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Cluster Identification Using Projections 
Daniel PEÑA and Francisco J. PRIETO 

This artiele describes a procedure to identify elusters in multivariate data using information obtained from the univariate proj~ctions 
of the sample data onto certain directions. The directions are chosen as those that minimize and maXlmlze the kurtOSlS coefficlent of 
the projected data. It is shown that, under certain conditions, these directions provide the largest separatlOn for the dlfferent clusters. 
The projected univariate data are used to group the observations according to the values of the gaps or spacmgs between consecutIve­
ordered observations. These groupings are then combined over all projection directions. The behavlOr of the method lS tested on ~everal 
examples, and compared to k-means, MCLUST, and the procedure proposed by Jones and Sibson in 1987. The proposed algonthm lS 
iterative, affine equivariant, flexible, robust to outliers, fast to implement, and seems to work well m practIce. 

KEY WORDS: Classification; Kurtosis; Multivariate analysis; Robustness; Spacings. 

1 . INTRODUCTION 

Let us suppose we have a sample of multivariate observa­
tions generated from several different populations. One of the 
most important problems of cluster analysis is the partitioning 
of the points of this sample into nonoverlapping clusters. The 
most commonly used algorithms as sume that the number of 
clusters, G, is known and the partition of the data is carried out 
by maximizing some optimality criterion. These algorithms 
start with an initial classification of the points into clusters and 
then reassign each point in tum to increase the criterion. The 
process is repeated until a local optimum of the criterion is 
reached. The most often used criteria can be derived from the 
application of likelihood ratio tests to mixtures of multivari­
ate normal populations with different means. It is well known 
that (i) when all the covariance matrices are assumed to be 
egual to the identity matrix, the criterio n obtained corresponds 
to minimizing tr(W), where W is the within-groups covari­
ance matrix, this is the criterion used in the standard k-means 
procedure; (ii) when the covariance matrices are assumed to 
be egual, without other restrictions, the criterion obtained is 
minimizing ¡W¡ (Friedman and Rubin 1967); (iii) when the 
covariance matrices are allowed to be different, the criterion 
obtained is minimizing Lf= 1 n j log I W j / n J where W j is the 
sample cross-product matrix for the jth cluster (see Seber 
1984, and Gordon 1994, for other criteria). These algorithms 
may present two main limitations: (i) we have to choose the 
criterion a priori, without knowing the covariance structure 
of the data and different criteria can lead to very different 
answers; and (ii) they usually reguire large amounts of com­
puter time, which makes them difficult to apply to large data 
sets. 

Banfield and Raftery (1993), and Dasgupta and Raftery 
(1998) have proposed a model-based approach to clustering 
that has several advantages over previous procedures. They 
as sume a mixture model and use the EM algorithm to estimate 
the parameters. The initial estimation is made by hierarchical 
agglomeration. They make use of the spectral decomposition 
of the covariance matrices of the G populations to allow some 
groups to share characteristics in their covariance matrices 

Daniel Peña (E-mail: dpena@est-econ.uc3m.es) is Professor and Fran­
cisco J. Prieto (E-mail:jJp@est-econ.uc3m.es) is Associate Professor in Dept. 
Estadística y Econometrica, Univ. Carlos III de Madrid, Spain. We thank the 
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(orientation, size, and shape). The number of groups is cho­
sen by the BIC criterion. However, the procedure has several 
limitations. First, the initial values have all the limitations of 
agglomerative hierarchical clustering methods (see Bensmail 
and Celeux 1997). Second, the shape matrix has to be speci­
fied by the user. Third, the method for choosing the number 
of groups relies on regularity conditions that do not hold for 
finite mixture models. 

More flexibility is possible by approaching the problem 
from the Bayesian point of view using normal mixtures 
(Binder 1978) and estimating the parameters by Markov Chain 
Monte CarIo methods (see Lavine and West 1992). These pro­
cedures are very promising, but they are subject to the label 
switching problem (see Stephens 2000 and Celeux, Hum, and 
Robert 2000 for recent analysis of this problem) and more 
research is needed to avoid the convergence problems owing 
to masking (see Justel and Peña 1996) and to develop better 
algorithms to reduce the computational time. The normality 
assumption can be avoided by using nonparametric methods 
to estimate the joint density of the observations and identi­
fying the high density regions to split this joint distribution. 
Although this idea is natural and attractive, nonparametric 
density estimation suffers from the curse of dimensionality 
and the available procedures depend on a number of param­
eters that have to be chosen a priori without clear guidance. 
Other authors (see Hardy 1996) have proposed a hypervolume 
criterion obtained by assuming that the points are a realization 
of a homogeneous Poisson process in a set that is the union of 
G disjoint and convex sets. The procedure is implemented in 
a dynamic programming setting and is again computationally 
very demanding. 

An altemative approach to cluster analysis is projection 
pursuit (Friedman and Tukey 1974). In this approach, low­
dimensional projections of the multivariate data are used to 
provide the most interesting views of the full-dimensional 
data. Huber (1985) emphasized that interesting projections 
are those that produce nonnormal distributions (or minimum 
entropy) and, therefore, any test statistic for testing nonnor­
mality could be used as a projection indexo In particular, he 
suggested that the standardized absolute cumulants can be use­
fuI for cluster detection. This approach was followed by Jones 
and Sibson (1987) who proposed to search for clusters by 
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2

maximizing the projection index 

where Kj( d) is the jth cumulant of the projected data in the 
direction d. These authors assumed that the data had first 
been centered, scaled, and sphered so that KI (d) = O and 
K 2 (d) = 1. Friedman (1987) indicated that the use of stan­
dardized cumulants is not use fuI for finding clusters because 
they heavily emphasize departure from normality in the tails 
of the distribution. As the use of univariate projections based 
on this projection index has not been completely successful, 
Jones and Sibson (I987) proposed two-dimensional projec­
tions, see also Posse (1995). Nason (1995) has investigated 
three-dimensional projections, see also Cook, Buja, Cabrera, 
and HurIey (1995). 

In this article, we propose a one-dimensional projection pur­
suit algorithm based on directions obtained by both maximiz­
ing and minimizing the kurtosis coefficient of the projected 
data. We show that minimizing the kurtosis coefficient implies 
maximizing the bimodality of the projections, whereas max­
imizing the kurtosis coefficient implies detecting groups of 
outliers in the projections. Searching for bimodality will lead 
to breaking the sample into two large clusters that will be fur­
ther analyzed. Searching for groups of outliers with respect 
to a central distribution will lead to the identification of clus­
ters that are clearIy separated from the rest along sorne spe­
cific projections. In this article it is shown that through this 
way we obtain a clustering algorithm that avoids the curse of 
dimensionality, is iterative, affine equivariant, flexible, fast to 
implement, and seems to work well in practice. 

The rest of this article is organized as follows. In Section 2, 
we present the theoretical foundations of the method, dis­
cuss criteria to find clusters by looking at projections, and 
prove that if we have a mixture of elliptical distributions the 
extremes of the kurtosis coefficient provide directions that 
belong to the set of admissible linear rules. In the particular 
case of a mixture of two multivariate normal distributions, the 
direction obtained include the Fisher linear discriminant func­
tion. In Section 3, a cluster algorithm based on these ideas 
is presented. Section 4 presents sorne examples and compu­
tational results, and a Monte CarIo experiment to compare 
the proposed algorithm with k-means, the Mclust algorithm 
of Fraley and Raftery (1999) and the procedure proposed by 
Jones and Sibson (1987). 

2. CRITERIA FOR PROJECTIONS 

We are interested in finding a cluster procedure that can 
be applied for exploratory analysis in large data sets. This 
implies that the criteria must be easy to compute, even if the 
dimension of the multivariate data, p, and the sample size, n, 
are large. Suppose that we initially have a set of data S = 

(XI' ... , X
I1
). We want to apply an iterative procedure where 

the data are projected onto sorne directions and a unidimen­
sional search for clusters is carried out along these directions. 
That is, we first choose a direction, project the sample onto 
this direction, and we analyze if the projected points can be 
split into clusters along this first direction. Assuming that the 
set S is split into k nonoverIapping sets S = SI U S2 U· .. U Sk' 

where Si n Sj = 0 Vi, j, the sample data is projected over a 
second direction and we check if each cluster Si' i = 1, ... , k, 
can be further split. The procedure is repeated until the data 
is finally split into m sets. Formal testing procedures can then 
be used to check if two groups can be combined into one. For 
instance, in the normal case we check if the two groups have 
the same mean and covariance matrices. In this article, we 
are mainly interested in finding interesting directions useful to 
identify clusters. 

An interesting direction is one where the projected points 
cluster around different means and these means are well sep­
arated with respect to the mean variability of the distribu­
tion of the points around their means. In this case we have 
a bimodal distribution, and therefore a useful criterion is to 
search for directions which maximize the bimodality prop­
erty of the projections. This point was suggested by Switzer 
(1985). For instance, a univariate sample of zero-mean vari­
ables (XI' ... , x,J wilI have maximum bimodality if it is com­
posed of n/2 points equal to -a and n/2 points equal to a, for 
any value a. It is straightforward to show that this is the con­
dition required to minimize the kurtosis coefficient, as in this 
case it will take a value of one. Now as sume that the sample 
of size n is concentrated around two values but with differ­
ent probabilities, for instance, nI observations take the value 
-a and n2 take the value a, with n = nI +n2. Let r = n l /n 2, 

the kurtosis coefficient will be (1 + r3 )/r(1 + r). This func­
tion has its minimum value at r = 1 and grows without limit 
either when r --+ O or when r --+ oo. This result suggests that 
searching for directions where the kurtosis coefficient is min­
imized wilI tend to produce projections in which the sample 
is split into two bimodal distributions of about the same size. 
Note that the kurtosis coefficient is affine invariant and veri­
fies the condition set by Huber (1985) for a good projection 
index for finding clusters. On the other hand, maximizing the 
kurtosis coefficient will produce projections in which the data 
is split among groups of very different size: we have a cen­
tral distribution with heavy tails owing to the small clusters 
of outliers. For instance, Peña and Prieto (2001) have shown 
that maximizing the kurtosis coefficient of the projections is a 
powerful method for searching for outliers and building robust 
estimators for covariance matrices. This intuitive explanation 
is in agreement with the dual properties of the kurtosis coef­
ficient for measuring bimodality and concentration around the 
mean, see Balanda and MacGillivray (1988). 

To formalize this intuition, we need to introduce sorne def­
initions. We say that two random variables on IR!', (XI' Xc), 
with distribution functions FI and F2 , can be linearIy sep­
arated with power 1 - B if we can find a partition of the 
space into two convex regions, Al and A 2 , such that P(X I E 

Al) 2: 1 - B, and P(X2 E A 2) 2: 1 - B. This is equivalent to 
saying that we can find a unit vector d E !R;P, di d = 1, and 
a scalar e = c(FI' F2) such that P(X; d ::: e) 2: l - B and 
P(X; d 2: e) 2: 1 - B. For example, given a hyperplane sepa­
rating Al and A 2 , one such vector d would be the unit vector 
orthogonal to this separating hyperplane. From the preceding 
definition it is clear that (trivially) any two distributions can 
be linearly separated with power O. 

Now as sume that the observed multivariate data, S = 

(XI' ... , XI!) where X E !R;P, have been generated from a mix­
ture defined by a set of distribution functions F = (F I , ••• , Fk ) 



       

          
           
               

          
          

                
                

 
            

 
         

             
         

              
          

         
                  

          

       
         

          
          

          
           

        
           

         
             

                
          

  

          
 

              
      

            
               

             
         

   

 

          
          

        
          

        
          

     

 

         

 

           
        

       
        

         
         

        
        

              
            
               

             
          

           
           

      

       

      

    

           

   

    

            

            
         

   

            
              

          
         

         

            

  

3

with finite means, /L¡ = E(X¡X '" F;) and covariance matri­
ces V¡ = Var(X¡X '" F;), and mixture probabilities a = 
(a¡, ... , a k ), where a¡ :::: O and L~=¡ a¡ = 1. Generalizing the 
previous definition, we say that a distribution function F¡ can 
be linearly separated with power 1 - s¡ from the other com­
ponents of a mixture (F, a) if given s¡ > O we can find a unit 
vector d¡ E [RP, d;d¡ = 1, and a scalar c¡ = g;(F, a, s;) such 
that 

P(X' d¡ ::: c¡¡X '" F;) :::: 1 - s¡ 

and 
P(X' d¡ :::: c¡¡X '" F(¡») :::: 1 - Si' 

where FU) = Lji-¡ ajFj/a¡. Defining s = max¡ Si' we say that 
the set is linearly separable with power 1 - s. 

For instance, suppose that F¡ is Np(/L¡, Vi)' i = 1, ... , k. 
Then, if <1> denotes the distribution function of the standard 
normal, the distributions can be linearly separated at level 
.05 if for i = 1, ... , k, we can find c¡ such that 1 - <1>( (c¡ -
m;)u¡-¡) ::: .05 and L~#¡ <I>«cj - m)uj-¡)a¡a¡¡ ::: .05, where 
mj = dj/Lj and uJ = djVjdj. 

Consider the projections of the observed data onto a direc­
tion d. This direction will be interesting if the projected obser­
vations show the presence of at least two clusters, indicating 
that the data comes from two or more distributions. Thus, 
on this direction, the data shall look as a sample of uni­
variate data from a mixture of unimodal distributions. Con­
sider the scalar random variable z = X' d, with distribution 
function (1-a)G¡ +aG2 having finite moments. Let us call 
m¡ = 1 zdG¡ = d'/L¡ and m;(k) = 1(z - mYdG¡, and in par­
ticular m¡(2) = d'V¡ d for i = 1,2. It is easy to see that these 
two distributions can be linearly separated with high power if 
the ratio 

w = ( 1 1)2 mf (2) + mi (2) 
(1) 

is large. To prove this result we let c¡ = m¡ + m:/2(2)/,JS and 
from Chebychev inequality we have that 

In the same way, taking C2 = m2 - m;/\2)/,JS we have that 
P(z :::: c2¡z '" G2) :::: 1 - s. The condition c¡ = C2 then implies 
w = S-2 and the power will be large if w is large. 

In particular, if (1) is maxirnized, the corresponding extreme 
directions would satisfy 

(2) 

To compute these directions we would need to make use 
of the parameters of the two distributions, that are, in gen­
eral, unknown. We are interested in deriving equivalent crite­
ria that provide directions that can be computed without any 
knowledge of the individual distributions. We consider criteria 
defined by a measure of the distance between the two pro­
jected distributions of the form 

For this criterion we would have the extreme direction 

(3) 

that, as shown in Anderson and Bahadur (1962), has the form 
required for any adrnissible linear classification rule for multi­
variate normal populations with different covariance matrices. 
The following result indicates that, under certain conditions, 
the directions with extreme kurtosis coefficient would fit the 
preceding rule, for specific values of A¡ and A2• 

Thearem l. Consider a p-dimensional random variable X 
distributed as (1-a)!¡(X)+a!2(X), with a E (0,1). We 
as sume that X has finite moments up to order 4 for any a, 
and we denote by /L¡, V¡ the vector of means and the covari­
ance matrix under Ji' i = 1,2. Let d be a unit vector on [RP 

and let z = d'X, m¡ = d'/L¡. The directions that maximize or 
minimize the kurtosis coefficient of z are of the form 

where V m = A¡V¡ +A2V2 , A¡ are scalars, <p¡ =4 1IRp(z-mYx 
(X - /L;)!¡(X) dX and 'T¡ = 3 11RP(z - my(X - /L;)!¡(X) dX. 

Proaf If we introduce the notation 

u~ = (1 - a)m¡ (2) + am2(2), 

ij~ = ami (2) + (1- a)m2(2), 

r2 = a2 /u~, 

the kurtosis coefficient for the projected data can be written as 

'Yz(d) = «(1-a)m¡(4)+ am2(4)+a(1-a) 

x a(4m2(3) -4m¡(3) +6aij~ 

+ a3( a 3 + (1 - a )3)))/( u~ + a(1 - a)a2)2, (4) 

where m;(k) = Ef; (z - my. The details of the derivation are 
given in Appendix A. Any solution of the problem 

s.t. d'd= 1 

must satisfy V'Yz( d) = O, where V'Yz ( d) is thegradient of 
'Yz( d) and d' d = 1. We have used that 'Yz is h~mogeneous 
in d to simplify the first-order condition. The same condition 
is necessary for a solution of the corresponding rninimization 
problem. From (4), this condition can be written as 

(A¡ V¡ + A2 V2) d = A3(/L2 - /L¡) + A4 «1 - a)<p¡ 

+a<P2)+As('T2-'T¡), (5) 



 

          

      

       

      

       

 

   

 

      

 

          
          

         

             
          

            
         

            
          

             
          

         
         

    
        

         
           

        
            

             
      

        
             

            
                

        
      

 

         
            

            
           

 

     

             
           

        

     

       

          
             

         

 

      
    

   

  
     

   

 
    

 

               
           

      
         

  

            
      

             
    

  

  

 

          
         

  

  

    

         

      

       

         
          
         

  

       
             
            

             
            

     

           
        

          
 

4

where the scalars Ai , dependent on d, are given by 

A¡ = (1- a)(yz + ar2«(I- ahz - 3a)), 

A2 = a(yz + (1- a)r2(ayz - 3(1 - a))), 

A3 = a(l- a)um ( (m 2 (3) - m¡ (3))/u! 

+ r(3(r~/u~ - yz) + r3(a3 + (1- a)3 

-a(l-a)yJ), 

A4 = 1/(4u~), 

A5=a(l-a)r/um · 

See Appendix A for its derivation. 

(6) 

To gain sorne additional insight on the behavior of the kur­
tosis coefficient, consider the expression given in (4). If ¿l 

grows without bound (and the moments remain bounded), then 

In the limit, if a = .5, then the kurtosis coefficient of the 
observed data will be equal to one, the minimum possible 
value. On the other hand, if a -+ O, then the kurtosis coeffi­
cient will increase without bound. Thus, when the data pro­
jected onto a given direction is split into two groups of very 
different size, we expect that the kurtosis coefficient will be 
large. On the other hand, if the groups are of similar size, then 
the kurtosis coefficient will be smal!. Therefore, it would seem 
reasonable to look for interesting directions among those with 
maximum and minimum kurtosis coefficient, and not just the 
maximizers of the coefficient. 

From the discussion in the preceding paragraphs, a direc­
tion satisfying (5), although closely related to the acceptable 
directions defined by (3), is not equivalent to them. To ensure 
that a direction maximizing or minimizing the kurtosis coeffi­
cient is acceptable, we would need that both epi and Ti should 
be proportional to Vi d. Next we show that this will be true 
for a mixture of elliptical distributions. 

Corollary 1. Consider a p-dimensional random variable X 
distributed as (1- a)f¡ (X) + af2(X), with a E (O, 1) and fi' 
i = 1, 2, is an elliptical distribution with mean JLi and covari­
ance matrix Vi' Let d be a unit vector on [R;P and z = d'X. The 
directions that maximize or minimize the kurtosis coefficient 
of z are of the form 

(7) 

Proo! From Theorem 1, these directions will satisfy (5). 
The values of epi and Ti are the gradients of the central 
moments mi(k) for k = 3,4. We first show that these values 
can be obtained (in the continuous case) from integrals of the 
form 

J ... J( d'y)kYf(Y) dY, 

for k = 2, 3, where Y is a vector random variable with zero­
mean in [R;p. If the characteristic function of the vector random 

variable Y is denoted by 

cp(t) = J ... J exp(it'Y)f(Y) dY, 

for t E IR P , the characteristic function of its univariate projec­
tions onto the direction d will be given by cp(td), where tE [R; 

and dE [R;p. It is straightforward to show that 

_ élJt(t, d) I 
T - 3 '2d 2 ' 

1 t 1=0 

where 
1 

'I'(t, d) = -:- V'cp(td), 
lt 

and V' cp( t d) is the gradient of cp with respect to its argumento 
The characteristic function of a member Y of the family of 
elliptical symmetric distributions with zero-mean and covari­
ance matrix V is (see for instance Muirhead, 1982) 

cp(t) =g(-kt'Vt). 

Letting Yi = Xi - JLi and Zi = d'Yi , the univariate random 
variables Zi would have characteristic functions 

It is easy to verify that 'I'(td) = g'(u)itV d, where u = 
-kt2 d'V d, and 

m i (3) =0, 

Ti=O, 

From (5) it follows that the direction that maximizes (or 
minimizes) the kurtosis coefficient has the form indicated in 
(7), where 

A¡ =A¡-3(I-a)g;'(0)m¡(2)/u~, 

A2 = A2 - 3ag~(0)m2(2)/u~, 

- (( -2 2 ) A3 = a(l- a)rum 3um /um - yz 

+ r2(a3 + (1 - a)3 - a(l- a)yJ), 

and A¡, A2 are given in (6). 

If the distributions are multivariate normal with the same 
covariance matrix, then we can be more precise in our char­
acterization of the directions that maximize (or minimize) the 
kurtosis coefficient. 

Corollary 2. Consider a p-dimensional random variable 
X distributed as (1- a)f¡ (X) + af2(X), with a E (O, 1) and 
fi' i = 1,2 is a normal distribution with mean JLi and covari­
ance matrix Vi = V, the same for both distributions. Let d be 
a unit vector on [R;P and Z = d'X. If d satisfies 

(8) 

for sorne scalar A, then it maximizes or minimizes the kurtosis 
coefficient of z. Furthermore, these directions minimize the 
kurtosis coefficient if [a - 1/21 < 1/.JT2, and maximize it 
otherwise. 



       

        
                 

               
    

 

       

      

         

         

   
  

  

       

        
   

         

 

         
           

             
           

             
                  

         

            

         

         
         

              
          

        
            

       
         
            

          
        

        
          

        
          

       

 

     

         
          

       
           

         
            

         
        
        

         
          

 
           

           
         

          
          

          
           

           
          

         
         

        
           

     

       

            
            

         
          

   
     

  

         
      

          

 

         
    

         
             

          
        

   

             
    

            
          

        

5

Proa! The normal mixture under consideration is a partic­
ular case of Corollary l. In this case g;( x) = exp( x), g;' (O) = 1, 
mI (2) = m2 (2) = u~ = a~ and as a consequence (7) holds 
with the following expression 

(9) 

where the values of the parameters are 

Al = (rz - 3)(1 + a(l- a)r2
) 

A2 = ra(1- a)um(3 - r z + r2 (a3 + (1- a? - a(1- a)rz))· 

AIso, from (4), for this case we have that 

4 a(l-a)(1-6a+6a2
) (10) 

r=3+r . 
z (1+a(1-a)r2)2 

Replacing this value in Al we obtain 

- 4 a (1 - a) (1 - 6a + 6a2
) 

Al =r 
1+a(1-a)r2 

A2 = ra(l - a)um(3 - r z + r2(a3 + (1- a)3 

-a(l-a)rz))· 

From (9), a direction that maXlmlzes or mlmmlzes the 
kurtosis coefficient must satisfy that either (i) Al =1 O and 
d = AV- I (JL2 - JLI) for A = A2/A I, and we obtain the Fisher 
linear discriminant function, or (ii) Al = A2 = O, implying 
r = O, that is, the direction is orthogonal to JL2 - JLI. From 
(10) we have that if d is such that r = O, then r z = 3, and if 
d = AV- I(JL2 - JLI)' then r 2 = 1 and 

This function of a is smaller than 3 whenever la - 1/21 < 

l/m, and larger than 3 if la-l/21 > l/m. 

This corollary generalizes the result by Peña and Prieto 
(2000) which showed that if the distributions Ji are multivari­
ate normal with the same covariance matrix VI = V 2 = V and 
a = .5, the direction that minimizes the kurtosis coefficient 
corresponds to the Fisher best linear discriminant function. 

We conclude that in the normal case there exists a close link 
between the directions obtained by maximizing or minimiz­
ing the kurtosis coefficient and the optimal linear discriminant 
rule. AIso, in other cases where the optimal rule is not in gen­
eral linear, as is the case for symmetric ellipticaI distributions 
with different means and covariance matrices, the directions 
obtained from the maximization of the kurtosis coefficient 
have the same structure as the admissible linear rules. Thus 
maximizing and minimizing the kurtosis coefficient of the pro­
jections seems to provide a sensible way to obtain directions 
that have good properties in these situations. 

3. THE CLUSTER IDENTIFICATION PROCEDURE 

If the projections were computed for only one direction, 
then sorne clusters might mask the presence of others. For 
example, the projection direction might significantly separate 
one cluster, but force others to be projected onto each other, 
effectively masking them. To avoid this situation, we propose 
to analyze a full set of 2p orthogonal directions, such that each 
direction minimizes or maximizes the kurtosis coefficient on a 
subspace "orthogonal" to all preceding directions. Once these 
directions have been computed, the observations are projected 
onto them, and the resulting 2p sets of univariate observa­
tions are analyzed to determine the existence of clusters of 
observations. 

The criteria used to identify the clusters rely on the analysis 
of the sample spacings or first -order gaps between the ordered 
statistics of the projections. If the univariate observations come 
from a unimodal distribution, then the gaps should exhibit a 
very specific pattem, with large gaps near the extremes of 
the distribution and small gaps near the center. This pattem 
would be altered by the presence of clusters. For example, if 
two clusters are present, it should be possible to observe a 
group of large gaps separating the clusters, towards the center 
of the observations. Whenever these kinds of unusual pattems 
are detected, the observations are classified into groups by 
finding anomalously large gaps, and assigning the observations 
on different sides of these gaps to different groups. We now 
develop and formalize these ideas. 

3.1 The Computation 01 the Projection Directions 

Assume that we are given a sample of size n from a p­
dimensional random variable Xi' i = 1, ... , n. The projection 
directions dk are obtained through the following steps. Start 
with k = 1, let yi l

) = Xi and define 

-(k) 1;" (k) 
Y = - L... Yi ' 

n i=1 

s = _1_;"( (k) _ -(k))( (k) _ -(k))' 
k (n-l)t7Y, y YI Y , 

l. Find a direction dk that sol ves the problem 

(11) 

that is, a direction that maximizes the kurtosis coefficient 
of the projected data. 

2. Project the observations onto a subspace that is Sk­
orthogonal to the directions dI' ... , d k • If k < p, define 

y(k+ I ) = (1 ___ 1_ d d' S ) y(k) 
I d~Sk d

k 
k k k l' 

let k = k + 1 and compute a new direction by repeating 
step l. Otherwise, stop. 

3. Compute another set of p directions d p+ l , ••• , d2p by 
repeating steps 1 and 2, except that now the objective 
function in (11) is minimized instead of maximized. 



 

        
 

        
        

           
          

          
          

       
        

        
         

          
         

        

           
        

          
          
       

        
        

         
         

          
         

          
      

    

          
         
      

       
     

 

  

       
         

         
         

      

          
         

            

         
         

          
            
    

        

       
         

        
           

          
      

          
          

          
         

         
        

        
         

          
          

        
        

           
           

       
         

       
        

        

       

 

         
 

   

         
         

       

        
        

 

         
        

         
 

           
 

          
        
          

         
         

         
       

         
         

        
           

          
       

         

6

Several aspects of this procedure may need further 
clarification. 

Remark l. The optimization problem (11) normalizes the 
projection direction by requiring that the projected variance 
along the direction is equal to one. The motivation for this 
condition is twofold: it simplifies the objective function and its 
derivatives, as the problem is now reduced to optimizing the 
fourth central moment, and it preserves the affine invariance of 
the procedure. Preserving affine invariance would imply com­
puting equivalent directions for observations that have been 
modified through an affine transformation. This seems a rea­
sonable property for a cluster detection procedure, as the rel­
ative positions of these observations are not modified by the 
transformation, and as a consequence, the same clusters should 
be present for both the sets of data. 

Remark 2. The sets of p directions that are obtained from 
either the minimization or the maximization of the kurto­
sis coefficient are defined to be Sk-orthogonal to each other 
(rather than just orthogonal). This choice is again made to 
ensure that the algorithm is affine equivariant. 

Remark 3. The computation of the projection directions 
as solutions of the minimization and maximization problems 
(11) represents the main computational effort incurred in the 
algorithm. Two efficient procedures can be used: (a) applying 
a modified version of Newton's method, or (b) solving directly 
the first-order optimality conditions for problem (11). As the 
computational efficiency of the procedure is one of its most 
important requirements, we briefly describe our implementa­
tion of both approaches. 

l. The computational results shown later in this article have 
been obtained by applying a modified Newton method to 
(11) and the corresponding minimization problem. Tak­
ing derivatives in (11), the first-order optimality condi­
tions for these problems are 

Vk(d)-2ASk d=0, 

d'Skd-l =0. 

Newton's method computes search directions for the 
variables d and constraint multiplier A at the current esti­
mates (di' Al) from the solution of a linear approxima­
tion for these conditions around the current iterate. The 
resulting linear system has the form 

where .::l di and .::lAI denote the directions of movement 
for the variables and the multiplier respectively, and HI 
is an approximation to V2 L( di' Al) == V2k( di) - 2A I Sk , 

the Hessian of the Lagrangian function at the current 
iterate. To ensure convergence to a local optimizer, the 
variables are updated by taking a step along the search 
directions .::l di and .::lAI that ensures that the value of an 
augmented Lagrangian merit function 

decreases sufficiently in each iteration, for the mini­
mization case. To ensure that the search directions are 
descent directions for this merit function, and a decreas­
ing step can be taken, the matrix HI is computed to 
be positive definite in the subspace of interest from a 
modified Cholesky decomposition of the reduced Hes­
sian matrix Z;V2 L I Z I , where ZI denotes a basis for the 
null-space of Sk di' see Gill, Murray, and Wright (1981) 
for additional details. It also may be necessary to adjust 
the penalty parameter p; in each iteration, if the direc­
tional derivative of the merit function is not sufficiently 
negative (again, for the minimization case), the penalty 
parameter is increased to ensure sufficient local descent. 
This method requires a very small number of iterations 
for convergence to a local solution, and we have found 
it to perform much better than other suggestions in the 
literature, such as the gradient and conjugate gradient 
procedures mentioned in Jones and Sibson (1987). In 
fact, even if the cost per iteration is higher, the total 
cost is much lower as the number of iterations is greatly 
reduced, and the procedure is more robust. 

2. The second approach mentioned aboye is slightly less 
efficient, particularly when the sample space dimension 
p increases, although running times are quite reasonable 
for moderate sample space dimensions. It computes dk 

by solving the system of nonlinear equations 

n 

4 L( d~ y~k»3 y~k) - 2A dk = O, 
i=l 

d'd= 1. (12) 

These equations as sume that the data have been stan­
dardized in advance, a reasonable first step given the 
affine equivariance of the procedure. From (12), 

implies that the optimal d is the unit eigenvector associ­
ated with the largest eigenvalue (the eigenvalue provides 
the corresponding value for the objective function) of the 
matrix 

M(d) = ~(d' (k»)2 (k) (k)' - L.., y¡ y¡ y¡ , 
i=l 

that is, of a weighted covariance matrix for the sample, 
with positive weights (depending on d). The procedure 
starts with an initial estimate for d k , do, computes the 
weights based on this estimate and obtains the next esti­
mate d l+1 as the eigenvector associated with the largest 
eigenvalue of the matrix M( di)' Computing the largest 
eigenvector is reasonably inexpensive for problems of 
moderate size (dimensions up to a few hundreds, for 
example), and the procedure converges at a linear rate 
(slower than Newton's method) to a local solution. 

3. It is important to notice that the values computed from 
any of the two procedures are just local solutions, and 
perhaps not the global optimizers. From our computa­
tional experiments, as shown in a latter section, this 



       

          
         
         
        

         
        

        

       

          
            

        
          
           

          
           

         
          

             

          
           

  
         

          
        
         

           
         

           
          

             
          

           
           

           
          

      
         

          
          

            
                   
           
           

        
 

          

           
          

        
         

            
            
         

             
           

           

 

          
     

       

            
               
                

          
          

           
           

          
          

           

            
           

          
            
         

          
        

         
           

          
          

          
         

           
    

          

           
         

            
          

        
            
           

         
          

           
   

           
       

         
           
         

           
        
          

   
         

   

             
       
     

        

           

7

does not seem to be a significant drawback, as the com­
puted values provide directions that are adequate for the 
study of the separation of the observations into clusters. 
AIso, we have conducted other experiments showing that 
the proportion of times in which the global optirnizer 
is obtained increases significantIy with both the sample 
size and the dimension of the sample space. 

3.2 The Analysis of the Univariate Projections 

The procedure presented in this article assumes that a lack 
of clusters in the data implies that the data have been generated 
from a common unimodal multivariate distribution F/X). As 
the procedure is based on projections, we must also assume 
that F is such that the distribution of the univariate random 
variable obtained from any projection Z = d'X is also uni­
modal. It is shown in Appendix B that this property holds 
for the class of multivariate unimodal distributions with a 
density that is a nonincreasing function of the distance to 
the mode, that is, Vf(m) = O and if (x¡ - m)'M(x¡ - m) ::: 
(x2 - m)'M(x2 - m) for sorne definite positive matrix M, then 
f(x¡) :::: f(x2 ). This condition is verified for instance by any 
elliptical distribution. 

Once the univariate projections are computed for each one 
of the 2p projection directions, the problem is reduced to find­
ing clusters in unidimensional samples, where these clusters 
are defined by regions of high-probability density. When the 
dimension of the data p is small, a promising procedure would 
be to estimate a univariate nonparametric density function for 
each projection and then define the number of clusters by the 
regions of high density. However, as the number of projections 
to examine grows with p, if P is large then it would be con­
venient to have an automatic criterion to define the clusters. 
AIso, we have found that the allocation of the extreme points 
in each cluster depends very much on the choice of window 
parameter and there being no clear guide to choose it, we 
present in this article the results from an altemative approach 
that seems more useful in practice. 

The procedure we propose uses the sampling spacing of 
the projected points to detect pattems that may indicate the 
presence of clusters. We consider that a set of observations 
can be split into two clusters when we find a sufficientIy large 
first -order gap in the sample. Let Zki = x; dk for k = 1, ... , 2 p, 
and let Zk(i) be the order statistics of this univariate sample. 
The first-order gaps or spacings of the sample, W ki ' are defined 
as the successive differences between two consecutive order 
statistics 

Wki=Zk(i+¡)-Zk(i)' i=l, ... ,n-l. 

Properties of spacings or gaps can be found in Pyke (1965) 
and Read (1988). These statistics have been used for building 
goodness-of-fit tests (see for instance Lockhart, O'Reilly, and 
Stephens 1986) and for extreme values analysis (see Kochar 
and Korwar 1996), but they do not seem to have been used 
for finding clusters. As the expected value of the gap wi is 
the difference between the expected values of two consecutive 
order statistics, it will be in general a function of i and the 
distribution of the observations. In fact, it is well known that 
when the data is a random sample from a distribution F(x) 

with continuous density f(x), the expected value of the ith 
sample gap is given by 

E(w¡) = C) i: F(xY(1-F(x)y-i dx. (13) 

For instance, if f is an uniform distribution, then E( w¡) = 
1 I (n + 1) and all the gaps are expected to be equal, whereas 
if f is exponential then E (w¡) = 1 I (n - i) and the gaps are 
expected to increase in the tail of the distribution. In gen­
eral, for a unimodal symmetric distribution, it is proved in 
Appendix e that the largest gaps in the sample are expected 
to appear at the extremes, w¡ and wn _¡, whereas the smallest 
ones should be those corresponding to the center of the dis­
tribution. Therefore, if the projection of the data onto dk pro­
duces a unimodal distribution then we would expect the plot of 
W ki with respect to k to decrease until a rninimum is reached 
(at the mode of the distribution) and then to increase again. 
The presence of a bimodal distribution in the projection would 
be shown by a new decreasing of the gaps after sorne point. 
To further illustrate this behavior, consider a sample obtained 
from the projection of a mixture of three normal multivariate 
populations; this projection is composed of 200 observations, 
50 of these observations have been generated from a univari­
ate N( -6,1) distribution, another 50 are from a N(6, 1) dis­
tribution, and the remaining 100 have been generated from a 
N(O, 1). Figure 3.1(a) shows the histogram for this sample. 
Figure 3.l(b) presents the values of the gaps for these obser­
vations. Note how the largest gaps appear around observations 
50 and 150, and these local maxima correctIy split the sample 
into the three groups. 

The procedure will identify clusters by looking at the gaps 
W ki and determining if there are values that exceed a certain 
threshold. A sufficientIy large value in these gaps would pro­
vide indication of the presence of groups in the data. As the 
distribution of the projections is, in general, not known in 
advance, we suggest defining these thresholds from a heuris­
tic procedure. A gap will be considered to be significant if it 
has a very low probability of appearing in that position under 
a univariate normal distribution. As we see in our computa­
tional results, we found that this choice is sufficientIy robust 
to cover a variety of practical situations, in addition to being 
simple to implement. 

Before testing for a significant value in the gaps, we first 
standardize the projected data and transform these observa­
tions using the inverse of the standard univariate normal distri­
bution function <1>. In this manner, if the projected data would 
follow a normal distribution, then the transformed data would 
be uniformly distributed. We can then use the fact that for 
uniform data, the spacings are identically distributed with dis­
tribution function F(w) = 1- (1- w)n and mean l/(n + 1), 
see Pyke (1965). 

The resulting algorithm to identify significant gaps has been 
implemented as follows: 

1. For each one of the directions dk , k = 1, ... ,2p, com­
pute the univariate projections of the original observa­
tions Uki = x; dk. 

2. Standardize these observations, Zki = (U ki - mk)lsk' 

where mk = Li ukJn and Sk = LJuki - m k)2/(n -1). 
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Figure 1. (a) Histogram for a Set of 200 Observations From Three Normal Univariate Distributions. (b) Gaps for the Set of 200 observations. 

3. Sort out the projections Zki for each value of k, to 
obtain the order statistics Zk(i) and then transforrn using 
the inverse of the standard normal distribution function 
Zki = <t>-I(Zk(i»). 

4. Compute the gaps between consecutive values, W ki = 

ZU+I - Zki· 

5. Search for the presence of significant gaps in W ki . These 
large gaps will be indications of the presence of more 
than one cluster. In particular, we introduce a threshold 
K = v(c), where v(c) = 1 - (1- c)l/n denotes the cth 
percentile of the distribution of the spacings, define iOk = 
O and 

r = inf {n > j > iOk : W kj > K}. 
J 

If r < 00, the presence of several possible clusters has 
been detected. Otherwise, go to the next projection direc­
tion. 

6. Label all observations 1 with Zkl :::: Zkr as belonging to 
clusters different to those having Zkl > Zkr. Let iOk = r 

and repeat the procedure. 

Sorne remarks on the procedure are in order. The preced­
ing steps make use of a parameter e to compute the value 
K = v(c), that is used in step 5 to decide if more than one 
cluster is present. From our simulation experiments, we have 
defined 10g(1 - e) = 10gO.1 - 1010gpj3, and consequently 
K = 1 - O.l l/n j p 10/ (3n), as this value works well on a wide 
range of values of the sample size n and sample dimension p. 
The dependence on p is a consequence of the repeated com­
parisons carried out for each of the 2p directions computed 
by the algorithm. 

AIso note that the directions dk are a function of the data. 
As a consequence, it is not obvious that the result obtained in 
Appendix C applies here. However, according to Appendix B, 
the projections onto any direction of a continuous unimodal 
multivariate random variable will produce a univariate uni­
modal distribution. We have checked by Monte CarIo simula­
tion that the projections of a multivariate elliptical distribution 

onto the directions that maximize or minimize the kurtosis 
coefficient have this property. 

3.3 The Analysis of the Mahalanobis Distances 

After completing the analysis of the gaps, the algorithm car­
ries out a final step to assign observations within the clusters 
identified in the data. As the labeling algorithm, as described 
aboye, tends to find suspected outliers, but the projection 
directions are dependent on the data, it is reasonable to check 
if these observations are really outliers or just a product of 
the choice of directions. We thus test in this last step if they 
can be assigned to one of the existing clusters, and if sorne of 
the smaller clusters can be incorporated into one of the larger 
ones. 

This readjustment procedure is based on standard multi­
variate tests using the Mahalanobis distance, see Barnett and 
Lewis (1978), and the procedure proposed by Peña and Tiao 
(2001) to check for data heterogeneity. It takes the following 
steps: 

l. Determine the number of clusters identified in the data, 
k, and sort out these clusters by a descending number 
of observations (cluster 1 is the largest and cluster k is 
the smallest). Assume that the observations have been 
labeled so that observations i¡_1 + 1 to i¡ are assigned to 
cluster 1 (io = O and ik = n). 

2. For each cluster 1 = 1, ... , k carry out the following 
steps: 

(a) Compute the mean m, and covariance matrix S¡ 
of the observations assigned to cluster 1, if the 
number of observations in the cluster is at least 
p + l. Otherwise, end. 

(b) Compute the Mahalanobis distances for all obser­
vations not assigned to cluster 1, 
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Figure 2. Plots Indicatíng the Original Observatíons, Their Assignment to Different Clusters, and the Projection Directions Used by the Algorithm 
for: (a) the Ruspini Example, and (b) the Maronna Example. 

(c) Assign to cluster I aH observations satisfying 8 j .::: 

X;.O.99· 
(d) If no observations were assigned in the preceding 

step, increase I by one and repeat the procedure 
for the new cluster. Otherwise, relabel the obser­
vations as in step 1, and repeat this procedure for 
the same l. 

4. COMPUTATIONAL RESULTS 

We start by illustrating the behavior of the algorithm 
on sorne weH-known examples from the literature, those of 
Ruspini (1970) and Maronna and Jacovkis (1974). Both cases 
correspond to two-dimensional data grouped into four clus­
terso Figure 2 shows the clusters detected by the algorithm for 
both the test problems, after two iterations of the procedure. 
Each plot represents the observations, labeled with a letter 
according to the cluster they have been assigned too Also, the 
2p = 4 projection directions are represented in each plot. Note 
that the algorithm is able to identify every cluster present in 
aH cases. It also tends to separate sorne observations from the 
clusters, observations that might be considered as outliers for 
the corresponding cluster. 

The properties of the algorithm have been studied through 
a computational experiment on randomly generated samples. 
Sets of 20p random observations in dimensions p = 
4,8, 15,30 have been generated from a mixture of k multi­
variate normal distributions. The number of observations from 
each distribution has been determined randomly, but ensuring 
that each cluster contains a minimum of p + 1 0bservations. 
The means for each normal distribution are chosen as values 
from a multivariate normal distribution N(O, JI), for a factor 
J (see Table 1) selected to be as small as possible whereas 
ensuring that the probability of overlapping between groups 
is roughly equal to 1%. The covariance matrices are gener­
ated as S = VDV', using a random orthogonal matrix V and 
a diagonal matrix D with entries generated from a uniform 
distribution on [10-3 , 5JP]. 

Table 2 gives the average percentage of the observations 
that have been labeled incorrectly, obtained from 100 repli­
cations for each value. When comparing the labels generated 
by the algorithm with the original labels, the foHowing pro­
cedure has been used to determine if a generated label is 
incorrect: (i) we find those clusters in the original data hav­
ing most observations in each of the clusters generated by the 
algorithm; (ii) we associate each cluster in the output data 
with the corresponding cluster from the original data, accord­
ing to the preceding criterion, except when several clusters 
would be associated with the same original cluster; in this case 
only the largest cluster from the output data is associated with 
that original cluster; (iii) an observation is considered to be 
incorrectly labeled if it belongs to an output cluster associated 
with the wrong original cluster for that observation; (iv) as 
the data generating mechanism allows for sorne overlapping 
between clusters with small probability, the previous rule is 
only applied if for a given cluster in the output data the num­
ber of observations with a wrong label is larger than 5% of 
the size of that output cluster. 

p 

4 

8 

Table 1. Factors f Used to 
Generate the Samples for the 

Simulation Experiment 

k 

15 

2 
4 
8 
2 
4 
8 
2 
4 
8 
2 
4 
8 

14 
20 
28 
12 
18 
26 
10 
16 
24 

30 8 
14 
22 
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Table 2. Percentages of Mislabeled Observations for the Suggested 
Procedure, the k-means and Mclust Algorithms, and the Jones and 

Sibson Procedure (normal observations) 

P k Kurtosis k means Mclust J&S 

4 2 .06 .36 .03 .19 
4 .09 .06 .07 .29 
8 .11 .01 .40 .30 

8 2 .09 .40 .07 .25 
4 .10 .07 .15 .47 
8 .08 .01 .32 .24 

15 2 .15 .53 .09 .30 
4 .32 .20 .25 .58 
8 .09 .04 .47 .27 

30 2 .27 .65 .32 .33 
4 .60 .33 .61 .61 
8 .66 .28 .81 .74 

Average .22 .25 .30 .38 

To provide better understanding of the behavior of the 
procedure, the resulting data sets have been ana1yzed using 
both the proposed method ("Kurtosis") and the k-means 
(see Hartigan and Wong, 1979) and Mc1ust (see Fra1ey and 
Raftery, 1999) algorithms as implemented in S-plus ver­
sion 4.5. The rule used to decide the number of c1usters 
in the k-mean s procedure has been the one proposed by 
Hartigan (1975, pp. 90-91). For the Mc1ust a1gorithm, it 
has been run with the option "VVV" (general parameters 
for the distributions). As an additional test on the choice 
of projection directions, we have imp1emented a procedure 
[colurnn (Jones and Sibson) (J&S) in Table 2] that generates 
p directions using the Jones and Sibson (1987) projection 
pursuit criterion, although keeping all other steps from the 
proposed procedure. The Matlab codes that implement the 
Kurtosis a1gorithm, as described in this artic1e, and the Jones 
and Sibson implementation are available for download at 
http://halweb.uc3rn.es/fjp/download.htrnl 

As sorne of the steps in the procedure are based on distri­
bution dependent heuristics, such as the determination of the 
cutoff for the gaps, we have a1so tested if these resu1ts wou1d 
hold under different distributions in the data. The preceding 
experiment was repeated for the same data sets as aboye, with 
the difference that the observations in each group were gen-

Table 4. Percentages of Mislabeled Observations for the Suggested 
Procedure, the k-means and Mclust Algorithms, and the Jones and 

Sibson Procedure (different overlaps between clusters) 

Kurtosis k means Mclust J&S 

Normal 
1% overlap .09 .15 .17 .29 
8% overlap .15 .17 .22 .36 

Uniform 
1% overlap .05 .19 .12 .23 
8% overlap .07 .19 .13 .27 

Student-t 
1% overlap .14 .16 .19 .32 
8% overlap .19 .21 .23 .37 

erated from a mu1tivariate uniform distribution and a mu1ti­
variate Student-t distribution with p degrees of freedom. The 
corresponding resu1ts are shown in Tab1e 3. 

From the results in Tab1es 2 and 3, the proposed proce­
dure behaves quite well, given the data used for the compari­
son. The number of mislabe1ed observations increases with the 
number of c1usters for Mc1ust, whereas it decreases in general 
for k means. For kurtosis and J&S there is not a c1ear pat­
tern because although in general the errors increase with the 
number of c1usters and the dimension of the space, this is not 
a1ways the case (see Tab1es 2, 3, and 5). It is important to 
note that, owing to the proximity between randomly generated 
groups, the generating process produces many cases where it 
might be reasonab1e to conc1ude that the number of c1usters 
is 10wer than the value of k (this wou1d help to explain the 
high rate of fai1ure for all algorithms). The criterion based on 
the minimization and maximization of the kurtosis coefficient 
behaves better than the k means algorithm, particu1ar1y when 
the number of c1usters present in the data is sma1!. This seems 
to be mostIy owing to the difficu1ty of deciding the number of 
c1usters present in the data, and this difficulty is more marked 
when the actual number of c1usters is small. On the other 
hand, the proposed method has a performance similar to that 
of Mc1ust, although it tends to do better when the number of 
c1usters is large. A1though for both algorithms there are cases 
in which the proposed algorithm does worse, it is important 
to note that it does better on the average than both of them, 

Table 3. Percentages of Mislabeled Observations for the Suggested Procedure, the k-means and 
Mclust Algorithms, and the Jones and Sibson Procedure (uniform and student-t observations) 

Uniform Student-t 

p k Kurtosis k means Mclust J&S Kurtosis k means Mclust J&S 

4 2 .05 .41 .01 .23 .10 .39 .04 .20 
4 .04 .13 .02 .21 .13 .15 .12 .28 
8 .07 .01 .41 .17 .16 .24 .41 .36 

8 2 .02 .48 .02 .25 .09 .36 .11 .29 
4 .06 .12 .06 .43 .22 .11 .17 .44 
8 .05 .00 .18 .10 .13 .20 .32 .34 

15 2 .08 .53 .01 .26 .16 .42 .10 .27 
4 .12 .12 .12 .53 .36 .16 .25 .57 
8 .06 .00 .36 .14 .16 .13 .51 .37 

30 2 .21 .57 .09 .27 .28 .50 .30 .30 
4 .28 .18 .39 .60 .57 .14 .62 .62 
8 .07 .00 .65 .51 .70 .16 .80 .77 

Average .09 .21 .19 .31 .25 .25 .31 .40 
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Table 5. Percentages of Míslabeled Observatíons for the Suggested 
Procedure, the k-means and Mclust Algoríthms, and the Jones and 

Síbson Procedure. Normal observatíons wíth outlíers 

P k Kurtosís k means Mclust J&S 

4 2 .06 .19 .08 .17 
4 .08 .06 .08 .23 
8 .11 .07 .41 .29 

8 2 .05 .13 .11 .13 
4 .09 .05 .15 .43 
8 .09 .05 .40 .23 

15 2 .05 .19 .12 .10 
4 .12 .10 .23 .53 
8 .13 .07 .51 .34 

30 2 .03 .29 .11 .06 
4 .10 .21 .58 .44 
8 .55 .22 .77 . 77 

Average .12 .14 .30 .31 

and also that there are only 4 cases out of 36 where it does 
worse than both of them. It should also be pointed out that its 
computational requirements are significantly lower. Regarding 
the Jones and Sibson criterion, the proposed use of the direc­
tions minimizing and maximizing the kurtosis comes out as 
far more efficient in all these cases. 

We have also analyzed the impact of increasing the over­
lapping of the clusters on the success rates. The values of the 
factors f used to determine the distances between the cen­
ters of the clusters have been reduced by 20% (equivalent to 
an average overlap of 8% for the normal case) and the simu­
lation experiments have been repeated for the smallest cases 
(dimensions 4 and 8). The values in Table 4 indicate the aver­
age percentage of mislabeled observations both for the origi­
nal and the larger overlap in these cases. The results show the 
expected increase in the error rates corresponding to the higher 
overlap between clusters, and broadly the same remarks apply 
to this case. 

A final simulation study has been conducted to determine 
the behavior of the methods in the presence of outliers. For 
this study, the data have been generated as indicated aboye 
for the normal case, but 10% of the data are now outliers. 
For each cluster in the data, 10% of its observations have 
been generated as a group of outliers at a distance 4 X~. 0.99 in 
a group along a random direction, and a single outlier along 
another random direction. The observations have been placed 
slight1y further away to avoid overlapping; the values of f in 
Table 1 have now been increased by two. Table 5 presents the 
numbers of misclassified observations in this case. 

The results are very similar to those in Table 2, in the sense 
that the proposed procedure does better than k-means for small 
numbers of clusters, and better than Mclust when many clus­
ters are present. It also does better than both procedures on the 
average. Again, the Jones and Sibson criterion behaves very 
poorly in these simulations. Nevertheless, the improvement in 
the k-means procedure is significant. It seems to be owing to 
its better performance as the number of clusters increases, and 
the fact that most of the outliers have been introduced as clus­
terso Its performance is not so good for the small number of 
isolated outliers. 

APPENDIX A: PROOF OF THEOREM 1 

To derive (4), note that E(z) = (l-a)m¡ +am2 and E(Z2) = (1-
a)m¡ (2) + am2(2) + (1 - a)mi + am/; therefore m z(2) = E(Z2)-
(E(Z»2 = a~ +a(1-a)~2, where a~ = (l-a)m¡ (2)+am2(2) and 
~ = m2 - m ¡. The fourth moment is given by 

mz(4) = (1 - a)Efl [(z - m¡ - a~)4] + aEh [(Z - m2 + (1 - a)~)4], 

and the first integral is equal to m¡ (4) - 4a~m¡ (3) + 6a2 ~2m¡ (2) + 
a4~4, whereas the second is m2(4) + 4(1 - a)~m2(3) + 6(1 -
a)2 ~2m2(2) + (1 - a)4 ~4. Using these two results, we obtain that 

m z(4) = (1-a)m¡ (4)+am2(4)+4a(1-a)~(m2(3) 

-mI (3» +6a(1- a)~2¿¡.~ +a( 1- a)~4(a3 + (1- a)3) . 

Consider now (6). From (4) we can write Yz( d) = N( d)/ D( d)2, 
where N( d) = mz(4) and D( d) = a~ +a(l- a)~2. Note that D"" ° 
un1ess both projected distributions are degenerate and have the same 
mean; we ignore this trivial case. We have 

VN = (1- a)4>¡ + a4>2 +4a(1 - a)~( T2 - T¡) 

+ 12a(1- a)~2(aV¡ + (1- a)V2)d 

+4a(1- a)(m2(3) - m¡ (3) + 3~¿¡'~ 
+ (a3 + (1- a)3)~3)(1L2 -IL¡), 

VD = 2«1 - a)V¡ + aV2) d +2a(1 - a)~(1L2 -IL¡), 

and from the optima1ity condition Vyz(d) = 0, for the optimal direc­
tion d we must have 

V N(d) = 2yz(d)D(d)V D(d). 

Replacing the expressions for the derivatives, this condition is 
equivalent to 

4(1 - a)(Dyz - 3a2 ~2)V¡ d +4a(Dyz - 3(1 - a)2 ~2)V2 d 

= (1- a)4>¡ + a4>2 +4a(1 - a) 

x (~(T2-T¡)+(m2(3)-m¡(3) 

+ 3 ~¿¡.~ + (a3 + (1 - a)3)~3 - D~y,)(1L2 -IL¡»), 

and the result in (6) follows after substituting the value of D, dividing 
both sides by 4a~ and regrouping terms. 

APPENDIX B: PROJECTIONS OF 
UNIMODAL DENSITIES 

Assume a random variable X with continuous unimoda1 den­
sity fx(x) with mode at m. We show that its projections onto any 
direction d, d' X, are a1so unimoda1, provided that fx is a nonin­
creasing function of the distance to the mode, that is, whenever 
(x¡ -m)'M(x¡ -m):s (x2 -m)'M(x2 -m) for sorne positive defi­
nite matrix M, then fx(x¡) :::: fX(x2)' 

To simp1ify the derivation and without los s of generality we work 
with a random variable Y satisfying the preceding properties for m = ° and M = 1. Note that the projections of X would be unimoda1 
if and only if the projections of Y = M¡/2(X - m) are unimodal. 
This statement follows immediate1y from d' X = d' m + d' M-¡/2 Y, 
imp1ying the equiva1ence of the two den sities, except for a constant. 

From our assumption we have fy (y ¡) :::: f y (Y2) whenever 11 y ¡ 11 :s 
[[Y2[[; note that this property imp1ies that fy(Y) = !p([[y[[), that is, 
the density is constant on each hypersphere with center as the origino 
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As a consequence, for any projection direction d, the density function any x E [ - a, a], and f (x) :s f ( a) for x E ( - 00, - a 1 and x E [a, 00 ). 
of the projected random variable, z = d' Y, will be given by As a consequence, 

where we have introduced the change of variables w = V Y for an 
orthogonal matrix V such that d = V' e¡, where e¡ denotes the first 
unit vector, and d' y = e; V y = e; w = W¡. AIso note that f y (V/w) = 
'P(llwll) = fy(w), and as a consequence the density of z will be given 
by 

f,(z) = lo fy(z, W2" .. ,wp ) dw2· .. dwp ' 

where the integration domain D is the set of all possible values 
of W2" .. ,wp ' As for any fixed values of w2' ... ,wp ' we have 
fy(z¡, w2,···, wp ) 2:: fy(Z2' W2"'" wp ) for any Iz¡1 :s IZ21, it fol­
lows that 

f,(z¡) = Lfy(Z¡, W2'" wp )dw2··· dwp 

2:: lo fy(Z2' W2' ... ,wp ) dw2· .. dwp 

= f z(Z2)' 

for any Iz¡l:s IZ21, proving the unimodality of fz. 

APPENDIX C: PROPERTIES OF THE GAPS FOR 
SYMMETRIC DISTRIBUTIONS 

We now justify the statement that for a unimodal symmetric di s­
tribution the largest gaps in the sample are expected to appear at the 
extremes. Under the symmetry assumption, and using (13) for the 
expected value of the gap, we would need to prove that for i > n/2, 

E(wi+¡) - E(w¡) = ~ + 1 (~) foo F(xY(I- F(x»n-i-¡ 
1 + I 1 -00 

( 
'+1) x F(x)- ~+1 dx 2:: O, 

Letting g(x) = F(x)i(l-F(x»"-i-¡(F(x) - (i + l)/(n+ 1») this is 
equivalent to proving that 

i: g(x) dx 2:: O. (C1) 

To show that this inequality holds, we use the foIlowing property of 
the Beta function: for any i, 

_1_ = (~) foo F(x)i(l- F(X»"-if(x) dx. 
n + 1 1-00 

Taking the difference between the integrals for i + 1 and i, it follows 
that 

o = ~ + 1 (~) foo g(x)f(x) dx 
1 + 1 1 -00 

~ i:g(x)f(x)dX=O. (C2) 

This integral is very similar to the one in (C1), except for the 
presence of f(x). To relate the values of both integrals, the inte­
gration interval (-00,00) will be divided into several zones. Let 
a = F-¡((i + l)/(n + 1», imp1ying that F(x) - (i + l)/(n + 1) :s O 
and g(x):s O for aIl x :s a. As we have assumed the distribution to be 
symmetric and unimoda1, and without 10ss of genera1ity, we may sup­
pose the mode to be at zero, the density wilI satisfy f(x) 2:: fea) for 

fa f(x) fa 
g(x)-( )dx:s g(x)dx. 

-a f a -a 
(C3) 

To find similar bounds for the integral in the intervals (-00, -al 
and [a, (0) we introduce the change of variables y = -x and use the 
symmetry of the distribution to obtain the equivalent representation 

f -a g(x/(x) dx = - loo F(X)"-i-¡ (1- F(X»i 
-00 fea) a 

( 
i+l)f(X) x F(x)-I+-- --dx. 
n+l fea) 

From this equation it will hold that 

fOO f(x) fa f(x) loo f(x) 
g(x)-( ) dx = g(x)-() dx + h(x)-() dx, 

-00 f a -a f a a f a 

where 

h(x)=g(x)-F(x)"-I- (I-F(x»' F(x)-l+-. ¡ .( i+l) 
n+I 

=F(X)i(l-F(X»n-i-¡(F(X)- i+I 
n+l 

(
I_F(X»)2i+¡-n( i+l)) 

- -- F(x)-l+-. 
F~) n+l 

(C.4) 

If i > n/2, it holds that h(a) < o, then the function has a zero al 
b E [a, (0), and this zero is unique in the intervaI. As f is decreasing 
on [a, (0), h(x) :s O for a:s x:s b and h(x) 2:: O for x 2:: b, it mUSI 

foIlow that 

b b f(x) l h(x) dx 2:: l h(x) f(b) dx, 

roo r f(x) 
lb h(x) dx 2:: lb h(x) f(b) dx 

=} lOO h(x) dx 

2:: lOO h(X)~~;~ dx. 

This inequality together with (C.4), (C3), and (C2) yield 

fOO foo f(x) 
g(x)dX2:: g(x)-( )dx=O, 

-00 -00 f a 

and this bound implies (C1) and the monotonicity of the expected 
gaps. 

[Received July 1999. Revised December 2000.J 
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