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0. RESUMEN EN ESPAÑOL 

 

0.1  Breve Descripción 

Las principales tareas ejecutadas durante la realización del presente PFC se pueden 

resumir de acuerdo con los siguientes puntos: 

 Realización de medidas eléctricas sobre un sistema fotovoltaico de 20 kWp 

conectado a red. 

 Variación de la eficiencia de inversión en función de: época del año, 

temperatura, tipo de inversión, configuración de inversión, etc. 

 Comparación de resultados experimentales con resultados de simulación vía 

PVSYST 4.1 

 Evaluación con PVSYST de los rangos energéticos para el sistema fotovoltaico 

con distintas configuraciones de inversión 

 

0.2  Introducción 

Hace ya más de cien años (Becquerel, a mediados del siglo XIX) que se sabe que la 

radiación solar puede alterar el comportamiento eléctrico de ciertos materiales 

originando, bajo unas condiciones determinadas, una corriente eléctrica. Desde entonces 

se ha venido investigando sobre las formas eficientes de generar energía eléctrica a 

partir de la radiación solar, y al dispositivo básico utilizado para conseguirlo se le llama 

célula fotovoltaica, o célula solar. 

El principio de funcionamiento de las células solares es el efecto fotovoltaico: 

 La unión de dos elementos semiconductores, uno tipo n y otro tipo p, provoca 

una diferencia de potencial en las proximidades de esta unión. 

 Los fotones transfieren la energía de la radiación solar incidente a los electrones 

de los semiconductores, liberándolos de la red cristalina a la que estaban unidos 

(generación electrón-hueco). 

 La diferencia de potencial existente en la unión provoca un flujo ordenado de 

portadores (electrones y huecos) fotogenerados, originando una diferencia neta 

de potencial en la célula. 

 Mediante los contactos existentes en la célula, puede disponerse un circuito 

exterior, por el que circulará una corriente eléctrica, la cual podrá entregar 

potencia eléctrica útil 

 



Measurements and Analysis of a 

20 kW Grid-Connected PV System 

 
 

Department of Electrical and Computer Engineering - 5 - 

 

Las células solares se clasifican en distintos tipos, de acuerdo con el siguiente esquema: 

 

 

 

Para su manejo y utilización práctica, las células solares se unen entre sí en lo que se 

denomina un módulo fotovoltaico o módulo FV, resultando una estructura compacta, 

manejable y resistente. 

Los módulos FV con células de silicio cristalino suelen comercializarse como unidades 

de 12 ó 24 voltios y con potencias de hasta 100 vatios, o más, de modo que en 

determinadas aplicaciones será necesario asociar varias de estas unidades para satisfacer 

los requerimientos eléctricos de tensión, corriente y potencia. 

En la siguiente figura se puede observar el corte transversal de uno de estos módulos, en 

el que se observa el sistema de encapsulado y el enmarcado final: 
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0.3  Descripción del sistema bajo estudio 

 

 

Localizado en Katerini, la capital de la prefactura de Pieria (Macedonia Central, 

Grecia), entre el Monte Olimpos y el Golfo de Termaikos, a una altitud de 14 m., el 

array FV existente se compone de 111 módulos de silicio mono-cristalino Sharp, 

produciendo una capacidad total de potencia pico de 19.98 kW. 

El campo solar se divide en tres sub-arrays de 37 módulos con inclinación de 30º 

(óptimo para Katerini). Cada sub-array se divide a su vez en dos Strings: 

 String A: 19 módulos conectados en serie. 

 String B: 18 módulos conectados en serie. 

La eficiencia de inversión (3x5 kW) está diseñada para operar entre 220 y 240 V con 

una frecuencia de red de 50 Hz. 
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0.4  Procesamiento de Datos 

 La monitorización del sistema, se hace a través del inversor SMA Sunny Boy 

5000, con un dispositivo que registra todos los datos relativos a las prestaciones 

del sistema (en un fichero .xls). 

 Los datos disponibles recopilados para el presente análisis son los comprendidos 

entre las fechas: 10/03/2008 – 25/09/2008 

 Para procesar tal cantidad de datos, el .xls original se convirtió en una hiper-

matriz MATLAB, facilitando así el análisis y representación de las medidas 

tomadas. 

 

0.5  Eficiencia de Inversión 

Según el fabricante, la eficiencia del SunnyBoy 5000 depende principalmente de la 

tensión de entrada de los Strings PV conectados. De esta manera, cuanto mayor es el 

voltaje de entrada, mayor será la eficiencia: 

 

 

Experimentalmente, la curva obtenida para nuestros inversores es la siguiente: 
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Lo que demuestra que para un voltaje DC de entrada dado, habrá diferentes eficiencias 

en función del momento del día, o lo que es lo mismo, la temperatura del dispositivo. 

Esto refuerza la importancia del control de los ambientes con temperatura 

creciente. 

 

0.6  Producción experimental VS teórica 

El objetivo de este análisis es triple: 

 Asentar las bases del análisis de eficiencia realizado anteriormente. 

 Comparar las medidas reales sobre producción energética obtenida en nuestro 

sistema de 20 kW conectado a red con las medidas simuladas obtenidas a través 

del software PVSYST, comprobando si simulación y medidas reales están 

próximas o existe un error significativo. 

 Cuantificar el ajuste entre la capacidad de inversión total (15 kW) y la capacidad 

de producción máxima en el sistema (20 kW). 
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Analizando la producción eléctrica, descubrimos que la producción real es 

significativamente mayor que la esperada mediante simulación PVSYST. La energía 

generado para el periodo de datos disponible, fue exactamente de 20,017 MWh. 

Mientras tanto, para el mismo periodo de tiempo PVSYST estima una generación 

energética de 17,097 MWh. Esto se traduce en un ratio de energía producida / energía 

esperada de 1.17. 

Posibles explicaciones genéricas a este desajuste podrían ser: 

 Las condiciones meteorológicas durante los 7 meses considerados, podrían ser 

diferentes de las “típicas” 

 PVSYST es una herramienta útil en el diseño, ayudando a decidir las mejores 

configuraciones de entre las posibles. Pero aunque es una aproximación precisa 

al problema, nunca una herramienta exacta. 

 

Pero... ¿cabe la posibilidad de que exista alguna otra explicación más particular para 

nuestro caso?. PVSYST se basa en la base de datos METEONORM, que define 

estaciones concretas para las cuales se conocen los valores de irradiancia. Pero para 

sitios lejanos de estas “estaciones”, como es nuestro caso (Katerini), los valores 

considerados por PVSYST son valores interpolados entre las 2-3 estaciones más 

cercanas. 

Así que para chequear si la desviación entre producción real y producción esperada se 

debe a una errónea interpolación de datos, recurrimos al proyecto europeo Satel-Light, 
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que proporciona datos del satélite geo-estacionario METEOSAT obteniendo una 

cobertura espacial de Europa sin interpolaciones (a diferencia de METEONORM).   

 

 

A primera vista, se puede apreciar en el gráfico Satel-Light (izquierda) que la 

irradiancia media diaria global sobre Larissa, Volos y Thessaloniki para una inclinación 

de 30º, es muy similar (en torno a 4.726 Wh/m2). Sin embargo, para la localización de 

Katerini esta irradiancia llega al valor de 5.222 Wh/m2. Lo cual significa que se 

produce un incremento de la irradiancia respecto a los anteriores sitios de en torno al 

10.5%.  

Ahora, puesto que Katerini no cuenta con “estación” METEONORM sobre su 

superficie, la base de datos PVSYST procederá interpolando los datos de las 

estaciones más cercanas disponibles (Larissa, Volos y Thessaloniki!!), por o que los 

datos meteorológicos usados para la simulación tendrán un error de entrada de en 

torno al 10.5%, lo que justifica en gran medida la desviación detectada entre 

producción real y producción estimada cuando se usa software PVSYST. 

 

En cuanto a las simulaciones realizadas para concluir si la capacidad de inversión de 15 

kW para un sistema de producción máxima de 20 kW está bien dimensionada, los 

resultados obtenidos son favorables, indicando que este dimensionamiento es el óptimo. 

Para comprobarlo, se han comparado mediante simulaciones SW las siguientes 

capacidades de inversión: 

 Escenario A: usando la misma capacidad de inversión (5 kW) 

o A.1: 3 inversores de 5 kW 
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o A.2: 5 inversores de 5 kW 

 Escenario B: usando diferentes tamaños de inversor (5, 6 y 7 kW) 

o B.1: 3 inversores de 5 kW 

o B.2: 3 inversores de 6 kW – última tecnología 

o B.3:  3 inversores de 7 kW – última tecnología 

o B.4: 3 inversores de 5 kW – última tecnología 
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0.7  Conclusiones 

El diseño implementado se ha demostrado como óptimo: 

 Las prestaciones globales del sistema se han mejorado gracias de criterios de 

diseño: 

o Consideración de inclinación óptima (30º) 

o Condiciones especial de irradiancia presentes en el área de Katerini 

o Infra-dimensionamiento de la capacidad total de inversión con respecto a 

la potencia PV pico instalada. 

 Los fabricantes elegidos, SHARP y SMA, han resultado fiables, ofreciendo 

soluciones de confianza de acuerdo con lo esperado. 

 

Todas las mejoras mencionadas muestran la importancia de una correcta optimización 

durante la etapa de diseño de la tecnología PV. 

Pero más allá de nuestro sistema particular, los resultados obtenidos a través de este 

estudio son positivos para el futuro de la industria PV en toda Grecia: 

 Especialmente ahora que el Parlamento Griego aprobó (15  Enero 2009) el 

programa de incentivación PV más ambicioso de toda Europa, tras una 

moratoria de casi 2 años. 

 En 2008, los más importantes mercados PV europeos (Alemania, España, Italia, 

Francia y la recién incorporada Grecia) registraron una nueva capacidad PV 

instalada superior a 3 GW. Pero el contexto internacional reciente ha cambiado 

significativamente, haciendo la situación de Grecia incluso más atractiva aún: 

o El número de jugadores en el mercado PV se ha reducido 

significativamente, de modo que los capitales grandes son los que 

controlan ahora el crecimiento del mercado especialmente en España. 

o Las tarifas regresivas han sido significativamente elevadas, 

especialmente en Alemania. 

 

Contra este marco de fondo, Grecia podría resurgir en unos pocos años como el 

próximo mayor mercado PV de toda Europa. 
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1. INTRODUCTION 

It is a fact that current society tends to the energetic diversification and to the 

sustainability for the future growth. In this process the knowledge of the different 

energetic renewable systems and inside them, the photovoltaic solar energy, plays a 

fundamental role. 

The new global conscience in questions of Environment, especially for the need to 

promote at every level the use of clean or renewable energies, make foresee important 

technological changes for the first years of the second millennium. The electricity of 

photovoltaic origin appears, on a worldwide scale, as one of the most important 

alternatives to satisfy the energetic needs in those cases in which it is needed to have 

clean, sure and quality energy compatible with sustainable development policies.  

The photovoltaic solar energy has met particularly favoured during last years in Greece 

for the diverse legislations and regulations promulgated recently and for the institutional 

support given to the development of the sector. Greek government is ambitious when it 

comes to PV energy, with the goal of having installed at least 700 MWp by 2020. 

Within this framework, in June 2006 a new feed-in tariff system was launched in 

Greece, guarantying €0.40 to €0.50 per kWh for the next 20 years. Accompanied by a 

relaxation of the licensing procedure and the possibility for combination of these 

benefits with investment grants and subsidies between 30 to 55%, the payback time of 

PV investment becomes very interesting in this sunny country, getting an even better 

return on investment than in Spain in certain market segments. 

Following this line of work, in the present report we make a complete analysis on the 

first Greek installation fitting the new regulatory framework, which will be useful to 

show the viability of solar power at Aristotle‟s country. 

 

1.1  Preliminary Concepts. 

In this paragraph we will try to explain, or to define in a very succinct form, different 

magnitudes and concepts handled habitually in the photovoltaic framework. 

 

1.1.1 The solar radiation. 

To all practical effects, it is valid and it turns out useful to imagine that Sun describes 

every day an arch on the celestial vault, from the rise up to the west, which length, 

elevation and duration throughout the time are different every day and in every 

geographical latitude of the planet. 

Sun position in every instant, seen from a certain place of the terrestrial surface, remains 

perfectly defined just knowing the value of two angular variables: the solar azimuth, Ψ, 
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and the solar height, α. These two angles, which are referred to the straight line that 

joins the centre of the solar disc with the point in the terrestrial surface from which the 

observation is carried out, can be known accurately for every instant throughout the year 

depending on the geographical latitude (parallel of the place), using well-known 

formulae of Positioning Astronomy, which for major comfort are tabulated and also 

integrated as data in many computer programs. 

The interest of knowing the relative position of the Sun-beam with regard to the 

horizontal soil is due to the fact that the energetic waves directly from the Sun travel up 

to the terrestrial surface according to the direction of the above mentioned beam and, 

therefore, they affect on the soil (or on another flat surface arbitrary positioned as, for 

example, a solar panel) forming an angle which value will concern the value of the 

intensity of the solar radiation on the surface in question. 

The position of a solar panel remains, likewise, perfectly determined just knowing also 

two angular values: the azimuth of the panel, γ (angle that forms the projection on the 

horizontal plane of the normal one to the surface of the panel with the local meridian), 

and the inclination, β, of the panel with regard to the horizontal plane. 

The azimuth of the panel determines its orientation, being zero if it is orientated towards 

the equator which is the optimum in case of static systems. 

The value of the duration of the day is used sometimes as estimation, in a comparative 

way, of the total irradiation that is necessary to wait to receive in one day with regard to 

other one of meteorological similar characteristics. 

For latitude of 40 °, in the longest day of the year the Sun shines for almost 15 hours, 

whereas in the shortest day it hardly overcomes 9 hours. 

Nowadays there is information available of average irradiation on horizontally of many 

localities, which allow to establish a few generally enough trustworthy values on the 

quantity of solar power that it is possible to expect obtaining, as average, in every 

month of the year. 
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Figure 1: Angles that define Sun position at any moment  

 

From horizontal irradiation values it is possible to calculate the irradiation on a sloping 

surface using diverse models of temporary and spatial distribution of the solar radiation. 

Hereby, tables or algorithms easily adaptable to computer-programs can be obtained, 

showing the quantity of incidental solar power on the photovoltaic panels (generally 

orientated approximately towards the equator and with an angle of inclination 

determined). The above mentioned quantity evaluated month by month or for different 

epochs of the year, constitutes as we will see hereinafter the starting point for 

trustworthy design of the PV system. 

 

1.1.2 The PV Cell. 

Since over one hundred years (Becquerel, in the middle of the 19th century) it is known 

that under a few certain conditions solar radiation can alter the electrical behaviour of 

certain materials, originating an electrical current. Since then the efficient ways of 

generating electric power from the solar radiation have been widely investigated, being 

called “photovoltaic cell” (or “solar cell”) the basic device used to obtain electricity. 
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Figure 2: Solar cell performing 

 

The functioning principle of solar cells is the photovoltaic effect: 

 The union of two semiconductor materials, one type n and another type p, 

provokes a potential difference in the proximities of this union. 

 Photons transfer the energy of the solar incidental radiation to semiconductor‟s 

electrons, liberating them from the crystalline net they were joined to. 

 The existing potential difference inside the union provokes an arranged flow of 

carriers (electrons and hollows) photo generated, originating a clear difference 

of potential in the cell. 

 By means of the existing contacts in the cell, can be assembled an exterior 

circuit where an electrical current able to provide electrical useful power will 

circulate (Figure 2). 

 

Before going on, it is worth emphasizing the fact that PV cells are not electrical 

accumulators. Their electric power generation capacity is subordinated to the presence 

of solar incidental radiation on them, so the variability, discontinuity and randomness 

that characterize this radiation will also constitute the signs of identity defining 

photovoltaic electric power. 
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1.1.3 The PV Panel. 

Solar cells based on crystalline silicon are characterized by their limited capacity to 

generate electrical power and their fragility and vulnerability to external agents. For 

their managing and practical utilization several of them are joined together setting up 

what is called a photovoltaic panel, turning out a compact, manageable and resistant 

structure. 

Silicon-made PV panels are used to become commercialized as devices of 12 or 24 V 

and up to 100 W, or more, so that in several applications will be necessary the 

association of various unities to satisfy electrical requirements on voltage, current and 

power. 

 Figure 3: Different kinds of general purpose PV panels (silicon-made)  

 

The modules showed in figure 3 are those who are commercialized usually, with a 

frame that allows their assembly on most common surfaces and structures (walls, 

metallic profiles, etc.). 

In the same figure can be appreciated different ways of arranging the cells inside the 

module, obtaining a major or minor surface utilization. In figure 4 it appears the 

transverse cut of one of these modules, in which it is observed the system of 

encapsulation and final framing. 

 



Measurements and Analysis of a 

20 kW Grid-Connected PV System 

 
 

Department of Electrical and Computer Engineering - 18 - 

 

  

Figure 4: General purpose PV panel cross-section. 

 

Electrical characteristic 

We must keep in mind that basic device for PV electricity generation is the solar cell. 

Nevertheless, in practice we work with consistent modules of a certain number of cells 

generally connected in series. Because of this, for the study and analysis of the electrical 

behaviour of the generation subsystem the PV panel will be considered as the unit of 

electrical generation. 

A solar cell can be represented as the electrical equivalent circuit showed in the figure 5. 

This is just the electrical simplified representation of the functioning described 

previously: a current of photo-generated carriers, the resultant diode of the union of 

semiconductors, a tension provoked by the photovoltaic effect and a few resistances that 

include the existing losses during the functioning (leakage currents, contacts, etc.). 

 

Figure 5: General purpose PV panel cross-section. 

  

This electrical equivalent circuit can be applied to a PV panel formed by NP rows in 

parallel and each one with NS cells in series, turning out to be the relation tension - 

current that appears following: 
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, being: 

 I: Current provided by PV panel. It is equal to the current provided by one cell, 

multiplied by the number of cells in parallel.  

 Isc: Current provided by PV panel under short-circuit condition. It can be 

considered equal to the current of photocurrent carriers (IL in figure 5). 

 V: Existing voltage inside PV panel terminals. It is equal to the existing one in a 

cell multiplied by the number of cells in series. 

 Voc: Existing voltage inside PV panel terminals when open-circuit (which 

means lack of current). 

 RSG: Total series resistance of the PV panel, equal to RSNS/NP. 

 

The electrical characteristic of the PV cell is generally represented by the current versus 

voltage (I-V) curve. Next figure shows the I-V characteristic for a PV module. At the 

same time, it is indicated by means of points the power curve of the module. Both I-V 

characteristic and power curve must be provided by module manufacturer. 

 

Figure 6: I-V characteristics for a given PV module. 

Considering the I-V characteristic, it is necessary to indicate some requirements on how 

a PV module works: 
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 Working point of PV panel (pair I-V) can be anyone in the V-I curve, being 

determined by the intersection of panel‟s I-V curve and the load to it connected. 

 There is only one pair of values VM, IM providing maximum power. From now 

on these values will be called as VMP and IMP (current and voltage at Maximum 

Power Point). A rough estimation of VMP, valid for most crystalline silicon-made 

panels is: 

 

 The current generated by a module is limited by nature, so that a short-circuit 

scenario is not a risky situation. 

 

Besides described voltage and current parameters, there exist three more parameters of 

interest:  

 Shape factor 

It is defined as: 

 

, and its name is due to the fact that mentioned factor is a measure on how I-V 

curve is close to a rectangle with VOC and ISC sides. This factor will be better as 

nearer it is to the unit. 

 Efficiency 

The efficiency, as in case of a solar cell, is the quotient of the electrical power 

generated by the module and the power of the incidental radiation over it. 

 Nominal operating cell temperature. 

Nominal operating cell temperature (NOCT) indicates the temperature reached 

by cells when they are under following working conditions: 

o Radiation intensity: 800 W/m
2
 

o Spectral distribution: AM 1.5 

o Cell temperature: 25 °C 

 

PV panels association 

As it has been said before, individual electrical characteristic of PV panel not always 

allow satisfying system requirements on voltage and current. To get it, we have to 
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associate the necessary number of panels joining properly their positive and negative 

terminals. 

The junction of two or more panels in series causes a voltage equal to the addition of 

individual voltages of each module, keeping invariable the current. On the contrary, 

when connecting in parallel it is current what it is summed, keeping invariable the 

voltage. 

Previously it was stated the effect reached when associating modules in series and 

in parallel, but such expected effects and real ones only match when every cells in a 

panel, and every panel, have the same electrical characteristic and work under 

identical temperature, lighting, etc. conditions, what in practice is not always true. 

 

1.1.4 Stand-alone systems. 

The major application of the stand-alone power system is in remote areas where utility 

lines are uneconomical to install due to terrain, the right-of-way difficulties or the 

environmental concerns. Even without these constraints, building new transmission 

lines is expensive. A 230 kV line costs about $1 million per mile. For remote villages 

farther than two miles from the nearest transmission line, a stand-alone PV system 

could be more economical. 

The solar power outputs can fluctuate on an hourly or daily basis. The stand-alone 

system must, therefore, have some means of storing energy, which can be used later to 

supply the load during the periods of low or no power output. Alternatively, PV can also 

be used in a hybrid configuration with diesel engine generator in remote areas or with 

fuel cells in urban areas. 

According to the World Bank, more than 2 billion people live in villages that are not yet 

connected to utility lines. These villages are the largest potential market of the hybrid 

stand-alone systems using diesel generator with PV for meeting their energy needs. 

Additionally, PV systems create more jobs per dollar invested, which help minimize the 

migration to already strained cities. 

Because power sources having differing performance characteristics must be used in 

parallel, the stand-alone hybrid system is technically more challenging and expensive to 

design than the grid-connected system that simply augments the existing utility system. 

The typical PV stand-alone system consists of a solar array and a battery connection. 

The array powers the load and charges the battery during daytime. The battery powers 

the load after dark. The inverter converts the DC power of the array and the battery into 

60 or 50 Hz power. Inverters are available in a wide range of power ratings with 

efficiency ranging from 85 to 95 percent. The array is segmented with isolation diodes 

for improving the reliability. In such designs, if one string of the solar array fails, it does 
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not load or short the remaining strings. Multiple inverters, such as three inverters each 

with 35 percent rating rather than one with 105 percent rating, are preferred. If one such 

inverter fails, the remaining two can continue supplying essential loads until the failed 

one is repaired or replaced. The same design approach also extends in using multiple 

batteries. 

Most of the stand-alone PV systems installed in developing countries provide basic 

necessities, such as lighting and pumping water.  

For determining the required capacity of the stand-alone power system, estimating the 

peak load demand is only one aspect of the design. But there are many other parameters 

to study:  

 Power and energy estimates: 

The system sizing starts with compiling a list of all loads that are to be served. 

Not all loads are constant. Time-varying loads are expressed in peak watts they 

consume and the duty ratio. The peak power consumption is used in determining 

the wire size for making a connection to the source. 

 Battery sizing: 

The battery Ah capacity required to support the load energy requirement of Ebat 

is determined using: 

 

, where: 

Ebat   = energy required from the battery per discharge 

ηdisch   = efficiency of discharge path, including inverters, diodes, 

wires, etc. 

Ncell   = number of series cells in one battery 

Vdisch   = average cell voltage during discharge 

DODallowed  = maximum DOD allowed for the required cycle life 

Nbat   = number of batteries in parallel 

 

 PV array sizing: 

The basic tenet in sizing the stand-alone “power system” is to remember that it is 

really the stand-alone “energy system.” It must, therefore, maintain the energy 

balance over the specified period. The energy drained during lean times must be 
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made up by the positive balance during the remaining time of the period. A 

simple case of a constant load on the PV system using solar arrays perfectly 

pointing toward the sun normally for 10 hours of the day is shown in next figure 

to illustrate the point.  

 

Figure 7: Energy balance analysis over one load cycle 

 

The solar array is sized such that the two shaded areas on two sides of the load 

line must be equal. That is, the area oagd must be equal to the area gefb. The 

system losses in the round trip energy transfers, e.g., from and to the battery, 

adjust the available load to a lower value as shown by the dotted line. 

 

1.1.5 Grid-connected systems. 

PV power systems have made a successful transition from small stand-alone sites to 

large grid-connected systems. The utility interconnection brings a new dimension in the 

renewable power economy by pooling the temporal excess or the shortfall in the 

renewable power economy by pooling the temporal excess or the shortfall in the 

renewable power with the connecting grid. This improves the overall economy and the 

load availability of the renewable plant; the two important factors of any power system. 

The grid supplies power to the site loads when needed, or absorbs the excess power 

from the site when available. One kWh meter is used to record the power delivered to 

the grid, and another kWh meter is used to record the power drawn from the grid. The 

two meters are generally priced differently. 

Next figure is a typical circuit diagram of the grid-connected photovoltaic power 

system: 
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Figure 8: Electrical schematic of a grid-connected photovoltaic system 

 

It interfaces with the local utility lines at the output side of the inverter as shown. A 

battery is often added to meet short term load peaks. 

In recent years, large building-integrated PV installations have made significant 

advances by adding the grid-interconnection in the system design.  

PV systems interface the grid at the output terminals of the synchronizing breaker at the 

output end of the inverter. The power flows in either direction depending on the site 

voltage at the breaker terminals. The fundamental requirements on the site voltage for 

interacting with the grid are as follows: 

 The voltage magnitude and phase must equal to that required for the desired 

magnitude and direction of the power flow. The voltage is controlled by the 

transformer turn ratio and/or the rectifier/inverter firing angle in a closed-loop 

control system. 

 The frequency must be exactly equal to that of the grid, or else the system will 

not work. To meet the exacting frequency requirement, the only effective means 

is to use the utility frequency as a reference for the inverter switching frequency. 

The synchronizing breaker has internal voltage and phase angle sensors to monitor the 

site and grid voltages and signal the correct instant for closing the breaker. As a part of 

the automatic protection circuit, any attempt to close the breaker at an incorrect instant 

is rejected by the breaker. Four conditions which must be satisfied before the 

synchronizing switch will permit the closure are as follows: 

 The frequency must be as close as possible with the grid frequency, preferably 

about one-third of a hertz higher. 

 The terminal voltage magnitude must match with that of the grid, preferably a 

few percent higher. 

 The phase sequence of the two three-phase voltages must be the same. 
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 The phase angle between the two voltages must be within 5 degrees. 

 

In this way, any small mismatch between the site voltage and the grid voltage will 

circulate an inrush current between the two such that the two systems will come to 

perfect synchronous operation. 

 

1.1.6 Power fitting-out: the PV inverter. 

The component responsible of making the appropriate electrical conversion DC/AC is 

the inverter. The most common waves generated by inverters are called “pure sine” and 

“modified sine” (or trapezoidal). In next figure both sort of waves are shown: 

 

 Figure 9: Pure sine wave VS Modified sine wave. 

 

For PV systems grid-connected the energy generated is transferred to conventional 

electric power network, so mentioned energy must be “pure sine” with the same 

electrical characteristics (voltage and frequency) than Company provider. In next figure 

it is shown the typical schema for grid-connected inverters: 

 

Figure 10: Typical schema for grid-connected PV systems. 

The efficiency of the inverter is a parameter of great importance, as long as it shows 

how the inverter behaves for different power levels (apart from nominal). The efficiency 

of the inverter varies with the load level. Although this relation is different for each 

inverter, a conventional model has a load/efficiency curve similar to figure shown down 
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here. Therefore, a key consideration in the design and operation of inverters is how to 

achieve high efficiency with varying power output.  

 

Figure 11: Typical inverter efficiency curve 

 

So when talking about efficiency, the main difference between inverters is its 

performance at low power (apart from existing losses, inverters need to use some power 

to execute conversion process). 

Another important characteristic for grid-connected inverters is its capacity for tracking 

Maximum Power Point. 

 

Maximum Power Point Tracker (MPPT) 

The electric power supplied by a photovoltaic power generation system depends on the 

solar radiation and temperature. But designing efficient PV systems heavily emphasizes 

to track the maximum power operating point. 

The amount of power generated by a PV depends on the operating voltage of the array. 

A PV‟s maximum power point (MPP) varies with solar insulation and temperature. Its 

V-I and V-P characteristic curves specify a unique operating point at which maximum 

possible power is delivered. At the MPP, the PV operates at its highest efficiency so 

many methods have been developed to determine MPPT. 

Inverters/converters must guarantee that the PV module(s) is operated at the MPP, 

which is the operating condition where the most energy is captured. This is 

accomplished with an MPP tracker (MPPT). 

To understand how MPPT works, following we will explain a simple but efficient 

method used for this purpose, based on a DC/DC converter as shown in the figure: 
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Figure 12: MPPT circuit based on P&O technique 

 

This circuit is based on a P&O technique (Perturb and Observe). The key of this circuit 

consist of a switcher that can be opened and closed thousand times per second, so the 

voltage between coil‟s terminals (VL) when switcher is closed depends on the voltage 

VB and the working cycle (m) of switcher. 

 

This working cycle is defined as the time the switcher is closed and its switching period, 

this means: 
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m = TON/T 

When switch is closed, voltage in PV panel (VS) is equal to: 

VS = VL+VB 

, so with a suitable working cycle we could make this sum was equal to the voltage at 

the MPP and the problem would be solved. 

An easy way of determining the appropriate working cycle could be: 

i. Start with m = 1, so VL (switch closed) is 0, and therefore Vs = VB  

ii. With this voltage, PV panel produces a current corresponding with working 

point “1”. 

iii. The micro-controller calculates power generated by panel (P = i x VB), and 

decreases a little the working cycle of switcher. This decrease means an 

increase in coil‟s voltage (VL) and therefore in panel‟s voltage (Vs). So the 

working point moves to “2” (with a new load current).  

iv. The micro-controller calculates power generated by panel again, and if it is 

bigger than before, it decreases once more switcher‟s working cycle, 

increasing VL and passing to a working point between “2” and MPP. This 

process would keep repeating till the system gets to the point MPP. 

v. Once reached the point MPP, the next decrease in working cycle would take 

us to the point “3” and therefore would cause a decrease in the power 

calculated by micro-controller, who will react increasing slightly the cycle 

(and so decreasing Vs and rising again through V-I characteristic). 

vi. With this easy procedure, variations in MPP caused by deviations in 

temperature or irradiance can be followed so the PV panel would be 

producing always the maximum power available. 

The converter just depicted is called “voltage reducer” (or current increaser). It is the 

most frequent as long as MPP of PV generator is usually bigger than the voltage in the 

battery. But there exist “voltage increaser” converters too.  

Through MPPT control the power provided by PV panels can be increased around 30%. 

However it is necessary take into consideration that it would not be useful getting 30% 

additional power if MPPT‟s efficiency is just 70%. Fortunately, most MPPT nowadays 

exceed 90% efficiency. 
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2. SYSTEM DESCRIPTION 

Our 20 kW grid-connected system has been placed in Katerini, the capital of Pieria 

prefecture (Central Macedonia, Greece), between Mt. Olympus and the Thermaikos 

Gulf, at an altitude of 14 m.. 

 

Figure 13: Location of PV System under analysis 

 

2.1  Electrical diagram of the Grid-Connected PV System. 

The electrical diagram of Grid-Connected PV System under analysis is shown in next 

figure. 

 

 

http://en.wikipedia.org/wiki/Thermian_Gulf
http://en.wikipedia.org/wiki/Thermian_Gulf
http://en.wikipedia.org/wiki/Thermian_Gulf
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Figure 14: Electrical diagram of the Grid-connected PV System 
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2.1.1 Solar Array. 

The existing PV array is comprised of 111 Sharp NU-S0(E3Z) PV mono-crystalline 

silicon modules with following electrical characteristics: 

 

Figure 15: NU-S0 (E3Z) electrical data (under STC). 

 

The 111 panels of 180 Wp each one produce a total power capacity of 19.98 kWp. The 

solar field is made up of three subarrays of 37 modules with 30º tilt (optimum for 

Katerini). Each subarray is arranged in two strings: 

 String A: 19 modules connected in series 

 String B: 18 modules connected in series 

 

Figure 16: Photography of the different strings composing the solar-field. 
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2.1.2 Grid-connected inverter. 

The grid-connected inverters used to convert DC power from PV subarray to AC power 

on grid have been SMA Sunny Boy 5000TL. Three inverters were employed, each one 

connected to a subarray (two strings), as shown in next figure: 

  

Figure 17: 3 inverters SMA 5000TL connected with 111 PV panels. 

 

Each inverter has two input areas, “String A” and “String B”, each with their own MPP 

tracker. The inverter is designed for operation on 220-240 V grids at a grid frequency of 

50 Hz.   

Main limits reached by inverter are depicted in next figures: 

 

Figure 18: DC side limits 

 

Figure 19: AC side limits 

The efficiency of the Sunny Boy inverter used depends mainly on the input voltage of 

the connected PV strings. The higher the input voltage, the higher the efficiency. 
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Figure 20: SMA Sunny Boy 5000 TL efficiency curve 

 

2.1.3 Control and Monitoring System. 

The control of inverter operating function depends on the inverter itself. This means that 

the inverter will be turned on in the morning and will automatically synchronize to the 

electric grid. After being operative all day until the evening, it will just automatically 

shut down.  

For the monitoring of the System, there exists a measurement device inside SMA Sunny 

Boy 5000 inverter which records all data related to system performance.  

Thanks to this system of monitoring, we have compiled info of the PV installation 

during 6 months, time enough to draw conclusions after a detailed analysis on data 

available. 

So from now on, present report will focus on the analysis of data obtained with the 

purpose of evaluate whole system operability and performance, as well as other matters 

of interest.  
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3. INVERTERS EFFICIENCY 

This section is intended to establish the conversion efficiency of the system inverters 

between the DC source (PV) input and the AC output. The series of analysis described 

in this section will characterize the unit‟s performance and efficiency as a function of 

array power. 

 

3.1  First Approach. 

Original .xls data files provided by SMA SunnyBoy 5000 inverters have been converted 

into a hyper-matrix MATLAB for its handling. 

Once loaded in MATLAB all available data, we can start processing them. For such 

purpose, the first approach to our system consists on the graphical representation of 

inverters efficiency as a function of output power, for every available day: 
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Figure 21: Output Power VS Efficiency, for every available data per day 

 

From previous figure we can note at first sight how efficiency curves are, 

approximately, for every inverter. In mentioned figure, efficiency curve for every 

available day have been overprinted. To have a more clear view of the same graphic, 

let‟s plot it in a 3-D graphic, including in a new axis indicating the sequence of days:   
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Figure 22: 3-D Output Power VS Efficiency, for every available data per day 

 

In this point we can check that there are some punctual “erroneous data” due to 

operating failures of the system (inverter shutdown, grid disturbances, etc.)  

After erasing erroneous samples (for example, those who have efficiency value higher 

than 1), we can plot the same figures as before: 
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Figure 23: Output Power VS Efficiency, for every available data per day [no error data] 



Measurements and Analysis of a 

20 kW Grid-Connected PV System 

 
 

Department of Electrical and Computer Engineering - 36 - 

 

 

 

Figure 24: 3-D Output Power VS Efficiency, for every available data per day [no error data] 

 

From this first approach it seems that PV system is working quite properly. But for 

assuring this assertion, we will make further analysis on it.  

 

3.2  Inverter efficiency variation. 

Inside this section we will focus on the analysis of inverter 1, being the results and 

conclusions here obtained extensive to the other inverters of our PV system. 

Let‟s plot now the graphic of Efficiency VS Output Power, attending to different input 

voltage. Firstly, we have chosen as input voltage the same as indicated by the 

manufacturer in the efficiency curve provided: 

 300 V (green coloured, allowing range of voltage between 280 and 320 V) 

 400 V (blue coloured, allowing range of voltage between 380 and 420 V) 

 520 V (red coloured, allowing range of voltage between 500 and 540 V) 
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Figure 25: Output Power VS Efficiency, for input voltage indicated by manufacturer 

 

However, choosing the voltages indicated by manufacturer as just done, we loose a lot 

of samples as long as our PV device is working to different input voltages. We can see 

it in the following histogram: 
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Figure 26: Distribution of input voltage among three bins 
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The three bins shown are centred in the points 86.167, 258.5 and 430.83, so for 

checking the whole efficiency shape we will consider now the following 3 main ranks: 

 Green coloured: [30-160] V 

 Blue coloured: [200-330] V 

 Red coloured: [360-500] V 

Considering these wide ranks, we are covering most input voltage possibilities, 

obtaining the following figure: 
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Figure 27: Output Power VS Efficiency, for different ranges of input voltage 

 

Manufacturer indicated that “the higher the input voltage, the higher the efficiency”, 

which agrees with picture just shown. But in this point we can‟t explain yet the reason 

of the efficiency width observed: is it just due to wide input voltage considered? Or ther 

is any other parameter affecting efficiency curve? 

To solve this question, in the following figure we show Efficiency VS Output Power for 

every available sample (making no distinction on input voltage). However, now we 

make following distinction: 

 Green coloured: first half of the day (starting with the sun-rise) 

 Red coloured: second half of the day (ending with the sun-set) 
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Figure 28: Output Power VS Efficiency attending to the moment of the day 

 

Analysing this figure isolated, we could deduce that the inverter behaves as if it had an 

hysteresis-cycle which causes a better efficiency during the switch-on (input voltage 

increasing) than during the switch-off (input voltage decreasing). This effect very 

probably could be attributed to the temperature increase of the inverter over the course 

of the day. 

However, as long as the efficiency of the Sunny Boy depends mainly on the input 

voltage of the connected PV strings (the higher the input voltage, the higher the 

efficiency) we can try to make a more precise delimitation on the input DC voltage. So 

let‟s consider now a very particular input voltage case that matches with the info 

provided by the inverter manufacturer. For such purpose we select the value V = 400 V 

(actually we will allow a small voltage rank, [398 - 402], in order to take into account a 

significant number of samples). The new figure obtained is shown next: 
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Figure 29: Output Power VS Efficiency when input voltage is 400 V 

 

Even if we have fixed a very specific input voltage, we can check that there exists still 

some kind of “hysteresis” or margin within the efficiency. So in order to know if this 

behaviour can be assigned to the moment of the day, we will plot the same figure as 

before but making a distinction: in green colour we will show the first half of the day 

(sun-rise), and in red colour we will show the second half of the day (sun-set). 
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Figure 30: Output Power VS Efficiency when input voltage is 400 V [sunset/sunrise] 
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We can assert that for a given input DC voltage there will be different efficiency 

depending on the moment of the day, which stresses the importance of the 

increasing ambient temperature. 

Now we are going to plot the same figure as before (Vdc = 400V) but including the 

average efficiency value for every output power, so that we can make a comparison 

with the data provided by manufacturer. 

 

Figure 31: Real VS Manufacturer efficiency curve 

 

To make a fair comparison of the inverters under partial load conditions, we can 

calculate the “European Standard Efficiency”. According to its definition, the efficiency 

for each inverter must be computed at six different operating points, based on “average” 

components from the component survey as indicated in the next formula:  

 

ηEU = 0.03×η5% + 0.06×η10% + 0.13×η20% + 0.10×η30% + 0.48×η50% + 0.20×η100% 

 

In this formula the individual efficiencies are weighted and summed up, while the index 

value is equal to percent of rated power. 

Using this definition we can calculate the real average efficiency of our inverter 

(regarding real measurements taken). For such purpose we will implement two different 

methods: 
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1. Let´s consider power ranges of 50 W: [0-50; 50-100; 100-150; ....; 4900-4950; 

4950-5000]. 

For each range we calculate the average efficiency, ascribing it to the maximum 

value of the range, i.e. the efficiency obtained for 2500 W of power will match 

the average efficiency between 2450 W and 2500W. 

Operating this way, we obtain the following results: 
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Figure 32: European standard efficiency [Method 1] 

 

ηEU = 0.03×η5% + 0.06×η10% + 0.13×η20% + 0.10×η30% + 0.48×η50% + 

0.20×η100% = 0.03×η250W + 0.06×η500W + 0.13×η1000W + 0.10×η1500W + 

0.48×η2500W + 0.20×η5000W = 0.03×0.7925 + 0.06×0.8757 + 0.13×0.9179 + 

0.10×0.9365 + 0.48×0.9526 + 0.20×0.9584 = 0.9382 

 

 

2. The second method is more precise. We consider now power gaps of 25 W: [0-

25; 25-50;...; 4950-4975; 4975-5000]. 

For calculating the average efficiency at a power point X, we will use the 

average efficiency in the interval [X-25, X+25] W. 

Proceeding in this way, we get the next results: 
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Figure 33: European standard efficiency [Method 2] 

 

 

ηEU = 0.03×η5% + 0.06×η10% + 0.13×η20% + 0.10×η30% + 0.48×η50% + 

0.20×η100% = 0.03×η250W + 0.06×η500W + 0.13×η1000W + 0.10×η1500W + 

0.48×η2500W + 0.20×η5000W = 0.03×0.8084 + 0.06×0.8786 + 0.13×0.9199 + 

0.10×0.9365 + 0.48×0.9502 + 0.20×0.9585 = 0.9380 

 

Considering all the measurements taken, we can finally determine that the European 

standard efficiency of the inverter SMA 5000 in our system is 93.8 %, being 

slightly smaller (1.7%) than the one indicated by the manufacturer. 

 

 

Figure 34: European standard efficiency [Manufacturer] 

 

However, the efficiency we have calculated ourselves can not be immediately compared 

with the efficiency specified in the data sheet (95.5%) because of multiple reasons: 

 Inverter measuring devices: 
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Measuring devices integrated into the inverter ensure the proper system 

management of the inverter. The inverter‟s task is to determine the operating 

point along with the maximum yield. Therefore, to achieve maximum energy 

conversion it is crucial for the inverter to precisely detect changes in parameters, 

such as grid current of PV voltage. In this case, high reproducibility is more 

important than absolute accuracy. 

The SMA 5000 measuring device does not meet the high standards of calibrated 

measurement equipment. The inverter‟s measuring channels may have a 

tolerance of up to ± 4 % for DC measurements and up to ± 3 % for AC 

measurements (based on the respective final value of the measurement range 

under nominal conditions). As a result, the relative deviation may also be 

correspondingly larger if the feed-in power is low. These deviations have a 

proportional effect on the derived measurements. 

 The efficiency of the inverter: 

The efficiency specified for the inverter is determined using a high-precision 

measuring process and represents the ratio of the output power to the input 

power during nominal conditions. Inverters not operated under nominal 

conditions, but rather under other conditions, such as with deviating input 

voltages, under partial load or at an increased ambient temperature produce 

deviating efficiency values. 

 Determining the Efficiency by Producing a Ratio: 

An efficiency calculation that produces a ratio of the input and output values 

displayed or measured on the inverter also yields invalid results. The reasons for 

this include the tolerances stated above (see “Inverter measuring devices”) 

involved in the acquisition of measured values as well as a slight time offset in 

the internal communication of the inverter or during the transmission to a data 

logger. As a result of these reasons, the current, voltage and power values for the 

display and the communication do not match exactly. During inconsistent 

weather conditions, i.e. if the radiation intensity suddenly changes, this result is 

also affected by the calculation of a mean value. 

 

3.3  Efficiency comparative between Inverters. 

 

3.3.1 Efficiency at “Inverter Level”. 

In order to provide a general overview of the behaviour of the 3 inverters, we will now 

represent the average efficiency of each one of them for every output power: 



Measurements and Analysis of a 

20 kW Grid-Connected PV System 

 
 

Department of Electrical and Computer Engineering - 45 - 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Output Power [W]

e
ff

ic
ie

n
c
y

Comparative between inversors

Inv1

Inv2

Inv3

 

Figure 35: Inverters’ efficiency 

 

In figure 35 we can check that the Inverter number 2 has significantly better 

efficiency behaviour than inverters 1 and 3. Now we will explain the reason for this 

efficiency difference between inverters. 

 

3.3.2 Efficiency at “String Level”. 

The way we calculated the efficiency for each one of the inverters is as follows: 

 

η = Output AC Power/ (DCPowerStringA + DCPowerStringB) = PAC / (PDCA + PDCB)     

[EQ.2.2.1] 

 

But in order to discover why inverter 2 has a significantly better efficiency than 

inverters 1 and 3, we must get a higher level of detail. So now we will analyze the 

efficiency of each one of the strings (A and B) separately, in order to find out an answer 

to our question. 

First of all, let‟s see which is the relation between the global efficiency of each inverter 

(calculated as indicated above) and the efficiency of each string. For such purpose we 

define two new variables: 
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ηA = PAC / PDCA   

[EQ.2.2.2] 

ηB = PAC / PDCB    

[EQ.2.2.3] 

 

Using these new efficiency variables separately, we can now plot the efficiency of each 

string for every inverter: 
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Figure 36: Strings efficiency 

From figure 36 we could conclude: 

1. Strings “A” with 19 panels (plotted with „x‟) have always less efficiency than 

strings “B” with 18 panels (plotted with „o‟). 

2. The efficiency is near to the value 2 (with no physical but mathematical 

meaning).  

These conclusions are wrong because do not take consideration on the way we have 

calculated the efficiency for each one of the strings [EQ.2.2.2] and [EQ.2.2.3], so: 

1. As long as DC power of strings with 19 panels is slightly bigger than DC power 

of strings with 18 panels, meanwhile the output AC Power considered is the 

same for both strings (it is obtained with the sum up of both contributions), the 

efficiency will behave as shown in the previous figure.  
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2. Due to this way of calculating the efficiency for every string, which considers as 

numerator the output power obtained by both strings of each inverter, 

meanwhile considers as denominator the DC power obtained by only one of the 

strings, we get to efficiency values over 1. 

Anyway, we could have corrected the behaviour depicted by applying corrector factors 

(18/37 for the 18 panel string and 19/37 for the 19 panel string), but we did not because 

that was not the main point of the question we are trying to ask. 

So once clarified the real meaning of the last figure shown, we will focus again in the 

problem we are trying to solve: why there is a significant difference in efficiency 

between inverters 1 and 3, and inverter 2? 

Let‟s now remember the expressions [EQ.2.2.1], [EQ.2.2.2] and [EQ.2.2.3], trying to 

find out which is the link between them so we can analyze what happens to the global 

inverter efficiency (EQ. 2.2.1) in relation to the behaviour of each one of its strings (EQ. 

2.2.2 and 2.2.3): 

 

η = PAC / (PDCA + PDCB )          [EQ.2.2.1] 

ηA = PAC / PDCA              [EQ.2.2.2] 

ηB = PAC / PDCB              [EQ.2.2.3] 

η 
-1

= (PDCA + PDCB ) / PAC = (PDCA / PAC) + (PDCB / PAC) =   ηA
-1

 + ηB
-1

      [EQ.2.2.4] 

η = (η 
-1

)
 -1 

= (ηA
-1

 + ηB
-1

)
 -1

 = ((1/ηA)+(1/ηB))
 -1

 = ((ηA + ηB)/( ηAηB))
-1

 =  

ηAηB/(ηA+ηB)           [EQ.2.2.5]    

 

The last equation shows us the relationship between inverter‟s global efficiency and the 

efficiency of each one of its strings. Paying attention, we can find out a logical 

parallelism: the equivalent efficiency of two strings associated “in parallel” behaves in 

the same way as the equivalent resistance of two parallel resistances. So going on with 

this parallelism, we can assert that: 

 It is important to note that the equivalent resistance of two resistors in parallel is 

always smaller than either of the two resistors, so the efficiency of the inverter 

will be lower than the lowest efficient string. 

 To maximize the efficiency of the inverter, the efficiency of each one of the 

strings should be as similar as possible to the efficiency of the other string. 
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These assertions can be checked out easily through a graphic, so in the next figure we 

show how the global efficiency of the inverter varies in function of the efficiency of 

each string. 

 

Figure 37: Inverter efficiency as a function of strings efficiency 

 

As shown in figure 37, the best inverter efficiency will be provided when both strings 

have similar efficiency values (ideally equals) and this value is maximum. 

Keeping in mind all these considerations, if we check again figure 36 we will extract 

now a new valuable information: inverter 2 is the best inverter (in efficiency terms) 

not only because each one of its strings (A and B) has the highest value in their 

group, but also because they are the pair of strings with the most similar behaviour 

in relation with each other amongst the available.   

 

3.3.3 Efficiency at “PV Panel Level”. 

Now that we have solved out that inverter 2 is the most efficient for the reasons 

explained, let‟s try to go one step beyond getting the core of the matter by discovering 

what is the underlying reason that makes one inverter being more (or less) efficient than 

another one. 

Stepping now into a higher level of detail than before, in the next figure we can see the 

power distribution of panels and the strings they were assigned to: 
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Figure 38: Panels assigned to each inverter 

 

All the panels in every string are connected in series, so the total DC voltage of the 

string will be calculated as the addition of each element while the total DC current of 

the string will be limited by the lowest Ipm of the string. According with the power 

distribution of panels stated before, we have: 

 

 
Vpm String 

A (Vdc) 
Ipm String 

A (Adc) 
Vpm String 

B (Vdc) 
Ipm String 

B (Adc) 
Max. Power 

(Wdc) 

Inverter1 444,39 7,82 424,1 7,69 6736,46 

Inverter2 449,67 7,78 427,62 7,53 6718,41 

Inverter3 444,14 7,87 425,66 7,73 6785,73 

Figure 39: Maximum power generation per inverter 

 

From figure above we conclude that strings connected to inverter 2 are the ones with 

least maximum power generation capacity. 

In the next graphs, we plot the behaviour of all the strings in terms of Vdc and Idc for 

two output power (Pac): 0.5 kW and 4.5 kW. 
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Figure 40: a) Vdc vs Idc when Pac=500 W; b) Average Vdc vs Idc when Pac=500 W 
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Figure 41: a) Vdc vs Idc when Pac=4.5 kW; b) Average Vdc vs Idc when Pac=4.5 kW 
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Figures 40 and 41 confirm the expected results: inverter 2 is the one working under 

lowest load condition (lowest Idc and Vdc) meanwhile inverter 3 is the one working 

under highest load condition (highest Idc and Vdc), with inverter 1 being in the middle 

of both. The behaviour just depicted is responsible of making inverter 2 (coloured in 

green) the most efficient in the group meanwhile inverter 3 (coloured in blue) is the 

least efficient. 

From the study executed till now, we can conclude that inverter 2 is significantly the 

most efficient of the three inverters, even if paradoxically it is the inverter with lowest 

maximum capacity of generating DC Power (check figure 39).  

So the lower generation of energy from Inverter 2 seems could be compensated thanks 

to a better efficiency performance. To verify if this compensation between efficiency 

and generation capacity becomes true, we will now make a comparison between all 

inverter performances. 

 

3.4  Inverters performance comparison. 

To make comparison between the 3 inverters, we will take as reference the inverter 

number 1. 

We will consider a complete set of cases in which inverter 1 provides next fixed output 

power: 0.5 kW, 1 kW, 2 kW, 3 kW, 4 kW and 5 kW.  

Immediately after we will represent the behaviour provided by inverter 2 and inverter 3 

for such situation (which means that we will check the power the other inverters are 

providing, meanwhile inverter 1 is providing a given particular power). 

In next figure we can compare Inverter 1 against Inverter 2. Apart from “real” 

comparison, we include a “theoretical” expected result. As long as the 3 inverters are 

supposed to be the same and working in similar load conditions, we have assumed that 

the “theoretical” expected result should be a straight line with slope equal to 1 and 

offset equal to 0: 
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Figure 42: Inverter 2 performance, for a set of given output power from Inverter 1 

 

Now, let‟s check inverter 1 and inverter 3 by means of the next figure: 

 

Figure 43: Inverter 3 performance, for a set of given output power from Inverter 1 
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As it was expected, we can check in figures 42 and 43 that inverters 1, 2 and 3, have a 

close behaviour for all the possible output power values. So when one of the inverter is 

providing a given output power “X”, all the other inverters will be providing a similar 

output power “X”, with a very little range of variation. Moreover, if talking in average 

terms, we can check from figures 42 and 43 that this assertion takes meaningful sense as 

long as the average “real” value (indicated with a blue cross in the figures) matches 

with a significant precision with the “theoretical” expected result. 

From all the investigation performed until this moment, we can check that the whole 

system is working properly, meaning that the power generation of the 3 inverters with 

equally distributed strings of panels, is being approximately the same for all of them (as 

it was expected to be).  

So as a general conclusion we can state that: 

 When the whole system is appropriately designed, the inverters capacity 

MPPT (Maximum Power Point Tracker) will take care of compensating 

little disturbances, such as: 

o Non-ideal panels, causing efficiency performance deviations due to: 

 Different power distribution 

 Different Ipm and Vpm 

, and finally leading us to a balanced system. 

 

In the following section, we will make considerations about power generation of all the 

inverters during the period with available data [10/03/08 – 25/09/08], so finally we will 

be able to confirm the assertion previously stated. 
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4. Real “production” measurements VS SW Simulation  

The aim of this section is triple: 

 To lay the foundations of the previously executed analysis. 

 To compare the real measurements on energy production obtained in our 20 kW 

grid-connected PV system with the output of simulation software (PVSYST), 

checking out if simulation and measurements are close or there was any 

significant error. 

 Quantify the adjustment of inverter sizing in the PV system developed, and 

compare them with the results we would have got considering different inverter 

values. 

 

4.1  Real Measurements. 

In order to have a global vision of the energy generated per day and per inverter, let‟s 

have a look at the next figure: 
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Figure 44: Sequence of energy generated per available data day per inverter  
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In figure 44 we can check that the energy generated per inverter is normally the same 

for the three inverters for a given day, even if this generation varies significantly 

depending on the period of the year (irradiance, temperature, sky clearness, etc.). So as 

it was predictable during March (first days of the graph) the production is lower than 

during summer months (about the range of days [30-80]). 

 

Figure 45: Total energy generated per month  

 

In previous figure we can check how the global energy production of our system gets to 

its maximum during sunny and sky-cleared months (May, June, July and August), 

meanwhile decreases significantly during the beginning of spring and beginning of 

autumn (March and September). During the month of April, measurements could not be 

collected. 

Considering individually the production of energy generated by each inverter, we can 

verify that the contribution of each inverter is similar every month, getting to maximum 

values during the mentioned sunny and sky-cleared months, as can be checked in next 

figure: 
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  Figure 46: a) Energy generated per month per inverter       b) Total energy generated by global system  

 

From figures shown above and according with all the results obtained till now, we can 

say that, even if the panels associated to each inverter string and their efficiencies vary 

from one to another, when talking about energy generation every inverter behaves in a 

very similar way. 

To be more precise about how this energy distribution is as symmetrical as desired, we 

show in next pie diagram the percentage of global energy generation produced by each 

one of the inverters monthly, illustrating how energy generation is equally distributed 

amongst inverters. 

 

Figure 47: % of energy generated per month per inverter (regarding the whole system) 
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4.2  SW Simulation. 

The chosen software for making the comparison has been PVSYST 4.1, a PC SW 

package for the study, sizing, simulation and data analysis of complete PV systems, 

including grid-connected, stand-alone, pumping and DC-grid systems. 

In addition to this, PVSYST will offer us an extensive meteorological and PV-

components database which can be modified and customized according with the results 

obtained in the previous study on inverter efficiency. 

Following we show the way the simulation was performed. Firstly, we select “Project 

design” for a “Grid-connected” System, as indicated in the figure: 

 

Figure 48: Grid-connected design 

 

Once selected the type of system, we complete all the variables related to our 20 kW 

grid-connected PV system. 

 

Figure 49: Set of variables defining PV system considered 
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This engineer-oriented part is aiming to perform a thorough system simulation using 

detailed hourly data, including: 

 A large database of PV components, location and meteorological sites. 

 Definition of the plane orientation, near shading and horizon. 

 An expert system to facilitate the PV system layout definition. 

As our system was designed with optimal tilt planes for annual yield, the collector field 

orientation considered is as shown next: 

 

Figure 50: Collector field orientation 

 

Considering the optimum tilt (30º) and given that our PV system is located in open field 

(“no shading” scenario), we obtain the following horizon line drawing: 

 

Figure 51: Horizon line drawing (open field PV system) 



Measurements and Analysis of a 

20 kW Grid-Connected PV System 

 
 

Department of Electrical and Computer Engineering - 59 - 

 

Once we have defined all the previous variables we only have to indicate the system 

characteristics: 

 Inverters 

 Modules 

 Array design 

The inverter and modules used in our system located in Katerini are not available in the 

PVSYST database. However as long as we know their characteristic we can “create” 

these new elements adding them into the database mentioned. 

Referring to the inverter definition for the simulation, we have considered both 

manufacturer specifications and experimental conclusions obtained in previous sections 

of the present report. Besides, we have just verified that every inverter was performing 

similar energy production values. So for efficiency curve, we have considered as pattern 

model the experimental curve obtained for inverter 1.  

In next figures we indicate all the parameters that were included during the definition 

phase of the inverters for the simulation phase. 

 

 

Figure 52: Inverter efficiency curve 
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Figure 53: Inverter general data 

 

The power distribution amongst PV panels, as we saw in figure 38, is not ideal. But for 

their simulation, the same as for inverters case, the problem can be simplified 

considering the 111 panels identical to each other and with technical specifications 

indicated by manufacturer (introduced in PVSYST as indicated in figure 54). So, 

referring to the PV module simulation, the criteria considered are: 

 

Figure 54: % of energy generated per month per inverter, regarding whole system 

 

Both simplifications (considering 3 inverters and 111 PV panels identical to each other) 

can be done without fear of making any mistake since in the previous study of our 
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system, measurements and behaviour, we have checked this as a reasonable 

approximation. 

Once defined the inverter and modules used in our PV system, we just have to indicate 

to the PVSYST SW the array designed. But in this point we find a problem with the 

simulation due to the design implemented. 

As we are using a 180 Wp PV module, to get to the desired total power of 20 kW we 

needed 111 modules (which provide us 19.98 kW). As the inverter selected is a multi-

string one, 19 modules have been allocated in the String A and 18 modules in the String 

B for each one of the 3 SMA inverters available, dividing up in such way the 111 

available modules. 

So even if it did not have physical logic, for the simulation we could consider a total 

amount of 6 Strings (two per inverter) with “18.5” (average value between 18 and 19) 

PV modules each String. The problem is that PVSYST does not accept this 

mathematical abstraction with no physical sense, as indicated in the following figure: 

 

Figure 55: “Number conversion error” screen 

 

So in the present state PVSYST is only able to treat homogeneous fields and systems 

(same module and number of modules, same inverter). 

The development of this opportunity of multistring inverters is planned for future 

versions, even if this is really not easy to realize in full generality. In the meantime, 

when two different inverters or numbers of modules in series are present, we have to 

perform two different simulations with homogeneous systems, and add the results. 
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With multistrings inverters as SMA there is no direct possibility of different strings. But 

we can approach the result by performing a simulation with each configuration and take 

the average. 

So we have divided the original problem into two new problems. On the one hand we 

will have two strings of 18 panels each one connected to one inverter, and on the other 

hand we will have two strings of 19 panels each one connected to another inverter.  

So, averaging both results, we will find out the simulation of a system with one inverter 

and two strings of 19 and 18 PV panels. If we multiply these results by a factor 3, we 

will get an approximate simulation of our system (3 inverters, each one with two 

unbalanced strings of 19 and 18 PV panels). 

To obtain a whole description of our system in terms of balances and main results, we 

will collect next data: 

 Horizontal global irradiation 

 Ambient temperature 

 Global incident in collector plane (considering optimum angle used) 

 Effective global, corrected for shadings and IAM (Incidence Angle Modifier, 

corresponding with he weakening of the irradiation really reaching the PV cells' 

surface, with respect to irradiation under normal incidence. In principle, this loss 

obeys Fresnel's Laws concerning transmission and reflections on the protective 

layer, the glass). 

 Effective energy at the output of the array 

 Available energy at Inverter Output 

 Efficiency of the array (Energy at the output of the array / rough area) 

 Efficiency of the whole system (Energy at inverter output / rough area) 

 

Operating in this way, we got following simulation results: 
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Figure 56: Balances and main results for inverter with (2x19) strings 

 

 

Figure 57: Balances and main results for inverter with (2x18) strings 

 

With the data shown above we can now calculate the average main results for one 

inverter with strings 1x19+1x18: 

 

Figure 58: Balances and main results for one inverter with (1x19 + 1x18) strings 
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And multiplying these results by 3, we obtain the global simulation results for the PV 

system finally implemented: 

 

Figure 59: Balances and main results for three inverters with (1x19 + 1x18) strings 

 

And the corresponding loss diagram for this scenario is: 

 

 

Figure 60: Loss diagram for three inverters with (1x19 + 1x18) strings 
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In next figure we show these simulation results in a graphical way: 
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Simulation: Monthly generated energy (1 inv.)

 

Figure 61: Simulation of monthly generated energy for one inverter with (1x19 + 1x18) strings 

 

And considering three identical inverters (as stated and justified previously), we can 

obtain the simulation of the total amount of energy generated monthly by our 20 kW 

photovoltaic grid-connected system during a period of one year: 
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Figure 62: Simulation of monthly generated energy for our 20 kW grid-connected system. 
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4.2.1 Inverter sizing. 

During the design phase of our 20 kW photovoltaic system, it was decided to allocate 

three inverters of 5 kW. It could seem that the system is under-sized from inverters 

point of view, because the sum of inverters capacity just provides 15 kW while the 

maximum generation capacity could reach to about 20 kW. 

However, both general system design recommendations for grid-connected PV 

installations as well as particular previous studies focused on the north of Greece, lead 

to install inverters with a nominal capacity power considerably smaller than the PV 

array‟s nominal power, due to: 

1) PV systems almost never have a Direct Current output equal to their nominal power, 

so inverters are usually sized with a nominal power some 25% below the PV array 

nominal power. 

2) For partial loads under 20% of nominal power, state-of-the-art inverters operate at 

reduced peak efficiencies, needing loads over 30% of their nominal power to obtain 

acceptable efficiencies (as we have checked before in the present report). This 

means that oversized inverters (or excessively tighted to the array nominal power) 

might operate at low capacity levels for long periods of the day and therefore 

accumulate long intervals with performance levels below maximum.  

3) Inverter sizing strategy followed during the design phase took into account site-

dependent peculiarities previously analyzed, such as inverter operating temperature 

or solar irradiation distribution characteristics. 

To confirm all these assertions verifying that the system was well designed from the 

point of view of inverters sizing, we will compare SW results for different inverters 

capacities subject to study, considering two scenarios: 

A) Using the same inverter size (5 kW): 

A.1) Inverter sizing of 15 kW (3x5)  

A.2) Inverter sizing of 20 kW (4x5) 

B) Using different inverters size: 

B.1) Inverter sizing of 15 kW (3x5) 

B.2) Inverter sizing of 18 kW (3x6) 

B.3) Inverter sizing of 21 kW (3x7) 
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SCENARIO A 

This scenario is the most significant as long as we will compare different size 

configurations considering the same inverter (SMA 5000), so deviations between the 

cases compared can not be attributed to the different inverters characteristic curves. 

Moreover, to make the comparison as significant as possible, in this scenario we are 

going to consider 111 PV panels (to coincide with the number of panels used in the PV 

system under analysis). 

Let‟s note that the efficiency curve employed for these simulations is again the same to 

the efficiency curve obtained for inverter 1 based on the real measurements taken (see 

previous section in the present report): 

 

 

Figure 63: Efficiency curve considered for simulation of inverter SMA 5000 

 

    A.1) Total inverters capacity of 15 kW. 

The inverter capacity has been distributed in 3 inverters of 5 kW each one, 

according with the configuration chosen during design-phase and finally 

implemented in our PV system. 

The distribution chosen amongst inverters for the 111 PV panels providing 20 

kW is shown in figure 64. 
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Figure 64: 3 inverters SMA 5000TL connected with 111 PV panels. 

  

    A.2) Total inverters capacity of 20 kW. 

The inverter capacity has been distributed into 4 inverters of 5 kW each one. The 

distribution chosen amongst inverters for the 111 PV panels providing 20 kW is 

shown in figure 65. 

 

Figure 65: 4 inverters SMA 5000TL connected with 111 PV panels. 

 

The simulation of the first case (total inverters capacity of 15 kW) was shown in the 

previous chapter, so now we are not stressing on it again. With respect to the second 

case (total inverters capacity of 20 kW), just as we did before, the original problem has 

been divided into two new simulation cases: 

 One inverter with 2 strings of 14 strings. 

 One inverter with 2 strings of 13 strings.  
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So averaging in the one hand both simulation cases and on the other hand adding three 

times the balances of the first simulation case, we can find out an approximate 

simulation of the system desired, obtaining following simulation results: 

 

Figure 66: Balances and main results for 111 PV panels distributed amongst 4 inverters 

 

And the corresponding loss diagram for this scenario is: 

 

Figure 67: Loss diagram for 111 PV panels distributed amongst 4 inverters 
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As can be checked easily, when there are 3 inverters installed each one of 5 kW, the 

amount of energy generated yearly will be of 25.551,15 kWh, meanwhile when 4 

inverters installed, the yearly amount would be reduced in 175,9 kWh, till 25.375,25 

kWh.  

The reason for this difference can be explained directly when comparing loss diagram 

for both scenarios: 

 

Figure 68: Loss diagrams comparison (A.1 VS A.2) 

 

From previous figure we can conclude: 

 As it was predictable, Horizontal global irradiation, Effective irradiance on 

collectors and Array nominal energy are the same for both scenarios, as long as 

simulation conditions were the same. 

 However, there are some parameters which make the difference between both 

scenarios: 

o Ohmic wiring loss: Scenario A.1 has bigger loss than scenario A.2 (1.8% 

VS 1.7%). The reason explaining this difference is simple; meanwhile in 

scenario A.1 we are using strings of “18.5” panels, in scenario A.2 we 

are using strings of “13.875” panels, so the length of wire needed in the 

second case is smaller and in consequence “ohmic wiring loss” is smaller 

too. 

o Inverter loss during operation: now it is Scenario A.2 the one which 

presents bigger loss (5.9% VS 5.7%) under this concept. The reason that 

explain this behaviour is simple too; for scenario A.2 the total inverter 

capacity is oversized (actually, excessively tighted to the array nominal 

power), and for this reason inverters are operating at low capacity levels 
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for long periods of the day and therefore accumulating long intervals 

with performance levels below maximum. 

 

So we have just verified that the decision of installing a global inverter capacity of 

15 kW instead of 20 kW was the right one, as long as according to the simulation in 

this way we will obtain a bigger amount of energy not only yearly, but month too, 

at the same time that we are saving the investment cost of buying the fourth 

inverter. 

 

In next figure we can check in a visual way the results obtained for both cases, 15 kW 

and 20 kW inverter‟s total capacity: 
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Figure 69: Monthly energy generated when 3 and 4 SMA 5000 inverters are installed 

 

SCENARIO B 

This scenario is not as significant as the one considered previously as long as now we 

are considering different inverters (5 kW, 6 kW and 7 kW), and consequently, different 

characteristic curves.  
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However it is interesting to make this analysis too in order to evaluate if there would be 

a better configuration (in terms of energy production) than the one installed for our 

system. Moreover, to reduce complexity keeping the aim of the analysis, we will 

consider now 108 PV panels so the inverter distribution for this scenario will be as 

follows: 

 

Figure 70: Inverters distribution for Scenario B (considering inverters of 5, 6 and 7 kW). 

 

On the other hand, the three inverters considered now will belong to the same 

manufacturer (SMA), being: 

 5 kW inverter: SMA Sunny Boy 5000 TL 

 6 kW inverter: SMA Sunny Mini Central 6000 TL 

 7 kW inverter: SMA Sunny Mini Central 7000 TL 

As for inverter of 5 kW we can obtain the “real” efficiency curve (according with 

measurements and analysis done in the present report previously), but we can not make 

the same with inverters of 6 and 7 kW, in the present analysis we will consider the 

original characteristic curves provided by manufacturer without any correction. So 

efficiency curves considered for Scenario B are shown in next figures: 
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Figure 71: Efficiency curve indicated by manufacturer for Sunny Boy 5000 TL 

 

 

Figure 72: Efficiency curve indicated by manufacturer for Sunny Mini Central 6000 TL 

 

 

Figure 73: Efficiency curve indicated by manufacturer for Sunny Mini Central 7000 TL 
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From figures above we can realize that the recently appeared line of inverters “SMA 

Sunny Mini Central” (available since second semester of 2008), offer the highest 

efficiencies available nowadays, what means a great step forward in PV industry. This 

fact has been reached through an optimized MPP Tracker system and an innovative 

active cooling system. 

As a result of this advances, we can observe that SMA Sunny Mini Central not just 

offers a better maximum efficiency value when compared with SMA SunnyBoy but 

also improves efficiency for every output power threshold. As an immediate 

consequence of this fact, we can assume from this moment that very probably the 

energy production will be significantly improved when using this new line of inverters 

than when using previous state of the art inverters (like SunnyBoy).  

Following we will check if this supposition was right. 

 

    B.1) Total inverter capacity of 15 kW. 

In this case the total amount of inverter capacity is of 15 kW, distributed into 

three identical Sunny Boy inverters of 5 kW each one. 

The main results obtained for this simulation are depicted following: 

 

Figure 74: Balances and main results for 108 PV panels distributed amongst 3x5kW inverters 
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Figure 75: Loss diagram for 108 PV panels distributed amongst 3x5kW inverters 

 

    B.2) Total inverter capacity of 18 kW. 

In this case the total amount of inverter capacity is of 18 kW, distributed into 

three identical Sunny Mini Central inverters of 6 kW each one. 

 

Figure 76: Balances and main results for 108 PV panels distributed amongst 3x6kW inverters 
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Figure 77: Loss diagram for 108 PV panels distributed amongst 3x6kW inverters 

 

    B.3) Total inverter capacity of 21 kW. 

In this case the total amount of inverter capacity is of 21 kW, distributed into 

three identical Sunny Mini Central inverters of 7 kW each one. 

 

Figure 78: Balances and main results for 108 PV panels distributed amongst 3x7kW inverters 
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Figure 79: Loss diagram for 108 PV panels distributed amongst 3x7kW inverters 

 

As can be checked quickly for the cases considered in scenario B, as bigger is the 

installed inverter capacity bigger is the amount of energy produced. This increase 

in energy production is not significant when comparing energy produced in scenarios 

B.3 -inverter capacity of 21 kW producing 25,699 MWh/year- and B.2 -inverter 

capacity of 18 kW producing 25,691 MWh/year-, existing a difference of just 0.03%. 

But comparing scenarios B.3 and B.2 with B.1 (inverter capacity of 15 kW producing 

24,854 MWh/year), the difference in energy production is much bigger reaching to the 

value of 3.39%.  

The reason for this difference can be explained directly when comparing loss diagram 

for both scenarios: 
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Figure 80: Loss diagrams comparison (B.1 VS B.2 VS B.3) 

 

From previous figure we can conclude: 

 As it was predictable, Horizontal global irradiation, Effective irradiance on 

collectors and Array nominal energy are the same for both scenarios, as long as 

simulation conditions were the same. 

o Moreover, now ohmic wiring loss keeps the same for every case under 

analysis because we are always working with the same panel 

configuration (and so, the same wire length). 

 However, there is a fundamental parameter which makes the difference between 

both scenarios: 

o Inverter loss during operation: the inverter models used for this 

simulation have significant different efficiency curves: “euro efficiency” 

for case B.1 (Sunny Boy) is 3.9 points lower than for cases B.2 and B.3 

(Sunny Mini Central). This important difference is the one responsible of 

making energy production bigger for cases B.2 and B.3. 

 

All these results obtained for scenario B are shown in a graphical way in next figure: 
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Figure 81: Monthly energy generated when installing 15 SB kW, 18 SMC kW and 21 SMC kW of 

inverting capacity 

 

Anyway, these results could seem incoherent with conclusions obtained for 

scenario A, which established that we could improve our energy production if 

under-sizing properly our global inverter capacity. But the real truth is that both 

conclusions are right, being useful this apparent contradiction to stress on the 

importance of inverters efficiency curve.  

So the reason that makes energy production bigger when global inverter capacity 

is of 21 kW (or 18) than when it is of 15 kW, is not a better dimensioning condition 

but the use of more efficient inverters. 

** And not only more efficient from the point of view of maximum efficiency value, 

but mainly for every output power threshold!!! ** 

 

To prove previous assertion is truth we will make a final simulation repeating the 

analysis made previously for Scenario B, but now considering all our inverters (5, 6 and 

7 kW) behave in the same way from the perspective of efficiency (“Maximum 

efficiency” and “Euro efficiency” values). So the new efficiency values we will 

consider - for every inverter! - during this simulation will be the shown immediately 

following (matching with values for SMA Sunny Mini Central): 

 Max. efficiency: 98.00% 

 Euro efficiency: 97.70% 
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The new imposed condition will be considered as a new scenario, called B.4. This new 

scenario will be the same as B.1 (three 5 kW inverters) but considering the previously 

stated “rule”. It is convenient to emphasize that scenarios B.2 and B.3 will not be 

affected, as long as their efficiency curves are not modified by the new fixed efficiency 

values.  

Considering such conditions and operating properly, in next figure we show the amount 

of energy produced monthly and yearly for every case under study: 

 

Figure 82: Monthly and yearly energy generated for scenarios B.1, B.2, B.3 and B.4 

 

In previous figure we can check how scenario B.4 is the most productive in the great 

majority of months. In fact, even if there are some particular months were scenarios B.2 

and B.3 produce more energy than B.4, this keeps being the most productive scenario 

considering the whole year energy production. 

So as a general conclusion for our system, when assuming identical efficiency 

characteristic for inverters, the best inverter sizing configuration is 15 kW. 
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4.3  Comparing SW results and real measurements. 

In this section we will compare software-expected results with the real results obtained 

during the first months of our installation‟s operation. 

Analyzing the electricity production, we find that the real production is significantly 

higher than expected from PVSYST simulation. The energy generated for the available 

period of time, from 10/03/08 to 25/09/2008, was exactly 20,017 MWh. Meanwhile, for 

the same period of time PVSYST estimates energy generation should be 17,097 MWh. 

This means a ratio of produced/expected energy of 1.17.  

If we compare energy generated with energy expected month by month, as shown in 

next figure, we can check out easily this 17% of energy overproduction: 

 

Figure 83: Monthly energy generated (real VS simulated) 

 

We can observe how the real production exceeds the expected production in every 

month except September, month where both amounts keep quite similar. During March 

the overproduction gets to its maximum value, with a ratio of 1.37, getting values about 

1.2 for summer months. 

Apparently the deviation between real and expected energy generation is excessive. 

However, we will try to find some generic explanation to the results obtained. 

 First of all, it should be taken into account that weather conditions during a short 

period of time as considered can not match with the typical expected conditions. 
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As weather conditions during only 7 months can be different from the “typical” 

ones (unusual heavy rainfalls, storms, floods, or in the opposite, especially dry 

months with abundance of clear sky, etc.), several years of operation are 

necessary in order that real performance can be calculated and compared. So, 

just like sadistic matters, the smaller the number of samples considered, the 

bigger the margin of error. Anyway, the first measured monthly values of 

system parameters indicate that the extended efforts in the first stage of PV 

system design, orientation and final construction execution lead to optimal 

system performance.  

 Secondly, every simulation programmes work properly when designing the 

systems, helping us to decide about which configuration is best when comparing 

with another. So these programmes are more focused on relative comparison 

between different possible configurations (orientation, inverters and modules 

sizing, comparative between manufacturer, etc.) than in obtaining absolute 

parameters values (such as total energy generation). So PVSYST and other 

design/simulation software must be considered as it is: an accurate 

approximation to the problem but never a exact tool.  

 

However, apart from these generic explanations, the differences between real and 

expected energy generation are so significant that there must exist other particular 

reasons affecting our specific system: 

 PVSYST meteo-database (monthly values) used is based on the METEONORM 

database. METEONORM software defines “stations” for which the measured 

irradiances values are available (in our case, average values belonging to year 

1990). For sites far away from these “stations”, like our location in Katerini, the 

values considered by PVSYST are values interpolated between the 2-3 nearest 

stations. 

 For many regions of the world, measured data may only be applied within a 

radius of 50 Km from weather stations. This makes it necessary to interpolate 

parameters between stations. Interpolation models for solar radiation, 

temperature and additional parameters, allowing application at any site in the 

world, have been considered for our simulation. This interpolation is really 

effective in the great majority of cases, but is subject to significant errors in 

some particular environments. 

 

So in order to check if a wrong interpolation could be the responsible of deviation 

between real and expected energy generation, we have turned to the Satel-Light 

European project, which provides data from the geostationary satellite Meteosat 
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obtaining a continuous (with no interpolations !!) spatial coverage of Europe at a high 

frequency (every 30 minutes). 

 

CONTRAST BETWEEN SATEL-LIGHT AND METEONORM. 

The Satel-Light project was funded by the European Union (Directorate General XII) 

from 1996 to 1998. Images produced by the Meteosat satellite every half hour were 

chosen as the one and only source of climatic information. The major difficulty 

stood in producing precise ground level data from the images using various models.  

The main Satel-Light aim was to improve/develop and validate such models, making 

later a database from satellite images widely available via any Internet web server. 

Before Satel-Light, the only way to obtain trusty meteorological data was either to 

contact a measurement station or to buy a climatic atlas, both solutions being less than 

ideal. There are very few measurement stations continuously recording this kind of data 

in Europe. Climatic atlases such as METEONORM database are available on CD-

ROMs and gather useful climatic information. 

However, these products have weaknesses: 

1. There is no continuity of information over Europe: the information is based on a 

limited number of ground stations, around 600. 

2. There are no hourly/half hourly values except for a few sites. High frequency 

values are essential to provide information on the dynamics of daylight and solar 

radiation. The data from the geostationary satellite Meteosat seemed to be the 

only way to obtain a continuous spatial coverage of Europe at a high frequency 

(30 minutes). 

 

So with all the information provided by Satel-Light, and available all over Internet, we 

decided to consult their database for a further verification of climatic parameters in our 

location, Katerini. The results obtained were surprising and explained by themselves 

why there was such an important difference between PVSYST estimations and real 

measurements. 
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Figure 84: a) 1996-2000 mean daily global irradiation       b) GoogleMap with locations of interest marked 

 

In previous figure, we can check that there are multiple meteorological stations all over 

Greece. Particularly, the nearest stations from Katerini are located in Larissa, Volos and 

Thessaloniki. So in the figure 84 a) we have indicated these locations with red circles 

showing the particular irradiance values (obtained through an interactive map) for these 

four places. 

At first sight can be noted that mean daily global irradiance in Larissa, Volos and 

Thessaloniki for panel tilt of 30º, is very close (about 4.726 Wh/m
2
). However, for the 

location in Katerini this irradiance gets to an average value of 5.222 Wh/m
2
. Which 

means that for very close locations as mentioned, there is a important irradiance 

increase of about  10.5%. 

Now, as long as Katerini does not have any “station” over its surface, METEONORM 

climatic database (and consequently PVSYST) will proceed interpolating data from 

nearest stations available, so the weather data used for PVSYST simulation when 

location is Katerini will have an input entrance miscalculation around 10.5%, which 

justify to a great extent the deviation between real and simulated energy reflected when 

using PVSYST software. 

In terms of explaining why Katerini´s location has a so particular behaviour, comparing 

with other close locations, could be due to the near presence of mountains acting as a 

barrier for the entrance of clouds, and causing a higher probability of clear days. 
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5. CONCLUSIONS 

Conclusions have been divided in two sections: 

 “Local” conclusions, where we describe main conclusions referred to our 

concrete PV system under analysis. 

 “Global” conclusions, where we describe some conclusions that, from our 

concrete PV system, can be extensive to a more general PV framework. 

 

5.1   “Local” conclusions. 

Through present report we have analysed a particular PV system installed in the north 

of Greece. Global results obtained have been extremely satisfactory and energy 

production during first half year of work has been even higher than expected. 

The final design implemented has shown to be close to the optimum: 

 Considering the optimum tilt (30º) and locating the installation in open field 

(therefore no shading scenario), has improved global system performance.  

o Additionally, the placement of the installation in Katerini has turned out 

to be one of the most favourable places for solar production all over 

north of Greece, thanks to special irradiation conditions present in the 

area. 

 Manufacturers selected for the installation (SHARP panels and SMA inverters) 

have turned out to be reliable, offering trustable solutions according with 

expected. 

 There is research aimed at inverter efficiency improvement. However, there are 

designing mechanism -available nowadays!- capable of getting better conversion 

performance. For example, maintaining the inverter at or near full load in order 

to operate in the high-efficiency region, existing two different ways: 

o Use of multiple inverters of the same rating to cover the full range of 

power levels with better inverter saturation 

 

Figure 85: Grid-connected PV System with Multiple Inverters 
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o Under-sizing of the inverter with respect to the installed PV peak power, 

loosing some energy in peak generation but increasing efficiency in low 

power levels. 

The final decision taken, based on inverters‟ under-sizing, leaded us to an 

important improvement in the system performance, not only because of energy 

production increase but also for the important savings on investment. 

 

All the improvements mentioned show the importance of system design optimisation for 

PV technology. However, in the future further works can be executed with the purpose 

of developing innovative technologies assuring increasing profitability.  

 

5.2  “Global” conclusions. 

Beyond our particular system, results obtained throughout this report are positive for the 

whole future of PV industry in Greece, especially now that Greece‟s Parliament has 

approved (15 January 2009) Europe‟s most generous PV incentive program after a 

moratorium of almost 2 years. So results obtained in Katerini can be extrapolated 

(making always the required particular analysis) to other placements in Greece, as long 

as PV‟s potential and development in this sunny country has been shown. 

Additionally, the actual international context in Europe makes Greek‟s situation even 

more encouraging. In 2008, the most important European PV markets (Germany, Spain, 

Italy, France and the newcomer Greece) registered a newly installed PV capacity of 

more than 3 GW. However, within the last years the situations has changed profoundly:  

 The number of market players in the PV business has been increased 

significantly, so promotions caps now control market growth (especially in 

Spain). 

 On the other hand, regression rates of feed-in tariffs have been significantly 

elevated (especially in Germany).  

Against this background, important indicators reveal that Greece can be expected to be 

in few years the next major photovoltaic market in Europe. 
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6. FUTURE RESEARCH 

Following we depict some future works and open question that, starting from present 

report, can be tackled in future studios.  

 

6.1  Proposal for improving monitoring system. 

Present report has focused on analysing the whole PV system from data measurements 

acquired by SMA inverter device. Therefore we have been able to verify that the whole 

system is working properly and close to optimum design, as can be checked when 

comparing real VS expected (PVSYST) results. 

So like the global system worked as expected, we can assert that: 

o Inverters are working properly. 

o Solar panels are working properly. 

In fact, we have been able to analyze in detail inverters‟ behaviour thanks to the 

monitoring system which offered us enough electrical information at both sides of 

inverter (actual voltage, current and power at the input (DC) and output (AC) of the 

inverter).  

 

Figure 86: Actual monitoring system (inverter) 

 

However, when talking about solar panels, we can assert they are working properly as 

long as the whole system does it. But the absence of monitoring system for irradiance 

makes we could not make a detailed analysis on panel‟s efficiency (and therefore, its 

performance and behaviour).  

For solar panels the energy conversion efficiency (η), is the percentage of power 

converted (from absorbed light to electrical energy) and collected, when a solar panel is 

connected to an electrical circuit. This term is calculated using the ratio of the power at 
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every moment, Pm, divided by the input light irradiance (E, in W/m
2
) in that moment 

and the surface area of the solar cell (Ac in m
2
). 

 

Nowadays there are many commercial radiometers (instrument for measuring radiant 

energy) which continuously monitor incoming solar radiation and some other 

parameters of interest (such as temperature). Adding this device to our PV system, we 

could go one step beyond on its complete analysis, including accurate considerations 

not only about inverters and energy generation but also about solar panels‟ performance 

and effects of temperature on our system. 

 

Figure 87: Proposed new monitoring system (solar panel + inverter) 

 

6.2  Optimum association of panels. 

When studying about photovoltaic, there is a vast theoretical known on the matter: 

 Equivalent electrical circuit of solar cells.  

 Mathematical tension-current relation for a PV panel (NP rows in parallel, each 

one with NS cells in series). 

 I-V and Power curve of the PV panel.  

http://en.wikipedia.org/wiki/Irradiance
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Figure 88: Electrical principles of solar systems 

  

When joining identical panels in series and in parallel, is also well known that: 

 Association in series: the new voltage is the addition of individual voltages of 

each module (current keeps invariable). 

 Association in parallel: the new current is the addition of individual currents of 

each module (voltage keeps invariable). 

 

However, all these assertions only come true when every cell joined inside a panel and 

every panel associated inside a PV array, are identical, which in practice is not possible.  

For example, in the system under analysis during this report, there was some power 

dispersion in panels used. The logic criteria used for grouping the panels in arrays was 

to associate in series those panels with similar current as shown in figure: 

 

Figure 89: Association of panels 

However, keeping the logic criteria of joining those panels with similar maximum 

current, there are a big amount of possible associations, so a further study on which is 

the optimal one could be done. 
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