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Abstract

The block structure of the Padé table associated with a formal power series is well known We study the analytic
properties of the given power series in the case that as we ftravel along a row of the corresponding table, we encounter
blocks of increasing size. Thus, we extend to row sequences of Padé approximants some classical results due to Hadamard
and Ostrowski related with the overconvergence of subsequences of Taylor polynomials and the unalytic properties of the
limit function under the presence of gaps in the power series.

1. Introduction

Let

f@)=3_ fiz". (1)

k=01
be a power series with radius of convergence Ry > 0. By f we will denotc¢ not only the sum
of the series (1) in Dy = {z: |z| < Ry} but also the analytic function determined by the element
(f.Dy). Fix a non-negative integer m and consider the mth row of the Padé table of the series (1):
T, =M, ,, 1=0,1,2,.... That is, for each n,7, is defined as the ratio p,/g, of any two polynomials
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satisfying

@ deg p.sn, degq,,gm‘ Gn ;—é 0,
) (q”‘f i P;;)(Z) :A”:H+n.‘+! s g

It is well known that 7, is uniquely determined. Let us denote by D= {:: z| <R} the largest disk
centered at z = 0 inside of which (1) can be extended as a meromorphic function having at most
m poles (counting multiplicities). D is called the disk of m-meromorphy «f f, and R =R, is the
radius of m-meromorphy.

For m = 0, the sequence {=,} is that of the Taylor polynomials {7} relative to f. It is obvious
that f, =0 if and only if 7, , = T,. Therefore, f, =0, ny <n<n; is equivalent to the fact that
T, =T, n <n<n,. We study the analytic properties of / under the assumption that for the mth

row, there exist two increasing sequences of natural numbers {n;} and {n} such that

W, =My Mg <n€n£. k=0.1,2 .., (2)
and, either.
n

lim = =oc, (3)
K= n‘.

or,
lim 2 > 1. (4)

k—nc My
In correspondence with the standard classical definition, we say that the wth row of Eq. (1) has
Ostrowski type gaps if (2) and (3) take place. If, we have (2) and (4), we say that the gaps are
of Hadamard type.
Let e be an arbitrary set contained in C. Set

o(e) = inf {Z]b’“}, (5)
k

where |U;| denotes the diameter of the disk U; and the mfimum is taken over all coverings {U; } of
e by disks. A sequence of functions {f,} is said to converge to f g-almost uniformly inside some
region G if for each compact set K C G and & > 0 there exists a set e = (K, &) such that o(e) < ¢
and {f,} converges uniformly to /" on K\e.

We prove the following extension of a classical theorem of A. Ostrowski. The original result,
given for sequences of Taylor polynomials, may be found as Theorem 3.1.1 in [1].

Theorem 1. Let (1) be such that its mth row has Ostrowski type gaps. Then, (1) defines a mero-
morphic function with a simply connected domain of existence G in which it may have no more than
m poles (counting multiplicities). Moreover, {m, } converges to f a-almos: uniformly inside G.

In the case that (2) and (4) take place, the existence of regular points on the boundary of D yields
overconvergence o-almost uniformly of the sequence {r, } on a neighborhood of regular points. For
the definition of g-almost uniform convergence see (5). For sequences of Taylor polynomials the
corresponding result is due to Hadamard, it is mentioned in [1] and a proof may be found in [6],
p. 314



Theorem 2. Let (1) be such that its mth row has Hadamard type gaps. If « is a regular point
or a pole of (1) on the boundary of D, then {m, } converges to [ c-almost uniformly inside a
neighborhood of a.

An immediate consequence of Kronecker’s theorem (see [5]) is that n, =, . n=n,. implies that
(1) defines a rational function and the statements of Theorems 1 and 2 take place. Therefore, we
shall assume in the sequel, that the sequence {m, } is made up of distinct Padé approximants. In
Section 2. we prepare the way for the proof of the main results stated above to which Section 3 is
devoted. In the sequel. we maintain the notation introduced above. Recall that »1 is fixed.

2. Auxiliary results

From the definition of =,. it is obvious that ¢, and p, may be taken so that the have no common
zero except at z=0, On the other hand, if z=0 is a zero of g, of multiplicity /,(('</, <degg, <m),
then it is also a zero of p, of multiplicity >/,. Therefore, there exist relatively prime polynomials
P,. O,. such that n, = P,/Q, and

® deg P, <n- I, df:g Qﬂ <m-1, Q;.- :’—& 0,
L {Qr.l,/h - Pu)(:} o B:!:.rri-w—l la 7 R

where 0</, <m.
In the sequel, we will assume that (), is normalized by the condition

Q,,{Z'): H [:_:n..r) ]_—_[ (: _1)
5 o] =1

e
¥ . j
[ES

(the points z, ; are the poles of m,). With this normalization, not only 7, is umquely determined,
but also P, and Q,. We have that for any compact set K C C

0ullk = max|0,(z)| <C < o0, n=0,1.2..... (6)
where €' = C(K) does not depend on n. In the following, C,,C-,..., denote nositive constants

independent of #,
If B, 0, it is easy to verify that /,=/,,,. Therefore, from the definition of the polynomials P,
and O, (applied to two consecutive indexes), we have the identity

(P,,HQ,,—P,,Q‘,,.H)(Z):B”eram.i. .?,.1 ”::0_1‘2__”? {‘?‘]
where 0</, <m. Thus,
B zn-m $ | =1,
(i1 —m)2)=———, n=0,12,....
I ) ) {Q!.‘Q?l}|){z)
For B, =0, m,,, = m,. and the same relation takes place with B, = 0. Therefore, th: convergence of
the sequence {r,}, for z fixed, is equivalent to that of the series
b B2 o=t =1,
-, 0</,<m, 8
Z QJ’IQ!J’"{Z) { )

=N

where N is a properly chosen non-negative integer (such that 0,(z) # 0. n=N).



It is well known (see (24) in [4]). that the sequence {=,} converges c-almost uniformly to f
inside D. We also have (see p. 534 in [4])

I/R = Tim |B,]"". 9)

From Egs. (6) and (9), we deduce that Eq. (8) diverges pointwise for every z such that |z| > R.
Therefore, {n,} cannot converge at any point beyond the closure of D.

Take an arbitrary ¢ > 0, and define the open set J; as follows. For n=0,1,2,..., let J,, denote
the &/6mn*-neighborhood of the set {z,,2,2,...,2sm,} Of zeros of Q,, (m, =deg(Q,). Set

Zi=l e

n=0

It is easy to check that

o(J,) <e
and

o(J,)<0(L,), & <éx (10)
For any compact set K C C, we put

K(e)=K\J.
From the definition of K(&), it follows that

:glkjlt}‘]Q,,(z)|>C.n mop=0,1,2,..., (11)

holds for every compact set K C C. In [4] (see Eq. (23)), it was actuallv proved that for each
compact set K CD

. maxegl]
Tim 11 - ol < Tt

from which ¢-almost uniform convergence inside D immediately follows.

(< 1) (12)

3. Proofs

This paragraph is divided into three sections. In Section 1, we prove Theorem 1. Section 2 is
devoted to the proof of Theorem 2. Section 3 is dedicated to some applications of the main results.

Proof of Theorem 1. There is nothing to be proved unless R, the radius of D, is finite. On the
other hand, Padé approximants are invariant under linear transformation, therefore without loss of
generality, we may assume that R = 1. We begin proving the second statement of Theorem 1.

Let G denote the largest region in which (1) may be extended meromorphically (that is, G is
made up of the largest region to which the analytic element (f,D;) may be continued plus the
points which are poles of the corresponding analytic function). Obviously. /}C G. Fix an arbitrary
compact set K C G. Since the distance from K to the complement of G is greater than zero, we can
find a contour y, contained in G such that the region B, bounded by y, satisfies K C B, C G and



(DN B,) # 0. Choose a closed disk B, such that 8, C ((D N B,)\K. By y, we denote the boundary
of B:.

Since poles are isolated singularities, f can have in the compact set B, Uy, at most a finite
number of poles. By O, we denote the monic polynomial whose zeros are the poles of f in By Uy,
counting multiplicities. For each » € {0,1,2....}, the function log|QQ,(f — m,) is subharmonic in
a neighborhood of B, Uy,. Set

||QQH{f — Ty )”. =M|{”): ”QQn(f - ﬁn)”:'.‘ :ME(H)-
Denote «(z) the harmonic function defined on B,\B, and continuous up to the boundary, with
boundary values 1 on ¥, and 0 on y,. By the two constants theorem (see [2]), we have
log|[Q0.(f — m)I(z)| < (log Mi(n))w(z) + (log Ma(n))(1 — w(z)), (13)
for all z € B,\B,. Since

0 <infw(z)< supw(z) < 1,
ek TEK

from (13), it follows that there exists a constant ¢ such that

10Q,(f — m)l[x S (M (n)) (Ma(n))' . (14)
Our next step is to find estimates for M;(n) and M-(n).
Let & be the distance from B, to the boundary of D, which by construction of B, is greater than
zero. Choose ¢ > 0 such that ¢ < d. By 7,, we denote the circle of center z == () and radius r. For
each r < 1, from (12), it follows that

Jim 1S =l <r (15

(recall that we have assumed that R =1). Since ¢ < d, it is easy to find r < | such that y,.(¢) =7,
and B, is contained in the disk defined by 7, (consider the circular projection ¢f J, on a radius of
D). Using (15), (6), the definition of @, and the maximum principle, we obtain

Jim (My(n))'" < Tim [|QQ.(f — m)ls] <. (16)
Take r < r, < 1. Using Eq. (16), we have that there exists a natural number N such that

Miy(n) <vr], nzN. (17
From (2). (16) and the definition of M,(n), it follows that

My(n) <r}', m=N. (18)

In order to estimate M,(n), we proceed as follows. Take r, > | such that the :ircle 9,. surrounds
71 and y,.(¢) = y,,. Therefore, for each n=0,1,2,..., and z € y,,

=1

Z,u'»mll Iy
r(z)=my(z) + Y ——-—.
! Z 0,0,:1(2)
By the maximum principle, (9). and (11)
I 00w, II;, < Il QQum, 1.,
n—1 5,.!‘,!'-}-.»1+|.—|‘|l
<1 Q0o [I;, + 11 Q@ 1z, 3 = <SG '[(1+e)n]. (19)

~ min.e;, 0,0;.1(2)



Since

‘wi(”)‘g H QQ”J“ Hl + ] QQ”J‘T“ ||‘.'|"
using (6), (19), and the regularity of / on G, we obtain

M (n)<Cn™ ' [(1 + &))" (20)
From (14), (18), and (20), we arrive to the estimate
| @O, (f — 7)) llx (G (1 + &)™ )‘(?‘T: )' ™, m=N. (21)
From (3) and (21), it follows that
Ii{n | 0O, (f —m,) |lx =0. (22)

Let ¢ be an arbitrary positive number. We have

{zeK: [(f —m Nz) 2} C{z € K: |[QO,(f — m,,))(2)| =e[(QQ. )|}
© {-"- € C -I(QQ;J; )(:)| ““{ns_l !| QQH‘(J‘- =T} ||K}'

It is obvious that

0—{{: S q:: I(QQHJ )(2)1 SE-_] ” QQm(f - KH. ) ||,f\})
<(deg(QQ, )" [| Q0 (f — ) Ik )" e, (23)

because each point of the set must lie in one of the at most deg(QQ, ) disks centered at the zeros
of QQ,. and of radius

('{':_I “ QQm(.f - nn.-.) ”-\’)I deg(C0y, ’-
Hence, using Eqs. (10), (22), and (23), it follows that
limo({z € K: |(f — 7, )(z)| Z£}) = 0. (24)

Since & can be taken arbitrarily small, this means that there is ¢-almost univorm convergence to f
inside G.

It is known (see Lemma | in [3]), that from the g-almost uniform convergence it follows that f
is meromorphic in G and it may have there at most m poles (because for ail n;. 7, has at most m
poles). It rests to show that G is simply connected.

Assume, on the contrary, that the complement of & has a bounded conn:cted component. Take
a curve 7 which surrounds that bounded connected component. Let Q denot¢ the polynomial whose
zeros are the poles of / in G. According to Eq. (22)

lim || QQ..(/ ~ ) |, =0. (25)
Take a sequence of indexes A such that
im0, - 0. @)

Using Egs. (25) and (26), we have
lim 00,,m, = 00'f.



uniformly on 7. But the sequence of functions {QQ, m, }, k € A, is holomorphic in the region
bounded by 7: therefore, by the maximum principle, 0Q,, n,, converges to a hclomorphic function
F in the region bounded by 7. Since F'= fOQ' on G, it follows that f may be extended as a mero-
morphic function onto the bounded connected component of the complement of G. This contradicts
the assumption that G was the largest region in which f could be extended meromorphically. [J

Now, we consider the case of Hadamard type gaps.

Proof of Theorem 2. As pointed out at the beginning of the proof of Theorem |, we may assume
that R = 1. In the present case, by rotation, we can suppose additionally, that ¢ = 1.

In the proof, we will work with two functions and different indexes m. Therefore, in order to
avoid confusion, we will indicate the function and the index we are refering to in the notation of
R,D, and m,. Thus, D, () denotes the mth disk of meromorphy of f,R, (/) its radius, and =n, (/)
the nth approximant of the mth row of f. Analogously for any other function.

Let p be the order of the pole which (1) has at point 1 (if 1 is a regular point take p = 0).
Because of Eq. (4), there exists a positive integer 4 > m + p such that

1+ 1 < lim 2
A heanc Ny

Since lim;_. ., n; = oc, there exists an NV such that

1 +m n
(|+:)+’U <=t m=N
A Ny n;

In other words,
(142 m +(p+m)i+1<dn,, m;2N. m+ p < A (27)

Consider the polynomial /(z) =2z’(1 +z)/2 and the function F = (f o /) (by (f o), we denote
the composition of / and f'). Notice that for all z such that |z/ <1, z # 1, we have that [/(z)| < |
and /(1)=1. The function f has no more than m poles in D, (/) and I is a pole of f of order p;
therefore, 7 has no more than (m+ p)(1+ 1) poles in a disk centered at the origin of radius larger
than one. That is. R, p14,(F) > 1. It follows that the sequence {7, (ms pmrsi(F1} n=10,1,2,...
converges og-almost uniformly to F in a neighborhood of 1.

According to the definition of =, .(f)= p.. /g, and (2), we have

£l

(q’“ f _ p“I )(:) = A,-,l.:_-'“‘l +m+ | SERPRE
where deg p,, <n, deggq, <m,q, % 0. Therefore,
g (H2)F () — pu(U(2)) = A}, 2"V o

where deg(p,, o l)<m(1+ 4),deg(g,, o 1)<m(1 + A)<(m+ p)(1+4), (g, 1) # ). From Eq. (27)
it follows that

m(l+2)+(m+ pY1+)+ 1<, +m+1)A. nm =N
Hence,

ﬂ:".l] rehtmt pil -'-z.I(F} = (f};r, G f);(qﬂ, o f}» Hy ZN‘



and

‘]Lni Toni1 7). (mH pJ{l+z’.l(F) =F,
g-almost uniformly on a neighborhood of 1. It follows that
Jim 7, ,.(f)= 1,

g-almost uniformly on a neighborhood of 1(/(1)=1). O

Let us consider some consequences of the results above.

Corollary 1. A power series (1) which represents an analytic function with singularities other than
poles in its domain of existence, or with more than m poles (counting multiplicities) cannot have
Ostrowski type gaps in the mth row of its Padé table.

Proof. It follows directly from the statement of Theorem [. [

Corollary 2. A power series (1) which represents a meromorphic function wvith more than m poles
(counting multiplicities) in the closure of its mth disk of meromorphy cannot have Hadamard type
gaps in the mth row of its Padé table.

Proof. To the contrary, assume that (1) has Hadamard type gaps. In D, the complete mth row of
the Padé table of (1) converges o-almost uniformly. In particular, on a neighborhood of each pole
lying in D,,. From Theorem 2, we know that this is also true for the subsequence {m, } of the mth
row on a neighborhood of each pole lying on the boundary of D,,.

Lemma 1 in [3] indicates that from g-almost uniform convergence on a neighborhood of a pole of
order p, it follows that for all sufficiently large &, 7,, must have at least p poles in the neighborhood.
This is clearly impossible because for all 4, the total number of poles of m, does not exceed

5]

m. 1

Corollary 3. Assume that (1) is such that there exists an increasing sequence of natural numbers
{ny} such that the mth row of its Padé table satisfies

Ty, — Ty e =n < My
and
. L
lim — > 1.
foeoe My

Then, all points on the boundary of the mth disk of meromorphy are singular points.

Proof. If there would exist a regular point, then the sequence {m,} would converge o-almost
uniformly on a neighborhood of the regular point. From the assumptions. this sequence coincides
with the complete mth row (without repetitions). But as pointed out above the mth row diverges at
each point of the complement of the closure of the mth disk of meromorphv. Thus such a regular
point cannot exist. [l
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