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Abstract- This paper shows the performance of the Bi-
nary PSO Algorithm as a classification system. These
systems are classified in two different perspectives: the
Pittsburgh and the Michigan approaches. In order to
implement the Michigan Approach Binary PSO Algo-
rithm, the standard PSO dynamic equations are modi-
fied, introducing a repulsive force to favor particle com-
petition. A dynamic neighborhood, adapted to classi-
fication problems, is also defined. Both classifiers are
tested using a reference set of problems, where both clas-
sifiers achieve better performance than many classifi-
cation techniques. The Michigan PSO classifier shows
clear advantages over the Pittsburgh one both in terms
of success rate and speed. The Michigan PSO can also
be generalized to the continuous version of the PSO.

1 Introduction

The Particle Swarm Optimization algorithm (described
in [1]) is a biologically-inspired algorithm motivated by a
social analogy. Sometimes it is related to the Evolutionary
Computation (EC) techniques, basically with Genetic Algo-
rithms (GA) and Evolutionary Strategies (ES), but there are
significant differences with those techniques.

A review of PSO fields of application can be found in [2].
There are also some good theoretical studies of PSO [3, 4,
5] that address the topics of convergence, trajectory analysis
and parameter selection. Also some modifications on the
basic algorithm are discussed in [4].

The algorithm is population-based: a set of potential so-
lutions evolves to approach a convenient solution (or set of
solutions) for a problem. Being an optimisation method, the
aim is finding the global optimum of a real-valued function
(fitness function) defined in a given space (search space).

The social metaphor that led to this algorithm can be
summarized as follows: the individuals that are part of a
society hold an opinion that is part of a “belief space” (the
search space) shared by every possible individual. Individ-
uals may modify this “opinion state” based on three factors:

o the knowledge of the environment (its fitness value)

o their previous history of states

o the previous history of states of their neighborhood.

An individual’s neighborhood may be defined in several
ways, configuring somehow the “social network” of the in-
dividual. Several neighborhood topologies exist (full, ring,
star, etc.) depending on whether an individual interacts with
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all, some, or only one of the rest of the population.

In PSO terms, each individual is called a “particle”, and
is subject to a movement in a multidimensional space that
represents the belief space. Particles have memory, thus re-
taining part of their previous state. There is no restriction for
particles to share the same point in belief space, but in any
case their individuality is preserved. Each particle’s move-
ment is the composition of an initial random velocity and
two randomly weighted influences: individuality, the ten-
dency to return to the particle’s best previous position, and
sociality, the tendency to move towards the neighborhood’s
best previous position.

The base PSO algorithm uses a real-valued multidimen-
sional space as belief space, and evolves the position of each
particle in that space using the following equations:

t+1 _ t t t t t
Vg = wvigter Y1 (Pig—Tig) He2 2 (Pgg—Zig) (1)
t+1 __ t t+1
Tiq = Tig T Vig @
vy Component in dimension d of the ¢¢" particle

velocity in iteration ¢.

zhy Component in dimension d of the i*" particle
position in iteration ¢.

c1,c2:  Constant weight factors.

pi: Best position achieved so long by particle i.

Dg: Best position found by the neighbors
of particle i.

1 ,%2: Random factors in the [0,1] interval.

w: Inertia weight.

A constraint (vy,4;) is imposed on vfd to ensure con-
vergence. Its value is usually kept within the interval
[—xT**,2%"], being x]** the maximum value for the par-
ticle position [6].

A large inertia weight (w) favors global search, while a
small inertia weight favors local search. If inertia is used, it
is sometimes decreased linearly during the iteration of the
algorithm, starting at an initial value close to 1 [6, 7].

An alternative formulation of Eq. 1 adds a constriction
coefficient that replaces the velocity constraint (Vp,qz) [3].

The PSO algorithm requires tuning of some parameters:
the individual and sociality weights (c; ,c2), and the inertia
factor (w). Both theoretical and empirical studies are avail-
able to help in selection of proper values [1, 3,4, 5, 6, 7].

A binary PSO algorithm has been developed in [1, 8].
This version has attracted much lesser attention in previous
work. In the binary version, the particle position is not a
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real value, but either the binary 0 or 1. The logistic function
of the particle velocity is used as the probability distribution
for the position, that is, the particle position in a dimension
is randomly generated using that distribution. The equation
that updates the particle position becomes the following:

; 1
xfg'l _ { 1 Zf 1/)3 <. 1+e_v:;rl (3)
0 otherwise
vy Component in dimension d of the " particle
velocity in iteration ¢.
z!3!: Component in dimension d of the i** particle
position in iteration ¢ + 1.
P3: Random factor in the [0,1] interval.

This means that a binary PSO without individual and so-
cial influences (¢; = c2 = 0.0) would still perform a ran-
dom search on the space (the position in each dimension
would have a 0.5 chance of being a zero or one).

The selection of parameters for the binary version of
the PSO algorithm has not been a subject of deep study in
known works.

This binary PSO has not been widely studied and some
subjects are still open [9]. Some modifications on the binary
algorithm equations propose a quantic approach [10]. A
previous article [11] also addresses classification problems.
Recently, Clerc [12] proposes and performs an analysis of
alternative and more promising binary PSO algorithms,

The aim of this work is to evaluate the capacity of the
binary PSO algorithm in classification tasks. With this pur-
pose, we have tested the algorithm using the two classical
approaches taken from the GA community: the Pittsburgh
and the Michigan [13] approaches:

e In the Pittsburgh approach, each particle represents
a full solution to the problem; in classification prob-
lems, a single particle is able to produce a classifica-
tion of the data by itself.

¢ In the Michigan approach, each particle represents
part of the solution to the problem. A set of parti-
cles or even the whole swarm is used to classify the
data.

In this paper we propose the introduction of the Michi-
gan approach PSO classifier to solve certain problems that
arise when using the Pittsburgh version: its high dimension-
ality and its difficulty to represent variable-length solutions.

A reference set of problems (the Monk’s set) has been
chosen for experimentation, so the results can be compared
not only between the two approaches but also with the re-
sults of other techniques on these problems [14, 15].

This paper is organised as follows: section 2 describes
how the particles in the binary PSO algorithm may encode
the solution to a classification problem; section 3 describes
how the two approaches (Pittsburgh and Michigan) can be
applied to PSO; section 4 includes the modifications made
to the original PSO algorithm to implement the Michigan
approach; section 5 details the experimental setting and re-
sults of experimentation; finally, section 6 discusses our
conclusions and future work related to the present study.
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2 Binary Encoding for Classification Problems

The PSO algorithm will be tested on binary (two classes)
classification problems with discrete attributes. The solu-
tion will be expressed in terms of rules. Rule-based classi-
fiers have the advantage that the result is readable, and some
knowledge about the reasons behind the classifications may
be extracted from the rules.

The PSO will generate a set of rules that assign a class
from the set {0, 1} to a pattern set, part of which is used
to train the system (train set). Quality of the solution is
evaluated testing the set of rules on a different set of patterns
(test set) not used for the system training. Patterns are sets
of values for each of the attributes in the domain.

Patterns and rules coding is taken from the GABIL sys-
tem [16], an incremental learning system based on Genetic
Algorithms. This coding is described below.

A pattern is a binary array with a set of bits for each
attribute in the domain, plus one bit for its expected classi-
fication. Each attribute contributes a number of bits corre-
sponding to the number of different values that the attribute
may take. For each of the attributes, a single bit is set, cor-
responding to the value of the attribute for that pattern. The
class bit is set to 0 if the pattern expected class is class 0,
and 1 if not.

A rule is an array of the same length and structure as
patterns. The sets of bits for the attributes are interpreted
as a conjunction of conditions over the set of attributes, and
will be called “attribute masks”. Each condition refers to
a single attribute; each bit set for an attribute means that
the rule “matches” patterns with the corresponding value
for that attribute. Attribute masks may have more than one
bit set. Finally, the class bit of the rule is the class that the
rule assigns to every pattern it matches.

For instance, if the domain has two attributes (X, Y") and
three (Vi7, V¥, V§) and two (V,V}) values respectively
for the attributes, a bit string such as “011 10 1” represents
the following rule: If (X = V{* or V§¥) and (Y = V) then
class is 1. A more compact representation of this sample
follows:

Attributes € {X,Y}
Values(X) € {v§,vf,v3}
Values(Y) € {v§,v¥}
Classes = {0,1}

0 1 1 1 0 1
vy vT vy vy oY 1

Rule: (X =vVX=0v5)AY =0 — Class =1

3 Approaches for the PSO Algorithm

3.1 The Pittsburgh approach

As said in the Introduction, in this approach, each particle
represents a full solution (a classifier).

Thus, each particle in a binary swarm will encode one or
more rules. The rules are read from left to right, and eval-
uated in that order to provide the class that the particle as-
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signs to a pattern. The first rule (from the left) that matches
a pattern assigns the class that is set in its class part, to the
pattern, and classification stops; if no rule classifies the pat-
tern it can either be marked as “unclassified” or assigned a
default class.

If some of the rules in a particle classify the pattern, we
say that the particle “matches” the pattern.

3.2 The Michigan approach

The former approach has problems for complex domains.
The number of rules required to express the solution, which
is not known in advance, determines the dimension of the
search space. Some estimation has to be made on start and
this can’t be easily changed while the algorithm is running.
That is, the equivalent to variable-length solutions in GA
can’t be implemented easily.

If dimension is overestimated, the swarm has to update
excess dimensions for each particle, with the corresponding
loss in performance. In essence, this method will have trou-
ble if it has to scale up to be able to solve complex problems
(defined by many rules).

We propose a modification of the PSO algorithm that
adopts a collective interpretation of the solution of the prob-
lem. This is usually called the “Michigan approach” in the
context of GA-based classifier systems.

In this approach, the solution to the posed problem is not
a single particle in the swarm, but a subset of its particles.
The Michigan approach classifier system was first proposed
by Holland, the Learning Classifier System (LCS), in [13].
A more recent example of a classifier system based on LCS
is XCS [17].

Many of the classifier systems based on LCS implement
a reinforcement learning mechanism. In this case, useful
partial classifiers are rewarded in a way that increases their
chance to be present in the final solution.

However, in this paper, we use supervised learning. In
this case each partial classifier (a single particle) is given
a fitness value depending on the comparison between the
expected results (that are available for the training set), and
the actual results of the classification the classifier makes.
In [18], different trends inside the LCS family are studied,
and a supervised learning Michigan-style classifier based on
GAs (UCS) is proposed.

For the Michigan approach to work in a supervised learn-
ing context, the “local” fitness function used to calculate
the fitness of a single particle has to be such that favors the
global evolution of the system to a good solution for the
whole problem.

The basic operation of the PSO algorithm is not modi-
fied. Particle dimension depends only on the problem’s do-
main (rule length), while population depends on the number
of rules that may possibly conform a solution. On each iter-
ation, the particle positions are updated using the PSO equa-
tions. However, the swarm is also evaluated as a whole. In
our system, the global evaluation of the swarm is calculated
as follows:

1. In each iteration of the PSO algorithm, after particles
are updated, we obtain the set of particles that classify
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the pattern (that is, the set of particles that don’t mark
the pattern as “unclassified”). This set is called the
“matching set” for that pattern.

2. A class is assigned to the pattern using a selection
method among the particles in the matching set. In
the experiments that follow, the selection method
we’ve used is plain “best particle” selection; that
means that the class assigned to the pattern is the class
assigned by the best particle (in terms of fitness) in
the matching set for that pattern. A voting selection
method might also be used. If the matching set for
the pattern is void, the pattern is unclassified by the
swarm system.

3. Once a class (or no class) is assigned to each pattern
in the test set, the swarm may be numerically eval-
uated with any measure that takes into account the
successes and failures in the classification. In our ex-
periments we use Eq. 4, which gives the percentage
of good classifications that we use to compare our
results with the results of other techniques in [14].
With this equation, unclassified patterns are counted
as wrongly classified patterns.

Good classi fications
Total patterns

Swarm Evaluation = -100 (4)

4 PSO Algorithm Maodifications for the Michi-
gan Approach

For the success of the Michigan approach, the algorithm has
to avoid convergence towards a single high-fitness particle,
as this particle can only represent a very limited solution
(only one rule).

Given Eq. 1, the sociality term tries to attract particles
to the proximity of the good solutions. As a consequence,
to change the swarm behavior, in the Michigan approach
we dropped the sociality term and introduced the following
two modifications in the algorithm. Both have the purpose
of maintaining population diversity among particles.

4.1 Competitive Particles

The intention is to enforce competition between particles
by making successful particles repel their neighbors. As a
particle represents one rule, if a particle with good fitness is
already in a given section of the search space, then the rest
will explore different parts of that space.

There is previous work concerning repelling particles;
for instance, in [19], repulsion is used to increase popula-
tion diversity inside the standard attractive swarm.

The standard PSO updating equations include an indi-
vidual and a social factor, that move each particle towards
the best positions in its knowledge. To implement competi-
tion, the social term in Eq. 1 is replaced by a repulsive term,
as shown in Eq. 5 and Eq. 6, that replace the standard PSO
equation for the velocity update (Eq. 1).
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,where

1 ifpt,=at,=0
0 if Pyd # iy

d(P;d, x?d) =

Note that, except for the particles positions, Eq. 5 oper-
ates with real arguments, while Eq. 3 transforms velocities
to binary positions.

The function d(p!;, ;) ensures that the particle is re-
pelled by the best particle in its neighborhood when their
positions are equal in a given dimension. Additionally, this
factor is set to O if the best particle in the neighborhood is
the same particle whose position is being updated.

If the particle (binary) position is 0, the velocity change
due to this term will be in the positive direction (for ve-
locities), making the position of the particle more likely to
become a 1 when Eq. 3 is applied. The reverse is true when
its (binary) position is 1.

The repulsion term is weighted by a random factor (2)
and a fixed weight (cz) that becomes a new parameter for
the algorithm.

The modifications above can be generalized to the con-
tinuous version of the PSO by changing the definition of the
function d(p!, z},) with a distance based on the particles’
positions.

4.2 Dynamic Neighborhood

The standard version of PSO uses a fixed neighborhood
topology that represents the social influences. Particles are
usually organized in a ring (or circle) topology; for N neigh-
bors, neighborhood is usually defined as the particle itself
plus the closest (N-1) particles in the ring. We’ll use the
term “static neighborhood” to refer to this topology.

However, when the repulsion factor is included (Eq. 5),
neighborhood is better defined dynamically depending on
the proximity of the particles. We’ll refer to this topology
as “dynamic neighborhood”.

For each particle, this dynamic neighborhood is calcu-
lated each iteration, based on a proximity criteria. For clas-
sification problems, the proximity criteria used is the fol-
lowing: two particles are “close” if they match some com-
mon patterns in the training set. This is a phenotype cri-
terium; a correspondent genotype criterium may also be de-
fined (based on binary similarity). The neighborhood index
(N) then determines the maximum number of particles se-
lected as neighbors as follows: take the particle itself as the
first neighbor, then the particle that shares more patterns as
second, and continue in decreasing order of number of pat-
terns shared until N neighbors are selected.

The dynamic neighborhood version requires extra calcu-
lations; however, pattern matching for each particle has to
be calculated to determine the particle fitness, so these cal-
culations can be cached at some extra space cost to speed
up the algorithm.
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Suganthan [20] proposed a swarm with a local neighbor-
hood whose size was gradually increased. Brits (in [21])
justifies the introduction of topological neighborhood when
searching for multiple solutions in the context of niching
techniques, which might be applied to the present work. A
different dynamic neighborhood has been proposed in [22]
for multiobjective optimisation. The notion of selecting an
individual from a neighborhood has also been modified to
use the center of clusters of particles in [23].

5 Experimentation

5.1 The Monk’s problems

The Monk’s set [14] is used to evaluate the binary PSO al-
gorithm described in previous sections. Several techniques
used in machine learning were tested on these problems
in [14, 15].

The Monk’s problems use a domain with 6 attributes
(Ag, A1, Ag, A3, Ay, As), with respectively 3,3,2,3,4 and
2 discrete values (represented by integers), and two classes
for classification. There are 432 different possible attribute
patterns in the set.

5.1.1 Monk’s 1

The first Monk’s problem provides a training set of 124 pat-
terns and a test set of 432 patterns (the whole pattern set).
Patterns include neither unknown attributes nor noise. The
solution to the problem can be expressed as: “Class is 1 if
Ag = A; or A4 = 1, 0 otherwise”.

In our rule syntax this condition may be expressed by the
following set of rules:

o (Ay=1) — classl

o (Ag=0)A (A1 =0) — classl

o (Ag=1)A (A1 =1) — classl

o (Ag=2)A (A1 =2) — classl

o Extra rules for class 0 or a final rule that matches all

the patterns and assigns class 0.

In the rules above, if an attribute is missing, its value
is irrelevant; with the selected codification, the rules that
represent this situation have all the bits that correspond to
those attributes set to 1.

5.1.2 Monk’s 2

This problem is considered the hardest of the three, being a
parity-like classification. The solution may be expressed as
follows: “If exactly two of the attributes have its first value,
class is one, otherwise 0”.

If the encoding allowed the representation of the inequal-
ity, the classification might be expressed as several rules
(one per combination of two attributes) of the following
form:

o (A =0)A(A1 =0)A (A2 #O0)A(A3 # 0)A(Ag #

0) A (A5 # 0) — classl, etc.

With the encoding we used, rules above have to be

changed to express inequality in terms of the values avail-
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able to for each attribute as follows:
. (Ao = O)A(Al = 0)/\(A2 = l)A((Ag = 1)V(A3
DA (A=) V(A1 =2)V (A1 =3)) A (45
1) — classl, etc.

- Again, either their complementary rules for class 0 or a
final rule that matches all the patterns and assigns class 0
are also required.

The training set is composed of 169 patterns taken ran-
domly, and the 432 patterns are used as test set.

I

Il

5.1.3 Monk’s 3

This problem is similar in complexity to Monk’s 1, but the
122 training patterns (taken randomly) have a 5% of mis-
classifications. The whole pattern set is used for testing.
The intention is to check the algorithm’s behavior in pres-
ence of noise. The solution is:

e (A3=0)A (A4 =2) — classl

e (A1 =0)V (Al = 1)) A ((44 = 0) Vv (A4 =

1)V (A4 =2)) — classl

Again, either their complementary rules for class 0 or a
final rule that matches all the patterns and assigns class 0
are also required.

5.2 Experimental Setting

5.2.1 Fitness Function

The fitness function used to evaluate the particles in the
Pittsburgh approach is given by Eq. 7:

; — Good
Fitness = { Foar @)
Good:  Patterns correctly classified by the particle
Total: Number of patterns in the training set

In the Michigan approach, fitness for each particle is cal-
culated using Eq. 8, which takes into account rules that only
make good classifications, but also evaluates rules that make
bad classifications, with a lower fitness.

Lot if Bad =0
Fitness = (®)
Good—Bad ;
G Bag — 1.0 otherwise
Good:  Patterns correctly classified by the particle
Bad: Patterns wrongly classified by the particle
Total: Number of patterns in the training set

5.2.2 Global Swarm Evaluation

The fitness functions defined above are “local” fitness func-
tions, applied only when evaluating an isolated particle. To
evaluate the whole swarm as a classifier system, the proce-
dure in section 3.2 is used, where the swarm evaluation is
given by Eq. 4.

The system stores the best swarm evaluation obtained
and the particles that composed that swarm. This swarm is
returned as solution when the maximum number of itera-
tions is reached.
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5.2.3 Parameter selection

As it was mentioned before, the binary swarm has not been
as widely studied as the continuous version. This leads to
uncertainty about how the knowledge from the continuous
version can be extrapolated to the binary version.

One known difference is that the velocity constraint
Umae Operates in a different way in the binary version. This
value gives the minimum probability for each value of the
particle position, so if this value is low, it becomes more
difficult for the particle to remain in a given position. Be-
ing —vpq, the minimum velocity, this probability may be
calculated from Eq. 3:

1
P(zigt =1) 2 T ovmas €

To give particles some stability in a given position, the
setting for v,q, should be high, while in the continous
(real) PSO it has to be low to ensure convergence.

The inertia weight was fixed to a constant value (1.0)
because its influence on the binary PSO is not clear.

We have compared the results of the Pittsburgh and
Michigan classifiers on the three Monks problems. Table 1
details the generic parameter values and Table 2 shows the
parameter values that vary with the Monk’s problem se-
lected.

Approach Numberof c¢1  ¢c2  Vmas w
experiments

Pittsburgh 25 20 20 40 1.0

Michigan 50 05 05 40 1.0

Table 1: General Parameters for all the PSO experiments

We executed less experiments in the Pittsburgh approach
because of the high number of iterations (and time) they
required. In Michigan approach, as we’ll see later, iteration
time was reduced.

Selection of the weights was made using the typical val-
ues proposed in [3, 6], and the repulsion coefficient in the
Michigan version was selected after some empirical testing.

Monk’s Appr. Exp. Max. Rules/ Part. Neigh.
Prob. Tter. part.
1 Pitts. P 5000 12 20 5
Mich. M 1500 1 30
2 Pitts. P 10000 20 30 10
Mich. M 3000 1 60 10
3 Pitts.  Ps 1500 4 20
Mich. M3 1500 1 24 5

Table 2: Parameters specific to each Monk’s problem and
approach (Michigan or Pittsburgh)

In Table 2, column “Rules / part.” is the number of rules
encoded in a single particle. For the Michigan approach,
this number is always 1. For the Pittsburgh approach, this
number was an estimation based on the problem’s complex-
ity (the number of rules needed to express the solution). The
number of particles and neighbors were also selected empir-
ically. For the Michigan approach, the number of particles
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has to be enough to represent the number of rules in the
solution.

5.3 Experimental Results

Success rate for every experiment is an average of the best
result achieved by a particle (in the Pittsburgh approach) or
a swarm (in the Michigan approach). That is, the best result
is recorded when running an instance of every experiment.

Table 3 reports the average results for the experiments
and the percentage of optimum solutions (solutions with
100% accuracy) found. The column “Iter. number” shows
the average number of iterations that required the algorithm
to reach the given success rate. The column “Rule Eval.” is
a measure of the number of times the algorithm had to apply
arule to a set of patterns: it is the product of the number of
particles, rules per particle and iterations.

Monk’s  Exp. Iter. Rule  Succ. Optim.
Prob. number Eval. Rate  Found
1 P, 1,561 374,640 96.8%  44.0%
M, 464 13905 97.6% 40.0%
2 Py 5,398 3,238,800 68.9% 0%
M, 1,516 90,936 75.0% 0%
3 P 955 76,400 96.9% 4.0%
M3 706 16,947 94.1% 0%

Table 3: Results of the experiments for Pittsburgh and
Michigan approaches, for each of the Monk’s problems

Table 4 shows the minimum and maximum success rate
achieved for the Monk’s 2 experiment and the distribution
of results by ranges.

Exp. Min. Max. >70% >75% > 80%
Succ Succ

P, 64.1% 759% 44.4% 4% 0%

Mo 688% 80.8% 94.0% 52% 2%

Table 4: Success rate distribution for the Monk’s 2 prob-
lem in both approaches, and frequency of results in different
success levels

Fig. 1 shows the evolution of the actual (not the best)
swarm evaluation at the iteration shown as the horizontal
axis, for the Michigan approach. This shows that the whole
swarm is converging. Note that this figure is not plotting the
same result shown in Table 3, that corresponds to the best
solution achieved by the swarm during the iteration of the
algorithm.

5.4 Analysis of Results

For reference, the results obtained in [14] by several ma-
chine learning algorithms on the Monk’s problems are
shown in Table 5.

For the Monk’s 1 problem, described in [14] as an
“easy” problem, both the Pittsburgh and Michigan ap-
proaches achieve not only high success rate but they are
also able to find the optimum. This is interesting as the
lack of ability to find optimum values is one of the binary
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Success Rate

10 %

0 200 400 600 800
Iterations

1000 1200 1400

Figure 1: Actual swarm evaluation by iteration number in
the Michigan approach, for the Monk’s problems 1 to 3 (av-
erage of 50 experiments)

PSO drawbacks according to [9]. The Michigan approach
achieves a slighter higher success rate and it needs a much
smaller number of iterations to reach that success rate.

The motivation of trying the Michigan approach is
clearly shown checking the rule evaluations column in Ta-
ble 3. The Michigan approach outperforms the Pittsburghh
approach by an order of magnitude.

For the Monk’s 2 problem, which is described as a com-
plex problem, with a XOR-like distribution of patterns, the
Michigan approach also clearly achieves a better success
rate than the Pittsburgh one. In [14] the results for this
problem were in the range 65-70% for most of the classi-
fiers, so the results of PSO in this case are comparable or
even better than many of them.

The iteration and number of rule evaluations is quite fa-
vorable to the Michigan approach again in this problem.
The high evaluation cost for the Pittsburgh approach is due
to two reasons:

o the high number of rules needed to represent this
problem (high dimensionality).

e the fact that Pittsburgh instances needed a much
higher number of iterations in order to reach a better
success rate.

Table 4 strongly suggests that the Michigan approach is
clearly better than the Pittsburgh approach, because it was
able to find classifiers with a success rate better than 70%
in the most (94%) of the runs of the Michigan experiment,
while Pittsburgh approach is unable to find good solutions
in more than half of the runs. This difference is even greater
when trying to find more accurate solutions. Pittsburgh ap-
proach is almost unable to find solutions with better than
75% success , while Michigan approach reached this value
more than 50% of the times.

The Monk’s 3 problem, that includes noise, is the one in
which the Michigan version is unable to improve the Pitts-
burgh version. Noise severely degrades the performance of
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Learning Monk’s1 Monk’s2 Monk’s 3
Algorithm

AQ17 100 92.6-100 94.2-100
AQI15 100 86.8 100
Assistant Prof. 100 81.3 100
MFOIL 100 69.2 100
CN2 100 69.0 89.1
Cascade Cor. 100 100 97.2
ANN (backprop.) 100 100 93.1-97.2
ID3 98.6 67.9 94.4
IDL 97.2 66.2

AQR 95.9 79.7 87
ID5R-hat 90.3 65.7

PRISM 86.3 72.7 90.3
ID3 (no window) 83.2 69.1 95.6
ECOBWEB 71.8-82.7 67.4-71.3 68.0-68.2
ID5R 79.7-81.7 69.2 95.2
TDIDT 75.7 66.7
CLASSWEB 63-71.8 57.2-64.8 75.2-85.4

Table 5: Results of other learning algorithms on the Monk’s
problems, reproduced from [14]

most of the algorithms evaluated in [14], so the overall re-
sults are not bad. The Pittsburgh version outperforms many
of the classifiers in the Thurn paper. The behavior of the
Pittsburgh version in noisy problems could be an interest-
ing feature but needs confirmation using other domains. The
Michigan version seems to be more sensible to noise at least
in this problem.

All the results above were obtained using the best par-
ticle or swarm. The standard PSO equations in the Pitts-
burgh version should ensure the swarm convergence in
many cases. However, this is not proved for the Michigan
swarm. Fig. 1 shows the “current success rate” for the three
problems. In the presented cases, the swarm has reached the
convergence to a certain success rate value.

In order to see the behavior of our approach, a set of
rules obtained in experiment M1 (Michigan swarm with the
Monk’s 1 problem) is shown in Table 6. Only the rules that
are selected for classification are shown.

The rules for class 1 can be translated to the exact objec-
tive rules in the problem definition:

e (A4=1)—classl

o (Ag=2)A (A1 =2) — classl

e (Ap=1)A(A; =1)— classl

o (Ag=0)A(A; =0) — classl

The swarm has generated both the rules for class 1 and
the complementary rules for class 0. This behavior is sub-
optimal only if rule order is considered. In that case, five
rules could be enough: four for one of the classes, and a fi-
nal “default rule” that assigned all the unclassified patterns
to the other class. However, the current rule encoding can’t
represent rule order: the order in which the rules are evalu-
ated depends only on the fitness function. This idea might

be used in further work to reduce the number of particles in
the classifier.
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Ao A1 Az A3 A4 A5 Class
100 o011 11 111 oO111 11 O
111 111 11 111 1000 11 1
110 001 11 111 o111 11 O
011 100 11 111 o111 11 O
101 o010 11 111 0111 11 O
oor o001 11 111 1111 11 1
010 010 11 111 1111 11 1
100 100 11 111 1111 11 1

Table 6: Sample classifier rules for experiment M;

6 Conclusions

The binary PSO algorithm has been applied to the resolution
of classification problems using a standard rule-based cod-
ing. Both a Pittsburgh approach and a Michigan approach
were tested with a reference set of problems, the Monk’s
set. The Michigan approach was introduced because of the
dimensionality and lack of flexibility of the Pittsburgh ap-
proach for complex problems.

The Michigan approach requires some changes in the
PSO algorithm definition, to avoid convergence of the par-
ticles and instead force particle diversity:

e Addition of a competitive force that repels a particle
from its best neighbor.

e Dynamic neighborhood based on th'e patterns% that are
classified by more than one panicle]}(shared patterns).

In the Michigan approach, a very simple evaluation strat-
egy was used to give an global evaluation measure to the
performance of the swarm as a classifier.

Results of both methods are good compared to some of
the classical classifiers tested over the same problems, al-
though they can’t beat the best classifiers in each category.

The results clearly show that the Michigan approach out-
performs the Pittsburgh approach except in noisy situations,
in which the Michigan version performs slightly worse than
the Pittsburgh version. The Michigan approach always re-
quires less iterations to reach its best results. The PSO
Michigan classifier is able to provide a good solution with
a much lesser number of rule evaluations, and the swarm
as a whole converges under the modified PSO movement
equations in this paper.

The complexity of the rules obtained by the classifiers is
good, given the selected encoding. However, improvement
is possible using alternative (rule-based or not) encodings.

Another advantage of the Michigan approach over the
Pittsburgh approach is the greater flexibility on the rule
composition of the classifier. The number of rules in the
solution may be adjusted by varying the number of particles
or using only the best N particles in the swarm after the per-
forming evaluation. This means that the complexity of the
solution may be easily tuned, and excess rules (particles)
pruned. Also a reproduction or extinction schema can be
used to adapt the number of particles to the success of the
swarm in execution time.

As future work, many improvements from the knowl-
edge in the Machine Learning field can be added to the
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Michigan classifier; specifically, a more sophisticated par-
ticle evaluation strategy is being investigated.

Also, we are performing more exhaustive investigation
on the repulsion term introduced in the algorithm and the
dynamic neighborhood topology, that may lead to improve-
ment on the Michigan PSO and deeper understanding of its
convergence and stagnation conditions. The modifications
made to the PSO equations will also be generalized to the
continuous version of the PSO algorithm.
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