid logical network of active nodes .

5. Transparent processing of active packets. The IP
address of the Active Nodes in the path(tree) source-
destination(s) can be transparent to the end users. This
way an active packet can automatically launch the
active applications needed to deploy a given service in
all the active nodes traversed, and forget about
choosing the right active servers and be unaware of
network topology. For instance, an active packet can
fetch enough path information to determine the best
node to locate a TCP spoofing active entity or any
other transparent gateway one can imagine.
To take this feature to practice efficiently, the usage of
a specific router-alert value to mark active packets is
recommended for IPv6 (standardized in RFC-2711)
and IPv4 (non-standard approach, as this value is not
yet reserved for Active Networks in RFC-2113). This
way active packets are easily recognized and diverted

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

Wireless Access
Network

Active node
Router

Assistant

User
Premises

Active
Gateway

Core Network

ISP

home

ISP

Code
Repository

Active node

Non- Activ e node

Figure 1. A target application scenario

to the assistant despite their destination address. In
level-2 compliant implementations, transparency is
extended to regular packets.
Transparency is not compulsory. A user can address a
specific network node, and active applications, once
started may open their own sockets to communicate
with other active nodes or end systems, employing
explicit addressing. In this case, the usage of multicast
incremental ring searches or scout packets can be
useful to locate the nearest active node and establish
neighborhood.

6. Transparent processing of non-active flows. In
principle, any regular flow (not marked as active)
could be programmed by the end-user or network
manager to be applied a special processing inside the
network with the help of the router-assistant protocol.
This belongs to conformance level 2. Due to
scalability reasons, this per-flow feature would only
be suitable for edge routers.

7. Dynamic code download and persistency. Any code
loading/execution scheme is feasible in this system.
However, the recommended method is active packets
carrying references to code (and security credentials).
If the code is not loaded yet it can be retrieved by
existing methods (e.g. https) from code servers or by
proprietary protocols.

8. Standard Security Methods. Standard resources
such IPsec and, mainly, SSL can be used to guarantee
the basic security objectives of this framework,
including authentication, confidentiality and even
non-repudiation. However, there is also an interesting

trade-off between scalability and security to be
studied in another work.

9. Safety checked in advance. From the authors’
viewpoint, it does not seem realistic to have any end-
user load just any code into the network in a real
environment. Practical experience shows that the
scope and expressiveness of easily verifiable
programs is rather constrained. Therefore, the
approach of permitting the user to run registered
harmless-proofed code on the network seems much
more realistic. Thus the presumed target scenario is
one in which a central administration provides active
services loaded on the fly from a choice of known
applications that have been provided by the customer
or network manager. This is in fact a networked
application service provision (ASP) with many
analogies in practice, like the Intelligent Networks
model. Another interesting analogy comes from the
comparison to the Unix ™ inetd, where a set of
trusted servers are launched on demand.

Application scenario

To give an idea of the concepts described above and
its context of applicability, figure 1 shows the internal
structure of an active node, composed of an enhanced
router and an assistant, as envisaged by the authors.
Validated (safe) network services are available at
replicated secure repositories whose URL is configured
in advance by the active network manager. The figure
also shows the most coherent location for these
programmable nodes: at edge routers. This way

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

Active
Application

2

100Mb/s
LAN

Ericsson-
Telebit
AXI 462

ActivePacket
Forwarding

Engine

Active
Application

1

OS (Linux)

JVM

SARA Execution Environment

Packet
parserRouter

Assistant
Protocol

Router view
SNMP

Assistant

SNMP
agent

Net-JNI
IPv4 IPv6 Raw socket

JNI

Active
Code
Loader

TCPUDP

…

Router

router
interfaces

snmp

rap

Active packets

Figure 2. Overview of SARA software structure

active nodes can help users launch new network services
(content filtering, content pushing, secure tunneling,
multimedia relays and translators, etc) on demand in a
scalable way to add on existing ones deployed statically
(NAT, firewall, transparent proxies). Such scheme is
specially suitable for wireless networks, where services
must keep moving close to mobile terminals: to enhance
their capabilities (storage, computing and displaying
capacity), to improve latency (by breaking end-to-end
retransmissions, caching, etc), and to optimize link usage
(e.g. pushing, trans-coding), goals difficult to implement
via server-based approaches.

Discussion

The first advantage of the router-assistant approach is
the very low development cost required to integrate a
router with a given host-based execution environment
featuring location-transparency with a minimum penalty
on regular packet forwarding performance. In fact, the
minimal solution only requires that packets with the
active network router alert option be forwarded to a
specific interface. This does not interfere with routing
efficiency of non-active packets at all, since all packets
are examined for router alert options anyway. A second
advantage is that forwarding and active processing get
loosely coupled and hence resource control is less
critical. Scalability can also be achieved if the concept of
assistant is extrapolated to, for example, hashing over a

pool of assistants based on source and destination
address.

There are also limitations in this approach. Network
latency for active packets through such a network made
of router-assistant nodes is higher than through routers
with native active support. This can be kept low enough
for most applications if a dedicated very high-speed LAN
is used and the assistant load is kept low itself (or the
execution environment is built upon a real-time OS).
More importantly, the loose coupling between router and
assistant hinders those applications that require either
real-time knowledge of a router’s variable (for instance,
the output load per millisecond at a given interface) or
real-time manipulation of hardware resources (for
instance, take over the router’s queue management or
buffering allocation algorithms). Such hard real-time
procedures and low level control mechanisms are clearly
out of the scope of this solution, as is the case for most
existing active network platforms, although there exist
relevant proposals aimed at this ambitious goal based on
a common abstraction of a router’s hardware [5].

 From our viewpoint, the main axiom to be followed
to push forward active functions is: do not (even
partially) replace the router functionality, just try to
enhance it.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

3. An implementation : SARA (Simple
Active Router Assistant)

SARA [6] is an active node prototype developed in
JAVA (and C) to study the router-assistant paradigm. As
explained above, the system is capable of transparently
processing active packets passing through the router
(packets carrying the router alert option with the Aactive
Network value). Active packets are diverted by the router
to the assistant (with no extra encapsulation) where they
are analyzed. If the target active application is not
currently loaded on the execution environment, it is
downloaded from one of a set of code servers and run for
a lifetime determined by the active packets. Active
applications are (native) threads and can make use of
active packet parsing and sending facilities, read any of
the router state objects available in the mib-2 cache with
a specified maximum age, use enriched socket functions,
etc

The current public release supports IPv4 and IPv6,
featuring full packet control by active applications, and it
is router-assistant level 1 compliant.

One of the most relevant implementation problems
met during the development of SARA is the limited
communication facilities of JAVA. The lack of support
for: IPv4 options (router alert options control), IPv6
(recently released), and layer 3 control to manipulate
packets being routed, implied that packets should be
encapsulated into UDP messages from the router to the
assistant. In order to save this burden to the router, the
standard JAVA communication facilities were enhanced
with IPv4 and IPv6 raw socket support, by making a JNI
extension in C/linux (see Figure 2).

Two prototype platforms are available today. One
fully based on linux (playing both roles: router and
assistant as a development scenario) and a hybrid
platform where the router used is an Ericsson-Telebit
AXI462 running an enhanced kernel adapted to

Assistant
(PC Linux)

End system
(PC Linux)

End system
(PC Linux)

Router
AXI462

Internet

Pentium III 733 MHz,128 MB
Intel PCI EtherExpressPro 100
SuSE Linux 7.2
Glibc version 2.2.2
2.4.12 kernel Usagi IPv6-patched
Sun’s J2sdk 1.3.0 for Linux

Ericsson-TBIT AXI462
4xFastEthernet
1x STM-1/OC3c
Enhanced Kernel

ATM

Background
non-active traffic

Code serv er

Figure 3. Test Scenario

interwork with an active assistant. A main goal of this
platform is to demonstrate that it is possible to build an
active network platform based on commercial routers at
low cost and without a significant drop of performance
on regular packets.

Figure 3 shows a testing scenario set up to analyze the
maximum throughput achievable with the prototype
execution environment. Packet flows were generated by
an end station, diverted by the router, parsed/registered
on the assistant, and forwarded to a receiver PC. The

experience showed that the real bottleneck of the system
was in JAVA, concretely in the low performance of the
communications interface to Linux. The proof of this fact
was the performance gain obtained for using packets of a
size over the MTU. In this latter case, the kernel takes up
most of the communication processing work, improving
the effective throughput (see results in Table 1, obtained
for the particular hardware components described in
figure 3). In these conditions, the impact on the router’s
performance was not significant.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

Table 1. Effective throughput vs packet size

Packet
size
(Bytes)

Effective
throughput
(Mb/s)

512 10
1024 20
2048 22
3072 28
4096 31
5120 33

As a conclusion, from our point of view, JAVA is

excellent as a platform-independent language to make
universal active code, but in general it is not appropriate
to process multimedia data flows generated by sets of
users (see also [11]). However, we believe that JAVA is
still the right choice for the control plane of an active
network architecture, i.e. JAVA is perfect to process
exclusively active packets, to retrieve the active code and
drive its execution. Hence, part of this code must look
like another JAVA active application to the execution
environment, but most of it must be native code in order
to process regular packets at the required data rates.
Finally, it is important to note that Linux may not be the
best platform to run JAVA.

4. Sample applications

In order to test the behaviour of the node described,
several simple active applications were developed in
SARA. One of these applications is called a-clink [7].
This tool is a path characterization tool based on the
freely available clink tool enhanced by active support to
improve the efficiency and accuracy of estimations
yielded by existing end-to-end performance estimation
tools such as pathchar, pchar, clink and nettimer, by
using active network support. The purpose of a-clink is
obtaining per-link bandwidth estimations based on
probing with different-sized packets sent from active
nodes, rather than from the source host; this minimizes
the accumulated error and causes less probing traffic.
The experience shows that SARA provides good support
to the automatic deployment of code along a path and
enough flexibility to modify any field of a packet
crossing the network.

Another important practical example, developed in the
context of GCAP [3], is a multimedia relay for a JMF-
based videoconference application, that provides ad-hoc
static IPv4-IPv6 multicast translation that supported a
pan-European videoconference experiment in January
2002.

A third application tested is an intelligent QoS adaptor
based on entities deployed transparently along the path

server-receiver. This type of applications are getting
more and more important in n-to-n multi-QoS multimedia
flow services over a best effort internet, for example for
videoconference applications running on end-systems
with heterogeneous capabilities or different access link
capacities. One valid option is the usage of layered
coding and multicast each layer on a different group,
letting IP reduce the rate of the flow at congested links. A
second (and complementary) way to implement this
service, more complex but also more effective in terms of
overall bandwidth usage is performing intelligent packet
discard, rate adaptation, transcoding or layer selection,
etc at network nodes branching to heterogeneous
receivers on different links. The advantage of this
approach is that intelligent processing within the network
can adapt the flow to the specific needs of a subtree of
receivers and prevent forwarding packets that will never
reach its destination due to bottlenecks downstream or
that will not be profitable in the playback. In this case, if
active node location transparency is enabled, each party
can multicast its traffic unaware of which network nodes
in the distribution tree will adapt the flow.

5. Related work

There are many important works demonstrating active
networks on host-based execution environments and on
router-based platforms. Let us cite the ones that keep
some design principles in line with the ones presented in
this paper or that we consider a good starting point to
solve problems not addressed by our architecture.

The ABLE [1] architecture also proposes separation
between router and active engine, SNMP is employed to
communicate them, and “blind addressing” scheme offers
a kind of network transparency. However, its design is
oriented to Network Management domain and it works at
application level. Instead, SARA might be located at
Network level as it allows manages IPv4/6 headers,
although high level applications are also possible. The
method to divert active packets is also different as SARA
employs the Router Alert IP AN option rather than
filtering based on the ANEP UDP ports.

[2] introduces the concept of router delegate keeping
certain similarities with our approach. In this system, the
delegates provides control plane extensibility by
controlling how traffic is handled in the data plane
through a router control interface (RCI) that enables
changing the router’s behaviour per flow. However,
unlike in the router-assistant approach, the router itself is
in charge of the task of packet processing rather than
delegating it on a external processor. Hence, it fits better
for applications requiring lower level functions such as
bandwidth allocation (functionality that must be present
in this more complex RCI), representing a higher

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

implementation cost on the enhanced router. Another
difference with this prominent work is that the second
type of delegate defined to do CPU-intensive processing
-the data delegate- is defined as a non-location-
transparent server.

A development of the idea of creating a lower level
abstraction of router, compared to the one needed by an
external device as SARA, can also be found in [5]. In our
context, controlling the router’s hardware makes only
sense for very specific applications, not for our target
execution level where applications are supposed to be
independent and do not alter the normal behaviour of the
router, except for the functional treatment of certain
flows.

Finally, [10] defines an architecture based on NetBSD
that allows code modules, called plugins, to be
dynamically added and configured at run time, and
provides transparency, like [12]. One of the interesting
features of this design is the ability to bind different
plugins to individual flows. A similar concept is found in
SARA, where active applications request the router a
specific flow to be diverted and processed by them.
SARA is not specially designed to support quality of
service, unlike [10], but, in contrast, it can provide
transparent active processing and isolation from regular
packet forwarding tasks at network points where a real
router is necessary.

6. Conclusions

This paper describes a pragmatic approach to active
networking that brings a practical set of Active Network
functionality to routers in a pragmatic and cost-effective
way. Compared to existing host-based implementations,
the main advantage of this architecture is the capability to
provide transparent packet processing from layers 3 to 7
while preserving performance on regular packets, since
this latter packets do not have to cross the host running
the execution environments. Compared to native Active
Network support in real routers, the advantages of this
approach are economy, flexibility, scalability and
isolation of active processing tasks. The architecture here
described has been tested on a prototype called SARA
(Simple Active Router Assistant) running a Java-based
execution environment supporting full packet control
both for IPv4 and IPv6, in cooperation with an Ericsson-
Telebit AXI462 router. The preliminary results look
promising and show enough flexibility and performance
for a fair amount of applications.

6. Acknowledgements

The authors wish to thank J. E. Kristensen, L. Kroll
Kristensen, and R. Jørgensen from Ericsson-Telebit for

their comments on the definition of the router-assistant
architecture, and the implementation of the AXI462
router software extensions to support an external
assistant. Many thanks also to M. Sedano and B. Alarcos
(U. Alcalá) and D. Garduno (LAAS/CNRS) and E.
Exposito (Ensica), for choosing SARA to develop their
active applications and their useful feedback.

7. References

[1] D. Raz and Y. Shavit. “Active networks for efficient
distributed network management.” IEEE Communications
Magazine, 38(3), March. 2000.

[2] J. Gao, P. Steenkiste, E. Takahashi, A. Fisher, "A
programmable router architecture supporting control plane
extensibility", IEEE Communications magazine. March
2000.

[3] GCAP IST project home page.
http://www.laas.fr/GCAP

[4] P. Newman, T. Lyon, G. Minshall, “Flow labelled IP:
connectionless ATM under IP”, Networld-Interop
presentation. April 1996.
http://www.ipsilon.com/staff/pn/presentations/interop96.

[5] S. Karlin, L. Peterson. “VERA: An Extensible Router
Architecture”. IEEE OPENARCH 2001.

[6] SARA home site. http://matrix.it.uc3m.es/~sara.

[7] M. Sedano, B. Alarcos, M. Calderón, D. Larrabeiti.
“Caracterización de los enlaces de Internet utilizando tecnología
de Redes Activas”. III Jornadas de Ingenería Telemática.
Barcelona, September 2001.

[8] R. Jaeger, S. Bhattacharjee, J. K. Hollingsworth, R. Duncan,
T. Lavian and F. Travostino, "Integrating Active Networking
and Commercial-Grade Routing Platforms", 2000.

[9] G. Hjálmtýsson, "The Pronto Platform - A flexible
Toolkit for Programming Networks using a Commodity
Operating System", IEEE OPENARCH 2000.

[10] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner .
“Router Plugins. A Software Architecture for Next
Generation Routers.” SIGCOMM 1998.

[11] Tal Lavian, Phil Yonghui Wang. “Active
Networking On A Programmable Networking Platform.”
IEEE OPENARCH 2001.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

[12] D. Scott Alexander, et al , “The SwitchWare Active
Network Architecture”, IEEE Network Special Issue on
Active and Controllable Networks, vol. 12 no. 3, July
1998

[13] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse,
“ANTS: A Toolkit for Building and Dynamically

Deploying Network Protocols”, IEEE OPENARCH'98,
San Francisco, CA, April 1998.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

