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1 Introduction

Economic agents are constantly receiving new information, yet not all new

information is equally valuable. Hence, we often want to measure the infor-

mational content of different signals, and both economists and information

theorists have devoted much effort to this measurement problem.1 In addi-

tion, new information is often not obtained for free: one has to pay for it.

What sets this paper aside from previous contributions is the consideration

of this information/price tradeoff, in what we call information transactions.

An information transaction is defined as a pair consisting of an information

structure and a price. If we were sick and wanted a diagnosis, we could hire

a famous specialist who also charges high fees for her diagnosis, or we could

settle for a cheaper expert who probably would provide a less accurate diag-

nosis. We aim to find a way to assess “objectively”the relative worth of each

of those information transactions.

These questions are heavily inspired by Blackwell (1953), who introduces

an ranking of information structures in terms of their informativeness, and

shows that an information structure α is more informative than another in-

formation structure β if every decision maker prefers α to β in every decision

problem. Blackwell’s approach has a limited scope for applications, because

it does not provide a complete ordering. Researchers have made progress by

1Veldkamp (2011) describes many of the ways in which economists have measured
informativeness and its applications.
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focusing on decision makers who have preferences in a particular class.2 This

paper takes a different route that allows us to rank information transactions

completely: we develop an index of the appeal of information transactions

that is dual to the agent’s preferences for information, as we now briefly

describe.

Specifically, we say that an agent u1 likes information better than another

agent u2 if for every pair of wealth levels w1,w2, and an information transac-

tion a, whenever agent u2 accepts an information transaction a at wealth w2,

then agent u1 does so at wealth w1. This leads to our key definition, which

is the requirement that the appeal index satisfy duality with respect to pref-

erences for information: when the index deems transaction a more appealing

than b, then if the agent who likes information less accepts transaction b, the

agent who likes information more must accept transaction a.

In constructing the index, we discovered one important result - which

is of interest in its own right - regarding the connection between a decision

maker’s risk attitudes and the value of information for him. Indeed, we show

that an agent u1 likes information more than agent u2 if and only if the max-

imum coefficient of risk aversion of u1 is lower than the minimum coefficient

of risk aversion of u2. We then use this result to show that the appeal of

an information transaction a can be characterized as the risk aversion coeffi-

2Lehmann (1988), for instance, restricts the analysis to problems that generate mono-
tone decision rules (and hence satisfy single-crossing conditions). Persico (2000), Athey
and Levin (2001), and Jewitt (2007) extend Lehmann’s analysis to more general classes
of monotone problems.
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cient of the CARA (constant absolute risk aversion) agent who is indifferent

between accepting and rejecting a.

The duality principle described above can only provide an ordinal char-

acterization of the concept of appeal of transactions. It turns out that the

appeal index also satisfies the additional property of price homogeneity of

degree -1. Price homogeneity conveys a sort of separability between informa-

tion and price in assessing the appeal of an information transaction: when

two transactions are ranked in a certain order, multiplying the price of a

transaction by a constant divides its appeal by this constant. This implies in

particular that multiplying the price of two transactions by the same constant

does not alter their ranking. The homogeneity degree is negative because we

seek indices that are decreasing with the price µ. Next, we offer an axiomatic

characterization of the appeal of information transactions. Duality and ho-

mogeneity define the index uniquely, up to a multiplicative normalization

constant.

The results described in the previous paragraphs lead to a simple charac-

terization of the index, given that CARA agents have investment strategies

which are easy to express analytically. In words, the index depends nega-

tively on the price of the transaction and positively on the relative entropy

from the prior to the posteriors generated by the signals of the information

structure. The presence of relative entropy in the index is interesting because

this relative entropy, which is also called Kullback-Leibler divergence (after
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Kullback and Leibler, 1951), is often used in other sciences as a measure of

information gain.

The approach in this paper is very much inspired by that of Aumann

and Serrano (2008) for ordering riskiness. The parallels between the indices

for informativeness and riskiness are actually rather striking; for example,

both indices attribute central importance to the CARA agents, and their

respective axiomatic characterizations use identical axioms. This suggests

that duality is a powerful principle for ordering multidimensional objects,

far beyond the riskiness of one-dimensional random variables.

In Cabrales, Gossner, and Serrano (2012), we have provided another infor-

mation index. In that paper, the informativeness of an information structure

is characterized by the reduction of entropy from the prior. With a uniform

prior, and for small amounts of information, that index is close to the index

proposed here when the transaction price is kept constant, but they differ

significantly when the amount of information in the signals is larger. The

difference stems from the assumptions characterizing the index in Cabrales,

Gossner, and Serrano (2012): in that paper, all agents have ruin-averse util-

ity functions (i.e., zero wealth leads to negative infinite utility), while in this

paper ruin (i.e., negative wealth) is allowed for sufficiently high transaction

prices or for certain investment strategies.

Here is how the paper proceeds. Section 2 describes the model. Section 3

defines an ordering of information transactions based on agents’ preferences
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for information. Section 4 presents our main result, connects the notions of

risk aversion and value of information, and relates the notion of appeal to

CARA agents. Section 5 provides other characterizations of the index: both

a cardinal axiomatization and a perspective based on the total rejection of

information transactions. Section 6 presents a number of properties of the

index and provides some examples. Relevant literature is discussed in Section

7, and Section 8 concludes. Section 9 contains the proofs.

2 The Model

2.1 The Agent

We consider an investor with initial wealth w and a monetary utility function

u defined on R. We assume that u is nondecreasing, concave and twice

differentiable. We let U be the set of such monetary utility functions. We

identify agents by their monetary utility functions, thus speaking of agent u

to refer to an agent with utility function u.

2.2 Investments

There is a set K of states of nature, about which the agent is uncertain. The

agent’s prior on K is p ∈ ∆(K), assumed to have full support. The set of

investment opportunities consists of all no-arbitrage assets given p, that is,

assets with a nonpositive expected return: B∗ = {x ∈ R
K ,
∑

k p(k)bk ≤ 0}.3

3The vector p = (pk)k in the definition of no-arbitrage assets corresponds to the price
vector of Arrow-Debreu securities, where pk can be interpreted as the price of an asset
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When the agent’s initial wealth is w, b is chosen and state k is realized, the

agent’s final wealth is w + bk.

2.3 Information Transactions

Before choosing an investment, the agent has the opportunity to engage in a

(costly) information transaction a = (µ, α). Here, µ > 0 represents the cost of

the information transaction, and α is the information structure representing

the information obtained from a. That is, α is given by a finite set of signals

Sα, together with probabilities αk ∈ ∆(Sα) for every k. When the state

of nature is k, then αk(s) is the probability that the signal observed by the

agent is s. It is standard practice to represent any such information structure

by a stochastic matrix, with as many rows as states and as many columns as

signals; in the matrix, row k is the probability distribution (αk(s))s∈Sα
. Signal

s has a total probability pα(s) =
∑

k p(k)αk(s), and we assume, without loss

of generality, that pα(s) > 0 for every s. For each signal s ∈ Sα, we let

qsk ∈ ∆(K) be the probability of state k conditional on s computed using

Bayes’s rule.

We say that a is excluding if for every signal s, there exists k such that

qsk = 0. It is nonexcluding otherwise. Excluding information transactions are

such that, for every received signal, there exists a state of nature that the

agent can exclude.

that pays 1 in state k and 0 in all other states. The fact that this vector coincides with
the agent’s prior p means that no-arbitrage assets cannot yield a positive expected return.
We disentangle the two roles of p, price and priors, in Section 6.2.
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2.4 Optimal Investment after Receiving Information

Given a belief q, an agent with wealth w and utility u chooses b ∈ B∗ in

order to maximize his expected utility over all states k ∈ K. The maximum

expected utility is then V (u, w, q), given by:

V (u, w, q) = sup
b∈B∗

∑

k

qku(w + bk).

2.5 Acceptance of Information Transactions

The agent with utility function u and wealth w accepts an information trans-

action a = (µ, α) if and only if paying µ upfront to receive information ac-

cording to α generates an expected utility greater than or equal to staying

with wealth w. This is the case if and only if:

∑

s

pα(s)V (u, w − µ, qsk) ≥ u(w).

3 More Appealing Information Transactions

This section proposes a way to define the “objective” appeal of information

transactions. The approach is based on ordering preferences for information.

3.1 Ordering Preferences for Information

Definition 1 Let u1, u2 ∈ U represent two agents. We say that agent u1

uniformly likes (or likes, for short) information better than agent u2 if, for
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every pair of wealth levels w1, w2, and information transaction a, whenever

agent u2 accepts a at wealth w2, then agent u1 does so at wealth w1.

The definition means that independent of their respective wealth levels,

agent u1 is always more prone to accepting information transactions than is

agent u2. This will be the case when there is something intrinsic in agent

u1’s preferences that always makes him at least as interested as agent u2 in

purchasing information.

3.2 Ordering information transactions

We move now to define the comparative appeal of two information transac-

tions.

Definition 2 Let a1, a2 be two information transactions. We say that a1

is more appealing than a2 if, given two agents u1, u2 such that u1 uniformly

likes information better than u2 and given two wealth levels w1, w2, whenever

agent u2 accepts a2 at wealth level w2, then agent u1 accepts a1 at wealth level

w1.

Because agent u1 likes information better than agent u2, it is clear that,

as soon as we know that agent u2 accepts transaction a2, so must agent u1;

furthermore, this is true independent of the wealth levels of u1 and u2. If

appeal is a well-defined objective concept and a1 is more appealing than a2,

agent u1 should accept a1 a fortiori.
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4 The Main Result

For two probability distributions p and q, the relative entropy from p to q, also

called their Kulback-Leibler divergence, has been proposed as a nonsymmetric

measure of their discrepancy. It is defined as follows:

d(p‖q) =
∑

k

pk ln
pk
qk
.

It is always nonnegative, and equals zero if and only if p = q. It is finite

provided the support of q contains that of p, and we let it take the value

+∞ otherwise. Thus, p and q are “maximally different” when q rules out

one possibility that p doesn’t.4

Based on the relative entropy, we define the appeal of an information

transaction a as this quantity:

A(a) = −
1

µ
ln

(

∑

s

pα(s) exp(−d(p‖qsα))

)

. (1)

In the above formula, and throughout the paper, we use the convention

exp(−d(p‖qsα)) = 0 by continuity if d(p‖qsα) = +∞. The appeal A(a) of a is

thus well-defined and finite if and only if there exists s such that −d(p‖qsα)

is finite, which is the case if a is nonexcluding. We let A(a) = +∞ if a is

excluding.

The appeal of an information transaction decreases with its price and

increases with the relative entropy of the prior to the posteriors. Specifi-

4If p were the true distribution and q an approximate hypothesis, information theory
views the relative entropy from p to q as giving the expected number of extra bits required
to code the information if one were to use q instead of p.
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cally, the appeal of an information transaction is measured by the inverse

of its price multiplied by the natural logarithm of the expected exponentials

of the negative of relative entropy from the prior to each of the generated

posteriors.5

Our central result below asserts that A properly measures the appeal of

information transactions:

Theorem 1 Let a1 and a2 be two information transactions. Then, a1 is

more appealing than a2 if and only if A(a1) ≥ A(a2).

To illustrate the appeal ranking measured by Theorem 1, we make the

following observations. The maximal elements for the appeal ranking of infor-

mation transactions are all excluding transactions, since for them the appeal

is infinite. On the other hand, the minimal elements are the information

transactions that involve completely uninformative information structures

(i.e., αk = αk′ for every two states k and k′), in which case the appeal is zero.

Also, if a1 = (µ1, α1) and a2 = (µ2, α2) are ranked in a certain way in terms

of their appeal, then for any λ > 0, b1 = (λµ1, α1) and b2 = (λµ2, α2) are

ranked in the same way, which represents a price homogeneity or separability

property.

The next subsections pave the way to prove Theorem 1, and the results

5If we ignore the price µ, this same formula is referred to as “free energy” in theoret-
ical physics (see, e.g., Landau and Lifshitz, 1980), where relative entropy plays the role
of the Hamiltonian of the system. Similar formulas appear under the term “stochastic
complexity” in machine learning (Hinton and Zemel, 1994)
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contained in them have interest in their own right. We begin with connecting

preference for information with risk aversion.

4.1 Risk Aversion and Preference for Information

Given u ∈ U and w ∈ R, let ρu(w) = −u′′(w)
u′(w)

be the Arrow-Pratt coefficient of

absolute risk aversion of agent u at wealth w. We also let R(u) = supw ρu(w),

and R(u) = infw ρu(w).

Theorem 2 Given u1, u2 ∈ U , u1 likes information better than u2 if and

only if R(u1) ≤ R(u2).

Theorem 2 establishes the connection between preference for information

and risk aversion. Lemma 2 in Cabrales, Gossner, and Serrano (2012) shows

that an agent with ln utility accepts an information transaction whenever a

more risk-averse agent does. Theorem 2 both extends this result to general

pairs of utility functions, and shows that a converse result holds, namely,

that an agent who likes information better than another is necessarily less

risk-averse.

4.2 CARA Agents

Recall the class of CARA (constant absolute risk aversion) utility functions.

Given r > 0, let ur
C be the CARA utility function with parameter r given by

ur
C(w) = − exp(−rw) for every w.

Theorem 3 Let a be an information transaction and w be any wealth level.
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1. If r > A(a), then an agent with utility ur
C rejects a at wealth w.

2. If r ≤ A(a), then an agent with utility ur
C accepts a at wealth w.

Theorem 3 shows that A(a) can be equivalently defined as the level of

risk aversion such that every CARA agent who is more risk-averse rejects

a, whereas every CARA agent who is less or equally risk-averse accepts it.

Theorem 3 is also a key step in the proof of Theorem 1.

It is interesting to see how Theorem 3 particularizes for excluding infor-

mation transactions and completely noninformative ones. If a is excluding,

then A(a) = +∞, and the theorem shows that all CARA agents accept a. If

a is completely noninformative, then A(a) = 0 and the theorem shows that

it is rejected by all CARA agents.

5 Other Characterizations of the Appeal

5.1 Axiomatic Characterization

Theorem 1 uses the appeal measured by A to characterize the ranking of

information transactions based on agents’ preferences for information. The

statement of Theorem 1 would remain unchanged if we replaced A by any

increasing transformation f(A). In this sense, the cardinal measure of appeal

is not uniquely characterized by Theorem 1. In this subsection we show that

A is uniquely characterized up to a positive multiplicative constant by two

axioms: duality and price homogeneity of degree -1.
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We turn now to the formal definition of the two axioms on the appeal of

transactions. Let B be a map from information transactions to the nonneg-

ative numbers.

Duality: B satisfies duality if, given two information transactions a1 and a2,

B(a1) ≥ B(a2) if and only if a1 is more appealing than a2.

Price homogeneity: B is price-homogeneous of degree -1 if, for every a = (µ, α) and λ > 0,

B(λµ, α) =
1

λ
B(µ, α).

We seek an index that ranks the appeal of information transactions. In

this context, conceiving of the appeal of information transactions as a “dual”

to the preferences for information embodied in Definition 1 seems rather

sensible. That is, whenever an agent who likes information less accepts a

less appealing information transaction, an agent who likes information more

should accept a more appealing information transaction.6

Price homogeneity separates information from price in the basic tradeoff

we are trying to capture. Once homogeneity is imposed, one can begin by

measuring the appeal of all transactions priced at $1.7 Then, homogeneity

extends the appeal measure to all transactions. Furthermore, if the appeal

index should take positive values, it ought to be decreasing with µ. This is

6In effect, this was the same reason used in Aumann and Serrano (2008) to justify
their duality axiom. (In that case, the “duality” was sought between riskiness and risk
aversion.)

7It turns out that for this class, the connection of our appeal index and free energy is
exact.
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the reason why the price homogeneity has degree -1 and not 1. Alternatively,

we could construct an index having negative values, decreasing with µ, and

price-homogeneous of degree 1; this index would be given by − 1
B

instead

of B.

Theorem 4 The index A is the unique index, up to a positive multiplica-

tive constant, that satisfies the axioms of duality and price homogeneity of

degree -1.

It is easy to see that the axioms are logically independent in our charac-

terization. If one drops price homogeneity, any nonlinear monotone transfor-

mation of the index A also satisfies duality. If one drops duality, the index

1
µ
Ie(α) satisfies homogeneity, where Ie is the entropy informativeness index

proposed in Cabrales, Gossner, and Serrano (2012). Example 2 in Subsec-

tion 6.5 argues that the two indices are ordinally different.

5.2 An Approach Based on Total Rejections

Let UDA be the set of utility functions u that are twice differentiable and

such that ρu is decreasing (DARA). Following Hart (2011)’s approach (see

also Cabrales, Gossner, and Serrano, 2012), we now introduce the definition

of uniform wealth-dominance:

Definition 3 Let a1 and a2 be two information transactions. We say that

a1 uniformly wealth-dominates a2 if any u ∈ UDA that rejects a1 at all wealth

levels also rejects a2 at all wealth levels.
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This definition proposes a uniform or total rejection of transactions within

the DARA class of preferences. That is, a1 uniformly wealth-dominates a2

because the latter is rejected more often: whenever a1 is rejected at all wealth

levels, so is a2, but not vice versa. The definition leads to the following result:

Theorem 5 Let a1 and a2 be two information transactions. Then, a1 uni-

formly wealth-dominates a2 if and only if A(a1) ≥ A(a2).

We observe that the same theorem holds if we restrict the class of func-

tions by imposing IRRA and ruin aversion on top of DARA.8

6 Some Properties and Examples

6.1 Some Properties of the Appeal Index

Here we discuss several properties of the appeal index.

6.1.1 Continuity

The appeal index A is jointly continuous in µ, in pα, and in (qsα)s on the

domain of nonexcluding information transactions. Continuity is a natural

and attractive property: small changes in either the price or the conditional

probabilities of signals should translate into small changes in the appeal of

the transaction. Recall, however, that A(a) = +∞ when a is excluding.

8IRRA and ruin aversion are the restrictions on preferences used in Cabrales, Gossner,
and Serrano (2012).
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6.1.2 Blackwell monotonicity

The appeal index is Blackwell-monotonic, as expressed in the following propo-

sition:

Proposition 1 If an information structure α1 is more informative than an-

other information structure α2 in the sense of Blackwell, then for any price

µ > 0, the information transaction (µ, α1) is more appealing than the infor-

mation transaction (µ, α2). Thus we have:

A(µ, α1) ≥ A(µ, α2).

6.1.3 Mixtures

A third property concerns what happens when an information structure is

constructed by randomizing over two other ones. Given information struc-

tures α1, α2 and 1 > λ > 0, we let λα1 ⊕ (1 − λ)α2 be the information

structure in which (i) a coin toss determines whether the agent’s signal is

chosen from α1 (with probability λ) or α2 (with probability 1 − λ), and (ii)

the agent is informed of both the outcome of the coin toss and the signal

drawn from the chosen information structure. Formally, the set of signals in

λα1 ⊕ (1 − λ)α2 is Sα1
∪ Sα2

(where we assume that Sα1
and Sα2

are dis-

joint), and the probability in state k that the agent receives signal s ∈ Sα1

is λα1,k(s), whereas the probability of a signal s ∈ Sα2
is (1− λ)α2,k(s).
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Proposition 2 Consider µ > 0 and α1, α2 such that A(µ, α1) ≥ A(µ, α2).

For every 1 > λ > 0, we have:

A(µ, α1) ≥ A(µ, λα1 ⊕ (1− λ)α2) ≥ A(µ, α2).

6.2 The Role of Prices and Priors

In the model of Section 2, p plays a dual role. Indeed, p is the agent’s prior

before he receives any information, and it is also a vector of prices for Arrow-

Debreu securities that defines the set of no-arbitrage assets B∗. In order to

both allow for the agent’s prior to be different from the price system, and

disentangle the two roles of p, we consider here agents whose prior belief

q ∈ ∆(K) may differ from the vector p defining the set B∗.

In this more general model, an agent accepts an information transaction

a = (µ, α) at prior q if and only if:

∑

s

pα(s)V (u, w − µ, qsα) ≥ V (u, w, q),

where qsα is the agent’s posterior belief after receiving a signal s given the

prior q. Note that if q = p, then V (u, w, q) equals u(w) so that the definition

particularizes to the original one in this case.9

Our definition 2 extends as follows: We say that a1 is more appealing

than a2 at prior q if, given two agents u1, u2 such that u1 uniformly likes

information better than u2 and two wealth levels w1, w2, whenever agent u2

9It is convenient to write the RHS of this expression this way, given our analysis of
sequential transactions in the next subsection.
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accepts a2 at wealth level w2 and prior q, then agent u1 accepts a1 at wealth

level w1 and prior q.

Then, we define the appeal of an information transaction a = (µ, α) at

prior q as:

A(a, q) = −
1

µ
ln

(

∑

s

pα(s) exp(−d(p‖qsα))

)

−
d(p‖q)

µ

= A(a)−
d(p‖q)

µ
.

As a word of caution, we note that in the formula above, as (qsα)s depends

on q, so does A(a). Theorems 1 and 3 can be extended as Theorems 6 and 7

respectively:

Theorem 6 Let a1 and a2 be two information transactions. Then, a1 is

more appealing than a2 at prior q if and only if A(a1, q) ≥ A(a2, q).

Theorem 7 Let a be an information transaction and w be any wealth level.

1. If r > A(a, q), then an agent with utility ur
C rejects a at wealth w and

prior q.

2. If r ≤ A(a, q), then an agent with utility ur
C accepts a at wealth w and

prior q.

6.3 Sequential Transactions

The final property we mention concerns the appeal of an information trans-

action in which the buyer receives signals sequentially from different infor-

mation structures. Given an information structure α with a set of signals Sα
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and a family β = (βs)s∈Sα
of information structures, where all the members

of β share the same set of signals Sβ , we let (α, β) be the information struc-

ture in which the agent first receives a signal s from α, then an independently

drawn (conditional on k) signal s′ from βs. Formally, the set of signals in

(α, β) is Sα × Sβ , and in state k, the probability of receiving the pair of

signals (s, s′) is αk(s)βs,k(s
′). Given an information transaction a = (µ, α)

and a family of information transactions b = (bs)s = (ν, βs)s, where all the

members of b have the same price ν, we let a + b denote the information

transaction (µ+ ν, (α, β)).

Proposition 3 Given information transactions a and b = (bs)s, the follow-

ing hold:

1. If for every s, A(bs, qs) ≥ A(a), then A(a+ b) ≥ A(a).

2. If for every s, A(bs, qs) ≤ A(a), then A(a+ b) ≤ A(a).

3. In particular, if for every s, A(bs, qs) = A(a), then A(a+ b) = A(a).

The proposition relates the appeal of an information transaction involving

(α, β) to the appeal of the information transactions involving α and (βs)s.

As a result, the appeal of an information transaction involving α has to be

measured given the prior p, as in formula (1), but the appeal of an information

transaction involving βs has to be measured given the belief qsα of the agent

after receiving the signal s. The proposition makes intuitive sense: if the
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agent faces a sequence of transactions whose individual appeal is increasing,

the appeal of the overall transaction is at least that of the appeal of the

first-stage transaction, and so on.

6.4 The Role of ln and exp in A

So far we have argued that two intuitive properties of the index A are that

it makes the appeal of a transaction (i) a decreasing function of its price

and (ii) an increasing function of the relative entropy from the prior to each

generated posterior. In this light, one could consider using the following

alternative index:

Â(a) =
1

µ

∑

s

pα(s)d(p‖q
s
α).

It is apparent that the index Â retains those two properties, and it also

satisfies the desired separability in the form of price homogeneity of degree

-1. We know from Theorem 4 that it must violate duality, and indeed, the

next example illustrates why it does not rank the appeal of transactions well.

Example 1 Let K = {1, 2, 3} and fix a uniform prior. Consider, for in-

stance, two information structures with each having two signals:

α1 =





0 1
1/2 1/2
1/2 1/2



 , α2 =





1− ε ε
1/2 1/2
ε 1− ε





Fix an arbitrary µ > 0, and define the transactions a1 = (µ, α1) and

a2 = (µ, α2). Note that Â(a1) = +∞ because the relative entropy of the prior

to the posterior generated by the first signal is infinite. On the other hand, for
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any ε > 0, Â(a2) is finite. We next argue that the appeal of the transactions

is not well measured by Â. Indeed, for a small enough ε > 0, the transaction

a2 is almost excluding, and hence, in such a case r1 = A(a1) < A(a2) = r2.

Here, r1 and r2 are the risk-aversion coefficients of the two CARA individuals

who define the two corresponding levels of appeal. Let r = (r1+r2)/2. Clearly,

the CARA agent r uniformly likes information more than the CARA r2 agent;

the CARA r2 agent accepts a2, which according to the index Â would be less

apealing than a1; but agent r rejects a1.

The example makes clear the role of the exponential and its compensating

logarithm as a “blow up/shrink down” of relative entropies. The exponen-

tial function, being bounded above, avoids the problem of infinite relative

entropies attached to a single signal. Only when all relative entropies are in-

finite does the logarithm restore the infinite value of appeal. This is essential

in order to satisfy the duality between uniform preferences for information

and the proposed function ranking the appeal of transactions. Less extreme

but somewhat more complicated examples can be constructed to make the

same point without relying on CARA agents. (To do this, one would need to

require a bounded interval within which the agents optimal investment lies.)

6.5 Comparison with Entropy Informativeness

We next present an example, similar to one in Cabrales, Gossner, and Serrano

(2012), that illustrates how our framework serves to complete Blackwell’s or-
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dering. In addition, it shows how the information index in our 2012 paper

can sometimes provide a different ranking from the induced index of infor-

mation structures in the current study (when the price of the transaction

is kept constant), while it also shows how both can sometimes point in the

same direction.

Example 2 Let K = {1, 2, 3} and fix a uniform prior. Consider two infor-

mation structures that are not ordered in the sense of Blackwell. For instance,

let each of the two information structures have two signals:

α1 =





1− ε1 ε1
1− ε1 ε1
ε1 1− ε1



 , α2 =





1− ε2 ε2
0.1 0.9
ε2 1− ε2





For ε1 and ε2 small enough, these information structures are not ranked

according to Blackwell. To see this, it suffices to consider two decision prob-

lems. In Problem 1, the agent must choose one of two actions: action 1 gives

a utility of 1 only in the first two states, and 0 otherwise, while action 2 gives

a utility of 1 only in the third state, and 0 otherwise. In contrast, Problem 2

has action 1 pay a utility of 1 only in the first state, and 0 otherwise, while

action 2 gives a utility of 1 only in states 2 or 3, and 0 otherwise. When

facing Problem 1, the decision maker would value α1 more than α2: follow-

ing the first signal in α1, he would choose the first action and following the

second signal in α1, he would choose the second action, thereby securing a

utility of 1. This would be strictly greater than his utility after α2. On the

other hand, when facing Problem 2, he would under α2 choose action 1 after
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the first signal and action 2 after the second, yielding a utility close to 29/30,

which is greater than his optimal utility after α1.

Now let us compute A(a1) for a1 = (µ, α1) and A(a2) for a2 = (µ, α2) .

A(ai) = −
1

µ
ln

(

∑

s

pαi
(s) exp(−d(p‖qsαi

))

)

,

and

∑

s

pα1
(s) exp(−d(p‖qsα1

)) =
2− ε1

3
exp

(

−
1

3

(

ln

(

1
3

1−ε1
2−ε1

)

+ ln

(

1
3

1−ε1
2−ε1

)

+ ln

(

1
3
ε1

2−ε1

)))

+
1 + ε1

3
exp

(

−
1

3

(

ln

(

1
3

1−ε1
2−ε1

)

+ ln

(

1
3
ε1

2−ε1

)

+ ln

(

1
3
ε1

2−ε1

)))

≃
2

3
exp

(

−
1

3

(

ln
1

ε1

))

+
1

3
exp

(

−
1

3

(

ln

(

1

ε1

)2
))

≃
2

3
ε
1/3
1 +

1

3
ε
2/3
1 .

∑

s

pα2
(s) exp(−d(p‖qsα2

)) =
1.1

3
exp

(

−
1

3

(

ln

( 1
3

1−ε2
1.1

)

+ ln

( 1
3
0.1
1.1

)

+ ln

( 1
3
ε2
1.1

)))

+
1.9

3
exp

(

−
1

3

(

ln

( 1
3

1−ε2
1.9

)

+ ln

( 1
3
0.9
1.9

)

+ ln

( 1
3
ε2
1.9

)))

≃
1.1

3
exp

(

1

3
ln ε2

)

+
1.9

3
exp

(

1

3
ln ε2

)

= ε
1/3
2 .

If ε1 = ε2 and both are small enough, then A(a2) > A(a1). On the other

hand, if ε1 = ε22 and both are small, then A(a1) > A(a2).

Let us now compute the entropy reduction from the uniform prior, which

we denote by Ie (·), letting H (q) =
∑3

k=1−qk ln (qk).
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Ie (α1) = H (p)−

2
∑

s=1

psa1H
(

qsa1
)

= 3

(

−
1

3
ln

(

1

3

))

−
2− ε1

3

(

−2
1− ε1
2− ε1

ln

(

1− ε1
2− ε1

)

−
ε1

2− ε1
ln

(

ε1
2− ε1

))

−
1 + ε1

3

(

−2
ε1

2− ε1
ln

(

ε1
2− ε1

)

−
1− ε1
2− ε1

ln

(

1− ε1
2− ε1

))

≃ ln 3−
2

3
(ln 2)−

1

3

1

2
ln 2 = ln 3−

5

6
ln 2 ≃ ln 3− 0.57762265.

Ie (α2) = 3

(

−
1

3
ln

(

1

3

))

−
1.1

3

(

−
1− ε2
1.1

ln

(

1− ε2
1.1

)

−
0.1

1.1
ln

(

0.1

1.1

)

−
ε2
1.1

ln
( ε2
1.1

)

)

−
1.9

3

(

−
1 − ε2
1.9

ln

(

1− ε2
1.9

)

−
0.9

1.9
ln

(

0.9

1.9

)

−
ε2
1.9

ln
( ε2
1.9

)

)

≃ ln 3−
1

3
(1.1 ln 1.1− 0.1 ln 0.1 + 1.9 ln 1.9− 0.9 ln 0.9)

≃ ln 3− 0.549815518.

This implies that Ie(α1) > Ie(α2) whenever ε1, ε2 are sufficiently close to

zero.

The reason for the difference between entropy informativeness and the

approach in this paper is the larger sensitivity of the index A to information

concerning low-probability events. In particular, α1 causes a larger reduction

in entropy, being associated with an almost fully informative signal (s2). In

contrast, for equal prices, a purchase of α2 is more appealing for sequences of

small ε1 and ε2 where ε1 = ε2. To understand the latter, note that the limits,

as ε1 and ε2 vanish, of α1 and α2 lead to excluding information transactions,
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with infinite appeal. The large unbounded appeal of those transactions before

going to the limits is explained by the large investments made following each

signal. However, in α1, following signal s2, two states are becoming extremely

unlikely, leading the agent to an optimal investment with large losses in these

two states, whereas in α2 large losses in the optimal investment are confined

to only one state. Because of this, when ε1 and ε2 go to zero at the same

rate, the large negative utility that a CARA agent derives from large negative

wealth implies that α2 is more appealing than α1. Convergence rates matter,

though: this conclusion is overturned if ε1 goes to zero much faster than ε2.

To explore somewhat more systematically the difference between the in-

dex based on entropy and the one in this paper, we investigate conditions on

“small information” that renders them equivalent. Let ai = (αi, µ). We then

have the following equation:

A(ai) = −
1

µ
ln

(

∑

s

pαi
(s) exp(−d(p‖qsαi

))

)

= −
1

µ
ln

(

∑

s

pαi
(s) exp

(

−
∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

))

Ie (αi) = −
∑

k

p(k) ln p(k)−
∑

s

pαi
(s)

(

−
∑

k

qsαi
(k) ln qsαi

(k)

)

=
∑

s

pαi
(s)

(

−
∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

−
∑

k

(

p(k)− qsαi
(k)
)

ln qsαi
(k)

)

.
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This implies that to a first order approximation when qsαi
is close to p,

A(ai) ≃ −
1

µ
ln

(

1 +
∑

s

pαi
(s)

(

−
∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

))

≃ −
1

µ

∑

s

pαi
(s)

(

−
∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

)

=
1

µ

∑

s

pαi
(s)

(

∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

)

and

Ie(αi) =
∑

s

pαi
(s)

(

−
∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

−
∑

k

(

p(k)− qsαi
(k)
)

ln qsαi
(k)

)

=
∑

s

pαi
(s)

(

−
∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

+

(

∑

k

(

qsαi
(k)

p (k)
− 1

)

p (k) ln qsαi
(k)

))

≃
∑

s

pαi
(s)

(

−
∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

−

(

∑

k

(

ln p(k)− ln qsαi
(k)
)

p (k) ln qsαi
(k)

=
∑

s

pαi
(s)

(

−
∑

k

(

1 + ln qsαi
(k)
)

p(k)
(

ln p(k)− ln qsαi
(k)
)

)

.

As a result, it follows that:

A(ai) ≃
1

µ

∑

s

pαi
(s)

(

∑

k

p(k)
(

ln p(k)− ln qsαi
(k)
)

)

(2)

and

Ie(αi) ≃
∑

s

pαi
(s)

(

−
∑

k

(

1 + ln qsαi
(k)
)

p(k)
(

ln p(k)− ln qsαi
(k)
)

)

. (3)

A comparison of expressions (2) and (3) makes clear that when priors

and posteriors are similar, the two indices point in the same direction - as

long as it is also true that the qsαi
(k) vectors are all parallel to the unit
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vector and that ln qsαi
(k) < −1, that is, when priors are close to uniform and

there are more than two states. Otherwise, cases such as the one provided

in Example (2), when posteriors are very informative, are likely to make the

indices diverge.

6.6 The Case of the Continuum

We have worked with finitely many states to avoid measure-theoretic techni-

calities. The results in this paper are easy to extend to distributions with a

continuum of states. This is useful because many applications assume such

a continuum.

Example 3 Suppose that each signal drawn generates a distribution with

conditional normal density s ∼ N (ηs,Σs). Let the prior p be normally dis-

tributed with p ∼ N (ηp,Σp). Then the relative entropy (d(p‖qsαi
)), also called

Kullback-Leibler divergence, can be written as follows:

d(p‖qsαi
) =

1

2

(

tr
(

Σ−1
s Σp

)

+ (ηs − ηp)
⊤Σ−1

s (ηs − ηp)− ln

(

|Σp|

|Σs|

)

− n

)

.

This implies that A (a) can be written as follows:

A (a) = −
1

µ
ln

(

∑

s

pα(s) exp

(

−
1

2

(

tr
(

Σ−1
s Σp

)

+ (ηs − ηp)
⊤ Σ−1

s (ηs − ηp)− ln

(

|Σp|

|Σs|

)

− n

))

)

and also that the expression for Ie is the following:

Ie (α) =
1

2
ln ((2πe)n |Σp|)−

∑

s

pα(s)
1

2
ln ((2πe)n |Σs|) .

Thus, the two indices lend themselves to easy computations, and comparisons

as that in Example 2 can be readily drawn.
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7 Related literature

As mentioned in the introduction, the natural limitation of Blackwell (1953)’s

ordering is that it does not provide a complete ordering of information struc-

tures. More recent research has since focused on restricting preferences to a

particular class. Lehmann (1988) restricts attention to problems with mono-

tone decision rules, and Persico (2000), Athey and Levin (2001), and Jewitt

(2007) do so to some more general classes of monotone problems. The main

difference between this line of research and our approach is that we provide

a complete order through a duality axiom for problems with a restricted set

of investment opportunities.10

Relative entropy plays an important role in our index. Kullback and

Leibler (1951) showed that relative entropy measures the mean information

per sample for distinguishing between two hypotheses when one of them is

true.11 Subsequently, Shore and Johnson (1980) provided an axiomatization

of relative entropy with respect to the prior as a criterion for model selection.

The relative-entropy measure of proximity of probability distributions

appears prominently in many economic settings. For example, Blume and

Easley (1992) and Sandroni (2000) show that, in dynamic exchange economies,

10Ganuza and Penalva (2010) provides a partial ordering of information structures based
on various measures of dispersion of distributions, rather than on decision-theoretic con-
siderations. Many of those measures are presented in Shaked and Shanthikumar (2007).
They then study the implications of greater informativeness (in their sense) for auction
problems.

11A maximum likelihood estimator of a parametric model is also a minimizer of the
Kullback-Leibler divergence.
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markets favor agents who make the most accurate predictions when accuracy

is measured according to relative entropy. Hansen and Sargent (2010, 2001)

introduce into the economics literature a multiple priors model that builds

on earlier work in the optimal-control literature. In that model, agents take

into account the possibility that their beliefs q may not be correct, and they

consider other possible alternatives p; the relative likelihood of these alter-

native distributions is then measured by relative entropy. This model, also

called the multiplier preferences model, is in turn a special case of the model

of ambiguity aversion in Maccheroni, Marinacci, and Rustichini (2006). Rel-

ative entropy has also been used in the reputation model of Gossner (2011)

to assess differences between conditional and unconditional predictions about

long-run player types. The use of relative entropy in this context allows one

to derive explicit bounds on the payoff of the long-run player, thanks to the

chain-rule property of relative entropy. However, none of these previous pa-

pers in economics uses relative entropy to measure the informativeness of

signals or the appeal of information transactions.

Outside economics, relative entropy is widely used to measure both infor-

mativeness and differences between distributions. In information theory, the

Kraft–McMillan theorem12 shows that when sending messages to identify a

state s in a set S which has a certain probability distribution, the Kullback-

Leibler divergence quantifies the expected extra message-length needed if a

12From Kraft (1949) and McMillan (1956).
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code is optimal for a given (wrong) distribution rather than for one based on

the true distribution. Weyl (2007) has used this theorem to propose relative

entropy as a good way to learn which is the best scientific theory among those

that describe the same data. Soofi and Retzer (2002) provide a summary of

the applications of entropy-related indices in statistics and econometrics, and

the interrelationships between them. There are numerous applications of rel-

ative entropy in a range of disparate fields. They are used in linguistics, for

example, to measure the information content of words (Kuperman, Bertram,

and Baayen, 2010; Mishra and Bangalore, 2011); in optics, for measuring

the discriminatory power of sensory networks (Ong, Xiaoy, Tham, and Ang,

2009); in hydrology, for assessing data informativeness for risk management

(Singh, 1997); in genetics, to measure genetic diversity (Sherwin, 2010); in

zoology, where long-run fitness is maximized by the phenotype that adapts

itself (best-responds) to the signal which minimizes relative entropy with re-

spect to the true state of the environment (Donaldson-Matasci, Bergstrom,

and Lachmann, 2010); and even in archaeology, to infer whether a set of

findings is consistent with the known facts of a particular prehistoric period

(Justeson, 1973). Although many of these applications use relative entropy

to measure informativeness, none of them provides a decision-theoretic mi-

crofoundation for such use.
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8 Conclusion

We propose a novel approach that provides a complete ordering of informa-

tion transactions. The approach also orders information structures, when

the transaction price is kept constant. The complete ordering proposed here

is dual to the agent’s preferences for information, as stated in Definition 1.

We find that only two axioms, duality from preferences for information and

homogeneity, yield a cardinal characterization of an index of appeal of in-

formation transactions, up to a multiplicative normalization constant. The

index has a simple analytic characterization, which is an expectation of the

exponential of relative entropy from the prior to the posteriors after signals.

This is remarkable since relative entropy has been extensively used as a mea-

sure of information gain in computer science and other disciplines. Moreover,

the specific appeal formula is actually identical (ignoring the price separable

term) to the notion of free energy in theoretical physics (Landau and Lif-

shitz, 1980). The role of duality in this framework, as well as for measuring

riskiness (Aumann and Serrano, 2008), suggests that the approach may be

useful in general to index other multidimensional magnitudes of economic

interest.

9 Proofs

This section presents the proofs of the results in an appropriate logical order.
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9.1 Proof of Theorem 2

We begin by stating and proving several auxiliary lemmas.

Lemma 1 Fix p and consider a sequence qn of beliefs such that qn → p. Let

bn be the optimal investment for an agent with beliefs qn. Then, it must be

true that bn → 0.

Proof. If the property does not hold, there exists a sequence qn → p and a

corresponding sequence of optimal investments bn together with ε > 0 such

that, for every n, ‖bn‖∞ ≥ ε. Since u is strictly concave, there exists a > 0

such that for every z with |z| ≥ ε,

u(w + z) ≤ u(w) + zu′(w)− a|z|.

We then have for every n:

V (u, w, qn) =
∑

k

qnku(w + bnk)

≤ +
∑

|bn
k
|<ε

qnk (u(w) + u′(w)bnk) +
∑

|bn
k
|≥ε

qnk (u(w) + u′(w)bnk − a|bnk |)

= u(w) +
∑

|bn
k
|<ε

(qnk − pnk)u
′(w)bnk +

∑

|bn
k
|≥ε

(qnk − pnk)u
′(w)bnk − aqnk |b

n
k |,

where the last equality uses
∑

k q
n
k = 1 and

∑

k p
n
kb

n
k = 0. This implies both

lim
n→∞

∑

|bn
k
|<ε

(qnk − pnk)u
′(w)bnk = 0
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and

lim sup
n→∞

∑

|bn
k
|≥ε

(qnk − pnk)u
′(w)bnkaq

n
k |b

n
k | < 0,

since for every n, there exists k such that |bnn| ≥ ε. This shows that

lim sup
n→∞

V (u, w, qn) < u(w),

which is in contradiction with V (u, w, q) ≥ u(w) for every q. We conclude

that the property holds as claimed.

Lemma 2 Fix p and consider q close to p. Then, the optimal investment

b(q) = (bk(q))k∈K for an agent with belief q = (qk)k∈K is

bk(q) =
1

pkρ(w)
(qk − pk) + o(‖q − p‖).

Proof. The agent’s problem is to maximize
∑

k qku(w + bk) under the con-

straint
∑

k pkbk = 0. The solution is uniquely given by the system of first-

order conditions:

qku
′(w + bk) = λpk,

where λ is independent of k. Using a first order Taylor expansion of u′(w+bk),

we obtain:

U ′(w) + bku
′′(w) = λ

pk
qk

+ o(bk). (4)

We multiply each equation by pk and sum over k to get:

U ′(w) = λ

∑

j p
2
j

qj
+ o(bk). (5)
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We replace the value of λ obtained using (5) into equation (4) and get:

bk =
u′(w)

u′′(w)
(

pk

qk
∑

j

p2j
qj

− 1) + o(bk).

In vector form, this can be expressed as:

b = F (q) + γ(b),

where (F (q))k =
u′(w)
u′′(w)

( pk

qk
∑

j

p2
j

qj

− 1) and γ(b) ∈ R
K is such that ‖γ(b)‖

‖b‖
→ 0 as

‖b‖ → 0.

We now show that ‖b‖ = O(‖q − p‖). Assume to the contrary that

there exists a sequence qn → p and a corresponding sequence bn such that

‖bn‖
‖qn−pn‖

→ ∞. We would then have:

‖bn‖

‖qn − pn‖
≤

‖F (qn)‖

‖qn − pn‖
+

γ(bn)

‖bn‖

‖bn‖

‖qn − pn‖
.

However, a simple computation shows that ‖F (qn)‖ = O(‖qn − pn‖), and

we know from Lemma 1 that ‖bn‖ → 0; hence, γ(bn)
‖bn‖

→ 0. This yields a

contradiction, and hence the conclusion that ‖b‖ = O(‖q − p‖).

We thus have γ(b)
‖q−p‖

→ 0 as ‖q − p‖ → 0. We can therefore write

bk =
u′(w)

u′′(w)
(

pk

qk
∑

j

p2
j

qj

− 1) + o(‖q − p‖)

=
1

ρ(w)
(
qk
∑

j

p2j
qj
− pk

qk
∑

j

p2j
qj

) + o(‖q − p‖)

=
1

pkρ(w)
(qk − pk) + o(‖q − p‖),

where the last line uses the fact that limq→p

∑

j

p2j
qj

= 1.

35



Lemma 3 Fix p and consider q close to p. Then,

V (u, w, q) = u(w) +
1

2

∑

k

(qk − pk)
2

ρ(w)pk
u′(w) + o(‖q − p‖2).

Proof. We have

V (u, w, q) =
∑

k

qku(w + bk),

where b = (bk)k∈K is defined as in Lemma 2. A second order Taylor expansion

gives

V (u, w, q) = u(w) +
∑

k

qkbku
′(w) +

1

2

∑

k

qkb
2
ku

′′(w) + o(‖b‖2)

= u(w) +
∑

k

(qk − pk)bku
′(w) +

1

2

∑

k

qkb
2
ku

′′(w) + o(‖b‖2).

From Lemma 3 we know that ‖b‖ = O(‖q − p‖). Hence, we can replace

o(‖b‖2) by o(‖p − q‖2) in the expression above. By substituting bk for the

expression in Lemma 2 we obtain:

V (u, w, q) = u(w) +
∑

k

(qk − pk)
2

ρ(w)pk
u′(w)

+
1

2

∑

k

qk
ρ(w)2p2k

(qk − pk)
2u′′(w) + o(‖q − p‖2)

= u(w) +
1

2

∑

k

(qk − pk)
2

ρ(w)pk
u′(w) + o(‖q − p‖2),

which is as claimed.

Fix p, and two states k, l ∈ K. For min{pk, pl} > ε > 0, let qε,k be given

by qε,kk′ = pk′ for k
′ 6= k, l; qε,kk = pk + ε; and qε,kl = pl − ε. Similarly, qε,l is

given by qε,lk′ = pk′ for k′ 6= k, l; qε,ll = pl + ε; and qε,lk = pk − ε. Thus, the
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belief qε,k gives slightly higher weight to state k and slightly lower weight to

state l than p, whereas qε,l does the opposite. Now consider an information

structure α(ε) such that with probability 1
2
, the agent’s posterior is qε,k;

and with probability 1
2
it is qε,l.(Such an information structure exists since

1
2
qε,k + 1

2
qε,l = p.)

Lemma 4 For ε close to 0, the maximal price µ(ε) that an agent is willing

to pay for α(ε) is:

µ(ε) =
pk + pl

2ρ(w)pkpl
ε2 + o(ε2).

Proof. The maximal price µ(ε) is such that the informational gains exactly

compensate the monetary loss. Such a price satisfies the equation:

1

2

(

V (u, w − µ(ε), qε,k) + V (u, w − µ(ε), qε,l)
)

= u(w).

Relying on Lemma 3, we get:

u(w)− u(w − µ(ε)) =
u′(w − µ(ε))

2ρ(w − µ(ε))
(
ε2

pk
+

ε2

pl
) + o(ε2).

This shows that µ(ε) → 0 as ε → 0, and therefore, by taking a first-order

Taylor approximation of u(w − µ(ε)), we obtain:

µ(ε)u′(w) + o(µ(ε)) =
u′(w)

2ρ(w)

pk + pl
pkpl

ε2 + o(ε2).

We conclude that:

µ(ε) =
pk + pl

2ρ(w)pkpl
ε2 + o(ε2),
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as we wanted to show.

Having proved this series of lemmata, we now proceed to prove Theorem

2.

Proof of Theorem 2. Assume that u1 likes information better than u2,

and consider wealth levels w1 for u1 and w2 for u2. The maximal price that

u1 is willing to pay at wealth level w1 for the information structure α(ε) is

always higher than or equal to the maximal price that u2 is willing to pay at

wealth level w2 for the same information. From Lemma 4 we obtain that for

every w1, w2 and for a small enough ε > 0,

pk + pl
2ρu1

(w1)pkpl
ε2 ≥

pk + pl
2ρu2

(w2)pkpl
ε2.

Hence, ρu1
(w1) ≤ ρu2

(w2), which implies R(u1) ≤ R(u2).

Now assume that R(u1) ≤ R(u1). For every x, w1, and w2, we have

u′′
2(w2 + z)

u′
2(w2 + z)

≤
u′′
1(w1 + z)

u′
1(w1 + z)

.

By integration on z, we have:

{

ln u′
2(w2 + z)− ln u′

2(w2) ≤ ln u′
1(w1 + z)− ln u′

1(w1) if z ≥ 0;
ln u′

2(w2 + z)− ln u′
2(w2) ≥ ln u′

1(w1 + z)− ln u′
1(w1) if z ≤ 0;

which is the same as:
{

u′

2
(w2+z)

u′

2
(w2)

≤
u′

1
(w1+z)

u′

1
(w1)

if z ≥ 0;
u′

2
(w2+z)

u′

2
(w2)

≥
u′

1
(w1+z)

u′

1
(w1)

if z ≤ 0.

By a second integration on z, for every z:

u2(w2 + z)− u2(w2)

u′
2(w2)

≤
u1(w1 + z)− u1(w1)

u′
1(w1)

.
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Thus, for every q ∈ ∆(K) and µ ≥ 0:

V (u2, w2 − µ, q)− u2(w2)

u′
2(w2)

≤
V (u1, w1 − µ, q)− u1(w1)

u′
1(w1)

.

And finally, for every information structure α,

∑

s pα(s)V (u2, w2 − µ, qsk)− u2(w2)

u′
2(w2)

≤

∑

s pα(s)V (u1, w1 − µ, qsk)− u1(w1)

u′
1(w1)

.

This implies that for every w1, w2, if u1 rejects a = (µ, α) at wealth w1, then

u2 also rejects it at wealth w2.

9.2 Proof of Theorem 3

The first step in the proof of Theorem 3 is to characterize the optimal invest-

ment portfolio for a CARA agent as well as the function V (ur
C , w, q). This

is done in the lemmata below.

For a CARA agent with coefficient r of risk aversion and wealth level w,

we consider the problem of optimal portfolio choice when the agent’s belief

is q. The next lemma shows that the solution is interior when q has full

support.

Lemma 5 Let q ∈ ∆(K) have full support. The optimal portfolio for the

CARA agent with risk-aversion coefficient r and belief q is independent of w,

and is given by

bk = −
1

r
(−d(p‖q) + ln

pk
qk
).
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Proof. The agent’s objective is to maximize

∑

k

qk exp(−r(w + bk)),

subject to the budget constraint
∑

k pkbk = 0. The first-order condition

shows that

qk exp(−rbk) = λpk,

where λ is independent of k. We then have, for every k,

−rbk = lnλ+ ln
pk
qk
.

Summing over these expressions, after we multiply each of them by pk, gives

0 = ln(λ) + d(p‖q),

and hence, the result.

We proceed with a characterization of the function V (ur
C , w, q). We recall

the convention that exp(−d(p‖q)− rw) = 0 by continuity if d(p‖q) = ∞, and

state:

Lemma 6 For every r, w, q:

V (ur
C , w, q) = 1− exp(−d(p‖q)− rw).

Proof. First, assume that q has full support; hence, d(p‖q) is finite. Using
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the optimal-portfolio characterization of Lemma 5, we obtain:

V (ur
C, w, q) = 1−

∑

k

qk exp(−r(w + bk))

= 1− exp(−rw)
∑

k

qk exp(−d(p‖q) + ln
pk
qk
)

= 1− exp(−rw − d(p‖q))
∑

k

qk
pk
qk

= 1− exp(−rw − d(p‖q)).

Now assume that qk0 = 0 for some k0; hence, d(p‖q) = +∞. The investment

b0 given by :
{

b0k0 = −
1−pk0
pk0

;

bk = 1 if k 6= k0

is such that λb0 ∈ B∗ for every λ ≥ 0. For every such λ, we have

V (ur
C, w, q) ≥

∑

k

qku
r
C(w + λb0k)

= ur
C(w + λb0k)

= 1− exp(−r(w + λ)).

Since limλ→∞ exp(−r(w + λ)) = 0, we have V (ur
C , w, q) ≤ 1. On the other

hand, V (ur
C , w, q) ≤ supz u

r
C(z) = 1. The desired conclusion is therefore that

V (ur
C , w, q) = 1.

We now proceed to the proof of Theorem 3.

Proof of Theorem 3. The agent accepts a if and only if

∑

s

pα(s)V (ur
C , w − µ, qsα) ≥ ur

C(w).
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If a is excluding, then the left-hand side of the inequality equals 1, and the

inequality is satisfied for all r and w. If a is nonexcluding, then the agent

accepts a if and only if

exp(−rw) ≥ exp(−r(w − µ))
∑

s

pα(s) exp(−d(p‖qsα)).

This is equivalent to

exp(−rµ) ≥
∑

s

pα(s) exp(−d(p‖qsα)),

which in turn is equivalent to r ≤ A(a). Thus, for r ≤ A(a), the agent

accepts a at every wealth level, whereas for r > A(a), the agent rejects a at

every wealth level.

9.3 Proof of the Main Result

Equipped with Theorems 2 and 3, we can now prove our main result, Theo-

rem 1.

Proof of Theorem 1. First assume that a1 is more appealing than a2, and

that A(a2) is finite. By Theorem 3, a CARA agent with a coefficient of risk

aversion A(a2) accepts a2 at every wealth level. This agent likes information

better than itself according to Definition 1 since, by Theorem 3, acceptance

or rejection for CARA agents is independent of wealth. Since a1 is more

appealing than a2, this CARA agent also accepts a1 at every wealth level,

which implies (also by Theorem 3) that A(a1) ≥ A(a2).
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The case in which A(a2) = ∞ is dealt with similarly: by Theorem 3 every

CARA agent accepts a2 at every wealth level, which implies that the same

agent also accepts a1 at every wealth level. By Theorem 3 again, this implies

that we also have A(a1) = ∞.

Now assume that A(a1) ≥ A(a2). Consider two agents u1 and u2 such

that u1 likes information better than u2. Given wealth levels w1 and w2, and

assuming that u2 accepts a2 at w2, we need to prove that u1 accepts a1 at w1.

By Theorem 2 we have R(u1) ≤ R(u2). Since R(u1) > 0 and R(u2) < ∞,

R(u2) is positive and finite. Let r = R(u2). Since R(uC
r ) = r, the agent uC

r

likes information better than agent u2 does, by Theorem 2; hence the former

accepts a2 at any wealth level. By Theorem 3 this means that r ≤ A(a2),

and hence also r ≤ A(a1), so that uC
r also accepts a1 at any wealth level.

Since R(u1) ≤ r = R(uC
r ) and u1 likes information better than uC

r (also by

Theorem 2), it follows that u1 accepts a1 at wealth level w1.

9.4 Proof of Theorem 4

Proof. The index A satisfies price homogeneity of degree −1 by its defini-

tion, and Theorem 1 shows that it satisfies duality. It only remains to prove

uniqueness up to a positive multiplicative constant.

Let B satisfy both axioms, and fix an information transaction a1 =

(µ1, α1) such that A(a1) 6= 0. Consider any other information transaction
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a2 = (µ2, α2). First assume that A(a2) 6= 0. By homogeneity of A, we have:

A(a2) = A(
A(a1)

A(a2)
µ1, α1).

By duality of A, a2 is more appealing than (A(a1)
A(a2)

µ1, α1). By duality of B,

this implies:

B(a2) ≥ B(
A(a1)

A(a2)
µ1, α1).

Again, by duality of both A and B, the converse inequality is also true, so

that we have:

B(a2) = B(
A(a1)

A(a2)
µ1, α1).

Finally, by price homogeneity of B, we obtain:

B(a2) =
B(a1)

A(a1)
A(a2).

Note that B(a1)
A(a1)

is independent of a2 and is a positive constant because, if

B(a1) = 0, we would also have B(2µ1, α1) = 0. This would imply that

(2µ1, α1) is more appealing than (µ1, α1), hence that A(2µ1, α1) ≥ A(a1).

But this is a contradiction with A(2µ1, α1) =
1
2
A(a1) > 0.

Now assume that A(a2) = 0. This means that for every s, d(p‖qsα2
) = 0;

hence, qsα2
= p. Therefore, α2 has no informational content, and all agents

reject a2 at every price µ2 > 0. In particular, it is tautologically true that

for every ε > 0, the transaction (µ2

ε
, α1) is more appealing than a2. Thus,

B(µ2

ε
, α1) ≥ B(a2), and by homogeneity we have B(a2) ≤ εB(a1). Since this

is true for every ε > 0, we must have B(a2) = 0.
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We have therefore shown the existence of a positive constant B(a1)
A(a1)

such

that, for every a2,

B(a2) =
B(a1)

A(a1)
A(a2),

which completes the proof.

9.5 Proof of Theorem 5

We begin with an auxiliary lemma:

Lemma 7 An agent u ∈ UDA rejects a at all wealth levels if and only if

R(u) ≥ A(a).

Proof. Let r = A(a). Assume R(u) ≥ A(a). Since u is DARA, ρu(w) >

A(a) for every w. The same computation as in the proof of Theorem 2 shows

that for every z,

u(w + z)− u(w)

u′(w)
<

uC
r (w + z)− uC

r (w)

uC′
r (w)

.

If q has full support, the solution to the maximization problem of
∑

k qku(w+

bk) under the constraint
∑

k pkbk ≤ 0 is interior. Let b(q) achieve this maxi-

mum. We have:

V (u, w − µ, q)− u(w)

u′(w)
=

∑

k qku(w − µ+ bk(q))− u(w)

u′(w)

<

∑

k qku
C
r (w − µ+ bk(q))− uC

r (w)

uC′
r (w)

≤
V (uC

r , w − µ, q)− uC
r (w)

uC′
r (w)

.
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If q does not have full support, we still have:

V (u, w − µ, q)− u(w)

u′(w)
= sup

b∈B∗

∑

k qku(w − µ+ bk)− u(w)

u′(w)

≤ sup
b∈B∗

∑

k qku
C
r (w − µ+ bk(q))− uC

r (w)

uC′
r (w)

≤
V (uC

r , w − µ, q)− uC
r (w)

uC′
r (w)

.

Note that A(a) ≤ r implies that A(a) is finite, and hence that a is nonex-

cluding; there therefore exists s such that pα(s) > 0 and qs has full support.

Therefore:

∑

s pα(s)V (u, w − µ, qs)− u(w)

u′(w)
<

∑

s pα(s)V (uC
r , w − µ, qs)− uC

r (w)

uC′
r (w)

= 0,

where the last equality comes from the fact that the agent uC
r is indifferent

between accepting and rejecting the information transaction a. We conclude

that agent u rejects a at wealth level w.

Now, assume that R(u) < r and choose r0 such that R(u) < r0 < r.

Since an agent uC
r accepts a at any wealth level, an agent uC

r0
strictly prefers

accepting a at wealth level 0, which can be expressed as:

1−
∑

s

pα(s) sup
bs∈B∗

∑

k

qsk exp(r0(µ+ bsk)) > 0.

Let (bs)s then be a family of elements in B∗ such that:

1−
∑

s

pα(s)
∑

k

qsk exp(r0(µ+ bsk)) > 0.
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Let w be such that ρ(w − µ + mins,k q
s
k) < r0. We have ρ(z) < r0 for every

z ≥ w − µ + mins,k q
s
k. It follows that by the same computation as in the

proof of Theorem 2, for every s, k:

u(w − µ+ bsk)− u(w)

u′(w)
≥

uC
r0(−µ+ bsk)− uC

r0(0)

uC′
r0 (0)

.

Therefore:

∑

s pα(s)V (u, w − µ, qsα)− u(w)

u′(w)
≥

∑

s pα(s)
∑

k q
s
ku(w − µ+ bsk)− u(w)

u′(w)

≥

∑

s pα(s)
∑

k q
s
ku

C
r0(−µ+ bsk)− uC

r0(0)

uC′
r0 (0)

> 0.

Hence, u accepts a at wealth w.

We now proceed to prove Theorem 5:

Proof of Theorem 5. Assume that a1 uniformly wealth-dominates a2.

For every ε > 0, Lemma 7 shows that an agent uC
A(a1)+ε rejects a1 at all

wealth levels. Hence such an agent also rejects a2 at all wealth levels, which

implies, again by Lemma 7, that A(a1) + ε ≥ A(a2). Since this is true for

every ε > 0, it follows that A(a1) ≥ A(a2).

For the converse, assume that A(a1) ≥ A(a2), and that u ∈ UDA rejects

a1 at all wealth levels. Then by Lemma 7, R(u) ≥ A(a1) ≥ A(a2), and u

also rejects a2 at all wealth levels.
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9.6 Proof of Proposition 1

Proof. Assuming that α1 is more informative than α2 in the sense of Black-

well, and fixing any arbitrary wealth level w, then any CARA agent who

rejects (µ, α1) at wealth level w also rejects (µ, α2) at wealth level w. It fol-

lows from the characterization of A in Theorem 3 that A(µ, α1) ≥ A(µ, α2).

9.7 Proof of Proposition 2

Proof. Fix any wealth level. From Theorem 3, a CARA agent with coeffi-

cient of risk aversion A(µ, α2) accepts both transactions (µ, α1) and (µ, α2) at

wealth w; this agent therefore also accepts the transaction (µ, λα1⊕(1−λ)α2)

at that wealth level. This shows that

A(µ, λα1 ⊕ (1− λ)α2) ≥ A(µ, α2).

Now consider ε > 0. Again from Theorem 3, a CARA agent with coefficient

of risk aversion A(µ, α1) + ε rejects both transactions (µ, α1) and (µ, α2) at

wealth w; this agent therefore also rejects the transaction (µ, λα1⊕(1−λ)α2)

at that wealth level. This shows that

A(µ, α1) + ε ≥ A(µ, λα1 ⊕ (1− λ)α2)

for every ε > 0, and hence that

A(µ, α1) ≥ A(µ, λα1 ⊕ (1− λ)α2).
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9.8 Proofs of Theorems 6 and 7

Proof. We first prove Theorem 7. Agent ur
C accepts an information trans-

action a = (µ, α) at prior q if and only if:

∑

s

pα(s)V (u, w − µ, qsα) ≥ V (u, w, q).

Once we use the expression of Lemma 6, this becomes equivalent to:

exp(−d(p‖q) ≥ exp(rµ)
∑

α

pα(s) exp(−d(p‖q)α),

which is in turn equivalent to

r ≤ A(a, q).

Theorem 6 follows from Theorem 7 just as Theorem 1 follows from Theorem

3.

9.9 Proof of Proposition 3

Proof. We prove the proposition using the following auxiliary decision prob-

lem. In the first stage, the agent can either accept information transaction

a or reject it. If the agent accepts a, then a signal s is drawn from α and

the agent can either accept the information transaction bs or reject it. If

the agent rejects a, no other information transaction is offered to the agent.

Once the agent has acquired some information (or none), any asset in B∗

may be purchased; then the state k is realized, and the agent receives the

corresponding payoff.
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Assume that for every s, A(bs, qs) ≥ A(a), and consider an agent u
A(a)
C

at any wealth level and any prior p. In the sequential decision problem,

assuming that a is accepted in the first stage by this agent, then bs is accepted

in the second stage for every s. Also, a is accepted in the first stage even

if the option of acquiring bs in the second stage is absent. Therefore, a is

also accepted with the option of acquiring bs in the second stage. Hence,

an optimal strategy for the agent is to accept a, and then accept bs no

matter what s is. In particular, this strategy is better for the agent than not

acquiring any information transaction. This shows that the agent accepts

a+ b, and hence that A(a+ b) ≥ A(a).

Now assume that for every s, A(bs, qs) ≤ A(a), and consider an agent uρ
C

with ρ > A(a) at any wealth level and any prior p. In the sequential decision

problem, assuming that a is accepted in the first stage, it is optimal for this

agent to reject bs after every signal s. Hence, the decision to acquire a in the

sequential decision problem is equivalent to the decision to acquire a alone,

and so this agent rejects a. Hence, the optimal strategy for the agent is

to reject information. In particular, not acquiring any information is better

than acquiring a, which is itself better than acquiring a and bs following every

s, so that no information is better than a + b. Therefore, the agent rejects

a + b, which shows that A(a+ b) < ρ for every ρ > A(a). This implies that

A(a+ b) ≤ A(a).

The third point follows immediately from the first and second points.
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