
©  2012 AI Access Foundation

This document is published in:

Journal of Artificial Intelligence Research 44 (2012) 397-421

DOI:doi:10.1613/jair.3612

Ins t i tu t ional  Repos i tory  

http://dx.doi.org/doi:10.1613/jair.3612
http://e-archivo.uc3m.es/


Semantic Similarity Measures Applied to an Ontology        
for Human-Like Interaction 

Esperanza Albacete 
Javier Calle 
Elena Castro 
Dolores Cuadra 
Computer Science Department, Carlos III University, 
Madrid 28911, Spain 

EALBACET@INF.UC3M.ES 

FCALLE@INF.UC3M.ES

ECASTRO@INF.UC3M.ES 

DCUADRA@INF.UC3M.ES

Abstract 
The focus of this paper is the calculation of similarity between two concepts from an ontology 

for a Human-Like Interaction system. In order to facilitate this calculation, a similarity function is 
proposed based on five dimensions (sort, compositional, essential, restrictive and descriptive) 
constituting the structure of ontological knowledge. The paper includes a proposal for computing a 
similarity function for each dimension of knowledge. Later on, the similarity values obtained are 
weighted and aggregated to obtain a global similarity measure. In order to calculate those weights 
associated to each dimension, four training methods have been proposed. The training methods 
differ in the element to fit: the user, concepts or pairs of concepts, and a hybrid approach. For 
evaluating the proposal, the knowledge base was fed from WordNet and extended by using a 
knowledge editing toolkit (Cognos). The evaluation of the proposal is carried out through the 
comparison of system responses with those given by human test subjects, both providing a 
measure of the soundness of the procedure and revealing ways in which the proposal may be 
improved. 

1. Introduction

The main purpose of an ontology in a human-like interaction system is to unify the representation 
of each concept, relating it to the appropriate terms, as well as to other concepts with which it 
shares a semantic relation. Furthermore, the ontological component should also be able to 
perform certain inferential processes, such as the calculation of semantic similarity between 
concepts. The subject of similarity has been and continues to be widely studied in the fields and 
literature of computer science, artificial intelligence, psychology and linguistics. Good similarity 
measures are necessary for several techniques from these fields including information retrieval, 
clustering, data-mining, sense disambiguation, ontology translation and automatic schema 
matching. The present paper focuses on the study of semantic similarity between concepts in an 
ontology from the framework of natural interaction. 

The principal benefit gained from this procedure is the ability to substitute one concept for 
another based on a calculation of the similarity of the two, given specific circumstances. From the 
user’s perspective, the procedure allows for the use of synonyms (terms related to a single 
concept) of a concept in the case where the user is not familiar with the original concept itself. 
Moreover, semantic similarity offers the possibility to build explanations for clarifying a concept 
to the user based on similar concepts, thereby enhancing communicative effectiveness.  
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On the other hand, the system may also be able to understand a previously-unknown concept, 
as long as the user is able to relate it to similar concepts that are previously known by the system. 
In this way, the system will learn new concepts and automatically enrich its ontology to improve 
future interactions. 

The first task of this study is to develop a semantic similarity measure that takes into account 
particular ontological dimensions described in an earlier study (Calle, Castro & Cuadra, 2008). In 
this approach, the conceptualization comprises seven ontological dimensions: semiotic, sort, 
compositional, essential, restrictive, descriptive, and comparative. The first three dimensions have 
been previously applied in related works, as will be stated in Section 2. Essential, restrictive and 
descriptive dimensions are part of the nature of the concept, can influence human judgment of 
similarity and will be detailed in Section 3. The seventh one, comparative dimension, is derived 
from previous dimensions and is in charge of calculating the degree of similarity between 
ontological concepts. 

The second goal of the present article is to evaluate the quality of the mechanism developed 
for the calculation of similarities between two concepts in an ontology which is specially 
designed for a human-like interaction system (Calle F., 2004). To achieve this, several 
experiments have been designed and performed here. Before these experiments and the 
consequent evaluation of the semantic similarity measure can be carried out, however, it is 
necessary to implement the similarity dimensions defined in the conceptual model and feed the 
database with a large number of concepts. 

To briefly outline the content that follows in this paper, Section 2 reviews the literature on 
similarity measures in ontologies and the methods available for their evaluation. In Section 3, an 
approach to similarity measures applied to an ontological model based on several dimensions is 
proposed. In Section 4, a detailed explanation is provided of the experiments designed to test the 
proposal, as well as the results obtained from their execution. Section 5 discusses the limitations 
encountered in the study. Finally, Section 6 presents conclusions for future research. 

2. Related Work
The present section of this paper has two main objectives. First, it aims to provide an overview of 
the different types of approaches available for the comparison of concepts in ontologies and, in so 
doing, to identify the foundations on which the desired similarity measure may be modeled, 
taking into account the seven dimensions described in a previous study (Calle et al., 2008). 
Secondly, it aims to select the best way to evaluate the results yielded from this desired similarity 
measure according to other studies regarding similarity metrics assessment. 

Basically two types of methods exist for the comparison of terms in a graph-based ontology: 
edge-based methods using graph edges and their types as the data source and node-based methods 
using graph nodes and their properties as the main data source. The simplest and most intuitive 
similarity measure, the former method is based mainly on the counting of the number of edges in 
a path between two terms on a graph (Rada, Mili, Bicknell & Blettner, 1989). Within the edge-
based method, two general approaches exist: firstly, a distance approach that selects either the 
shortest path or the average of all paths (when more than one path exists) and secondly a common 

2



path approach that calculates similarity directly by the length of the path from the lowest common 
ancestor of the two terms to the root node (Wu & Palmer, 1994). Over the past few years, a 
variety of edge-based methods have been defined (Resnik, 1995; Leacock & Chodorow, 1998). 

All edge-based methods are grounded in two basic assumptions: firstly, that nodes and links 
are uniformly distributed in the ontology, that is, terms at the same depth have the same 
specificity (Budanitsky, 1999) and, secondly, that edges at the same level in the ontology indicate 
the same semantic distance between terms. However, these suppositions are rarely true in the 
majority of ontologies. For this reason, several strategies have been proposed in response to this 
fact. One example of such a strategy is the weighting of edges according to their hierarchical 
depth or the use of node density and link type (Richardson, Smeaton & Murphy, 1994). 
Nevertheless, these strategies do not solve the aforementioned problems due to the fact that terms 
at the same depth do not necessarily have the same specificity and that edges at the same level do 
not necessarily represent the same semantic distance.  

The second, or node-based, method relies on the comparison of the properties of the terms 
involved which can be related to the terms themselves, their ancestors or their descendants. A 
commonly used concept in these methods is that of information content (IC), providing a measure 
of how specific and informative a term is. The IC of a term c can be quantified as the negative 
log-likelihood, IC = -log p(c), where p(c) is the probability of the occurrence of c in a specific 
corpus, generally being estimated by its annotation frequency. Another approach employed to 
obtain the IC is based on the number of children a term has in the ontological structure (Seco, 
Veale & Hayes, 2004). The concept of IC can be applied to the common ancestors of two terms in 
order to quantify the information they share and, thereby, measure their semantic similarity. In 
this way, two main approaches exist. The first is the most informative common ancestor (MICA) 
technique in which only the common ancestor with the highest IC is considered (Resnik, 1995). 
The second is the disjoint common ancestor (DCA) technique in which all disjoint common 
ancestors are considered (the common ancestors that do not subsume any other common 
ancestor). In one definition (Lin, 1998), the similarity between two concepts using the node-based 
method has been expressed as the ratio between the amount of information needed to state the 
commonality between the two concepts and the information needed to fully describe them. 
Moreover, a similarity measure for hierarchical ontologies called ontology structure-based 
similarity (OSS) has also been defined (Schickel-Zuber, 2007) and whose major ingredient is the 
computation of an a-priori score of a concept c, (APS(c)), which shares some similarities with IC 
(i.e., both are calculated from the topology and structure of the ontology reflecting the 
information contained within and between the concepts). 

Additionally, several hybrid methods have also been defined in an attempt to improve the 
results of both techniques defined above. In the work of Jiang and Conrath, (1997), for example, a 
combined model is defined that is derived from the edge-based notion by adding information 
content as a decision factor. The link strength between two concepts is defined as the difference 
of information content between them. 

With the aim of collecting all different methods and approaches, SimPack, a generic Java 
library of similarity measures for use in ontologies, has been created (Bernstein, Kaufmann, 
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Kiefer & Bürki, 2005) and includes the implementation of ontology-based similarity methods 
(including edge-based and node-based measures). It is important to note that the majority of the 
techniques described to define semantic similarity between concepts have been applied to 
hierarchical ontologies whose structure takes into account only one or two dimensions in the 
same graph. For example, WordNet (Fellbaum, 1998) consists of an ontological graph with over 
100,000 concepts and whose edges model the is_a and part_of relationships. A Perl module 
(Pedersen, Patwardhan & Michelizzi, 2004) was implemented for this lexical database with a 
variety of semantic similarity measures. Another example of application is the Gene Ontology 
(Department of Genetics, Stanford University School of Medicine, California, USA., 2000), one 
of the most important ontologies within the bioinformatics community, with over 20,000 concepts 
and modeling is_a and part_of relationships in the same graph. Thus, while none of the 
techniques described in this section can be supposed to be appropriate in dealing with more than 
two dimensions of similarity, they can nevertheless be useful to attempt to define some of the 
dimensions in the present study’s ontological model. 

The second aim of the present section is to review the assessment techniques for ontological 
similarity functions used in earlier studies. The gold standard established in the majority of the 
experimental evaluations of similarity (Resnik, 1999; Jiang & Conrath, 1997; Altintas, Karsligil, 
& Coskun, 2005; Schickel-Zuber, 2007; Bernstein et al., 2005) is based on the experiment 
described in Miller and Charles’ study (1991) which has become the benchmark for determining 
the similarity of words in natural language processing research. This experiment relies on the 
similarity assessments made by 38 university students when provided with 30 name pairs chosen 
a priori to cover high, intermediate and low levels of similarity and when asked to assess the 
similarity of their meaning on a scale from 0 (no similarity) to 4 (perfect synonymy). The average 
of scored values represents a good estimation of the degree of similarity between two terms. 

In certain evaluations based on human judgment (Inkpen, 2007; Bernstein et al., 2005), 
variations in the number of participants or the way to administer the questionnaire have been 
introduced. In one of these studies (Bernstein et al., 2005), a website containing a survey tool was 
designed to perform the evaluation. In the Web experiment, subjects were asked to assess the 
similarity between 73 pairs of concepts on a scale from 1 (no similarity) to 5 (identical). Finally, 
subjects were also given the possibility of adding comments to their assessment. To evaluate the 
quality of the similarity measures, its results were compared with the test subjects’ assessments 
using the corrected Spearman rank correlation coefficient.  

It can be concluded that human reasoning is one of the most widely-used methods of 
comparison when performing validation of a similarity measure. For this reason, such a 
methodology has also been used in the experimentation section of the present study. Since it is 
difficult to run a user-based evaluation with complicated ontologies, for example, the Gene 
Ontology (Lord, Stevens, Brass & Goble, 2003), it has been deemed necessary here to find or 
model an ontology with elements that test subjects could understand. Therefore, once the 
ontological module is implemented, it must be populated with a sufficiently good coverage of 
domain knowledge, that is, enough knowledge to meet the system requirements. 
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Figure 1: Example of semiotic dimension representation 

Figure 2: Sort dimension example 
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Figure 3: Essential dimension taxonomy 

The compositional dimension represents the part-whole relationship between concepts. In 
this way, any concept can have relationships with a collection of concepts that are part of it. 
Figure 4 shows some of the concepts that are part of a computer, for example “hard disk”, 
“RAM” and “ALU”. 

Figure 4: Compositional dimension example 

The restrictive dimension shown in Figure 5 describes the compatibility between concepts 
related to some action and the rest. For example, the action “to compute” is related to the 
concepts “computer”, “calculator” and “laptop”, among others. 
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Figure 5: Restrictive dimension example 

The descriptive dimension shown in Figure 6 is in charge of the relationships between three 
kinds of concepts: a generic concept (entity, abstract entity or action), an attribute likely to 
characterize that concept, and the domain (of values) on which that attribute is defined. Notice 
that there could be several available domains for a given attribute, and that a domain could be 
numeric (magnitudes regarding a unit) or enumerated (a concept which is composed of a set of 
named values which are also concepts). For example, an instance of the generic concept “hard 
disk” will have a value in the numeric domain of “information in bytes” for the attribute concept 
“storage capacity”. 

Figure 6: Descriptive dimension example 

Finally, the comparative dimension is derived from previous dimensions and is responsible 
for calculating in real time the degree of similarity between ontological concepts. This paper, in 
fact, focuses precisely on that similarity calculation. Finally, for reasons of efficiency, most 
frequently requested similarities can be buffered, that is, stored when calculated, periodically 
updated and retrieved when necessary. 

4. Proposal

This paper proposes and evaluates a similarity measure based on the combination of individual 
similarity measures according to each of the dimensions explained (see Section 3). This 
combination will be produced as training across numerous observations that will affect the weight 
with which each dimension contributes to the final decision. Training can be performed according 
to different criteria. On one hand, different human subjects support their judgments on different 
combinations of the dimensions. On the other hand, the nature of the concept determines the most 
relevant dimension for each comparison. For example, when comparing the concept ‘scanner’ 
with the concept ‘printer’, the sort dimension could be very influential, since both are types of 
computer peripherals; however restrictive dimension could not be as influential because they are 
related to different actions. The opposite may happen with the concepts ‘teacher’ and ‘tutorial’ 
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because both are related to similar actions according to the restrictive dimension, such as 
‘teaching’, while the sort dimension has little influence in this case. 

The following step is to describe the similarity measure adapted to the described ontological 
dimensions except for the semiotic dimension. Yet not the only approach, similarity in the 
semiotic dimension, or similarity between terms is frequently described as the edit distance or 
Levenshtein distance (1966), that is, the number of changes necessary to turn one string into 
another string. The decision to leave this dimension apart is supported by preliminary studies in 
which this measure yields an average error rate above 50% and in some cases over 80%. 
Furthermore, for every concept in that study, the accuracy provided by this dimension was lower 
than that of some of the other dimensions (the semiotic dimension never produced the best 
prediction), being the only dimension which never ranked first when tested separately. For this 
reason, it is estimated as it cannot contribute positively to the results (at least, it cannot until it is 
properly adapted). Last but not least, during preliminary experimentation of the training including 
this dimension, it was observed that each weight tended to zero, and with the drawback of 
slowing down convergence of the weights of the rest of dimensions. However, as further work, 
some evolution of this similarity measure (supported by knowledge on this dimension) can be 
incorporated into the global measure of similarity. 

4.1  Inference Mechanisms 

This sub-section describes the method used to calculate the degree of similarity between two 
given concepts in an ontology. Since ontological knowledge here is structured into different 
dimensions, the similarity measure will also be based on these dimensions. Therefore, partial 
similarity calculations will be made for the sort, essential, compositional, restrictive and 
description dimensions described previously. The resulting overall similarity between the two 
concepts is obtained through the calculation of the weighted average of the five partial similarities 

 
                   

              

where Ss, Sc, Se, Sr and Sd are the similarity measures according to the sort, compositional, 
essential, restrictive and description dimensions, respectively. The values w1, w2, w3, w4 and w5 
represent the weights assigned to each dimension such that the resulting total similarity between 
the two concepts will be a value between 0 (completely different concepts) and 1 (the two 
concepts are the same). 

The following sections describe in detail the procedures developed for the calculation of each 
of the partial similarities. 

4.1.1 SIMILARITY ACCORDING TO SORT DIMENSION 

The sort dimension represents the is_a relationship between concepts. This dimension has a 
polytree structure, allowing a concept to be a descendant of more than one concept. Similarity in 
this dimension is often calculated as proportional to the intersection of the list of predecessors of 
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both compared concepts regarding the total size of these lists. To define this measure, a variation 
of the edge-counting technique – concretely, the conceptual similarity measure defined in the 
work of Wu and Palmer (1994) – has been employed. Given two concepts, C1 and C2, this 
measure can be defined as  

    
   

     

where N1 and N2 are the number of ancestors of C1 and C2, while N3 is the number of common 
ancestors of C1 and C2 (in the most advantageous tree if several are found in the polytree). 

4.1.2 SIMILARITY ACCORDING TO COMPOSITIONAL DIMENSION 

The compositional dimension represents the part-whole relationship between concepts. For this 
reason, the most appropriate way to calculate the similarity between two concepts based on this 
dimension is through the comparison of the parts (or ingredients) of these concepts. Furthermore, 
the calculation must also take into account the fact that a concept may consist of required and 
optional concepts. This detail is important when calculating similarity since a greater weight must 
be given to the required ingredients appearing in both concepts, while a lower weight is given to 
the optional ingredients. The resulting similarity of two concepts, C1 and C2, in terms of the 
compositional dimension is obtained by applying the formula: 

     

  
  

   
  

  
   

   
       

  
   

       
 

 

where N1 is the number of common components arising from the intersection of all 
components of concept C1 with those components of concept C2 of type required; N2 is the 
number of common components arising from the intersection of all the components of C2 with 
those required components of C1; N3 is the number of required components that both C1 and C2 
have in common; and N4 is the total number of common components (both required and optional) 
of the two concepts; M1 and M2 represent the number of required components of concepts C1 and 
C2, respectively. Finally, M3 and M4 indicate the total number of components that C1 and C2 have. 

4.1.3 SIMILARITY ACCORDING TO ESSENTIAL DIMENSION 

The essential dimension contains a set of abstract concepts which define generic types of 
concepts (such as action, entity, abstract, circumstance or attribute). This generic classification 
frequently influences human speakers when estimating similarity. Some other works on similarity 
calculation posed that concepts are only comparable if included in the same category of 
WordNet’s taxonomy (RiTa.WordNet, 2008). Such approach endows a critical value to this 
dimension, while omitting the rest of the classification. What is proposed here is that this 
dimension can contribute to similarity estimation as any other (albeit with a certain weight that 
could be different than the rest), and that all the concepts observed in the design of the essential 
dimension may influence the similarity estimation. 
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The method for calculating similarity between two concepts C1 and C2 in the essential 
dimension is based on the intersection of their essential ancestors (ancestors within the subset of 
essential concepts). This is formalized as follows: 

    
              

                 

where Card(E1) and Card(E2) are, respectively, the total number of essential ancestors of 
concepts C1 and C2, while Card(E1 ∩ E2) indicates the number of common essential ancestors. 

4.1.4 SIMILARITY ACCORDING TO RESTRICTIVE DIMENSION 

The restrictive dimension is defined between a concept representing an action and another 
concept representing an entity. Similarity in this dimension is calculated in a different way 
depending on the type of concepts to be compared. For this reason, two different similarity 
measures exist for the dimension: comparing two actions and comparing two entities. Similarity 
between two concepts representing an entity will be based on the action concepts that both 
entities have in common. The formula used for the calculation of this similarity when comparing 
two entities, C1 and C2, is defined as 

     

  
       

  
  

       
 

 

where M1 and M2 are the number of common actions that have a positive or negative 
restrictive relationship with the entities C1 and C2, respectively. The values N1, N2, N3 and N4 
represent, respectively, the total number of actions having a positive relationship with the entity 
C1, a negative relationship with C1, a positive relationship with the entity C2, and a negative 
relationship with C2. 

As regards the similarity between two concepts representing an action, this is calculated based 
on the set of concepts defined on these actions, being more similar the higher the number of 
restricted concepts in common. The formula to calculate the similarity between two action 
concepts (C1, C2) of a particular sign (positive or negative) is defined as  

     
   

       

where N3 is the number of common entities shared by the two actions, and N1 and N2 are the 
total number of entities having a restrictive relationship with C1 and C2, respectively. 

4.1.5 SIMILARITY ACCORDING TO DESCRIPTIVE DIMENSION 

The description dimension represents the relationship between a concept, an attribute and a value 
in a concrete domain. Similarity in this dimension is calculated differently depending on the type 
of concepts to be compared, that is, entities, attributes or domains. For pairs of concepts (C1, C2) 
representing an entity, the applicable formula is defined as 
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where N1 is the number of common attributes without a default value assigned, N2 is the 
number of common attributes whose value is the same for both entities and has not been assigned 
by default, and N3 is the number of common attributes with the same value where one of them has 
been assigned by default. The terms M1 and M2 correspond to the total number of attributes 
related to the concepts C1 and C2, respectively.  

If both concepts (C1, C2) are attributes, the formula to apply is defined as 

     
   

       

where N3 is the number of common values of both attributes, and N1, N2 is the total number of 
possible values which can have the attributes C1 and C2, respectively. 

Finally, if the concepts to be compared (C1, C2) represent domains, the similarity according to 
this dimension is calculated based on the amount of common attributes (for which those domains 
apply) and the number of values shared by both domains. 

     

   
       

  
   

       
 

 

where N3 is the number of common attributes shared by the domains (C1, C2), and N1, N2 are 
the total number of attributes associated with them. Finally, M3 is the number of common values 
defined in both domains, and M1, M2 are the total number of values of the two domains. 

Finally, the concepts to be compared (C1, C2) may be values belonging to a domain, either 
enumerated or of a numeric type. For operating domains, it is necessary to define previously a 
correspondence between them. Numeric domains can be related through a function (typically, a 
lineal proportion). Relating an enumerated domain to a numeric domain can be achieved by 
assigning to each enumerated value a fuzzy label in the numeric domain. Finally, the 
correspondence between two enumerated domains always involves an intermediate numeric 
domain (with a correspondence defined to each of the two other domains). Once the values are 
comparable, the formula to measure their similarity is defined as follows: 

        
       

           

where Cinf and Csup are, respectively, the lower limit and the upper limit within the range of 
values, and C1 and C2 are the correspondent numeric comparable values. 

4.2  Preliminary Experimentation 

Before testing the proposal, some preliminary experiments were performed to refine it and to 
obtain a first perspective on its validity. These experiments have been instructed on a set of 
similarity measures obtained from a total of 20 pairs of concepts evaluated by 17 human subjects. 
This dataset will be further described in Section 5.1. 
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Figure 7: Performance of isolated dimensions of the Ontology 

Figure 8: Cases in which each dimension is ranked first 
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the five ontological dimensions can contribute to the similarity function, supporting the 
hypothesis that an adequate combination of them may yield better results than any of these 
individual approaches. 

4.3 Weights Training Methods 

Assigning the proper weight to each dimension is crucial to achieving good results. Since a 
human test subject does not usually give the same relevance to the five dimensions of similarity, a 
basic training program regarding the weights associated with each dimension was developed. This 
program is based on the reinforcement learning technique (specifically a variant of the Q learning 
algorithm) and it has been implemented in order to determine, through several iterations, the 
appropriate value of the weights applied to each dimension (previously defined in Section 4.1) to 
minimize the error between the formula result and each human judgment. Therefore, the input to 
the training algorithm is the set of similarity judgments made by human test subjects. This 
algorithm follows the next steps: 

a) An initial step, where the five weights w1, w2, w3, w4 and w5 applied to each dimension
(see formula in Section 4.1) are initialized to 1.

b) For each iteration of the training algorithm, results for each dimension of similarity are
calculated according to the formulas described in the Sections 4.1.1 to 4.1.5.
Subsequently, the five new weights are calculated according to the next criteria:

1. if            
                

2. if            
                  

3. Failure to meet conditions 1) and 2),
                        

where parameter i is ranged from 1 to 5 (one for each dimension),       

represents each individual score and Y represents a similarity value from 0 to 10 for one 
pair of concepts scored by one of the participant.       stands for the increase of the 
weight (for the dimension i) at the current iteration, while      represents that increase at 
the previous iteration. The max(Simi) and min(Simi) represent the maximum and 
minimum similarity individual values, respectively. Finally,   stands for the learning rate. 

The training can be focused on different points of view, which will be tested and evaluated. 
Firstly, a pair-oriented training was implemented in order to individually adjust the weights for 
each of the 20 concept pairs, independently of the specific user. The weights are adjusted 
individually for each of the pairs of concepts, taking one user per iteration. In this way, after each 
iteration, a new array of refined weights is obtained and used for evaluating the similarity. The 
test consists of calculating the similarity (with that array of weights) and comparing it with the 
human assessment. 

Since the degree of significance assigned to each dimension may depend on the subjectivity of 
the testers, it was of particular interest to make an adjustment of the weights based on each user. 
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In this experiment, the training of the weights was performed once for each user and consisted of 
20 iterations (one for each pair of concepts). For an iteration of this training algorithm, absolute 
error committed in relation to the corresponding pair was calculated. After running the training 
for the 17 users, the average of the absolute errors for each of the iterations was calculated. 

The third method has been designed in order to address the shortcomings of the pair-oriented 
training. It should be indicated that storing an array of the weights for each possible pair of 
concepts in a medium sized ontology requires unusually extensive physical resources. Besides, a 
significant coverage of the thus defined knowledge would require far too much training. In short, 
it is not realistic to develop that method because of the high number of combinations of concepts. 
However, through preliminary experimentation it was checked that the weights applied to a pair 
were also likely to be applied to other combinations of each of those two concepts. Therefore, a 
new training method (feature-oriented) was proposed by slightly modifying the pair-oriented one. 
In the feature-oriented method, the array of weights is stored for each concept instead of for each 
pair of concepts (which solve both the problems of storage and the extent of training). Each time 
one concept is compared to any other, its array of weights will be reviewed and refined. The 
similarity calculation for a given pair is based on the aggregation of the arrays of both concepts. 

Finally, it was observed that each method showed a different behavior depending on the pair 
of concepts compared: the method achieving the worst results on average was also the best for 
some specific pairs. Subsequently, a hybrid method was proposed and has been developed, 
combining the feature-oriented and user-oriented trainings, aiming to profit the advantages of 
each method. The training will be similar to that focused on the user, but for each iteration the 
array of weights will be refined to a different degree, taking into account the array stored for each 
particular concept. Therefore, if a particular dimension is usually relevant for a concept, 
adaptation to the user in that dimension will be strengthened. 

5. Evaluation
Once the conceptual model of the ontology has been defined, and the weights training methods 
proposed, the next step in this study is to evaluate the proposal. The present section describes the 
experiments run for evaluating the proposal, from their design to the results obtained and 
discussion. The knowledge base is supported by the relational database management system 
Oracle 11g, and the logic of the ontology component (including the inference mechanisms) was 
implemented in Java. The knowledge bases were designed to satisfy specific purposes within a 
research project. The initial knowledge load was obtained from the large lexical database 
WordNet (Fellbaum, 1998) including all the existing concepts (synsets), terms and relationships 
(corresponding to sort and compositional dimensions). Since the proposed ontological model 
defines more relationships between concepts (essential, restrictive and descriptive), it is necessary 
to add more knowledge. The Cognos.Onto tool enables knowledge edition and management for 
this specific model. This tool belongs to a larger toolkit, Cognos (Calle et al., 2011) already used 
in several research projects. That toolkit seeks to ease the interaction corpus analysis, annotation, 
implementation and management, through diverse yet integrated tools aimed to each specific type 
of knowledge (pragmatic, NLP related, ontological etc.). 
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5.1  Experimental Design and Preparation 

First of all, it is necessary to choose an Interaction Domain which will define the entire 
experiment. The concepts involved will be a subset of the whole knowledge base, restricted to 
that specific domain. The participants will be chosen in order to constitute a good coverage of the 
focused domain. Finally, additional knowledge will be fed by experts in that interaction domain 
not related to the projects where this research is framed (as the test subjects and any other 
participant in the experiments). 

The methodology chosen to evaluate the proposed similarity measure is based on Miller’s 
benchmark (Miller & Charles, 1991). Experiments have been designed to determine whether the 
result attained through the application of the similarity function on a pair of concepts is reliable 
or, in other words, if the result falls within an acceptable range when compared with the similarity 
judgments made by human test subjects. 

To begin the experimental phase of the study, an initial loading of concepts must first be made 
in the proposed ontology. For this reason, WordNet’s synsets (Princeton Univ., 2011) were taken 
as concepts, together with the corresponding semiotics, sort and compositional relationships. 
Knowledge domain experts have been responsible for populating the remaining dimensions of the 
ontological model (i.e., the essential, restrictive and descriptive) in a subset of 350 concepts, 
selected because of their relevance in the interaction domain. 

The chosen domain is that labeled as “computer science teaching” interaction domain within 
the Spanish academic socio-cultural environment. This area of knowledge is familiar to the test 
subjects who have been selected as heterogeneous in this domain (different roles, ages, and 
genders). To perform the evaluation, a test was designed for which the test subject had to rate the 
similarity between pairs of concepts. The set of pairs had to meet a basic criterion: at least two 
pairs had to be included to explore each of the proposed dimensions, one with clear incidence in 
the dimension and another one without (or of little impact). 

A total number of twenty-one test subjects were available, from which four outliers were left 
apart. They were discarded after checking their judgment because their responses were not 
uniform with the rest of the sample. The participant scores follow a normal distribution after 
removing the outliers. For that reason, the sample size was calculated through a test of statistical 
significance and the result was at least ten subjects to ensure a 99% confidence. Therefore, a 
sample size of seventeen participants is sufficient to ensure that the data is representative.The 
seventeen subjects were all experts in the interaction domain (technical education), specifically 
five technical students, seven researchers and five lecturers. Their ages ranged from 20 to 50 and 
were distributed as follows: seven subjects were in the 20-30 year-old range, six in the 30-40 
year-old range and the remaining four were in the 40-50 year-old range. With regard to gender, 
slightly more than half of them were female (9) and the rest were male (8). The chosen interaction 
domain was the applied on the research project THUBAN (TIN2008-02711). Each participant 
was provided with a test containing a set of twenty pairs of concepts from this domain. Since the 
observations follow a normal distribution, it was determined that the minimum significant sample 
size would be sixteen with 99% confidence. Therefore, a set of twenty pairs of concepts provides 
significant results. However, in a larger domain, the size of the dataset may be different to attain 
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statistically significant results. In coherence with some other components of the system where this 
proposal was to be integrated, the similarity measures are ranged from zero (no similarity) to ten 
(absolutely identical, the same concept). In addition, for each of the pairs, the subjects were asked 
to justify their score, indicating the specific parameters of similarity that they took into account in 
making their decision.After obtaining the individual survey results, the average total of the human 
assessments for each pair of concepts was calculated.Table 1 shows the 20 pairs of concepts 
included in the test and to the right of each pair, the range (difference between maximum and 
minimum scores), the standard deviation and the average rating assigned by the users. 

Pair ID Pair of concepts Range Standard 
deviation 

Average 
similarity 

0 Reading lamp – Personal computer 6 1.76 2.71 
1 Laptop – Server computer 6 1.62 6.47 
2 Teacher – Tutorial 7 1.92 5.06 
3 Meeting room – Laboratory 8 2.15 4.35 
4 Server computer– Microwave 8 2.02 2.24 
5 Office – Laboratory 9 2.25 5.76 
6 Screen – Blackboard 7 1.83 6.12 
7 Stapler – Folder 7 2.19 3.94 
8 Plug– Power strip 4 1.21 8.29 
9 Office – Meeting room  6 1.69 6.29 
10 Pencil – CD marker 3 0.99 7.29 
11 Associate professor – Teaching Assistant 5 1.34 8.06 
12 Associate professor – Bachelor 8 2.53 5.18 
13 To write papers – To program 7 2.15 4.53 
14 To give a lecture – To teach 6 1.60 7.76 
15 Keyboard – Mouse 5 1.41 7.35 
16 Fridge – Microwave 7 1.77 5.35 
17 Hard disk drive – Pendrive 3 0.94 8.47 
18 Scanner – Printer 8 1.89 5.94 
19 Poster – Blackboard 6 1.82 4.24 

Table 1: Pairs of concepts and average similarity 

All the methods are subject to the iteration order (either analyzed pair or human judge), which 
can alter the result of the training. In order to avoid this effect and to endow significance to the 
results, through preliminary experiments the minimum number of repetitions (with different 
order) was determined to reduce stochastic and gain significance (close to 275), and consequently 
it was decided to program 300 repetitions with a different order for each method. In the graphs 
and tables, error rates of pairs (identified by pair_id) are numbered from 0 to 19, while iterations 
are numbered from 1 to 20. 

5.2  The Experiments 

This section presents the results obtained after the execution of the experiments corresponding to 
the four weight adjustment algorithms described in Section 4.3. These experiments were 
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performed on a subset of the ontological knowledge stored acquired from the computer science 
teaching domain. The first experiment performed was the pair-oriented training and, in order to 
evaluate the results of this training, the average of the absolute error was calculated (for each pair) 
between the similarity based on each human judgment and the result obtained by applying the 
similarity measure proposed according to the following formula: 

                          
                 

 
   

 

where i corresponds to an index to iterate over each human judge for a specific pair of 
concepts and n is the number of test subjects. Finally, errorpairId represents the absolute error 
between the human judgment for that pair and the result obtained through the training algorithm 
in that iteration. Table 2 shows the absolute errors calculated in this experiment for each pair of 
concepts, as well as the average error which, at about 18.5% comes slightly closer to the scores 
provided by the human subjects. 

Pair Id 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 AVG 

error (%) 15.2 14.8 38.3 18.6 19.4 18.1 17.6 18.8 20.2 15.4 13.4 18.0 22.5 19.6 15.2 13.0 15.3 20.9 17.1 19.0 18.5 

Table 2: Pair-oriented training error rate 

It should be noted that in eleven cases, the error rate is less than the average, in eight cases the 
error rate is around the average, and one pair (#2) shows an excessive error rate that requires 
further analysis and discussion (see subsection 5.3). Figure 9 shows a comparison of the trend 
lines regarding the error rate accumulated by the pair-oriented training algorithm and the 
accumulated error by the similarity function without weights training. 

Figure 9: Accumulated average error in pair-oriented training 

In second place, the absolute error obtained for each pair in the feature-oriented training is 
shown in Table 3. These results, compared with those obtained for the pair-oriented training, 
show slightly worse performance (with a mean error rate of 20,2%). However, it should be 
recalled that this method has other advantages (realistic storage and training extent). 
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Pair Id 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 AVG 

error (%) 15.0 14.9 38.2 18.4 30.3 22.7 17.5 18.5 20.1 21.6 13.4 24.9 21.2 19.2 15.2 13.0 14.4 20.6 16.8 25.4 20.2 

Table 3: Feature-oriented training error rate 

The third experiment executed was the user-oriented training. In order to evaluate the results 
of this experiment, the average of the absolute error was calculated (for each human judge) 
between the similarity based on each human judgment for the 20 pairs of concepts and the result 
obtained applying the similarity measure proposed. In this way, the error average has been 
calculated as follows: 

                           
                 

 
   

 
where i corresponds to an index to iterate over each pair of concepts for a specific user, n is 

the number of pairs of concepts and errorpairId represents the absolute error between the human 
judgment for that pair and the result of the training algorithm in that iteration. 

In this case, the average error rate achieved is 23.9%, even worse than that for the feature-
oriented training. The absolute error rate obtained for each iteration is shown in Table 4. 

Pair Id 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 AVG 

error (%) 18.6 14.1 40.7 17.9 30.8 16.8 22.9 17.5 37.1 17.1 34.6 35.8 24.3 21.5 31.2 13.6 13.9 27.4 22.3 20.8 23.9 

Table 4: User-oriented training error rate 

Figure 10 shows a comparison of the trend lines correspondent to the error rate accumulated 
by the user-oriented training algorithm and the accumulated error without any weight training. As 
can be observed, the user-oriented training trend line follows a downward curve and after 20 
iterations reaches an error rate of 23.9%. Comparing both trend lines, it can be concluded that this 
training decreases the accumulated error and adapts the calculated similarities to the subject’s 
judgments, yet it would be desirable to improve that adaptation (since it is still far from feature-
oriented training). 

Figure 10: Accumulated average error in user-oriented training 

18



As observed, both the user-oriented and the feature-oriented training methods are able to 
improve the similarities calculation, becoming noteworthy approaches. Consequently, it has been 
found of interest to explore a method which combines both of them. This new hybrid method 
departs from the user-oriented approach, and takes into account the weights vector obtained from 
the feature-oriented training described in section 4.3. As shown in Table 5, the user error rate has 
been successfully reduced to 21.2% with respect to the user-oriented training. However, this 
method degrades the performance achieved by the feature alone method. 

Pair Id 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 AVG 

error (%) 16.0 14.3 39.0 16.9 29.4 17.3 22.2 17.4 25.1 18.5 21.5 29.6 22.0 19.9 22.8 13.2 13.1 23.8 19.2 22.8 21.2 

Table 5: User-feature hybrid training error rate 

5.3  Discussion of Results Obtained 

Among the results, concept pair 2 (teacher-tutorial) scored an error rate above 38% and the 
average similarity assigned by users (see Table 1) was 5.06. This latter value is significantly high 
considering the fact that the first concept refers to a person and the second is a static entity. 
Reviewing participant responses to this question, however, it can be understood that test subjects 
gave a higher score to the sole feature the concepts have in common, the activity of teaching. 
Analyzing the results of this outlier, it appears that the algorithm has a tendency to gradually 
increase the weight of the restrictive dimension, but longer training will be necessary to adapt the 
weight vector so that the only relevant dimension is the restrictive one. Using a training algorithm 
with faster convergence would ensure a good result in this pair, but could adversely affect the 
other results. However, convergence is guaranteed with a larger number of users. 

Figure 11 shows the comparison of the absolute error obtained in the four experiments 
performed in this work (pair-oriented, user-oriented, feature-oriented and hybrid trainings) for 
each pair, and also the average results of each method. The first experiment performed, the pair-
oriented training, achieves the best average error rate, about 18.5%, although in the pair 
mentioned above the error exceeded 38%. However, this experiment has a major limitation: a 
trained weight vector for each pair of concepts possible cannot be stored due to the large number 
of combinations of existing concepts in the ontology. This shortcoming was mitigated with the 
development of the feature-oriented training, achieving an error rate about 20.2%, a figure which 
is slightly worse than that of the pair-oriented training error. Nevertheless, this result does not 
fully reflect the impact of this training because not all test pairs include concepts that appear more 
than once in the experiment. If the calculation of the average error is restricted to those pairs 
which have concepts repeated in more than one pair, then the error amounts to 22.8%. In any 
case, this experiment has an important advantage since its implementation is more realistic and 
can be applied to large ontologies.  

The user-oriented training was aimed at adapting the weights to each subject in order to 
confirm the assumption that not every test subject assigns the same value to all dimensions. 
Although the error rate achieved (23.9%) was not as satisfactory as either the pair or the feature-
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oriented trainings, the figure included in the sub-section 5.2 for the training shows a decreasing 
trend line which, when compared with the trend line without training, allows for the conclusion 
that the user-oriented experiment is able to adapt to each individual judgment. For this reason, an 
improvement was attempted with the user-training result through its combination with the 
feature-oriented experiment. 

Figure 11: Comparison of the experiment results 

The hybrid training detailed in Section 5.2 achieved 21.2% in the error rate, which reduces 
that of the user-oriented training, and balances the performance of the user-oriented method 
(reduces standard deviation). Taking into account that feature-oriented training method depends 
on the experience and that for some features the knowledge base might lack of this experience, 
the response obtained could not be satisfactory in some cases. In fact, when calculating the error 
produced by the feature-oriented method over the dataset (not restricted to repeated pairs) the 
result amounted to 22.8%. In sum, the feature-oriented method provides better results but only if 
enough knowledge is available. The last results presented in Figure 11 concern an experiment 
observing only the sort dimension (which is a frequent method for calculating similarities). Its 
average error rate is 24.1%, which is higher than that for any of the four methods discussed. In 
addition, it can be observed that the error rate of this experiment is, in several cases, far from the 
average error. Figure 12 shows a boxplot comparing the performance of the four training methods 
proposed and the sort dimension formula. 
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Figure 12: Performance of each training method 

 

Figure 13: Average weights of the ontological dimensions 
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6. Conclusions and Perspective for Future Research
This paper defines a similarity measure for a multi-dimensional knowledge model of the ontology 
type, specifically an ontology aimed at supporting Human-Like Interaction. The proposed 
measure is based on five dimensions of ontological knowledge: sort, compositional, essential, 
restrictive and descriptive. The five of them are weighted and aggregated in order to obtain a 
global similarity measure. The equations applied for each dimension are general and can be used 
with other ontologies that observe any of these dimensions, yet observing all of them and 
aggregating their similarity result is here proposed for enhanced accuracy. 

This solution presents another challenge, in the form of those weights calculation. In fact, 
when a person decides the similarity between concepts he unwittingly makes some dimensions 
prevail over the others. The criteria may be diverse, and this work has focused on studying the 
dependence of these weights on the nature of concepts, either in pairs (pair training method) or 
individually (feature training method), both described in Section 4.3. But this work also explores 
the influence of the past behavior of users who perform the concept pair evaluations (and 
ultimately, the user who owns a device or usually interacts with it). Following this line, a user-
dependent training is proposed, and finally a hybrid one (merging feature and user benefits) is 
included too. All of them have been evaluated and compared in order to ascertain which one 
performs better, obtaining the best results for the pair-oriented training. 

In order to evaluate the performance of the proposed similarity measure, its results were 
recorded and compared with those taken from human test subjects. This evaluation technique has 
been applied in several studies about similarity measures and is considered the gold standard. In 
the experimental phase, four training algorithms were developed according to different 
perspectives. Thus, this phase included a pair-oriented, a feature-oriented, a user-oriented and a 
hybrid experiment. In every case, the error rate was calculated with respect to the human subject 
assessments. The best results corresponded to the pair-oriented method which achieved an error 
rate of 18.5%. Since the implementation of this experiment is not realistic with large ontologies, a 
feature-oriented experiment was required despite slightly worsening the results from the previous 
experiment, concretely, producing an error rate of 20.2%. However, the feature-oriented 
experiment has the big advantage of being able to be applied easily to large ontologies. 

Moreover, the user-oriented training aimed to adapt the weights to each subject in order to 
confirm the assumption that not every test subject assigns the same value to all dimensions. While 
this experiment had the highest error rate of all the algorithms (23.9%), as has been demonstrated, 
the error rate follows a decreasing trend line while, if training is not done, the error rate follows 
an asymptotic tendency. In addition to this, this experiment shows slightly better results than 
taking into account only the sort dimension (which has an average error rate of 24.1% and 
maximum 60.4%). For this reason, it can be concluded that the user-oriented experiment is able to 
adapt to each individual judgment (although this adaptation is very slow). Finally, the hybrid 
experiment combines the feature-oriented and the user-oriented training and, with an error rate of 
21.2%, nevertheless manages to reduce the error of the user-oriented training, as well as 
balancing the error in the atypical cases common to the rest of the experiments. 
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Since the hybrid experiment manages to balance the results of the other experiments, 
currently, an improved hybrid algorithm is being developed. In this algorithm the calculation of 
the weights of each iteration will be affected depending on the error produced in the feature 
experiment for the pair of concepts corresponding to that iteration. 

The performance of the training methods proposed is closely related to the available extent of 
knowledge. For this reason, authors are also currently working on mechanisms for increasing the 
quality and completeness of the ontological knowledge. The manual acquisition of new 
knowledge by an expert requires a great deal of resources and it would be desirable to develop an 
advanced mechanism to learn new concepts and relations. The challenge is to attain that 
knowledge acquisition through human-like interaction with human subjects. Therefore, through 
the lifetime of the system, the knowledge bases would be enriched by interacting with the users. 

Finally, refinement of similarities formulation is also an interesting line of work, especially in 
the semiotic dimension for reintroducing its influence in the global similarity calculation. 
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