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Context-Aware Conversational Agents Using 
POMDPs and Agenda-Based Simulation

David Griol and Jose´ M. Molina

Abstract. Context-aware systems in combination with mobile devices offer new
opportunities in the areas of knowledge representation, natural language processing
and intelligent information retrieval. Our vision is that natural spoken conversation
with these devices can eventually become the preferred mode for managing their
services by means of conversational agents. In this paper, we describe the applica-
tion of POMDPs and agenda-based user simulation to learn optimal dialog policies
for the dialog manager in a conversational agent. We have applied this approach to
develop a statistical dialog manager for a conversational agent which acts as a voice
logbook to collect home monitored data from patients suffering from diabetes.

1 Introduction

Ambient Intelligence (AmI) systems usually consist of a set of interconnected com-
puting and sensing devices which surround the user pervasively in his environment
and are invisible to him, providing a service that is dynamically adapted to the inter-
action context. In this framework, spoken interaction can be the only way to access
information in some cases, like for example when the screen is too small to dis-
play information (e.g. hand-held devices) or when the eyes of the user are busy in
other tasks (e.g. driving). It is also useful for remote control of devices and robots,
specially in smart environments. Finally, one of the most demanding applications
for fully natural and understandable dialogs, are embodied conversational agents
and companions. This way, conversational agents have became a strong alterna-
tive to provide computers with intelligent and natural communicative capabilities.
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A conversational agent is a software that accepts natural language as input and gen-
erates natural language as output, engaging in a conversation with the user. To suc-
cessfully manage the interaction with the users, conversational agents usually carry
out five main tasks: automatic speech recognition (ASR), natural language under-
standing (NLU), dialog management (DM), natural language generation (NLG) and
text-to-speech synthesis (TTS).

Learning statistical approaches to model the different modules that compose a
conversational agent has been of growing interest during the last decade [7, 2]. The
motivations for automating dialog learning are focused on the time-consuming pro-
cess that hand-crafted design involves and the ever-increasing problem of dialog
complexity. The most extended methodology for machine-learning of dialog strate-
gies consists of modeling human-computer interaction as an optimization problem
using Partially Observable Markov Decision Process (POMDPs) and reinforcement
methods [5]. The main drawback of this approach is due to the large state space of
practical spoken dialog systems, whose representation is intractable if represented
directly. An approach that scales the POMDP framework for implementing practical
spoken dialog systems by the definition of two state spaces and the use of an agent
is presented in [6].

In this paper, we apply this approach to develop a conversational agent which
acts as a voice logbook to collect home monitored data from patients suffering from
Type-2 diabetes [1], integrated in a context-aware multiagent architecture [3]. In this
architecture, a Context Manager in the conversational agents deals with loading the
context information provided by the User and Positioning Agents, and communi-
cates it to the different modules of the Conversational Agent during the interaction.
Context information is managed by means of a data structure called user profile.
The conversational agent developed using the POMDP and agenda-based user sim-
ulation has been compared with a dialog management technique based on a rule-
based model. The results of this comparison show how the POMDP methodology
achieves satisfactory task completion rates and improves the selection process of
goal directed actions.

2 The DI@L-Log System

DI@L-log is a spoken dialog system which acts as a voice logbook to collect home
monitored data from patients suffering from Type-2 diabetes [1]. The data collected
by the system are the patient’s weight, blood pressure (systolic and diastolic val-
ues) and sugar levels. The system validates and analyses the data, providing some
immediate feedback to the patients regarding their current progress as well as com-
municating the results to doctors at the hospital who are able to review the patient’s
progress graphically and deal with any alerts generated by the system concerning
abnormal developments.

To apply our methodology to this task, the definition of the semantics was carried
out considering the information that is required to monitor the patients and inform
them about their condition. Taking into account the requirements of the task, an
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S1: Welcome to the DI@L-log System. Please say or enter your four digit pin.
U1: 1356.
S2: Are you ready to give your measurements?
U2: Yes.
S3: Let’s begin with your weight. How many stones?
U3: 12.
S4: I have understood 12 stones. Is it correct?
U4: Yes.
S5: What is your blood sugar?
U5: 11.
S6: I have understood 11. Is it correct?
U6: Yes.
S7: And finally, for your blood pressure you will be asked for the top number and then the
lower number. What is the top number of your blood pressure?
U7: 160.
S8: I have understood 160. Is it correct?
U8: Yes.
S9: And what is the lower number?
U9: 86.
S10: I have understood 86. Is it correct?
U10: Yes.
S11: Your readings have been successfully updated. According to them, your weight is
higher than last week, be very careful. Thanks for contacting DI@L-log. Goodbye.

Fig. 1 An example of a dialog for the DI@L-log task

initial strategy was designed for the DM. Figure 1 shows an example of a dialog
acquired using this strategy.

As can be observed, three different phases are present in every dialog. Firstly,
there is an identification phase in which the system asks the user about his login
and password and then waits until the user says that he is ready to provide the
control data (S1 and S2 system turns). Secondly, the system analyzes which data is
required for the current user, taking into account that the weight and sugar values
are mandatory and the blood control is only carried out for specific patients (S3 to
S10 system turns). In this phase, the system requires the user to provide this data.
Every item is confirmed after the user has provided its value. The user can only
provide one item at a time. In the last phase, the system consults the information
that the patient has provided during the current dialog and compares it with the data
that is present in a database that contains the values that he provided in previous
dialogs. By means of this comparison, the system is able to inform the user about
his condition and provide him with instructions that take this into account (S11
system turn).

A corpus of 100 dialogs was acquired using this strategy. In order to learn statisti-
cal models, the dialogs of the corpus were labeled in terms of dialog acts. In the case
of user turns, the dialog acts correspond to the classical frame representation of the
meaning of the utterance. For the DI@L-log task, we defined three task-independent
concepts (Affirmation, Negation, and Not-Understood) and four attributes (Weight,
Sugar, Systolic-Pressure, and Diastolic-Pressure).

The labeling of the system turns is similar to the labeling defined for the user
turns. A total of 12 task-dependent concepts was defined, corresponding to the
set of concepts used by the system to acquire each of the user variables (Weight,
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Sugar, Systolic-Pressure, and Diastolic-Pressure), concepts used to confirm the val-
ues provided by the user (Confirmation-Weight, Confirmation-Sugar, Confirmation-
Systolic, and Confirmation-Diastolic), concepts used to inform the patient about his
condition (Inform), and three task-independent concepts (Not-Understood, Open-
ing, and Closing).

3 POMDPs and Agenda-Based User Simulation

Formally, a POMDP is defined as a tuple {S,A,T,R,O,Z,λ ,b0} where:

• S is a set of the agent states.
• A is a set of actions that the agent may take.
• T defines the transition probability P(s′|s,a).
• R defines the immediate reward obtained from taking a particular action in a

particular state r(s,a).
• O is a set of possible observations that the agent can receive.
• Z defines the probability of a particular observation given the state and machine

action P(o′|s′,a).
• λ is a geometric discount factor 0 ≤ λ ≤ 1.
• b0 is an initial belief state b0(s).

The operation of a POMDP is as follows. In each moment, the agent is in an un-
observed state s. The agent selects an action am, receives a reward r, and transits
to a state (unobserved) s′, where s′ only depends on s and am. The agent receives
an observation o′ which depends on s and am. Although the observation allows the
agent to have some evidences about the state s in which the agent is now, s is not
exactly known, and b(s) (belief state) is defined to indicate the probability of the
agent being in the state s. In each moment, this probability is updated taking into
account o′ and am:

b′(s′) = P(s′
∣
∣o′,am,b) = k ·P(o′

∣
∣s′,am) ∑

s∈S

P(s′ |am,s)b(s) (1)

where k = P(o′|am,b) is a normalization constant [4].
At each time t the agent receives a reward r(bt ,am,t) which depends on bt and

the selected action am,t . The reward accumulated during the dialog (return) can be
calculated by means of:

R =
∞

∑
t=0

λ tR(bt ,am,t) =
∞

∑
t=0

λ t ∑
s∈S

bt(s)r(s,am,t ) (2)

Each action am,t is determined by the policy π(bt) and the construction of the
POMDP model implies to find the strategy π∗ which maximizes return. The goal of
POMDP policy optimization is to find the policy that maximizes the value function
at every point b. Due to the vast space of possible belief states, however, the use of
POMDPs for any practical system is far from straightforward. Exact algorithms for
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solving POMDPs do exist, but have been shown to be intractable except for domains
limited to a few states. Instead, the belief state and actions are mapped down to a
summarized form where optimization becomes tractable. In this context, the orig-
inal belief space and actions are called master space and master actions, while the
summarized versions are called summary space and summary actions. The summa-
rized space consists of the N-best states (su) from the original space (N is usually
1 or 2) and a simplified codification of the user’s action au and the dialog history
sd . The main idea of this summarized space is to explore only the actions that has
sense for the current situation in the dialog (e.g. do not begin the conversation with
a confirmation, do not say Welcome except at the start, etc.).

The optimization of the policy in these two spaces is usually carried out by using
techniques like the Point-based Value Iteration or Q-learning, in combination with a
user simulator. Q-learning is a technique for online learning traditionally used in an
MDP framework. It is an iterative Monte-Carlo style algorithm where a sequence of
sample dialogs are used to estimate the Q functions for each state and action. This
way, the summarized Q-learning algorithm discretizes summary space and uses Q-
learning on the resulting MDP-like grid. Using this algorithm, at each point, the
master belief space is mapped down to the summary level as described and the
nearest summary point in the grid is found and the optimal summary action given
by that point is chosen. This optimal action for each point p is given by

āp = argmax
ā

Q̄(a, p)

After a set of dialogs has been completed, the estimates of the Q-functions are up-
dated with the new dialog scores. At the end of the dialog, the discounted future
reward is known for each stage where a choice was taken (i.e., the Q-function eval-
uated at this grid point). A good estimate of the true Q-value is obtained if suffi-
cient dialogs are done. User simulation is then introduced to reduce the too time-
consuming and expensive task to obtain these dialogs with real users. Simulation is
usually done at a semantic dialog act level to avoid having to reproduce the variety
of user utterances at the word or acoustic levels. At the semantic level, at any time
t, the user is in a state su, takes action au, transitions into the intermediate state s′u,
receives machine action am, and transitions into the next state s′′u .

Agenda-Based state representations, like the one described in [6], factors the user
state into an agenda A and a goal G. The goal G consists of constraints C which
specify the detailed venue of the dialog, and requests R which specify the desired
pieces of information.

su = (A;G) G = (C;R)

The user agenda A is a stack-like structure containing the pending user dialog acts
that are needed to elicit the information specified in the goal. At the beginning of
each dialog, a new goal G is randomly selected. Then, the goal constraints C are
converted into user and system inform acts (au and am acts) and the requests R into
request acts. A bye act is added at the bottom of the agenda to close the dialog once
the goal has been fulfilled. The agenda is ordered according to priority, with A[N]
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denoting the top and A[1] denoting the bottom item. This way, au[i] denotes the ith
item in the user act au:

au[i] := A[N −n + i] ∀i ∈ [1..n]; 1 ≤ n ≤ N

P(au|su) = P(au|A,G) = δ (au,A[N −n + 1..N])

By denoting A′ to the agenda after selecting the act au, the first state transition
depending on au and the second state transition based on am can be respectively
expressed by means of the following equations [6]:

P(s′u|au,su) = P(A′,G′|A,G) = δ (A′,A[1..N′])δ (G′,G)

P(s′′u |am,s′u) = P(am|A′,G′′)P(G′′|am,G′)

The first probability in the latter equation denotes the agenda update model. By
assuming that every dialog act am triggers one push-operation from the agenda, this
probability can be expressed as follows:

P(am|A′,G′′) =
i=1

∏
M

P(A′′[N′ + i]|am[i],G′′) δ (A′′[1..N′],A′[1..N′])

The second probability denotes the goal update model. Assuming that R′′ is condi-
tionally independent of C′ given C′′, it can be expressed as follows:

G′′|am,G′) = P(R′′|am,R′,C′′)P(C′′|am,R′,C′)

where the first probability can be approximated as follows:

P(R′′|am,R′,C′′) = ∏
k

P(R′′[k]|am,R′[k],M (am,C′′))

4 Evaluation

The summary Q-learning algorithm and agenda-based user simulation described in
the previous section were used to develop a POMDP-based conversational agent for
the Di@L-log task. To do this, we took into account the benefits of using standards
like VoiceXML and also include a specific module for the statistical dialog model
to avoid the effort of manually defining the dialog strategy. This module selects
the following system response using the dialog policy obtained by means of the
POMDP. By means of the incorporation of this module, developers only have to
define a set of VXML files, each one including a system prompt and the associated
grammar to capture users answers for it. This way, the statistical dialog manager
automatically decides the following file (i.e. system prompt) that has to be selected.

A total of 25 dialogs were recorded from interactions of six users employing
the initial dialog strategy defined for the DI@L-log system and the POMDP-based
systems presented in this paper. Rewards in this system were given based on the
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task completion rate and the number of turns in the dialog. Using the definitions
described in [6], the POMDP system was given 20 points for a successful dialog
and 0 for an unsuccessful one, One point was subtracted for each dialog turn. We
considered the following measures for the evaluation:

1. Dialog success rate (%success). This is the percentage of successfully completed
tasks. In each scenario, the user has to obtain one or several items of informa-
tion, and the dialog success depends on whether the system provides correct data
(according to the aims of the scenario) or incorrect data to the user.

2. Average number of turns per dialog (nT).
3. Confirmation rate (%confirm). It was computed as the ratio between the num-

ber of explicit confirmations turns (nCT) and the number of turns in the dialog
(nCT/nT).

4. Average number of corrected errors per dialog (nCE). This is the average of errors
detected and corrected by the dialog manager. We have considered only those
errors that modify the values of the attributes and that could cause the failure of
the dialog.

5. Average number of uncorrected errors per dialog (nNCE). This is the average of
errors not corrected by the dialog manager. Again, only errors that modify the
values of the attributes are considered.

6. Error correction rate (%ECR). The percentage of corrected errors, computed as
nCE/ (nCE + nNCE).

The results presented in Table 1 show that the initially defined rule-based conver-
sational agent and the POMDP-based conversational agent could interact correctly
with the users in most cases. The success rate in the POMDP system is reduced
with regard to the initial rule-based system. This is due to the introduction in this
system of confidence scores to indicate the cases for which a confirmation must
be done. This means that it is possible for the system to assign a high level confi-
dence to an incorrectly recognized value. For this reason, the error correction rate
in this system is also slightly lower. The average number of required turns is re-
duced in the POMDP-based system from 10.4 to 7.0. This is again due to the initial
rule-based strategy is based on confirming every item provided by the user in the
following system turn. The POMDP-based system reduces the number of required
dialog turns by reducing the number of confirmations, as it can be observed in the
lower confirmation rate achieved for this system.

Table 1 Results of the evaluation of the rule-based and POMDP-based conversational agents

%success nT %confirm %ECR nCE nNCE
Rule-based Conversational Agent 97% 10.4 41% 92% 0.81 0.07

POMDP-based Conversational Agent 93% 7.0 28% 89% 0.86 0.11
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5 Conclusions

Modeling human-computer interaction by means of POMDPs and reinforcement
methods are the most extended methodology for machine-learning of dialog strate-
gies in conversational agents. Due to the main drawback of this approach is the large
state space of practical spoken dialog systems, whose representation is intractable
if represented directly, we have applied the proposal described in [6] to deal with
this and also introduce an agenda-based model user simulation technique to learn
the dialog model. The application of this approach to develop a conversational agent
which collects home monitored data from patients suffering from diabetes show how
it allows the dialog manager to tackle new situations and generate new coherent an-
swers for the situations already present in the initial corpus. Due to the new learning
process, the dialog manager can now ask for the required information using different
orders, confirm these information items taking into account the confidence scores,
reduce the number of system turns for the different kinds of dialogs, automatically
detect different valid paths to achieve each of the required objectives, etc. As a fu-
ture work, we want to compare this approach with other statistical and corpus-based
methodologies for dialog management.

References

1. Black, L., McTear, M.F., Black, N.D., Harper, R., Lemon, M.: Appraisal of a conver-
sational artefact and its utility in remote patient monitoring. In: Proc. of the 18th IEEE
Symposium CBMS 2005, Dublin, Ireland, pp. 506–508 (2005)

2. Griol, D., Hurtado, L., Segarra, E., Sanchis, E.: A Statistical Approach to Spoken Dialog
Systems Design and Evaluation. Speech Communication 50(8-9), 666–682 (2008)
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