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17.1 INTRODUCTION 

Computer vision, and in particular multi-camera environments, has been widely 
researched over the recent years, thus leading to several proposals of multi-camera 
or visual sensor networks (VSNs) architectures (Valera and Velastin 2005). The 
aims of these systems are very different; to name some of them, there are examples 
in surveillance applications (Regazzoni et al. 2001), sport domains (Chen and De 
Vlesschouwer 2010), or ambient intelligence applications for elderly care (Zhang 
et al. 2010). Despite the specific goal of each system, all of them have to cope with 
a distributed architecture of visual sensors to acquire and process information from 
the environment. The obtained information must then be fused in order to generate 
a meaningful global picture of the environment. Since a distributed VSN can be 
applied to different domains/scenarios, a specific ontology provides meaning and 
sense of the information that the system uses for interpretation purposes. 

This chapter explores the use of the multi-agent paradigm and ontology-based 
knowledge representation formalisms to perform distributed data and information 
fusion (DIF) in VSNs. The multi-agent paradigm, which has been widely applied in 
distributed systems, provides a theoretical and practical framework to allow com­
munication and cooperation among the components of the system. For instance, in 
Lesser et al. (2003) several multi-agent protocols are presented to solve the task 
allocation problem in distributed sensor networks, but without visual capabilities. 

Classical distributed visual systems work well for monitoring and surveillance 
tasks, but they can be improved using a multi-agent paradigm and ontology-based 
mechanisms. The underlying idea is to provide autonomous elements of the system 
with standard communication capabilities compliant to a content ontology in the 
process to achieve high-level data fusion. 

The remainder of this chapter is organized as follows. The next section describes 
the main requirements and issues that should be taken into account when building 
VSNs. Section 17.3 introduces the application of multi-agent systems in visual sen­
sor domains. Section 17.4 provides a description of a specific architecture to fuse 
data in a VSN. An example using this architecture is shown in Section 17.5. Finally, 
Section 17.6 presents some open research problems and prospective directions for 
future work. 

17.2 VISUAL SENSOR NETWORKS 

Modern VSNs involve the deployment of a number of cameras in a wide area and the 
management of these geographically distributed monitoring points. Third-generation 
video systems apply techniques that resemble the human intelligent process of sur­
veillance, which activates certain cognitive abilities, to satisfy the challenges posed 
to modern security applications (Regazzoni et al. 2001). The most characteristic 
aspect of third-generation video systems is the use of physically distributed cameras 
able to locally run image-processing algorithms. Due to the huge amount of data, 
the natural processing architecture for a VSN is distributed (hierarchical or decen­
tralized) with processors dedicated to each visual data stream in a first level, before 
the information is communicated through the network. The combination of multiple 
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viewpoints brings potential improvements to the reliability and accuracy of the 
results, although the existence of multiple cameras inevitably increases the complex­
ity of the system. Although it is conceivable to achieve real-time performance with 
centralized processing, sending raw video streams to centralized servers is not prac­
tical, especially if the communication costs between nodes are accounted. Hence, 
local processing is necessary. Moreover, distribution increases system robustness 
and fault tolerance, since the same information may be captured and replicated at 
different points of the network. 

17.2.1 REQUIREMENTS AND ISSUES 

1\vo main requirements usually arise in distributed visual systems. First, it is nec­
essary to implement suitable procedures to fuse local data (captured by single 
cameras) in order to obtain an integrated view of the situation while reducing band­
width consumption. Second, coherence and scalability of the global system must be 
guaranteed with independence of the specific sensors and their configuration. This 
objective is difficult to accomplish when new heterogeneous cameras are incorpo­
rated to build a large and scattered network. Consequently, local data acquired by 
distributed video cameras must be combined to obtain a global understanding of 
the current scenario. Therefore, distributed systems for VSNs require techniques, 
algorithms, and procedures to solve the following issues. 

17.2.1.1 Communication 
Information acquired from each camera should be shared with others cameras and 
processing nodes, usually over a wired or wireless Internet Protocol (IP) network. 
The first decision in a multi-camera system is the physical installation of cameras. 
The number and placement of individual cameras have a great impact on system cost 
and capabilities. Since the main objectives are precise tracking of interesting objects, 
maximizing reliability and continuity of tracks, thus target-to-target or background­
to-target occlusions must be minimized by using multiple cameras monitoring the 
same area from different viewpoints. 

17.2.1.2 Camera Calibration 
Information in the VSN must be expressed in a common reference frame. Camera 
calibration, or common referencing, is the process of transforming from the local 
coordinates of each camera to a global coordinate space. Calibration and synchro­
nization can be done during an offline phase prior to system operation. This process 
is necessary to have a correspondence between the objects captured by different 
cameras. The resulting translation may include a reconstruction step to obtain a 3D 
representation of the 2D image. The most employed methods for camera calibration 
are those proposed by Tsai (1987), Heikkila (2000), and Zhang (2000). When the 
cameras have significant overlapping fields of views, the homograph between two 
corresponding image ground planes from two cameras can be computed by using 
target footprint trajectories and optimization techniques (Lee et al. 2000, Black and 
Ellis 2001). Typically, images of a calibration target (an object whose location and 
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geometry are known) are first acquired. Then, correspondences between 3D points 
on the target and their image pixels are obtained. This involves estimating the intrin­
sic and extrinsic parameters of the camera by minimizing the projection error of 
the 3D points on the calibration object. The Tsai camera calibration technique was 
popular in the past, but it requires a nonplanar calibration object with known 3D 
coordinates. Zhang (2000) proposed a more flexible planar calibration grid method 
in which either the planar grid or the camera can be freely moved. For multi-camera 
surveillance applications with little or no overlap areas between cameras, research 
has focused on automatically learning camera topology. 

Some authors have proposed online calibration techniques. For instance, Javed 
et al. (2008) exploited the redundancy in paths that humans and cars tend to follow 
(e.g., roads, walkways, and corridors) by using motion trends and appearance of 
objects to establish correspondence. In Ellis et al. (2003) and Makris et al. (2004), 
authors used learned entry and exit zones to build the camera topology by exploiting 
temporal correlation of objects transiting between adjacent camera fields of view. In 
Pollefeys et al. (2009), a method is proposed to simultaneously compute the epipolar 
geometry and synchronization of cameras after considering the epipolar constraints 
that need to be satisfied by every camera pair. 

17.2.1.3 Object Detection 
Interesting objects must be identified in the sequence of images provided by the 
camera. There are various approaches to the detection of moving objects. Temporal 
differencing is based on calculating the pixel-by-pixel difference of various consecu­
tive frames (Lipton et al. 1998). Background subtraction is based on subtracting the 
current snapshot pixel values with a predefined background image (Piccardi 2004). 
Statistical methods are a variation of basic background subtraction method. They are 
based on the difference of additional statistical measures (Wang et al. 2003). Optical 
flow, in turn, is based on the computation of the flow vectors of moving objects over 
time (Barron et al. 1994). 

17.2.1.4 Object Tracking 
Detected objects should be tracked over time by matching the detections between 
consecutive frames. Object tracking, which involves state estimation and data asso­
ciation, has been traditionally tackled by applying statistical prediction and inference 
methods. Some tracking methods in general DIF are distributed multiple hypothesis 
tracking (MHT) (Chong et al. 1990), distributed joint probabilistic data association 
(JPDA) (Chang et al. 1986), covariance intersection (CI)/covariance union (CU) 
(Julier and Uhlmann 2001), and distributed Kalman filter (Olfati-Saber 2007). 

In the case of video data association, it is necessary that objects are robustly 
tracked in time, even though the image processing algorithms may fail to segment 
them as single foreground regions (blobs) in some intervals. Problems with object 
segmentation often occur (Genovesio and Olivo-Marin 2004) when (1) the object is 
occluded by another region, a fixed object in the scene, or other moving object; (2) 
the object image is split into fragments during image segmentation; (3) the images 
from different objects are merged because of their close or overlapping projections 
on the camera plane. 
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Classical data association techniques have been adopted and extended by com­
puter vision researchers. The JPDA filter has been applied to 3D vision reconstruc­
tion (Chang and Aggarwal 1991, Kan and Krogmeier 1996). Cox (Cox and Hingorani 
1996) proposed the first adaptation of Reid's MHT (Reid 1979) to visual data asso­
ciation problems. In more recent approaches (Khan et al. 2005, Cai et al. 2006, Liu 
et al. 2008), a Markov Chain Monte Carlo strategy is applied to explore the data asso­
ciation space in order to estimate the maximum a posteriori joint distribution of mul­
tiple targets. Other recent approaches (Fleuret et al. 2008) are based on a discretized 
occupancy maps in the real world onto which the objects are projected. As we shall 
explain in the following, the estimation process is very sensitive to particular condi­
tions of the scenario. Thus statistical methods may be insufficient in VSNs, which 
requires the incorporation of additional information and knowledge in the process. 

17.2.1.5 Classification 
Object and activity recognition aim to determine the type of an object (e.g., car, 
human, aircraft) or the type of an activity (e.g., approaching, walking, manoeuvring). 
Depending on the specific application, classification can involve object type classifi­
cation (car, human, aircraft, etc.) or activity classification based on the object move­
ments. Recognition can be viewed as a probabilistic reasoning problem, in which 
case it is tackled through probabilistic models (Markov models, Bayesian networks, 
etc.) (Hongeng et al. 2004). It can also be modeled as a classification problem, in 
which case pattern recognition techniques (neural networks, self-organizing maps, 
etc.) (Hu et al. 2004) are employed. 

17.2.1.6 Process Enhancement 
Process enhancement, also known as active fusion, focuses on the implementation 
of suitable mechanisms that use the more comprehensive interpretation of the cur­
rent situation obtained after fusing data to improve the performance of the previous 
tasks. Generally speaking, process enhancement improves a fusion procedure by 
using feedback generated at a more abstract level. For instance, the behavior of a 
tracking algorithm can be changed once a general interpretation of the scene has 
been inferred. When the system recognizes that an object is moving out of the cam­
era range through a door, the tracking procedure will be informed to be ready to 
delete this track in the near future. 

17.2.2 RELATED RESEARCH 

A wide range of alternative architectures and algorithms for distributed camera 
systems have been proposed in the last decade. Cai and Aggarwal (1999) pro­
posed a multi-camera framework for people tracking in outdoor environments. 
Mittal and Davis (2003) developed a multi-camera system for people tracking and 
action analysis. 

Video surveillance and monitoring (VSAM), developed by Collins et al. (2001), 
is a system that addresses the problem of tracking multiple objects in a multi-camera 
scenario. VSAM presents the global picture of the environment to a human operator 
through a unified graphical user interface. 
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Snidaro et al. (2003, 2004) described a system for outdoor video surveillance 
in which data are acquired from different types of sensors (optical, IR, radar). 
In the first level, data are fused to perform the tracking of objects in each zone 
of the monitored environment. Next, this information is sent to higher levels to 
obtain the global trajectories of the objects. They employed an aspect ratio metric 
obtained for each detected object over all the sensors. The fused result is obtained 
by weighting each sensor's aspect ratio measurement. Analogously, Besada et al. 
(2005) proposed a distributed solution for airport surface traffic control based on 
a video network. 

Matsuyama and Ukita (2002) developed a real-time multi-camera vision system 
in which the cameras are moved automatically with three degrees of freedom (pan, 
tilt, and zoom) according to the situation. 

Typical examples of commercial surveillance systems are DETEC (DETEC 
Online) and Gotcha (GOTCHA Online). For outdoor applications, a representative 
example is the DETER system (Pavlidis et al. 2001). DETER reports unusual move­
ment patterns of pedestrians and vehicles in outdoor environments such as car parks. 
In these conditions, the systems typically require a wide spatial distribution that 
implies camera management and data communication. Nwagboso (1998) proposes 
combining existing surveillance traffic systems based on networks of smart cameras. 
The term "smart camera" is normally used to refer to a camera that has processing 
capabilities (either in the same casing or nearby) and can autonomously perform 
event detection and event video storage. 

In general, third-generation surveillance systems provide highly automated 
information, as well as alarms and emergencies management. This is the aim of 
CROMATICA (CROMATICA Online), a system for crowd monitoring and its suc­
cessor, PRISMATICA (Velastin et al. 2005), a pro-active integrated system for secu­
rity management. PRISMATICA, which is one of the most sophisticated surveillance 
systems of the recent years, is a wide area multi-sensory, multimodal distributed sys­
tem. It receives inputs from closed-circuit television (CCTV), local wireless camera 
networks, smart cards, and audio sensors. Intelligent devices in the network process 
sensor inputs and send/receive messages to/from a central server module. Another 
important project is ADVISOR (Siebel and Maybank 2004), which aims to assist 
human operators by automatically selecting, recording, and annotating images con­
taining events of interest. Although both systems are classified as distributed archi­
tectures, they have a significant difference: PRISMATICA employs a centralized 
approach which controls and supervises the whole system, whereas ADVISOR can 
be considered a semi-distributed architecture. In Yuan et al. (2003), an intelligent 
video-based visual surveillance system (IVSS) is presented. This system aims to 
enhance security by detecting certain types of intrusion in dynamic scenes. The 
system involves object detection and recognition (pedestrians and vehicles) and 
tracking, with an architecture similar to ADVISOR (Siebel and Maybank 2004). 

Scalability has been specifically addressed by including new security devices or 
analysis modules after the initial deployment of the surveillance system. Within this 
context, service-oriented computing has been used to design a framework to deploy 
video surveillance applications (Enficiaud et al. 2006). The authors used this frame­
work to detect and count people in monitoring environments. 
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One disadvantage of most classical systems is that they rely on expensive com­
putational costs. This high processing load may be impossible to accomplish in 
real-time video applications, since image processing introduces a bottleneck due 
to the foreground/background subtraction algorithms. A second problem is that the 
employed algorithms usually rely on very strong statistical assumptions (such as 
Gaussian linear dynamic models of targets and noise), which unfortunately do not 
hold in several application domains. In video processing, statistical techniques have 
encountered practical limitations mainly due to the difficulty of obtaining analytical 
models of the source errors. 

Researchers have proposed solutions to overcome the problems that usually arise 
when dealing with visual information. There is a growing interest in the design of 
open and flexible DIF software architectures and techniques that improve the clas­
sical approaches. One of the main challenges for achieving enough reliability in the 
information inferred from a visual network is the use of appropriate context repre­
sentation and management formalisms in the fusion process. Also, the coherence in 
the network requires communication and coordination mechanisms to share infor­
mation and carry out the necessary adjustments in the information derived. 

Besides, distributed visual data fusion must address problems that are common 
to any distributed data fusion application. First of all, when dealing with images as 
an input source, it is very difficult to have a predefined model of sensor error and a 
priori detection probabilities (visual information may have problems with illumina­
tion changes, occlusions, etc.) Other problems with distributed solutions are the need 
of clock synchronization between sources, the presence of out of sequence measure­
ment and data incest problems. 

For these reasons, in this chapter we explore the use of multi-agent architectures 
in distributed fusion with specific reasoning procedures at the low-level (contextual) 
and high-level to obtain an appropriate interpretation of the environment. The use of 
ontologies is also considered to represent the exchanged information and formalize 
the exploitation of contextual information. 

17.2.3 CONTEXT-BASED APPROACHES TO HIGH-LEVEL INFORMATION FUSION 

Broadly speaking, high-level information fusion (HLIF) refers to those inferences 
developed by IF systems which correspond to a higher level of abstraction. Cognitive 
approaches to HLIF propose building a symbolic model of the world, expressed 
in a logic-based language, to abstractly represent the scene objects, events, and 
behaviors, as well as the relations among them (Vernon 2008). Such a model can 
be regarded as the mental representation of the scene gained by cognitive software 
agents. It may include both perceptions and more complex contextual information. 
Cognitive approaches are robust and extensible, but they require the development of 
suitable interpretation and reasoning procedures. 

The use of symbolic models to acquire, represent, and exploit knowledge in IF, 
and particularly in visual IF, has increased in the last decade. Lambert (2003) high­
lights three requirements that are crucial to the implementation of model-based 
IF systems: (1) to discern what knowledge should be represented, (2) to determine 
which representation formalisms are appropriate, (3) to elucidate how acquired and 



© 2012. From Distr buted Data Fusion for Network-Centric Operations by David Hall, Chee-Yee Chong, James Llinas, Martin Liggins II. 
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

442 Distributed Data Fusion for Network-Centric Operations 

contextual inputs are transformed from numerical measures to symbolic descrip­
tions, which is known as the grounding problem (Pinz et al. 2008). 

Regarding selection of knowledge to be represented, there is a consensus about the 
importance of context knowledge in visual IF. Recently, researchers in IF have recog­
nized the advantages of cognitive situation models, and have pointed out the impor­
tance of formal context knowledge to achieve scene understanding. Specifically, the 
last revision of the Joint Directors of Laboratories (JDL) specification highlights the 
importance of context knowledge (Steinberg and Bowman 2009), especially when 
visual inputs are to be interpreted (Steinberg and Rogova 2008). Henricksen (2003) 
defines context as the set of circumstances surrounding a task that are potentially 
of relevance to its completion. Kandefer and Shapiro (2008) extend this definition 
and state that context is the structured set of variable, external constraints to some 
(natural or artificial) cognitive process that influences the behavior of that process 
in the agent(s) under consideration. 

To be consistent with this definition, we can consider that context in visual appli­
cations includes any external piece of knowledge used to complement the quantita­
tive data about the scene computed by straightforward image-analysis algorithms. 
Context information (Cl) is therefore an "external constraint" (because it is not 
directly acquired by the primary system sensors) that "influences the behavior" of 
the fusion process (since it is used to guide and support visual IF). Adapting the 
characterization by Bremond and Thonnat (1996), four sources of Cl must be taken 
into account in visual DIF: (1) the scene environment: structures, static objects, illu­
mination, and other behavioral characteristics, etc.; (2) the parameters of the sensor: 
camera, image, and location features; (3) historic information: past detected events; 
(4) soft information provided by humans. 

Several representation formalisms have been proposed to be used in IF prob­
lems. Nevertheless, logic-based languages have received modest interest, in spite 
of their notable representation and reasoning advantages. Moreover, in this case 
most approximations have used ad hoe first-order logic representation formalisms 
(Brdiczka et al. 2006), which have certain drawbacks: they are hardly extensible and 
reusable, and reasoning with unrestricted first-order logic models is semi-decidable. 
Recently, there is a special interest in ontologies (Nowak 2003), since they over­
come these problems. Current approaches are using ontologies to combine contex­
tual and perceptual information, but there is still a lack of proposals that describe in 
detail how context knowledge can be characterized and integrated in general fusion 
applications. 

At the low-level IF (i.e., JDL levels 0 and 1), one of the most important contri­
butions is the Core Ontology for Multimedia (COMM). COMM is an ontology to 
encode MPEG-7 data at image level (i.e., JDL LO) (Arndt et al. 2007). It is rep­
resented with the Ontology Web Language (OWL), the standard proposed by the 
World Wide Web Consortium (W3C) (Hitzler et al. 2009). COMM does not repre­
sent high-level entities of the scene, such as people or events. Instead, it identifies 
the components of a MPEG-7 video sequence in order to link them to semantic 
web resources. Similarly, the Media Annotations Working Group of the W3C is 
working in an OWL-based language for adding metadata to web images and videos 
(Lee et al. 2009). 
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Other proposals are targeted at modeling video content at object level (i.e., JDL Ll). 
For example, a framework for video event representation and annotation is described 
in Fram;ois et al. (2005). This framework includes two languages, namely the Video 
Event Representation Language (VERL) and the Video Event Markup Language 
(VEML). VERL defines the concepts to describe processes, such as entities, events, 
time, and composition operations; and VEML establishes an XML-based vocabu­
lary to markup video sequences, such as scenes, samples, streams, etc. VEML 2.0 
has been partially expressed in OWL. Other authors have discussed and improved 
this approach to support the representation of uncertain knowledge (Westermann 
and Jain 2007). Halfway between data and object level is the research work by Kokar 
and Wang (2002), who present a symbolic representation for the data managed by 
a tracking algorithm. In this approach, the data managed by a tracking algorithm 
are represented symbolically to solve the grounding problem and to support further 
reasoning procedures. The low-level ontologies presented in Section 17.4.2 are based 
in this notion. In addition, higher-level knowledge inferred by abductive reasoning is 
also considered in our proposal. 

High-level IF issues (i.e., JDL L2 and L3) are being dealt with ontologies as well. 
Little and Rogova (2009) study the development of ontologies for situation recogni­
tion, and propose a methodology to create domain-specific ontologies for informa­
tion fusion based on the upper-level ontology Basic Formal Ontology (BFO), and its 
sub-ontologies SNAP and SPAN, used for endurant (snapshot) entities and perdurant 
(spanning) processes, respectively. In Neumann and Moller (2008), the authors pres­
ent an ad hoe proposal for scene interpretation based on Description Logics and 
supported by the reasoning features of the Renamed Abox and Concept Expression 
Reasoner (RACER) (Haarslev and Moller 2001). The authors also distinguish 
between lower-level representations and higher-level interpretations to avoid the 
grounding problem. The representation of high-level semantics of situations with a 
computable formalism is also faced in Kokar et al. (2009), where an ontology encod­
ing Barwise's situation semantics is developed. The approach in Aguilar-Ponce et al. 
(2007) defines a multi-agent architecture for object and scene recognition in VSNs. 
In addition, the later authors propose the use of an ontology to communicate infor­
mation between task-oriented agents, in a similar way as the proposal described in 
Section 17.4.1. A practical approach to surveillance is shown by Snidaro et al. (2007), 
who developed an OWL ontology enhanced with rules to represent and reason with 
objects and actors. 

All these works focus on contextual scene recognition, but it is also int.eresting to 
apply this knowledge to refine image-processing algorithms (which corresponds to 
JDL L4), as described in Section 17.1. An approach to this topic is present.ed in G6mez­
Romero et al. (2011). In this paper, the authors describe an ontology-based framework 
to support scene recognition and fusion process enhancement, and discuss contribu­
tions and drawbacks from an architectural and knowledge management point of view. 

17.3 MULTI-AGENT SYSTEMS IN VISUAL SENSOR NETWORKS 

Multi-agent systems have been proposed as a solution for distributed surveillance, 
since they naturally support coordination of multiple tasks aimed at the analysis of 
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object behaviors in dynamic and complex situations. Multi-agent systems are argu­
ably well suited for the development of distributed systems in dynamic environments 
as VSN s. Agents have been applied in several approaches to identify faces and adapt 
the segmentation process in monitoring context, as discussed in Lee (2003). 

Solving tracking tasks is one of the most studied problems by approaches that 
use agents to monitor objects. It is possible for agents to communicate and coop­
erate to monitor multiple objects simultaneously. A representative example of this 
approach was proposed by Remagnino et al. (2004), where they design the cam­
era agent to calibrate the camera, track objects, and learning their behavior. The 
authors proposed a multi-agent architecture for visual monitoring where the agents 
are dynamically created when a new object is detected in order to cast the concept of 
agent to the detected objects. Similar proposals were later discussed in Garcia et al. 
(2005), which focuses on the communication messages exchanged between agents. 
The work in Castanedo et al. (2010) is also based on the application of multi-agent 
systems in a VSN. Recently, Albusac et al. (2010) also proposed a multi-agent archi­
tecture to incorporate expert domain knowledge into automatic monitoring and to 
provide a scalable and flexible solution tested in an urban traffic scenario. 

As a matter of fact, the notion of agent suits very well to the concept of intelligent 
camera, since each software agent acquires and processes the visual images. On the 
one hand, nodes in the VSN are autonomous, in the sense that they have processing 
capabilities to acquire and process information in its field of view. On the other hand, 
the social abilities of agents provide the necessary means to share the visual infor­
mation across the network and cooperate in the overall objective of the VSN. In order 
to avoid errors due to local knowledge of the world, nodes (developed as agents) 
establish social relations to build a global fused result depicting a more accurate and 
abstract view of the scenario. 

In addition, agent-based standard communication protocols are the support to 
achieve interoperation with other systems at a high abstraction level. Last but not 
least, the existence of several multi-agent frameworks, which hide particular com­
munication details, provides an easy way for developing distributed systems due to 
the loosely coupled architecture of multiple agents. 

Ontologies can be used in such architecture to define the content language of 
agents' messages. The use of a common communication ontology facilitates agent 
interoperability, since the messages are expressed in the same well-defined lan­
guage. This allows systems to be flexible, extensible, and independent of the imple­
mentation technologies. Moreover, sharing and reusing features of ontologies make 
them especially suitable for DIF in VSN. As mentioned before, VSN applications 
are highly context-dependent, but ontologies can be reused or extended to suit spe­
cific domain requirements. The agent communication ontology defines a set of con­
cepts to describe the tracking information interchanged by the agents of the VSN. 
It behaves as an agreed vocabulary that allows tracking data to be represented in an 
abstract, common, and understandable way. Agents manage a local instantiation of 
the ontology, where individual ontologies corresponding to runtime scenario data 
are created. As we explain in the next section, ontologies are used in the architecture 
not only as a message content language but also to represent fused data and contex­
tual knowledge. 
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17.3.1 BELIEF-DESIRE-INTENTION PARADIGM 

Multi-agent systems (Weiss 1999) can be divided into three different types: reactive, 
deliberative, and hybrid. The belief-desire-intention (BDI) paradigm is considered a 
hybrid architecture, since it divides the execution time of the system between delib­
eration and execution. The main difference with respect to the purely reactive archi­
tectures is that hybrid architectures spend more time reasoning to choose the next 
plan for execution. On the contrary, purely deliberative architectures follow a pure 
logic representation that requires an agent to manipulate symbols, and the percent­
age of time spent on the execution of the actions is less than the hybrid ones. 

BDI paradigm has an explicit representation of the agent's notion following 
Bratman's theory of practical reasoning (Bratman 1987). The knowledge of an agent 
at any given time is based on the state of the BDI data structures. The belief data 
structure stores facts in a belief base acquired from the environment. Desire rep­
resents the final affairs that an agent wants to achieve. Finally, Intention describes 
specific plans that an agent has committed to execute in order to achieve its desires. 
Therefore, intentions should be consistent with the agent's desires. The BDI reason­
ing cycle must choose those plans for execution that match with the agent's desires, 
given the current belief. In this sense, the BDI architecture follows a similar reason­
ing process as the rule-based planning systems. However, multi-agent architectures 
also implement the social and communication capabilities required in any distrib­
uted system. 

One of the advantages of using a multi-agent architecture is the separation 
between the management of the execution control and the reasoning mechanism, 
and plan execution is clearly separated inside the architecture. Therefore, there is no 
need to have an external management process. 

17.3.2 COMMUNICATION AND COORDINATION 

Agent communication in the VSN is the cornerstone to more complex DIF proce­
dures. Communication mechanisms and protocols employed by the agents are usu­
ally based on the speech act theory (Searle 1970). To the speech act theory, spoken 
sentences in natural language are actions that produce changes in the receiver. Thus, 
in agent-based models, utterances are actions that result in changes in the internal 
state of the agents involved in the conversation. The messages sent by the agents are 
labeled using specific intention identifiers (e.g., query or inform). Exchanged infor­
mation may range from essential data to complete acquired sequences, and from raw 
data to processed information. Besides, communication protocols can be based on 
pull messages (ask for information) or push messages (provide information). 

The current standards for communication in multi-agent systems are defined 
in the Foundation of Intelligent Physical Agents (FIPA) specifications. Regarding 
message-passing, FIPA defines Agent Communication Language (ACL), a transport 
language that defines the format of the messages' envelope, a set of communicative 
acts, and a set of interaction protocols. ACL allows specifying the vocabulary to be 
used to encode agent contents. Traditionally, message semantics have been expressed 
in the FIPA Semantic Language (SL), a first-order logic derived language. The main 
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drawback of SL is that it is undecidable in its general form; i.e., it is not guaranteed 
that all the inferences are computable in a finite time. Therefore, there is a growing 
interest in using formal ontologies as content languages (Hendler 2001, Schiemann 
and Schreiber 2006, Erdur and Seylan 2008), since they have appropriate computa­
tional properties and several supporting tools. 

Ontologies can be accordingly defined to describe visual information exchanged 
by the agents of the VSN. In the simplest case, a suitable ontology can be created to 
represent tracking information. Such ontology would define a vocabulary including 
a set of concepts, relations, and axioms to describe tracking data. Agents manage a 
local instantiation of the ontology, where individual ontologies corresponding to the 
runtime data provided by the low-level tracking procedure are represented. Thus, 
the agents use the same vocabulary to interchange beliefs, which internally can be 
represented by using the ontology or not. Decoupling internal and external belief 
representations and the use of formal and standard languages facilitate the incorpo­
ration of heterogeneous elements to the VSN. In the most complex case, this ontol­
ogy can include more abstract terms to represent objects, situations, or threats, and 
be the support of more sophisticated high-level fusion procedures, as described in 
the next section. 

Besides communication, multi-agents also support the implementation of coor­
dination schemes along communication protocols, in order to promote cooperation 
between agents and achieve better solutions. One of the most employed protocols for 
agent coordination is the contract-net (Smith 1980), which is mainly focused on task 
allocation problems. In a VSN, coordination mechanisms can be used to form smart 
camera coalitions, i.e., groups of sensors able to carry out complex processing tasks 
and collaborate with their neighbors. Another typical example of the application of 
agent cooperation in VSN s is camera handover (Patricio et al. 2007). 

17.4 MULTI-AGENT APPROACH TO MANAGE DATA IN VSN 

In the multi-agent approach for DDF in VSN, we can distinguish two main types of 
agents: sensor agents and fusion agents. Since the sources are completely distributed, 
but the fusion process is carried out by a centralized process level, a hierarchical and 
partially distributed architecture is proposed as is shown in Figure 17.1. 

The figure shows two sensor agents and one fusion agent. However, it is possible 
to deploy several agents of each specific type. The only constraint is that a set of sen­
sor agents are managed by a fusion agent following a hierarchical scheme. That is, 
the whole system has to include fewer fusion agents than sensor agents. 

Sensor agents obtain the tracking information from the sensed environment 
through the acquired images and communicate the detected tracks to the fusion 
agent. So the external perception of each sensor agent is based on the processed 
images. The local perception of each sensor agent's environment is stored in the 
belief base as agent's beliefs. The obtained images are processed following the pre­
vious steps: object detection, data association, and state estimation. On the other 
hand, the fusion agent receives the track information from sensor agents and fuses 
it to obtain a global view of the scenario. The more comprehensive knowledge 
of the current situation obtained after fusing data can be used to provide sensor 
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agents with additional information, allowing them to correct their local knowledge. 
Communication between each sensor agent and the corresponding fusion agent is 
carried out by using the defined ontology as the content language in the FIPA ACL 
messages. Each agent (both sensor and fusion) is uniquely identified through its agent 
ID, which is composed of the IP address of the computer plus the agent platform and 
agent name. Next, the overall process is described in more detail. 

17.4.1 SENSOR AGENTS: OBJECT TRACKING 

VSN data processing is performed by agents at two logical levels: (1) the tracking 
layer and (2) the BDI layer. First, each camera is associated with a tracking process. 
It sequentially executes various image-processing algorithms to detect and track all 
the targets within the local field of view. The tracking layer is arranged in a pipelined 
structure of several modules, as shown in Figure 17.2, which corresponds to the suc­
cessive stages of the tracking process (Besada et al. 2005): (1) detection of moving 
objects, (2) blob-to-track multi-assignment, (3) track initialization/deletion, and (4) 
trajectory analysis. 

The BDI layer uses an ontological model to encode these perceptions acquired 
by the agent. At this level, the purpose of the ontology is to serve as a symbolic 
representation of the numerical estimates from tracking. Therefore, the ontology is 
used for belief representation. This ontology, representing track information, can be 
also used for agent communication, as described in Section 17.3.2. Agent beliefs are 
represented as instances of the ontology, whereas desires and intentions are defined 
as plans following the JADEX format (Pokahr et al. 2005). We identify the following 
beliefs, desires, and intentions of camera-agents in a VSN: 

Beliefs: Agent beliefs include information about the outside world, like objects 
that are being tracked (storing the location, size, trajectory, etc.), and geographic 
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information about the camera itself, such as location, neighbor cameras, etc. The 
belief base of the agent is updated with the new perceived information. It may also 
be convenient to constrain the stored beliefs in a temporal window, in order to avoid 
the overhead of keeping all past knowledge. Therefore, the ontology will include 
convenient classes to describe tracks and track properties changing in time. 

Desires: Since the final goal of agents is tracking the moving objects correctly, 
they have two main desires: permanent surveillance and temporary tracking. The 
surveillance plan is continuously executed. Sensor agents continuously capture 
images from the camera until an intruder is detected or announced by a warning 
from another agent. In this case, the tracking plan is triggered. The tracking plan 
runs inside a tracking process (implemented at the tracking layer), using the images 
from the camera until it is no longer possible. The tracking plan includes suitable 
actions to update beliefs of the agent, that is, to provide the track estimates to the 
BDI layer. 

Intentions: Agents perform two types of actions: internal and external. Internal 
actions are related to video processing and tracking, and involve the issue of com­
mands to the tracking subsystem or the camera. External actions correspond to 
communication acts with other agents. Agents send and receive messages carrying 
beliefs, which are represented with the ontology. Communication between sensor 
agents and fusion agents is performed by interchanging FIPA-compliant messages. 
The use of standard FIPA messages with content represented with the defined ontol­
ogy promotes interoperability in the platform, as well as the incorporation of new 
heterogeneous agents. Two main types of interaction dialogs or conversations can 
happen between agents in the framework. 

Update situation knowledge dialog: This interaction dialog sends to the fusion 
agent information about moving objects in the sensor agent field of view. The mes­
sages from the sensor agents include their local perceptions expressed as tracks and 
track properties represented in the communication ontology. 

Communicate-fused estimation dialog: This interaction dialog sends to the sen­
sor agent information and feedback about the global situation after data fusion is 
performed, according to the updates provided by the sensor agents. 

17.4.2 Fus10N AGENTS: Low- AND H1GH-LEVEL DATA 

FUSION, CONTEXT EXPLOITATION, FEEDBACK 

The fusion agent processes the update situation knowledge messages which are sent 
by sensor agents and initiates the fusion process. The fusion agent first extracts suit­
able data from this formal representation and starts a low-level fusion process based 
on existing DIF algorithms. From this formal representation of the low-level fused 
tracks, a high-level fusion process is developed. High-level information fusion in the 
fusion agent has two objectives: (1) to obtain a high-level interpretation of the scene 
from the perceptions of the distributed sensors-i.e., to perform Ll to L3 fusion; 
and (2) to determine how the fusion processes might be changed to improve their 
performance-i.e., to perform L4 fusion. 

Essentially, HLIF in the fusion agent is a model-building procedure, which results 
in the construction of an ontological instantiation that abstractly represents the fused 
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scene. We envision a knowledge model structured in five layers, from tracking data 
to impacts and threats: 

Tracking data (Ll). Output of the basic fusion algorithm represented symboli­
cally. Examples include frames, tracks, and track properties (color, position, 
velocity, etc.) 

Scene objects (Ll - Ll/2). Objects resulting from making a correspondence 
between existing tracks and possible scene objects. For example, a track 
can be inferred to correspond to a person (possibly by applying Cl). Scene 
objects include static elements which may be defined a priori and dynamic 
objects, which may be defined a posteriori. Examples include person, door, 
column, window, etc. 

Activities ( L2 ). Description of relations between objects that persist in time. 
Examples include grouping, approaching, picking/leaving an object, etc. 

Impacts and threats (L3). Cost or threat value assigned to activities. 
Feedback and process improvement (L4). Abstract representation of the sug­

gestions provided to the tracking procedure. 

An ontology of an upper abstraction level is based upon an ontology of a lower 
abstraction level. For example, the ontology for scene objects defines a property to 
associate instances of scene objects (e.g., people) to the actual track instances stored 
as agent's beliefs. Thus, information at this level is described in terms of objects 
instead of tracks, but the association between them is purposely represented. In the 
same way, a more abstract ontology is defined to represent scene situations. These 
situations would be inferred from the relevant objects represented in the lower-level 
scene objects ontology, which in turn is related to the track information ontology. 
Therefore, the communication ontology is the lowest level ontology and allows for 
making a correspondence between cognitive and perceived entities. 

The fusion process in the fusion agent is depicted in Figure 17.3. This figure 
represents the information processing flow: first from bottom to top, to interpret the 
scene; and second, from top to bottom, to generate feedback. 

Scene interpretation is a paradigmatic case of abductive reasoning, in contrast 
to the Description Logics classical deductive reasoning. Abductive reasoning takes 
a set of facts as input and finds a suitable hypothesis that explains them (sometimes 
with an associated degree of confidence or probability). This is the case of scene 
interpretation: the objective is to figure out what is happening in the scene from 
the observations and the contextual facts. In terms of the fusion agent architecture, 
scene interpretation is an abductive transformation from instances of a lower-level 
ontology (representing perceived or contextual entities) to instances of a higher-level 
ontology. Abductive reasoning is not directly supported by ontologies (Elsenbroich 
et al. 2006), since monotonicity of ontology languages forbids adding new knowl­
edge to the models while reasoning. Nevertheless, it can be simulated by using 
customized procedures or preferably by defining transformation rules in a suitable 
query language. The RACER inference engine, presented in Section 17.2.3, allows 
abductive reasoning, and therefore it may be a good choice to implement the reason­
ing procedures within the ontologies. 
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In the proposed architecture, abductive rules form.ally represent contextual, heu­
ristic, and common sense knowledge to accomplish HLIF and low-level tracking 
refinement. Accordingly, we have two types of rules: bottom-up rules and top-down 
rules. On one hand, bottom-up rules are used in scene interpretation and obtaining 
instances of an upper-level ontology from instances of a lower-level ontology. For 
instance, some rules can be defined to identify objects from track measurements, 
i.e., to obtain instances of the scene objects ontology from instances of the tracking 
data ontology. An example rule may be: "create a person instance when an unidenti­
fied track larger than a predefined size is detected inside a region of the image." On 
the other hand, top-down rules create suggested action instances from the current 
interpretation of the scene, the historical data, and the predictions. These actions are 
used to adapt hypothesis at a lower-level to interpretations of a higher-level, which 
means the creation of instances of a lower-level ontology from instances of an upper­
level ontology. 

Eventually, top-down rules may create instances of the feedback ontology, 
which can be asynchronously returned to the sensor agent to update its knowledge. 
As a result of reasoning with the scene interpretation, active fusion information 
can be asynchronously returned to the sensor agent by starting a communicate­
/used estimation dialog. These active fusion messages are also transmitted with 
the FIPA protocol and encoded with the communication ontology presented in 
Section 17.4.1. 

17.5 APPLICATION EXAMPLE: INDOOR SURVEILLANCE 

In this section, we will show how the framework presented in Section 17.4 is imple­
mented in a specific application domain. Let us suppose an indoor surveillance 
system inside the university facilities aimed at tracking people and detecting inter­
esting situations. We will focus on the computer laboratory, where three cameras 
are installed to cover the room area (see Figure 17.4). In this example, we have three 
sensor agents and one fusion agent. For the sake of simplicity, we will not consider 
additional cameras located at the nearby corridor. However, they can easily be incor­
porated to the framework and provide support for information handover when an 
individual enters the computer laboratory. 

Before starting the processing, the framework must be configured. More precisely, 
the fusion agent must be informed of the positions of the cameras and provided with 
contextual information to be used in the fusion procedure. Once the framework has 
been configured, sensor agents start the execution of the continuous surveillance 
plan; i.e., agents process frames until the tracker detects a moving person in the 
room. Tracking data are encoded in the communication ontology and sent to the 
fusion agent by starting an update situation knowledge dialog. The fusion agent pro­
cesses the tracking data obtained by the three cameras and combines them by apply­
ing a classical low-level fusion algorithm. This procedure results in updating the 
track data ontology, which triggers higher-level and contextual fusion procedures. 
Scene interpretation may lead to feedback generation to the sensor agents, which is 
returned back by starting a communicate-fused estimation dialog. 
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FIGURE 17.4 Computer laboratory scenario and cameras. 

In the remainder of this section, we describe in more detail how these proce­
dures are performed in the framework. This is not a comprehensive explanation of 
the implementation of such a system. Instead, we will make several assumptions to 
simplify the explanation of the system features in order to provide a general over­
view of the benefits of the approach and the open problems that remain to be solved 
in the future. 

17.5.1 FRAMEWORK CONFIGURATION: CAMERA 

CALIBRATION AND CONTEXT DEFINITION 

Camera calibration is achieved by applying the Tsai technique (1987). We manu­
ally mark some distinct points on the ground plane situated inside the overlapping 
area of the cameras. The homography matrix is calculated from the position of the 
distinct points in global and local coordinates. Linear optimization techniques are 
used to numerically calculate the values of the matrix. The homography matrix is 
used by the agents to transform from camera coordinates (as seen by sensor agents) 
to global coordinates (as seen by the fusion agent). Dynamic calibration techniques 
can be also applied, but for the sake of simplicity we will assume pre-calibration of 
the cameras (Figure 17.5). 

After defining the common reference space, we use the ontological model to rep­
resent Cl applicable to the scenario. Positions of the contextual entities are defined in 
global coordinates. To do this, we develop a specific ontology for surveillance based 
on the generic model presented in Section 17.4.2 to represent interesting entities of 
the surveillance domain, namely, the SURV ontology. This ontology defines the exten­
sional knowledge of the application (i.e., concepts and relations). The intensional 
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FIGURE 17.5 An example of point correspondence in the three different views employed 
for the offline camera calibration phase. 

knowledge (i.e., instances) will be created as a result of the fusion procedure. The 
Smtv ontology in this example imports the sub-ontologies of the generic model and 
specializes them, for instance, with additional 

• Concepts: 
Objects: Door, Person, Table, CopyMachine, MeetingArea 
Scenes: Approach, Meeting 

• Relations: 
inMeeting 

• Axioms: 
Person CDynamicObject (a person is a dynamic object) 
Copy Machine!;;; Occluding Object (a copy machine is an occluding object) 
Table c OccludingObject (a table is an occluding object) 

The SuRv ontology is used to annotate the scenario. Annotating the scenario means 
to create instances of the ontology describing static objects. Therefore, we initially 
insert instances in the ontology to indicate the position of the door, the tables, 
the copy machine, and the meeting area. Figure 17.6 depicts the correspondence 
between ontology instances and scenario information. We also show the OWL code 
corresponding to the definition of copymachinel as an instance of CopyMachine 
at position (695, 360) in global coordinates. Unfortunately, annotation must be per­
formed manually. Further tools to support scenario annotation should be developed 
and learning procedures could be considered. These are interesting directions for 
future work. 

After initialization, the Suitv ontology is loaded into the reasoning engine (e.g., 
RACER). Contextual rules (abductive and deductive) must also be created in this 
step. Some simple example rules, expressed in plain text, are presented in the follow­
ing. These rules are represented in a suitable rule language such as the previously 
mentioned nRQL. 

• Object association: 
[Rule l] If a track is bigger than (50 x 50) pixels, then it corresponds to a person 

• Activity recognition: 
[Rule 2] If there are more than one person inside the meeting area for a 
while, a meeting is being held 
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FIGURE 17.6 Scenario annotation. 

• Process enhancement and feedback: 
[Rule 3] If a person is close to an occluding object, sensor agents must be 
warned about a possible future occlusion 
[Rule 4] If a meeting is being held, do not care about the tracks associated 
to the people in the meeting to avoid confusion 

17.5.2 Low-LEVEL INF-ORMATION Fus10N 

Figure 17.7 depicts a scenario in which we have an individual moving around the follow­
ing a predefined path (the ground truth is known a priori). The picture show the frames 
captured by the cameras at time t=200s and the result of the background subtraction 
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Camera! Camera2 Camera3 

FIGURE 17.7 Local tracking results obtained by sensor agents (t=200 s). 

procedure. The frames also include the bounding box calculated by each sensor agent 
as a result of the tracking procedure based on the local data in its field of view. 

It can be seen that the results obtained by sensor agent 1 are not very accurate at 
this frame. Regarding sensor agent 1, while the x position of the center of the track 
is correctly calculated, the y position is moved up (in local coordinates). Regarding 
camera 3, both x and y positions of the track are misplaced, but this has no effect on 
the projection, since the individual's feet are correctly detected and positioned on the 
ftoor. The projection of the track position to the ground plane clearly shows this mal­
functioning (Figure 17.8). The graphs depict the (x, y) positions in global coordinates 
estimated at each frame of the sequence with respect to the ground truth. Positions 
corresponding to the frames at t= 200 s are highlighted with a square. 

Tracking information obtained by sensor agents is sent to the fusion agent, which 
performs a low-level fusion procedure to combine the tracks and correct sensor 
errors. We have used the algorithm presented in Castanedo et al. (2007). As explained, 
tracking information is encoded with the communication ontology and wrapped in 
FIPA-compliant messages. In this case, the results of the Fusion Agent outperform. 
the local estimates, as depicted in Figure 17.9 where fused (x, y) positions on global 
coordinates at each frame are shown. 

Fused tracking information is inserted into the HLIF knowledge model as 
instances of the tracking sub-ontology. This update may trigger further reasoning 
processes in the contextual layer, as described in Section 17.5.4. In addition, after 
detecting a deviation between local and fused estimates, the fusion agent may initi­
ate an active fusion process and send appropriate feedback to sensor agents. 

17.5.3 CONTEXTUAL ENHANCEMENT TO TRACKING 

In the previous example, estimation errors were the consequence of the limited infor­
mation available. Thus, fusion significantly increased the accuracy of the system. 
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FIGURE 17.8 Local tracking results obtained by sensor agents compared to the ground­
truth positions. (a) Sensor agent 1 (camera 1) (b) Sensor agent 2 (camera 2) (c) Sensor agent 
3 (camera 3). 

Nevertheless, in other cases classical data fusion procedures are insufficient to solve 
local tracking errors due to the inherent limitations of statistical tracking methods to 
adapt to complex situations. 

For example, in Figure 17 .10 we show the frames captured by the cameras at 
time t= 180s and the (x, y) positions estimated at this frame in global coordinates. 
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FIGURE 17.9 Fused tracking results obtained by fusion agent (from t=O to 200s). 
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Cameral Camera2 Camera3 

FIGURE 17.10 Local tracking results obtained by sensor agents (t=180s). 

It can be seen that there is a significant error in the estimates of the three sensor 
agents. In this case, besides the previous difficulties (the individual is outside the 
field of view of cameras 2 and 3), there is an additional issue: a partial occlusion 
in camera 1. Partial occlusions result in track discontinuity, since hidden parts of 
the moving entities are not considered by the tracker and, therefore, track positions 
are misplaced. 

Representation and reasoning with context knowledge in the fusion agent are 
applied to handle these situations. Scenario annotation is used to identify poten­
tial occlusive objects, contextual rules are fired when the conflictive situation is 
about to happen, and feedback is provided to the sensor agents to handle errors 
appropriately. 

As a matter of example, let us suppose that the individual is being correctly 
detected by the tracker before t= 180s. Fused information corresponding to this 
track would be consequently inserted into the HLIF knowledge model as instances 
of the track information sub-ontology. Rule 1 is triggered, and the track is identified 
as a person object by creating a proper instance in the object sub-ontology. In the 
next few frames, as the individual approaches the copy machine, the corresponding 
track information is updated, and eventually rule 3 is triggered. Consequently, an 
expected occlusion situation is created as an instance of the feedback sub-ontology. 
Subsequently, low-level fusion procedures and sensor agents may be notified about 
the situation by initiating a proper communicate fusion estimate clialog. If necessary, 
fused track information, encoded in the communication ontology, is sent back to the 
sensor agents by using FIPA-compliant messages. Low-level fusion procedures and 
sensor agents are responsible for handling the information properly. For instance, 
an appropriate action will be to incorporate track information to correct the Kalman 
filter matrix in order to avoid misplacing of the track position when the occlusion 
happens. 
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FIGURE 17.11 An example of detecting a meeting situation. (a) Person 1 is working with­
out generating tracking updates and (b) activity in the meeting area results in a new detected 
situation. 

17.5.4 SCENE INTERPRETATION 

Let us suppose a situation in which we have an individual working on a desk of the 
computer laboratory (see Figure 17.lla). Tracking updates for these individuals are 
not sent to the fusion agent, because slight movements are not considered by the 
sensor agents. Next, one of the individuals (personl) stands up and moves into the 
meeting area. During this trajectory, sensor agents send information to the fusion 
agent, which updates the scene model. Some abductive and deductive reasoning pro­
cedures may be triggered as a result of ontology instance assertions, as explained 
before. Similarly, a second individual (person2) enters the room and moves to the 
meeting area. At this point, the current situation reflected in the ontological model 
is the one depicted in Figure 17.llb: we have two individuals labeled as persons who 
have entered the meeting area. 

Consequently, rule 2 is triggered. A new Meeting instance is created in the activ­
ities sub-ontology, with person] and person2 associated through the inMeeting 
property. This new Meeting instance fires rule 4. The aim of the rule is to prevent 
the agents from missing tracks corresponding to people who are close and probably 
overlapping. This feedback can be sent back to the sensor agents, which can handle 
this recommendation by stopping tracking in this area and storing track identi­
fier and additional interesting track properties (e.g., predominant color), in order to 
identify tracks coming out of the meeting area. 

17.6 SUMMARY AND FUTURE DIRECTIONS 

More research works and implementations of general frameworks for visual DIF 
are needed to foster the creation of competitive solutions while cutting develop­
ment costs in critical application areas. The first step toward domain-independent 
frameworks is to develop operational prototypes and to test them with existing data 
sets. The architecture proposed in Section 17.4 presents the overall picture of the 
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system, but real implementations will have to deal with several specific problems 
that are identified in the description. In Llinas (2010), the author envisions a pos­
sible approach to a general IF multi-layer framework with a front-end that manages 
hard and soft sensor inputs; an initial layer for detection, semantic labeling, and flow 
control, based on an intelligent repository of pluggable algorithms; a fusion layer, 
composed of several interrelated fusion nodes that process information at different 
JDL levels and incorporate Cl to the process; and a presentation layer to convey 
the results through appropriate visualization interfaces. Such IF frameworks should 
provide an adaptable infrastructure where specific procedures can be easily reused 
and/or integrated, especially those based on artificial intelligence techniques, which 
are likely to play a key role in the next-generation fusion applications. We strongly 
believe that the multi-agent paradigm and ontologies as representation formalisms 
can be the theoretical support of such frameworks. 

As for the specific design of the presented architecture, it is important to notice 
that we have proposed a hierarchical schema for DIF. We have limited data align­
ment at tracking level, but it should be possible to combine estimations performed by 
fusion agents at different levels in such a way that the system will be able to obtain 
a combined view of the scenario from the detected objects or the recognized situa­
tions, instead of only the track data. This will require further investigations both at 
data and process level, since it involves the formation of local coalitions of coordi­
nated agents. Reputation mechanisms should also be taken into account to measure 
the confidence in the data provided by different sources, in order to achieve conflict 
resolution. 

Another interesting research area is the incorporation of uncertain and vague 
information representation formalisms and reasoning procedures into the frame­
work for visual HLIF. Classical ontologies do not provide support for this kind 
of knowledge, which is inherent to vision applications, and extensively, to IF 
applications. There are three main sources of uncertainty and imprecision in 
HLIF applications. Firstly, we have errors due to the imprecise nature of sensor 
data. They can be statistically modeled, but are affected by physical conditions. 
Secondly, there is uncertainty resulting from scene interpretation procedures; for 
example, when there is more than one object in the scene or the situation cannot 
be clearly discerned. Finally, there is uncertainty resulting from fusion proce­
dures; for instance, data combination may be trusted to a certain degree. In addi­
tion, it may be interesting to add imprecise knowledge management features to 
the reasoning model in order to deal with vague spatiotemporal relations such as 
close, far, before, after, etc. 
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