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Abstract
We apply stochastic process theory to the analysis of immigrant integration.
Using a unique and detailed data set from Spain, we study the relationship
between local immigrant density and two social and two economic immigration
quantifiers for the period 1999–2010. As opposed to the classic time-series
approach, by letting immigrant density play the role of ‘time’ and the quantifier
the role of ‘space,’ it becomes possible to analyse the behavior of the quantifiers
by means of continuous time random walks. Two classes of results are then
obtained. First, we show that social integration quantifiers evolve following
diffusion law, while the evolution of economic quantifiers exhibits ballistic
dynamics. Second, we make predictions of best- and worst-case scenarios taking
into account large local fluctuations. Our stochastic process approach to inte-
gration lends itself to interesting forecasting scenarios which, in the hands of
policy makers, have the potential to improve political responses to integration
problems. For instance, estimating the standard first-passage time and
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maximum-span walk reveals local differences in integration performance for
different immigration scenarios. Thus, by recognizing the importance of local
fluctuations around national means, this research constitutes an important tool to
assess the impact of immigration phenomena on municipal budgets and to set up
solid multi-ethnic plans at the municipal level as immigration pressures build.

Keywords: continuous time random walks, quantitative sociology, immigration
theories

1. Introduction

A particular political challenge of growing immigration is immigrant integration. It is considered
a necessity for minimizing frictions and confrontation between immigrants and natives in the host
community, as well as a precondition for a competitive and sustainable economy [1]. In response
to the recent rapid growth in the number of immigrants throughout many major regions in the
world, the need for political intervention targeting integration has become increasingly urgent [2].
Still, effective policymaking in this area is obstructed by the lack of rudimentary knowledge about
how immigrant integration responds to an increase in immigration.

To this end, in a recent work [3] a new approach for studying key-integration quantifiers,
based on methods, models, and ideas from statistical physics, was proposed. The theory describes
and predicts how typical integration quantifiers change when the density of migrants increases.
The results predicted a linear growth for the averages of economic quantifiers like permanent and
temporary jobs given to immigrants, and a square root growth for the averages of social quantifiers
like mixed marriages and infants born to mixed couples. This framework is a powerful tool for
policy makers interested in assessing and evaluating integration progresses at the national level.

To deal with the phenomena at the municipality level we use here a different theoretical
framework based on the theory and techniques of continuous random walks [4, 5]. The
approach developed in [3], based on a full micro-macro statistical mechanics theory, revealed in
fact a high efficacy to forecast average values, but, since the developed model does not yet have
an exact solution, its related phase space picture is not fully disclosed and does not yet cover the
structure of the fluctuations around the mean values. The random walk approach that we follow
here instead, which is based on a meso-macro stochastic process, has the advantage of allowing
for full analytical control of both mean values and fluctuations.

We consider classical quantifiers of integration such as the fraction of all temporary and
permanent labor contracts given to immigrants, the fraction of marriages with spouses of mixed
origin (native and immigrant), and the fraction of newborns with parents of mixed origin. The
evolution of these quantifiers versus the percentage of migrants inside the host country is
‘locally erratic’; that is, when considered at a fine level of resolution such as the municipality, it
can be thought of as a random walk where the time change is represented by the change of
migrant density in the municipality, and the integration quantifier—playing the role of the space
variable—changes according to suitable probability distributions defining the stochastic
process. Instead of obtaining the evolution of averages via statistical mechanics, with this
approach the evolution of averages is here the result of averaging over the whole ensemble of
municipalities, i.e., averaging over all the random walks.
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From a sociological perspective, the evolution of the quantifiers with respect to the density
of immigrants is, in fact, a random process stochasticity which may depend on several
exogenous factors driving immigration: fluctuations in the ratio between work demand and
work request in the host country [2] or ‘biases’ resulting from (for example) push–pull factors
[2] or different types of network-induced migration outcomes [6–8]. However our aim here is
not to explain or disentangle these mechanisms, but rather to look at the evolution of quantifiers
as a combined effect of a ‘drift’ in the presence of some ‘noise’ regardless of its source/origin.
For this task we use random walk theory, which the latter constitutes the prototype of a
stochastic process, and, at the same time, the basic model of diffusion phenomena and non-
deterministic motion. Indeed, applications can be found in the study of, for example, transport
in disordered media (e.g., [9]), anomalous relaxation in polymer chains (see e.g., [10]), financial
markets (see e.g., [11]), and quantitative analysis in sports (see e.g., [12]).

Using stochastic process theory enables us to develop a mesoscopic description of the
behavior of the integration quantifiers and also to address questions such as whether these
socio-economic metrics are determined by memoryless stochastic processes or by processes
with long-time correlations. Moreover, this framework enables us to analyze rare events and
non-Markovian quantities which are important determinants for planning when they are used as
key tools for quantifying fluctuations. That is, we aim to provide efficient tools to help assess
the progress (or deficit) in integration as well as to generate strong predictions for extreme-case
scenarios at lower administrative levels such as municipalities, and thereby, through an
interplay between statistical mechanics and stochastic processes, we broaden the scope of
practical applications of the quantitative theory of immigrant integration as a whole. Example of
typical questions begging an answer are: what is the worst/best case scenario in the two
integration branches—social and economic integration—in a particular municipality if
immigrant density changes from say 5 to 7%? And how does the effect magnitude of this
change compare with the effect magnitude of an equivalent change at the national level, i.e.,
average change, or in a similar/dissimilar municipality? In other words, through first-passage-
time and maximum-span techniques, we obtain estimates for the expected value of immigrant
density for which a particular integration quantifier—say, the share of immigrant workers or the
number of mixed marriages—reaches a given threshold above which new policies, structures,
services, facilities, etc., have to be made available.

The work is organized as follows: first we describe the database and the procedures for
data extraction (section 2), then we explain in detail the mapping between the evolution of a
social quantifier and of a random walk (sections 3 and 4), then we report the related results
(section 5). Finally, we discuss how such outcomes may be exploited to more effectively set up
multiethnic plans and immigration policies in general (section 6). In the appendix we provide
technical checks of the robustness of our approach.

2. Data description, analysis and elaboration

Data considered here refer to quarterly observations during the period 1999 to 2010. It is drawn
from Spainʼs Continuous Sample of Employment Histories (the so-called Muestra Continua de
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Vidas Laborales or MCVL)6 and from the local offices of Vital Records and Statistics across
Spain (Registro civil)7. The former provides detailed data on labor contracts, and the latter
provides detailed data on spouses and parents of newborns. Information on the municipalities’
immigration density are drawn from the Municipal population registers8. A unique feature of
the Spanish data is that data sources include so-called ‘undocumented immigrants’, that is,
immigrants who lack a residence permit. Undocumented immigrants are usually not included in
official statistical sources. However, their assimilation within the immigrant population is often
significant, and excluding them would underestimate the true size of the immigrant population
as well as the frequency of the socio-economic events used to measure integration.

Because ‘municipality’ is the lowest administrative level for which data on density is
available, the individual data on mixed events is aggregated to the level of the municipality.
From these datasets, for each municipality9 we obtain quarterly time series for the following
quantities:

=J
#permanent contracts to immigrant

#permanent contracts
, (1)p

=J
#temporary contracts to immigrant

#temporary contracts
, (2)t

=M
#mixed marriages

#marriages
, (3)m

=B
#newborns with mixed parents

#newborns
. (4)m

Notice that the contracts counted in equations (1) and (2) are given to immigrants by native
employers.

As explained below, by studying how the quantities in equations (1)–(4) vary with the
overall fraction of immigrants, we can unveil the growth law determining their evolution and
use this information to provide for them.

To assess the evolution of the Immigrants–Natives system, a convenient quantity to use as
a control parameter is

6 It is an administrative data set with longitudinal information for a 4% non-stratified random sample of the
population who are affiliated with Spainʼs Social Security. We use data from the waves 2005 to 2010. The
residence municipality is only disclosed if the population is larger than 40000.
7 These data are compounded by the ‘National Statistical Agency’ (INE). The residence municipality is only
disclosed if the population is larger than 10000.
8 More precisely, we use the size of the immigrant population and the native population in each municipality as
reported in the 2001 Census as our baseline. Thereafter, based on the information contained in the ‘Statistics over
residential variation in Spanish municipalities’ and statistics on vital events (births and deaths) as elaborated by
Spainʼs ‘National Statistical Agency’ (INE), we estimate local immigrant densities for different points in time
between 1999 and 2010.
9 Due to data protection, data on mixed marriages and newborns with mixed parents are only available for
municipalities with a population larger than10 000. In addition, and due to data protection, municipality coding for
the labor contract data is only available if the municipalityʼs population exceeds 40 000. However, about 85% of
Spainʼs immigrants reside in the included municipalities.
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Γ γ γ= = −N N N (1 ), (5)imm nat
2

where γ = N Nimm is the ratio between the number of immigrants Nimm and the overall
population N, in such a way that its complementary γ−1 is the number of native people Nnat

over N ( = +N N Nimm nat). Indeed, Γ provides an intensive measure of the cross-links existing
among the communities of natives and of immigrants (however, for small values of γ, Γ γ∼ ,
hence we can roughly map the percentage of immigrants with the time in our bridge).
Moreover, unlike other possible choices such as time, using Γ avoids any inaccuracy due to
seasonality and allows direct comparison of municipalities of different sizes (see also [3]). We
also stress that Γ nicely captures the ‘mixed’ nature of the relationships described by the
quantifiers in equations (1)–(4) as, whenever Γ = 0, that is γ = 0 (i.e., =N 0imm ) or γ = 1 (i.e.,

=N Nimm ), = = = =J J M B 0t p m m .
Complete time series for data on labor contracts involve a number J of municipalities,

with  = 124J , and consist of 2976 data entries over the period 2005–10, which is sampled
quarterly (i.e. 24 trimesters overall). Complete series for data on marriages and newborns
involve a number F of municipalities, with  = 581F , and consist of 23 240 data entries
spanning the period 1999–2008 which is sampled quarterly (i.e. 40 trimesters overall).

Thus, for any municipality i, we consider five time series: one for Γ i( ) and one for each
observable in equations (1)–(4), hereafter denoted generically as X i( ), with =i 1 ,..., 4.

As Γ varies, each series X i( ) determines a ‘path’ in the related space, and this point process
can be looked at as a continuous-time random walk (CTRW)10, where the time variable is given
by Γ and while the space variable is given by X i( ); see figure 1. This mapping is fully described
in the next section.

Finally, in figure 2 we show the time series for X i( ) and Γ i( ) versus time (in units of
trimesters) to highlight the different shapes of paths.

2.1. Telegraphic introduction on CTRWs

A CTRW process can be depicted as a dynamical point (to fix ideas embedded in a one-
dimensional space, since here we need only such a case), which occupies a position r(t) at time t
(see also figure 3). Let us suppose that the point starts on the origin, that is =r (0) 0. It then
stays fixed to its position until time t1, when it jumps to ξ1, where it waits until time >t t2 1,
when it jumps to a new location ξ ξ+1 2, and so on. The series t t{ , ,...}1 2 defines the times of
jumping events. The times τ τ= − = −t t t0, ,1 1 2 2 1 etc are called waiting times.

The waiting times τ{ }i and the width of the instantaneous jumps ξ{ }i are continuous
random variables extracted from the distribution ψ ξ τ( , ). The latter determines the long-time
properties of the walk: a diverging average waiting time typically corresponds to sub-diffusive
behaviors, whereas a diverging variance for jump widths typically corresponds to super-
diffusive behaviors.

In particular, for the so-called decoupled continuous random walk (namely where the
distribution ξψ τ( , ) factorizes into ξ ξψ τ ψ τ= f( , ) ( ) ( )), the waiting times and the
instantaneous displacements are mutually independent (identically) distributed random
variables.

10 The continuous time random walk (CTRW) was introduced by Montroll and Weiss [18]; see also [4, 5] for
recent reviews and SI for a deeper description.
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Figure 1. Examples of paths for the quantifiers Mm (upper panel) and Jp (lower panel)
shown as a function of Γ. Three different municipalities are depicted in different colors.
These paths can be compared with a theoretical one depicted in figure 3 and related to a
CTRW. In this figure the time series X{ }i( ) and Γ{ }i( ) have been properly initialized to
allow an effective comparison; more precisely values are shifted as → −X X Xj

i
j
i i( ) ( )

1
( )

and Γ Γ Γ→ −j
i

j
i i( ) ( )

1
( ) , for any j.

Figure 2. Examples of paths for the quantifiers Mm (upper panel) and Jp (lower panel)
shown as a function of time (1 unit = 1 trimester). Three different municipalities (the
same as in figure 1) are depicted in different colors. Notice that seasonality effects
emerge for marriages: during summer months marriages are more frequent.
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The position r of the particle at the k-th jump, that is, at time tk, is given by the sum
ξ= ∑ =r t( )k i

k
i1 . Getting r(t), namely a direct dependence on t, requires the introduction of the

random variable n(t), representing the number of steps m performed up to time t and defined by
= ⩽n t m t t( ) max { : }m , in such a way that

∑ξ=
=

r t( ) . (6)
i

n t

i

1

( )

The expected value r t( ) of the displacement can be derived from the probability
distributions for the waiting time and for the step length. In fact, focusing on the decoupled
case11, we can define ∫ ξξ ξ ξ= f d( ) and ∫ ττ ψ τ τ= d( ) , whereby, as long as τ̄ is finite, one can
show that, in the limit of large t [13]

ξ
τ

∼r t
t

( )
¯
. (7)

Thus, if there is no net drift (ξ = 0), the average displacement is zero and one usually looks at
the mean square displacement, which turns out to scale as ξ τ∼r t t( )2 2 , and the purely
diffusive limit can be recovered.

On the other hand, in the presence of a net drift (ξ ≠ 0), the mean displacement can also
be expressed in terms of the mean number of steps n t( ) performed up to time t as (see e.g.,
[13, 14])

ξ=r t n t( ) ( ) · , (8)

and, accordingly, ∼r t r t( ) ( )2 2 [13, 14]. From equation (8), one can see that if the average time
diverges or displays any anomalous behavior, the biased motion turns out to be anomalous
as well.

Of course, the definitions given here can be extended to a geometrical space with arbitrary
topology [4].

Figure 3. Example of path realized by a CTRW for which step widths and waiting times
are extracted from the distributions given by equations (28) and (30), respectively, and
with parameters consistent with those found experimentally (see table 2).

11 As we will show, this is the case recovered by our experimental data

7

New J. Phys. 16 (2014) 103034 E Agliari et al



Despite the fact that this random walk process is, by definition, Markovian, one can also
introduce non-Markovian related quantities such as the mean-first passage time t̃ and the
maximum span r̃ , [15].

The mean-first passage time represents the mean time taken by a random walk to first reach
a (fixed) point placed at a given initial distance r. Its dependence on r qualitatively depends on
the kind of diffusion realized, in particular:

∼t r˜ , for pure diffusion (9)2

∼t r˜ , for biased diffusion. (10)

The maximum span represents the farthest distance ever reached by a random walk up to
time t. Again, the functional form of r̃ as a function of t depends on the kind of diffusion
realized:

∼r t˜ for pure diffusion (11)

∼r t˜ , for biased diffusion. (12)

These relatively simple laws stem from the peculiarity of the one-dimensional structure. In
general, the behavior of t̃ and r̃ functionally depends on the underlying topology.

Indeed, due to their non-Markovian nature, estimating such quantities may be rather tricky,
yet they are intensively studied because they provide useful information and play an important
role in many real situations (e.g. transport in disordered media, neuron firing, spread of diseases,
and target search processes [4, 16, 17]).

To summarize, the CTRW is a stochastic model for which ψ τ( ) and ξf ( ) serve as input
functions. The output is provided by the temporal series t t{ , ,...}1 2 and r r{ , ,...}1 2 from which
quantities such as mean squared displacement, mean first-passage time, etc can be calculated.

In the next section, the jump widths ξiʼs as well as the positions r(t) will assume different
meanings (i.e. number of mixed marriages, of infants born to mixed couples, and of temporary/
permanent contracts to immigrants) according to the specific quantifier addressed.

3. The mapping in a nutshell

Let us denote with X i( ) a generic quantifier (i.e. the number of mixed marriages, of newborns
from mixed couples, and of temporary/permanent contracts to immigrants), where i specifies the
municipality. According to the quantifier considered i is bounded by J or by F.

Therefore, we have the time series

{ }X X X, ,..., , (13)i i i
1
( )

2
( ) ( )

Γ Γ Γ{ }, ,..., , (14)i i i
1
( )

2
( ) ( )

where Xn
i( ) and Γni( ) are the values of the quantifier and of the number of cross-links at the nth

trimester and  is bounded by the overall number of trimesters over which measures have been
taken (i.e., 24 for job quantifiers and 40 for family quantifiers).

For a (one-dimensional) CTRW of  steps, defined by the two series

ξ ξ ξ{ }, ,..., , (15)1 2
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t t t{ , ,..., }, (16)1 2

where ξn is the jump width and tn is time when the n-th step occurs, we recall that the position r
(t) of a walker at time t is obtained by ξ= ∑ =r t( ) j

n t
j1

( ) , where n(t) is the number of steps
performed up to time t.

Analogously, we can state that, for the i-th municipality, the value of the quantifier ΓX ( )i( )

corresponding to fraction of cross-link Γ is

∑Γ Δ=
Γ

=

X X( ) , (17)i

j

n

j
i( )

1

( )
( )

i( )

where Δ = −+X X Xj
i

j
i

j
i( )

1
( ) ( ) and Γn ( )i( ) is the latest trimester for which Γ Γ<j

i( ) .
Therefore, we can look at the set of  municipalities as a set of  random walks.

Actually, before proceeding, a couple of remarks are in order.
In principle, Γ and X are bounded by 1, yet, the number of immigrants corresponds to a

small fraction of the overall population in such a way that Γ < <X, 1 and we can neglect
boundaries12.

Moreover, Γ and X are not continuous variables as there exists an intrinsic unit given by
number of marriages1 # , number of newborns1 # and number of contracts1 # , representing

our experimental sensitivity. However, such a unit is in general much smaller than the quantities
measured, which can therefore be considered as continuous.

Therefore, we can treat the set of  municipalities as a set of  random walks, for which
we can build the following ensemble average:



∑Γ Γ≡
=

X X( )
1

( ). (18)
i

i

1

( )

Similarly, for the average square distance covered

⎡⎣ ⎤⎦

∑Γ Γ≡
=

X X( )
1

( ) . (19)
i

i2

1

( ) 2

The progression of the quantifiers Γ〈 〉X ( ) averaged over the whole set of municipalities,
that is to say, the average displacement of the related CTRW, is shown in figure 4, where fits
evidence the following behaviors

Γ Γ∼J ( ) , (20)t

Γ Γ∼J ( ) , (21)p

Γ Γ∼M ( ) , (22)m

Γ Γ∼B ( ) . (23)m

perfectly consistent with those outlined in [3], despite the fact that procedure for their derivation
is conceptually different; this confers robustness to the above results.

12 Conversely, if boundaries can not be neglected the mapping could still be feasible but we should refer to the
theory of random walks on finite chains
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To summarize, in our random-walk picture for the time evolution of the social quantifier X,
in each municipality the quantifier starts from zero and, for a given variation of the related
immigrant percentage Γ, the quantifier increases or decreases until the path ends. The trajectory
of X versus Γ qualitatively resembles the position of a CTRW as a function of time (see
figures 1 and 3).

In the next section we analyze the CTRWs associated with the quantifiers and try to get a
microscopic perspective for the origin of these laws. Such a perspective will enable us to
speculate about possible effects and to make crucial forecasts.

4. Formalizing the mapping

We first check that the CTRWs corresponding to Jp, Jt, Mm and Bm are decoupled, that is, the
related probability distributions ψ Δ ΔΓX( , ) for the generic increments ΔX and ΔΓ can be
factorized into Δ ψ ΔΓf X( ) ( ): this is achieved through direct inspection of the scatter plots
reported in figure 5. This point is further explored in the appendix, where we also show that
ΔXni( ) and ΔΓni( ) turn out to be uncorrelated with respect to the ‘instantaneous values’ Xn

i( )

and Γni( ) .
Thus, we can proceed by studying separately Δf X( ) and ψ ΔΓ( ). We recall that such

distributions provide qualitative information about the diffusive behaviors of the walks
associated with our quantifiers, that is, on their time progress. Moreover, from Δf X( ) and
ψ ΔΓ( ), we are able to derive the expectation values

∫Δ Δ Δ Δ=X Xf X d X( ) , (24)

Figure 4. ‘Mean displacement’ (main figures) and ‘mean square displacement’ (insets)
versus ‘time’ for the CTRWs associated with Jt (panel a), Jp (panel b), Mm (panel c) and
Bm (panel d). Data available were binned over Γ and averaged over the set of 
municipalities; the resulting values (•) and the related best fit (solid line) are shown. In
particular, for family quantifiers we fitted by the law = +r p t p1 2, whereas for job
quantifiers we used the law = +r p t p3 4; best fit coefficients are summarized in table 1.
In general, the goodness-of-fit R2 ranges between 0.97 and 0.99. Notice that

Γ Γ〈 〉 ∼ 〈 〉X X( ) ( )2 suggests the presence of a drift [13].

10
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∫ΔΓ ΔΓψ ΔΓ ΔΓ= d( ) , (25)

which act as the expected jump length and as the expected waiting time, respectively.
Analogously, we can derive Γn ( ), which acts as the expected number of steps performed up to
‘time’ Γ, that is

∑Γ Γ=n n Q n( ) ( ), (26)
n

where ΓQ n( | ) is the probability that ΔΓ∑ j
n

j is smaller than Γ, but ΔΓ∑ +
j
n

j
1 is larger that Γ.

From these quantities, one finally has (see e.g. [13, 14])

Γ Γ Δ=X n X( ) ( ) · . (27)

Of course, the expectation ΓX ( ) and the ensemble average Γ〈 〉X ( ) ought to be consistent (as
checked in the next section). This ensures the ergodicity of the system and will enable us to
exploit the analytical results derived starting from the probability distribution functions also for
our ‘time’ series.

4.1. Step width and waiting time distributions

Let us start with the distribution for the ‘step lengths’ Δf X( ). In figure 6 we show the histogram
for the increments ΔJt, ΔM , ΔJ ,p and ΔB obtained from experimental data. In all cases the
symmetric, centered exponential distribution

Figure 5. These scatter plots evidence the existence of any correlation between the
‘waiting times’ ΔΓ and the ‘jump width’ ΔJt, ΔJp, ΔMm, and ΔBm: each point represents
the increments ΔXn versus ΔΓn; all  steps and the whole set of municipalities are
considered. The clouds of data are uniform and do not reveal any special trend. Binned
spots evidence the possible values of increments ΔΓ ,n and for each bin we calculated the
average of the related increments ΔXn; the related standard deviations are also depicted.
Notice that such averages are basically constant (at least within the error) with respect to
ΔΓ ,n and this allows us to conclude that no clear correlation emerges.

11
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Δ λ= λ Δ−f X e( ) , (28)X

provides an excellent fit. An exponential distribution for step lengths ensures that the related
CTRW does not exhibit any super-diffusive feature as the central limit theorem is fulfilled.

Now, the fit coefficient λ depends on the quantifier considered and is directly related to the
expected value by λ Δ=− XX

1 . Results are presented in table 2, where a comparison with the
experimental average values Δ〈 〉X| | and Δ〈 〉X is also provided.

The goodness of the fit is corroborated by the fact that λ −
X
1 and Δ〈 〉X| | coincide within the

error. However, looking at Δ〈 〉X , we report a slight deviation: although one would expect a null
average value due to the centrality of the distribution, the average is systematically positive for

Figure 6. Distributions Δf J( )t (panel a), Δf J( )p (panel b), Δf M( )m (panel c) and
Δf B( )m (panel d) measured from experimental data, without distinguishing between

municipalities; that is, we merged the increments pertaining to the whole ensemble of
walks and built a unique histogram. Notice the semi-logarithmic scale plot. Data (•) are
fitted by using equation (28) (solid line); best-fit coefficients and averages on raw data
are presented in table 2

Table 1. Best-fit coefficients related to plots shown in figure 4.

Quantifier X p1 p2

〈 〉Mm ±0.54 0.02 − ±0.019 0.009
〈 〉Mm

2 ±0.57 0.03 ±0.007 0.06

〈 〉Bm ±0.25 0.01 − ±0.010 0.009
〈 〉Bm

2 ±0.287 0.002 − ±0.007 0.004

Quantifier X p3 p4

〈 〉Jt ±1.9 0.1 − ±0.003 0.001
〈 〉Jt

2 ±1.9 0.1 ±0.003 0.001

〈 〉Jp ±1.47 0.06 ±0.005 0.003

〈 〉Jp
2 ±1.45 0.07 ±0.025 0.008
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all quantifiers, which implies that, as Γ increases, X is more likely to grow rather than to
decrease. In the random-walk picture, this can be interpreted as the presence of a drift which
biases the motion of the walker. Let us now move to the distribution for the ‘waiting times’ ΔΓ .
In figure 7 we show the histogram for the increments ΔΓ obtained from experimental data
related to the time period and to the municipalities considered. Interestingly, here qualitative
differences emerge between the job quantifiers, i.e. Jt and Jp, and the family quantifiers, i.e. Mm

and Bm.
Before proceeding it is worth stressing that for job quantifiers and family quantifiers the

time along which sampling has been performed is not exactly the same, being, respectively,
2005–10 and 1999–2008 (of course, the consistency between the related time series has been
checked for the overlapping period [3]). Now, to ensure that the qualitative differences reported
do not stem from different time intervals, but instead are intrinsic, we repeated the analysis
shown in figure 7 by restricting the calculations to only to the common time lapse 2005–08 and,
indeed, we checked the robustness of the result.

In fact, calling ψF and ψJ the distributions for family and job quantifiers, respectively, the
reason for their intrinsic difference can be explained by the way mapping between quantifier
evolution and random-walks has been fixed. In particular, there exist trimesters i for which a
growth in the number of immigrants is reported; i.e. Γ Γ− >− 0i i 1 , but no change in the
quantifier X considered occurs, i.e. Δ =X 0i . In such cases the two trimesters behave as
practically merged as the overall waiting time approaches Γ Γ−+ −i i1 1. This concept can be
repeated iteratively until each step of the walk actually corresponds to a true displacement.
Thus, as one can see from figure 7, such merging is more frequent for family quantifiers in such
a way that the related waiting times display a larger range; or, to put it another way, the
integration of immigrants within the market is more direct: as long as new immigrants arrive, a
fraction of them get a job, either permanent or temporary. Conversely, the integration of
immigrants from a familiar perspective is more complex and does not follow a prescribed
pattern: not surprisingly, the arrival of new immigrants does not necessarily correspond to
integration when considering these quantifiers. This is consistent with the results in [3], where
from a different perspective, it is shown that the qualitative difference between the laws

Table 2. The second column contains the best-fit coefficients obtained by fitting,
according to equation (28), the probability distribution function of the displacements
ΔX shown in figure 6; the third and fourth columns contain the related average values,
where the average is performed on raw data over all municipalities. Because it is the
support of the exponential distribution positive, λ −

X
1 has to be compared with Δ〈 〉X| | .

Moreover, we checked that the absolute error on Δ〈 〉X| | is approximately equal to
Δ〈 〉X| | itself, as expected from an exponentially-distributed variable. Notice that the

average displacement Δ〈 〉X in a single step is positive for any quantifier (the standard

deviation Δ Δ〈 〉 − 〈 〉X X2 2 calculated on raw data is comparable with Δ〈 〉X ).

Quantifier X λ −
X
1 Δ〈 〉X| | Δ〈 〉X

Jt ±0.031 0.002 0.03 0.003
Jp ±0.058 0.003 0.06 0.003
Mm ±0.079 0.002 0.08 0.003
Bm ±0.035 0.001 0.03 0.001
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Γ ΓM B( ), ( ),m m and Γ ΓJ J( ), ( )t p is due to a different degree of interaction among agents in the
two different scenarios (families and jobs).

It is worth stressing that such an effect is not directly imputable to the seasonality of
marriages; this can be seen, for instance, from the fact that for newborns the same effect
emerges as well, but their time series do not display any seasonality.

Let us now analyze in more detail the waiting time distributions.
For family quantifiers the distribution ψ ΔΓ( )F fitting the experimental histogram is a log-

normal distribution

ψ ΔΓ
ΔΓ π σ

ΔΓ μ
σ

= − −
( )

1

2
exp

(log )

2
, (29)F

2

2

for which the average value is expected to be Δ = μ σ+X e
2
. As for jobs, the best fit is provided

by a half-normal distribution

Figure 7. Main plot: histograms for ΔΓ , derived from experimental data concerning
marriages (blue symbols) and permanent jobs (red symbols), are shown and compared.
Solid lines represent the best fit according to a lognormal distribution (see equation (29)
and a half-Gaussian distribution (see equation (30), respectively. Fitting coefficients and
related errors are reported in table 3. Notice that such histograms were derived without
distinguishing between municipalities. Lower inset: average number of steps performed
up to time Γ, calculated numerically from equation (29) (red line) and equation (30)
(blue line), respectively. Upper insets: average number Γ〈 〉n ( ) of steps performed by
the related random walker up to the fraction of immigrants Γ. Solid lines correspond to
the law ∼y x and ∼y x , respectively and evidence qualitatively different behaviors
for marriages and jobs. This picture corroborates the validity of equation (8) with the
ensemble average: Δ〈 〉 ∼ 〈 〉〈 〉r n r , which bridges the picture itself with figure 1. The fit
is robust only up to relatively small values of Γ; then experimental averages are
underestimated. This is due to the fact that the statistics are robust only for values of Γ
which are reached by (almost) all walks. For larger values our averages are only an
underestimate of the expected, effective mean value of n.
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ψ ΔΓ
π σ

ΔΓ μ
σ

= − −
( )

2
exp

( )

2
, (30)J

2

2

for which the average value is expected to be Δ μ=X . Details on fitting coefficients and
average values are all presented in table 3; notice that, in both cases, ΔΓ turns out to be
comparable with the ensemble average ΔΓ〈 〉.

Thus, although both ψJ and ψF fulfill the central limit theorem and display a finite mean,
the latter displays a long tail so that we expect that the growth for family quantifiers may be
slowed down.

Now, given ψJ and ψF, we can derive the number of steps performed up to time Γ,
exploiting the properties of Laplace transforms (see e.g. [13, 14]). Examples of numerical
results of these calculations are shown in the lower inset of figure 7; the difference between the
two cases is striking.

To check this point, we measure directly on raw data the average number Γ〈 〉n ( ) of steps
performed before reaching the time Γ (see figure 7). Indeed, for jobs we find a roughly linear
growth, i.e. Γ Γ〈 〉 ∼n ( ) , whereas for marriages and births we find a slower growth,
i.e. Γ Γ〈 〉 ∼n ( ) .

Such a qualitative difference, together with equation (8), immediately explains the results
of equations (20)–(23).

Summarizing, both processes display a non-null positive drift, i.e. Δ〈 〉 >X 0, yet the
resulting behaviors are qualitatively different over the time window considered. Such a
difference ultimately stems from deep differences in the waiting times: a broader distribution for
ΔΓ occurs in the case of family quantifiers and the related random walks may experience rather
long waiting times, although the jump widths remain narrowly distributed. The net result is just
a slowing down in the progress of the quantifier.

Conversely, as for jobs, both ΔX and ΔΓ are narrowly distributed so that at each trimester
we do not expect strong variations in the fraction of new immigrants getting a job.

Such a difference suggests an intuitive motivation, namely that the mechanisms underlying
the emergence of mixed marriages are more complex and may be subjected to mutual
interaction among individuals. This is perfectly consistent with the statistical–mechanics
description of the phenomenon provided in [3].

Table 3. Best-fit coefficients obtained by fitting the probability distribution function of
the ‘waiting time’ ΔΓ shown in figure 7 according to equations (29) and (30). The
relative error on fit coefficients ranges between 10% and 20%. Within the error there is
perfect consistency between the average values ΔX and Δ〈 〉X , as well as between the
variance of such distributions and the variance on the related raw data. Here we report
only data for marriages and permanent jobs; for newborns and temporary jobs, analo-
gous analysis shows only slight quantitative changes.

Γ μ σ2 ΔΓ ΔΓ〈 〉
Job ± −(1.2 0.2) · 10 3 ± −(6.7 0.6) · 10 6 ± −(2.0 0.2) · 10 3 ± −(1.7 0.2) · 10 3

Family − ±6.6 0.9 ±0.32 0.04 ± −(1.7 0.3) · 10 3 ± −(1.9 0.3) · 10 3
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5. First predictive outcomes for social planners

We now turn to the theoryʼs predictive capacity. The aim is to present concrete instruments that
can aid policy makers at the municipal level in their work to accommodate and plan for further
immigration. We focus on two well-known observables: the (mean) first passage time, and the
(mean) maximum walk span.

5.1. Mean first-passage time

Mean first-passage-time quantities have been extensively investigated in a number of different
fields, ranging from chemical kinetics to finance, because they provide an estimate for the
average time at which a given stochastic event is triggered [16, 17].

Given the process ΓX ( ), we calculate the value Γ x˜ ( ) at which the quantifier reaches a
certain threshold x. To evaluate the typical value of Γ x˜ ( ) we perform an average over the
ensemble of walks; that is



∑Γ Γ=
=

x x˜ ( )
1 ˜ ( ). (31)

i

i

1

( )

The quantity Γ〈 〉x˜ ( ) allows predictions on the consequences of additional immigrants on
integration and when an integration threshold is likely to be reached. For instance, let us say that
when an integration quantifier reaches the threshold x, some integration policies, activities, or
services must be activated (e.g. concerning public education, public health, etc). Then, as Γ
approaches Γ〈 〉x˜ ( ) , local projects and plans need to be activated.

In figure 8 we show the mean-first passage time for the quantifiers considered in this work
as a function of X.

The mean first-passage time is especially useful for policies, plans, and services that are
coupled with a concrete ‘discrete’ integration target and when we need to know the expected
time when the politically defined threshold is reached and plans must be activated.

For example, we could ask at which value of Γ (which is related to the percentage of
migrants) we expect the number of newborns born to mixed parents reaches the threshold of
10%. By simply looking at the behavior of Γ〈 〉X ( ) , by inverting, we would get Γ ∼ 0.2.
However, due to huge fluctuations (in some peculiar municipalities), the threshold of 10% can
be reached much earlier, since the first passage time returns a value Γ ∼ 0.04. Hence, planning
based on average evolutions only may underestimate reality by a factor thereby rendering
planning and resource allocation extremely ineffective.

5.2. Walk span

The walk span represents the largest point reached by the walker up to a given time; that is, the
largest value X̃ reached by X up to Γ. More precisely, we say that for the i-th walk, at the k-th
step, the span is X̃ i( ) if < ∀ ⩽X n X k n k( ) ˜ ( ),i i( ) ( ) . Again, to evaluate the typical value of X k˜ ( ),
we perform an average over the ensemble of walks; that is



∑=
=

X k X k˜ ( )
1 ˜ ( ). (32)

i

i

1

( )
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The average walk span provides information on the capacity to integrate further
immigration. In fact, in organizing local integration policies and making appropriate priority
decisions among different integration initiatives, one is interested in the span of, say, the
number of children, or the number of immigrants with permanent jobs, rather than in their
average number, since the latter may lead to dramatic over- and underestimations.

In figure 9 we show the span of the quantifiers considered in this work as a function of Γ.
We notice that the qualitative differences already evidenced for Γ〈 〉X ( ) are robust and the span
for marriages and births grows like Γ , whereas the span for temporary and permanent jobs
grows like Γ. The persistence of such behaviors is consistent with the fact that such random
walks display distributions for waiting time and step width having finite average and variance.
For instance, for a simple random walk on a line the span grows in time like t , whereas in the
presence of a drift one has a linear law t [4].

6. Conclusions

Theoretical models, originally developed to solve physical problems, are increasingly being
used to study social phenomena. Statistical mechanics and stochastic process theory are
particularly well suited for this task, and have generated a novel quantitative understanding of
the underlying complexity of social interactions. In this paper we focused on stochastic

Figure 8. Mean time Γ̃ to first reach a given value of Jt (panel a), of Jp (panel b), of M
(panel c), of B (panel d). Experimental data (•) are obtained by first getting the mean
number of steps to first reach the distance X and then by inverting through Γn ( ) (see
figure 7); this procedure improves the stability of results. Errors on data points are
≲15%. Solid lines are best fits given by Γ= ″ + ″y p p1 2 (upper panels) and by

Γ= ″ + ″y p p3
2

4 (lower panels), being ″ = ±p 0.13 0.021 , ″ = ±p 0.0014 0.00052 for
Jp, ″ = ±p 0.11 0.021 , ″ = ±p 0.0045 0.00012 for Jt, and ″ = ±p 0.70 0.013 ,

″ = ±p 0.0047 0.00034 for Mm, ″ = ±p 4.54 0.033 , ″ = ±p 0.000 44 0.00024 for Bm.
These results are compared with the related Γ X( ) (dashed line) derived from results
shown in figure 4; see also data in table 1 for comparison.
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processes. We identified the random behavior of the four integration quantifiers with random
walkers: each municipality draws a random walk in the quantifier–migrantʼs density plane.
Averaging over all the municipalities then allowed us to investigate the evolution of the
quantifier averages, which are found to scale with the square root of the percentage of migrants
for familiar quantifiers and linearly with the percentage of migrants for job quantifiers, in
complete agreement with previous findings obtained through the statistical–mechanical route
[2]. We inferred the distributions of jumps and waiting times (which are found to be decoupled).
Whereas jump distributions are exponentially distributed for all the quantifiers, waiting-time
distributions depend on the context: social quantifiers have log-normal distributions, whereas
economic quantifiers display Gaussian distributions.

This difference has a simple explanation. Although there is a correlation, even on a short
timescale, between the last-arrived migrant and that immigrantʼs incorporation into the labor
market (to sustain himself or herself), the same is not true for marriages or newborns. Clearly,
the correlation is likely to be negligible between the last arrived immigrant and a mixed
marriage or birth event (i.e., it is unlikely that the arriving immigrant and the one, say, marrying
a native are the same person). This results in a stronger noise affecting social quantifiers, which
destroys the net drift, leaving simple diffusion as the only survivor. On the contrary, driven by
the migrantʼs necessity to work, economic quantifiers display ballistic motion. Another element
that contributes to the macroscopic differences resides in the much broader distribution of
jumps for the working quantifiers: The fat tail encoding for the long jumps in the working

Figure 9. Span of the walk for permanent jobs (panel a), for temporary jobs (panel b),
for marriages (panel c), and for newborns (panel d) versus Γ. Errors on data points are
≲10%. Solid lines are best fits given by Γ= ′ + ′y p p1 2 (upper panels) and by

Γ= ′ + ′y p p3 4 (lower panels), being ′ = ±p 2.3 0.21 , ′ = ±p 0.08 0.012 for Jp,
′ = ±p 2.8 0.21 , ′ = ±p 0.04 0.012 for Jt, and ′ = ±p 0.8 0.13 , ′ = ±p 0.04 0.014 for

Mm, ′ = ±p 0.17 0.023 , ′ = ±p 0.04 0.014 for Bm. These results are also compared with
the curves ΓX ( ) from figure 4 (dashed line); see also data in table 1 for comparison.
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quantifiers implies a larger value of drift, that, coupled with much less noise – for the reasons
just mentioned – results in ballistic motion.

From a practical perspective, no power-law distributions are found. Hence, the central limit
theorem holds, which implies that the theory is suitable for generating predictions. To this end,
we introduced two predictive non-Markovian tools: the ‘mean first passage time’ and the
‘maximum span walk’. Using these tools we were able to tackle in a more scientific way
questions that traditionally have been answered by using guesstimates. For example, our
predictive framework can easily produce forecasts of the share of newborns with mixed parents
following an increase in the share of immigrants from, say, 3 to 5%. We make two types of
forecasts: first, we assess the evolution of the mean of this quantifier.

The evolution is obtained by evaluating from figure 4 the average increment, which is
roughly from Γ =B ( ) 0.04 to Γ =B ( ) 0.05. Second, we assess the mean worst case by dealing
with fluctuations. These fluctuations are obtained by extrapolating data from figure 8, which
gives a Γ ∼B̃ ( ) 0.08, i.e. more than 50% higher than its average value.

Although the investigated quantities are non-Markovian ( Γ〈 〉X̃ ( ) and Γ〈 〉X˜ ( ) ), their
behavior is still treatable: each of them can indeed be studied separately as a one-dimensional
random walk also concerning the first passage time and the maximum span walk.

On a broader level, this work provides a concrete rigorous method for quantitative studies
of social-science problems. The choice of immigrant integration is motivated by its prominent
place in both the EU and the US political agendas. By uncovering the local variation patterns in
the quantifiers, we produced a scientific tool for anticipating the consequences of further
immigration on local integration processes. Information of this type has not been available in
the past and is of great value for the development of immigration policies and multi-ethnic
planning at the local level. However, while this work advances our knowledge of integration
phenomena, other effects, like segregation phenomena, that may spontaneously develop in the
host country have yet to be considered and incorporated into the theoretical framework
developed here.
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Appendix. Robustness checks

In this appendix we present additional measures performed on the raw data described in
section 2 to further check the robustness and soundness of our approach.

First, we consider the time evolution of the ensemble average of ΔΓ and of ΔX ; namely, at
any steps n we measure the average (over all the municipalities available) of ‘waiting times’ and
of ‘step lengths’, as given by

19

New J. Phys. 16 (2014) 103034 E Agliari et al





∑ΔΓ ΔΓ=
=

n( )
1

, (A.1)
i

n
i

1

( )



∑Δ Δ=
=

X n X( )
1

, (A.2)
i

n
i

1

( )

where X denotes any of the quantifiers Jt, Jp, Mm, and Bm, defined in equations (1)–(4), and 
equals J or F according to the kind of quantifier (job or family, respectively) considered.
In figures 10 and 11 these averages are plotted as a function of n. Apart from the case of
marriages, discussed separately below, these averages are flat and scattered around the overall
mean values  Δ〈 〉X[ ] and  ΔΓ〈 〉[ ], obtained by averaging (over n) Δ〈 〉X n( ) and ΔΓ〈 〉n( ) ,
respectively. More precisely,




 ∑Δ Δ〈 〉 =
− =

−

[ ]X X n
1
1

( ) , (A.3)
n 1

1

and similarly for  ΔΓ〈 〉[ ]. The flatness of ΔΓ〈 〉n( ) and of Δ〈 〉X n( ) suggests that, step by step,
the stochastic process is homogeneous.

As for marriages, we notice that Δ〈 〉M n( )m displays some degree of periodicity due to the
seasonality characterising the date of celebration of marriages, as already discussed in section 2.
However, if we perform a partial average on these data in such a way that we retain only one
value per year, hence removing seasonality effects, we recover a flat distribution also for
marriages.

The next step concerns correlations between the increments ΔX and ΔΓ.
The possible presence of long time correlations is analyzed by measuring

⎡⎣ ⎤⎦Ξ δ Δ ΔΓ= δ−X( ) , (A.4)X n
i

n
i( ) ( )

Figure 10. Ensemble averages ΔΓ〈 〉n( ) obtained for time series pertaining to job (upper
panel) and to family (lower panel) quantifiers, as defined in equation (A.1). In the two
cases, the available trimesters (indexed by n and corresponding to the number of steps
performed by the walker) are 24 and 40, respectively. Error bars correspond to standard
deviations.
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where, again, the bracket 〈 〉· denotes the average over municipalities (indexed by =i 1 ,..., )
and  denotes the average over steps (indexed by =n 1 ,..., ). The results obtained for all the
quantifiers are presented in figure 12, showing that, in general, Ξ δ( )X fluctuates around zero,
suggesting that there is no correlation between the increments ΔX and ΔΓ .

Moreover, we verified that two successive increments for ΔX and for ΔΓ are uncorrelated.
This is done by considering the covariances

⎡⎣ ⎤⎦⎡⎣ ⎤⎦  Ω ΔΓ ΔΓ ΔΓ ΔΓ= − −Γ +{ }( ) ( , (A.5)i
n
i i

n
i i( ) ( ) ( )

1
( ) ( )

Figure 11. Ensemble averages Δ〈 〉J n( )t (panel a), Δ〈 〉J n( )p (panel b), Δ〈 〉M n( )m (panel
c), and Δ〈 〉B n( )m (panel d), as defined in equation (A.2). For job quantifiers (upper
panels) the available trimesters (corresponding to the number of steps performed by the
walker) are 24; for family quantifiers (lower panels) they are 40. Notice that for
marriages, seasonality effects emerge because marriages are more likely to be celebrated
during the last two trimesters. However, if we replace the four data corresponding to the
same year, we recover a flat distribution (brighter squares). Error bars correspond to
standard deviations.

Figure 12. Long time correlations ΞJt (panel a), ΞJp (panel b), ΞMm
(panel d), and ΞBm

(panel d) as a function of δ.
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⎡⎣ ⎤⎦⎡⎣ ⎤⎦  Ω Δ Δ Δ Δ= − −+{ }( ) ( )X X X X , (A.6)X
i

n
i i

n
i i( ) ( ) ( )

1
( ) ( )

where  ΔX( )i( ) represents the average step length along the ith path. Notice that in
equations (A.5)–(A.6) the average is performed only over steps, hence retaining the dependence
on the municipality indexed by i. The histograms of ΩX

i( ) for all the quantifiers are depicted in
figures 13 and 14. Notice that, in any case, ΩX

i( ) is mostly zero and its mean over municipalities
is, within the error, equal to zero, suggesting that there is no significant correlation.

Figure 13. Histograms for short time correlations between waiting times referring to job
quantifiers (upper panel) and to family quantifiers (lower panel), calculated according to
equation (A.5), with =i 1 ,..., J F, , where  = 124J and  = 581F . Notice that we
considered the absolute value ΩΓ| |i( ) to better highlight the peak at zero. In any case the
average correlation is, within the error, equal to zero.

Figure 14. Histograms for short time correlations between step lengths: ΩJ
i( )
t
(panel a),

ΩJ
i( )
p

(panel b), ΩM
i( )
m

(panel d), and ΩB
i( )
m

(panel d), calculated according to

equation (A.6), with =i 1 ,..., J F, , where  = 124J and  = 581F . Notice that
we considered the absolute value Ω| |X

i( ) to better highlight the peak at zero. In any case
the average correlation is, within the error, equal to zero.
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Figure 15. Comparison between simulated quantities (symbols in brighter colors) and
quantities obtained from real data (symbols in darker colors); the latter are the same
already reported in figures 4, 8, and 9, respectively. The real data for displacements
(panels a–d) were used for the calibration of the distribution parameters (in particular
σ2), which are then kept fixed to recover the non-Markovian quantities (panels e–n). In
general the comparison is very good, especially for small values of Γ and social
quantifiers, where, indeed, the statistics are more sound.
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The final step of this analysis aims to check the robustness of the bridge between the
mesoscopic scale and the macroscopic scale: we simulated continuous-time random walks with
step lengths and waiting times drawn from equation (28) and equations (29) and (30),
respectively, and we measured the resulting displacement ΓX ( ), the maximum span ΓX̃ ( ), and
the first-passage time Γ X˜ ( ). Such values were then compared with those obtained from real data
of social quantifiers and previously shown in figures 4, 8, and 9, respectively. As shown in
figure 15, the comparison is, in general, very good. However, some remarks are in order.

In the simulations meant to recover the behavior of job quantifiers we realized  = 124J

random walks made of  = 24 steps, whereas in the simulations meant to recover the behavior
of family quantifiers we realized  = 581F random walks made of  = 40 steps, consistently
with raw data available (see section 2).

The choice of the parameters λX , μ, and σ depends on the particular quantifier considered.
For a given quantifier, the parameters are fixed and the simulation provides a measure for the
average value, span, and fist passage time.

The parameters λX used for the distribution Δf X( ) (see equation (28)) are those given in
table 2. The parameters μ and σ used for the distribution ψ ΔΓ( ) (see equations (29)–(30)) are only
close to those given in table 3. More precisely, for family quantifiers we used μ = −5.9 and
σ = 11.22 (to be compared with μ = − ±6.6 0.9 and σ = ±0.32 0.042 ) and for job quantifiers
we used μ = × −7.9 10 4 and σ = −9. 8102 6 (to be compared with μ = ± −(1.2 0.2)10 3 and
σ = ± −(6.7 0.6)102 6). The discrepancy is more pronounced as far as the variance of waiting
times for social quantifiers is concerned.We argue that this is due to the fact that the log-normal fit
nicely captures the long tail of the distribution, yet the head of the distribution as well as any cut-
off effects are not accounted for. Admittedly, the fits provided in section 4.1 are meant to
highlight a qualitative difference in the two classes of quantities. Indeed, despite a quantitative
adjustment in these parameters, the distributions outlined turn out to successfully mimic the true
behavior. Moreover, we stress that such an adjustment does not impair the predictive power of the
theory. In fact, the parameters μ and σ were calibrated over the average displacements (which are
assumed to be available), whereas the maximum span and the mean first-passage time were
derived without any further parameter tuning.
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