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We have carried out a number of simulations to study the dynamical behavior of kinks in 
the ifJ4 model in the presence of strong fluctuations of its double-well potential. Our work 
widens the computational and analytical knowledge of this system in four directions. First, 
we describe in detail a numerical procedure that can be easily generalized to other stochastic, 
soliton-bearing equations. We demonstrate that it exhibits consistency features never found in 
previous research on nonlinear stochastic partial differential equations. Second, we fix the range 
of validity of theoretical approaches based on secular perturbative expansions. We show how this 
range depends on a combination of noise strength and duration. Third, we numerically study 
the model beyond the applicability of analytical methods. We compute the main characteristics 
of kink dynamics in this regime and discuss their stability under this random perturbation. 
Finally, we introduce dissipation and boundaries in the dynamically disordered model. We 
establish that the essential consequence of friction action is to soften the noise effects, while 
boundaries give rise to a critical velocity below which kinks cannot enter the noisy zone. 

1. INTRODUCTION 

Since the pioneering work of Fermi, Pasta, and Ulam 
on the anharmonic lattice! and the discovery of soli­
tons by Zabusky and Kruskal,2 an increasing amount 
of effort has been devoted to the study of nonlinear 
models,3 and different nonlinear equations have been re­
lated to a large variety of physical phenomena.4 Among 
the most widely studied, those of the nonlinear Klein­
Gordon (NKG) type have proved themselves very fruitful. 
The <jJ4 model belongs to this class, and it was first pro­
posed to describe structural phase transitions by Aubry,5 
and Krumhansl and Schrieffer,6 and subsequently in a va­
riety of other contexts.7 As in other nonlinear problems, 
progress has been achieved in research on this kind of 
system through the close collaboration of analytical and 
numerical investigations.8 In the case of the <jJ4 model, its 
nonintegrability severely restricted the number of appli­
cable analytical techniques. Thus, numerical simulations 
soon turned out to be a very useful (and often the only) 
tool to build up a nonperturbative picture of this sys­
tem. Computer work has been concerned both with sta­
tistical mechanics9 and kink dynamics, and kink-antikink 
interactions,lO and at the present time the features of 
the rjJ4 model are rather well known. However, in real 
physical systems it becomes necessary to understand how 
nonlinear excitations interact with external forces, spa-

tial inhomogeneities, heat baths, thermal fluctuations, 
etc. This is the reason why several different perturbation 
terms are introduced in the framework of the <jJ4 model, 
such as dissipation and external forcesll or the existence 
of impurities.12 Besides, following the rapidly growing 
attention to the mutual influence between disorder and 
nonlinearity, random perturbations are being considered 
in all soliton-bearing models (see Ref. 13 for a review). 
Aside from physical applications, these problems are in­
teresting on their own, because they lead one to face the 
hitherto poorly known subject of nonlinear, stochastic 
partial differential equations. 14, 15 

In the <jJ4 model, some work concerning small­
amplitude wave-packet scattering by. irregularly spaced 
arrays of point impurities has been done,16 but to date 
most of the studies deal with perturbations fluctuating 
in time. Certain results have been obtained by Bass, 
Konotop, and Sinitsyn17 concerning the so-called collec­
tive coordinates of the kink (its center and its speed) us­
ing some analytical approach valid for weak noise. The 
effects of additive and linearly multiplicative noise on the 
<jJ4 kinks were numerically studied by Rodriguez-Plaza 
and Vazquez.18 Hence, it seems that the natural exten­
sion of the previous research would be to consider the 
fully nonlinear problem, not restricted to weak pertur­
bations but for all noise intensities. We have addressed 
this question, both numerically (a brief, partial account 
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of our work in the stochastic, but otherwise unperturbed, 
<p4 equation was presented in Ref. 19) and analytically 
(we have worked out a secular perturbative approach for 
weak noises in Ref. 20). This paper is aimed at giv­
ing a thorough description of our findings concerning the 
strongly stochastic t/J4 model, including details on the 
computer simulation and new results on the effect of dis­
sipation and boundaries as external perturbations. 

The paper is orgaI).ized as follows. In Sec. II we re­
view the stochastic <p4 model and some perturbative 
predictions,2o deriving them in a simple way for the sake 
of completeness of exposition. In Sec. III we give details 
on our numerical procedure and test its accuracy by com­
paring with exact results and by checking its dependence 
on the way that averages are done. Section IV is devoted 
to the propagation of kinks through an infinite fluctuat­
ing layer; first, weak noise is studied and its effects on the 
kink explained by the perturbative theory; and second, 
we deal with the strong-noise regime and point out its 
main novel features. Numerical simulations allow us to 
obtain empirical laws for the mean dispersion and energy 
evolution of the system. Section V presents results on the 
same system when dissipation is taken into account. Sec­
tion VI is concerned with the effects that happen when 
kinks must cross a boundary. between two semi-infinite 
slabs, from an unperturbed to a perturbed zone. Finally, 
Section VII contains a summary of our results. 

11. WEAK-NOISE REGIME: 
ADIABATIC APPROACH 

The one-dimensional <p4 model5 ,6 is a chain of parti­
cles of identical mass, each one of them interacting with 
its two nearest neighbors through harmonic coupling and 
being under the influence of an on-site, double-well po­
tential (after which the model is named). In the con­
tinuum limit, i.e., when the lattice spacing is much less 
than the wavelength of the excitations propagating along 
the chain (this is also referred to as displacive regime5,6), 
the model dynamics can be described, in dimensionless 
units, by the following partial differeptial equation: 

{P<p 82<p 
8t2 - 8x2 - to (<p - <p3

) = 0, (1) 

which is nothing but the famous ~4 field equation. 
Among its properties (a survey is given in Refs. 21), 
the most important one is that it has a solitary-wave so~ 
lution (that henceforth we will term "soliton" or "kink", 
though it is not a mathematical soliton because it does 
not have the necessary properties), given by 

<Pv(x, t) = tanh (~(x - vt xo)) , (2) 

where, is the Lorentz factor (1 - v2)-1/2, and the sub­
script v reflects the fact that, as all values v E [0,1] are 
allowed, speed is a free parameter. Moreover, it has two 
conserved quantities, namely the total energy and the 
total momentum, whose respective expressions are 

both equations corresponding to the choice of to =1 in 
E'q. (1), or, so to speak, measuring the energy in units 
of to .19 If we evaluate these two quantities for a soli ton 
solution ~v, we get 

4, 4,v 
E[~v] = 10' P[<Pv] = . 10' 

3v2 3v2 
(5) 

Another useful quantity is the "center of mass" (also 
called "center of energy"), defined by 

which equals 

X[~v] = vt + Xo (7) 

when computed for a kink. 
Let us now tUrn to the subject of our work, the stochas­

tic <p4 model. Its name comes from the fact that, among 
the different parameters in the chain, namely particle 
masses, harmonic coupling strengths, double-well posi­
tions, and barrier heights,5,6,19 we take these last ones. 
to vary randomly in time. The parameter related to the 
barrier heights is to,19 and so we choose 

to == 1 + e(t), 
(e(t) = 0, 

(e(t)e(t'» = 2D o(t - t'), 

(8) 

the brackets ( ... ) standing for averages over the random 
process realizations. Thus, to becomes a Gaussian white 
noise with a unit mean and variance 2D, and we are left 
with a ~4 model in which the potential fluctuates in time. 
This kind of perturbation is intended to represent large­
spatial-scale changes (large compared to soliton width) 
of the on-site potential, possibly due to interaction with 
noisy external fields or fluctuations of the underlying sys­
tem responsible for the nonlinear potential (think, e.g., 
of electrons in polyacetylene, which are the origin of the 
double-well potential for the carbon atoms allowing for a 
phenomenological <p4 description22 ,23). 

Once we have defined the model, we are going to esti­
mate, at least when the stochastic part is weak, its most 
important consequences on the propagating soliton. U n­
fortunately, as the <p4 equation is not integrable (nor is 
its discrete counterpart), we cannot use the perturbation 
theory based in the inverse spectral transform24 that has 
been so successful in dealing with other nonlinear prob­
lems. Instead, we will use a technique first proposed by 
McLaughlin and Scott,25 and referred to as the adiabatic 
approach or collective-coordinate formalism. In this ap­
proximate treatment, the assumption is made that radi-
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ation does not appear and that only the position and the 
speed of the kink change, becoming functions of time. 
We are not going to follow the derivation in Ref. 25 but 
that of Ref. 18 (even one more different derivation was 
proposed in Ref. 17). The same formulas can be shown2o 

to arise as counterterms responsible for the cancellation 
of secular contributions in the context of a more rigor~ 
ous, but rather lengthy, perturbative approach. For our 
present purposes, it is enough, and quite a bit easier, 
to propose the following ansatz for the solution of the 
perturbed equation 18 

</>(x, t) = tanh 1jI(x, t), 1jI(x, t) == (~[x - z(t)]) (9) 

that must be supplemented with the constraints 

/ /v 
1jI1II = v'2' 1jIt = - v'2' (10) 

where the definition z'(t) ::: vet) + x6(t) has been used to 
represent, as we already announced above, that now the 
speed and an additional phase related to the kink cent er 
are time dependent. Next, we recall that in the perturbed 
model, the energy is not constant in time anymore, and 
the cent er of mass does not follow the above-mentioned 
linear law for a kink; instead, these qu~ntities change 
in time in a precise form that can be easily computed, 
yielding 

(11) 

(12) 

We can therefore insert our ansatz (9) in Eqs. (11) and 
(12), and so obtain the derivative of E and X with time 
for such a variable~speed soliton. On the other hand, 
we can make the calculation just the other way round, 
because these two quantities have a precise value for a 
kink that depends only on its speed, which is given in 
(5) and (7). We can then compute their evolution in 
time, taking derivatives in those formulas assuming that 
v and Xo are functions of t. Both procedures should lead 
to the same result; hence, imposing their consistency, we 
get the following equations for the kink speed and center, 
respectively: 

v'(t) = 0, 

Zl(t) = vet) tv(t) [1 - v2(t)] e(t). 
(13) 
(14) 

The first outcome of this calculation is that, according to 
Eq. (13), the perturbation does not affect the evolution 
of the parameter v in time [note that z'(t) now plays the 
role of the velocity of the nonlinear wave]. Variations 
of v with time can occur in second-order perturbation 
theory. That is not so with respect to the kink center 
position, which is indeed affected by noise. Its mean 
value and variance (also called dispersion) can be, after 
some algebraic calculation (either directly averaging or 
through a Fokker-Planck equation17

), written down as 

(z(t») = vot, (15) 

D 
IT;(t) == (Z2(t») - (Z(t»)2 = 2v~ (1- vg) t, (16) 

where the initial conditions z(O) == 0 and v(O) = Vo have 
been chosen, without loss of generality. Thus, in the 
framework of the adiabatic approach, we find that the 
effect of the noise is mainly the introduction of an uncer­
tainty in the position of the kink, given by its standard 
deviation qzCt). It is predicted to grow as the square root 
of time, as if the kink, in its own reference frame, mim­
icked the Brownian behavior of a pointlike particle. On 
the other hand, the coefficient in front of t in Eq. (16) 
becomes maximum at Vo = 1/v'2, and vanishes if either 
Vo = 0 or Vo = 1. This is the first time we have found 
the noise effects to. be speed dependent, though up to 
now this dependence has been rather simple. Numerical 
simul;ltions will not bear this out, neither will the effects 
be so easily understandable in the strong-noise regime. 

Had we added a dissipative contribution to our system, 
that is, a term -a</>t in the right~hand side (rhs) of Eq. 
(1), the same procedure as that described above would 
have led us to 

v'(t) = -a/vet), (17) 

while the behavior of z(t) would be unchanged and re­
main governed by Eq. (14). We can now solve Eq. (17) 
for vet), and we find 

vet) = Vo [v5 + (1...,. v5)exp(2at)r
1

/
2 

• (18) 

This purely dissipative expression for the speed can be 
then inserted in Eq. (14), allowing us to write an integral 
expression for z(t), from which its statistical properties 
can be straightforwardly obtained in the following form: 

1 [(l+VO) [V6+{1-V6)eXP(2at)]1/2_vo] 
(z(t)} == zo + 2a In 1 - Vo [v6 + (1 _ v3) exp(2at)]1/2 + Vo ' 

(19) 

2( ) _ DV6 (2 _ 2 _ v5 + (1. - vs)2exp(2at) ) IT;:. t - Vo 2 • 
Ba [v3 + (1 - vS) exp(2at)] 

(20) 



DYNAMICS OF A 4>4 KINK IN THE PRESENCE OF STRONG ... 1089 

It is worth commenting on some points in these expres­
sions. First, it is easy to check that if there is no dissipa­
tion the formulas (15) and (16) can be recovered taking 
the limit a -+ 0 in Eqs. (19) and (20); therefore, both 
sets of equations are consistent. On the other hand, if 
t -+ 0, (z(t)) -+ Zo and u;(t) -+ 0, as one should ex­
pect. More interestingly, both formulas go to a finite 
limit when t -+ 00, namely, 

t-oo 1 (1 + vo) 
(z(t)} -- Zo + 2a In 1 _ Vo ' (21) 

u2(t) ~ Dv5 (2 - v5), 
Z 8a (22) 

implying that at large times, if our hypothesis is correct 
(Le., radiation is absent), the kink is finally stopped at 
the point given by Eq. (21) and its dispersion does not 
grow anymore due to the action of dissipation. Notice 
that when Vo is small, the final position of the kink is 

near Zo, while if Vo ~ 1 the limit (z( 00)) is very far away 
from the initial position. This makes sense, as does the 
fact that the final values of (z(t» and uz(t) are inversely 
proportional to a. So, we see that the adiabatic approach 
give reasonable results, a condition it first must meet if we 
expect to get something out of it. In the remainder of the 
paper our results will come from numerical simulations 
of the system, and, comparing them to formulas (19) 
and (20), we will see what the range of validity of this 
approach is, or, in other words, what we can consider as 
weak or strong noises. 

Ill. COMPUTER SIMULATION DETAILS 

A. Numerical scheme and parameters 

Our procedure is a generalization of the Strauss­
Vazquez scheme for NKG equations,26 and it is given 
by 

ifJ~+l - 2ifJt: + <{1~-1 <{1f! - 2ifJf! + <{1'J <{1~+1 - <{1~-1 [(<{1,:+1)2 - 1]2 - [(<p,:-1?-1]2 
1 J....:::...l.- _ 3+1 3 3-1 + a J J + 1 (1 + f'l) J J = 0 

ilt2 ilx2 2ilt 4 <{1j+1 _ <pj-l , 

where <pj == <p(jilx, nilt) , ila: and ilt are, respec­
tively, the spatial and temporal steps, and en is the 
discretization of e(nilt). Provided the noise is inter­
preted in the Stratonovich sense,27 en is obtained from 
a pseudo-random-number Gaussian generator with vari­
ance Dnum == D(~t)-1 ,18 D being the analytical coeffi­
cient in Eq. (8). Similar schemes apply straightforwardly 
for any NKG system26 (see, for instance, the sine-Gordon 

which is nothing but a discretization of Eq.(3) and which 
remains invariant in the (numerical) discrete time evo­
lution. However, to our knowledge, rigorous results on 
stability and convergence of stochastic schemes are un­
fortunately very few and they do not apply to (24) when 
noise is present. We will test its accuracy and get a prac­
tical "proof" of consistency below. Let us now conclude 
this subsection with a summary of the parameters em­
ployed in our simulations. 

(i) ,6.:1:: = 2ilt = 0.05: The choice of ilx is much smaller 
than soliton widths ('" 4, in dimension less units) and 
avoids discreteness effects,3o because we are interested in 
the displacive limit of the model and, as a consequence, 
in Eq. (1). Were we to study the relationship between 
fluctuations and discreteness, ilx would be such that the 
soliton width would cover a few lattice spacings. 

(ii) Number of spatial points: 400 (x E [-10,10)). 

(23) 
I 
version in Ref. 28), their key feature being the discretiza­
tion of the potential derivative term. 

A very noticeable property of the scheme (23) is that, 
when there is neither dissipation nor perturbation, its 
stability and convergence can be proved29 using its con­
servative character, i.e., using the fact that it has a dis­
crete analog of the energy whose expression is 

(24) 

(iii) Boundary conditions: 200 additional points on 
each side, not under the influence of noise, to avoid in­
terference with reflections from the boundaries. At their 
edge fixed boundary conditions [<Pt ( -L, t) = <pt(L, t) = 0] 
were used. Some runs, repeated with other boundary 
conditions, led to the same results. 

(iv) Initial data: a kink with different velocities in the 
interval 0 < v < 0.99. Kinks with higher speeds are too 
narrow and show discreteness effects.30 

(v) Noises in the interval 10-3 < 2D < 1. 

B. Accuracy of averages andconsif:)teucy of the 
scheme 

It goes without saying that the first point one must 
~heck in this kind of stochastic problem is. the way in 
which averages are computed. We did it by generating 
several realizations of what is now a stochastic process, 
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<fJ(x, t); that is to say, we computed <fJ(x, t) for different 
sequences of (pseudo )ran,dom numbers en and averaged 
over this set. The point about this is, what is the ap­
propiate number of realizations to average over which? 
In previous related works18,28 mean values and variances 
were calculated using 15 and 30 realizations. Very re­
cently the simulations in Ref. 28 were repeated31 but, 
there, 2000 trajectories were employed for averaging, and 
no essential difference between the main results of both 
works could be appreciated. So, we again work with 30 
realizations as our standard ensemble for averages (each 
one took two CPU minutes to be computed on a!l JE3M 
3090-150, and that is why we preferred not to go further), 
and repeated some runnings with 60 realizations, getting 
a nice agreement between both procedures. This is shown 
in Fig. 1, the mean value and dispersion of the center of a 
kink standing as examples. So, we can at least trust that 
the statistical behavior of the stochastic kink comes from 
its random nature and not from poor-statistics errors. 

The proper way to ensure the reliability of any numer­
ical simulation is to check whether exact known proper­
ties of the system are verified in the simulation. Un-

(a) 

/' 

o 

"'-LL..l...1.....l...1.....l....l...J-->.....L->.....L..J.....L..J.....L..J.....L...J - 5 
o 5 10 

t 
15 20 

FIG. 1. (a) Mean value (z(t)), and (b) mean dispersion 
O'~(t) of the center of a kink propagating freely (Le, without 
dissipation, ex = 0) along an unbounded stochastic zone (all 
other figures correspond to this· propagation in the infinite 
random layer unless otherwise stated). Solid line: averages 
over 60 realizations. Dashed line: averages over 30 realiza­
tions. The initial speed is Vo = 0.5, and the initial cent er 
position is Zo :;;: -5. The noise strength was 2D = 0.1. 

fortunately, as we already mentioned, the knowledge 
of stochastic, nonlinear partial differential equations is 
rather poor, and not too many of their features have 
been rigorously established. However, very recently, the 
combined use of geometrical techniques and the Hamilto­
nian formulation of tl;1e nonlinear Klein-Gordon system 
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FIG. 2. Mean total energy for an initial kink with Vo = 
0.2, ex = 0 and noise of strength (a) 2D == 0.01, (b) 2D = 0.1, 
and (c) 2D = 0.25. Solid line: energy as directly computed 
from the simulation using its definition, Eq. (24). Dashed 
line: energy obtained from PMR formula, Eq. (26). Notice 
that scales are not the same in each plot because of the largely 
different energy' increments. 
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allowed Parrondo, M aiias , and de la Rubia32 to obtain 
some exact results for this kind of system when perturbed 
not only with white noise but also with colored noise. 
The most important outcome of that work, concerning 
ours, is that it was shown that the mean total energy, 
as defined in Eq. (3), of the system exactly verifies an 
integro-differential equation that can be written down 
explicitly. The proof of that formula, henceforth called 
the PMR formula, can be found in Ref. 32, and we only 

where N is the spatial grid size and n is the time step 
at which the energy is to be calculated. In all computed 
cases, i.e., for all different choices of the initial kink speed 
and noise strength, we find a fairly good agreement be­
tween the energy as obtained via the discretization of its 
definition (24) and via the PMR formula (26). As an il­
lustration, three different calculations are shown in Fig. 
2. Though energy increasing differs by an order of magni­
tude when noise strength is changed by the same amount, 
the coincidence of direct and PMR results is excellent for 
all values. This applies also to weaker (2D == 10-3 ) or 
stronger (2D == 1, up to the time the kink integrity is 
preserved, see below) noises, the final energy values be­
ing enormously different. Throughout the paper, for fur­
ther demonstration, energy plots show both PMR and 
direct computations, and they always compare well to 
each other [Figs. 3(f), 4(f) , 5(f), 6, and 10(f)}. We will 
come back to this question when describing the problem 
of boundaries below, where a generalization of (25) still 
applies. Let us state for the moment in the above case 
the agreement is once more very satisfactory. 

We feel that this verification, if it is by no means a 
rigorous proof neither of its stability nor of its conver­
gence, it is indeed a very remarkable consistency fea­
ture: the discrete scheme verifies an analog of the proper­
ties of the underlying stochastic continuous system. The . 
related conservative character of the ordinary Strauss­
Vazquez scheme26 is the very basis for the pr~of of all 
its properties.29 It might be possible that this could also 
take place in the stochastic case, but we have not been 
able to obtain such a demonstration; this is an interesting 
issue that remains an open problem. Anyway, the sat­
isfactory checking we have done, namely, the practical 
invariance of the computation under a different number 
of realizations (which implies that our statistics is suffi~ 
cient) and the existence of a discrete PMR analog (which 
implies good properties for our discretization) are enough 
to firmly establish OUr simulations; furthermore, if this is 
considered along with the agreement to perturbative re­
sults in the weak-noise regime (see below) we can say that 
a good basis for our numerical approach to the stochas­
tic ~4 model has been set. To finish, we would like to 

(25) 

We must emphasize that the PMR formula is exact and 
does not involve any approximation at all. Hence, it pro­
vides an excellent test for our simulations. In all of them, 
we checked the discretization of this law, given by 

(26) 

stress that this procedure is suitable to study any NKG 
problem. Besides, since the very root of its favorable 
properties seems to be the energy conservation of the 
unperturbed scheme that is transferred to the perturbed 
one as the verification of the discrete PMR formula, the 
method could be also generalized to other conservative 
problems for which similar schemes can be found. 

IV. NONDISSIPATIVE KINKS 
IN THE INFINITE CHAIN 

Let us now move to the main topic of the paper, 
namely, the numerical simulations of the model. After 
comparing the· results to the above-described adiabatic 
approach, we decided that it would be more convenient 
to split this section into two parts: the first. dealing with 
weak noises, values around 2D ~ 0.01 or below, and the 
second devoted to strong noises, 2D ~ 0.1 or above. Be­
fore entering the results, we must comment on the magni­
·tudes we computed in the simulations. In principle, there 
is a large number of measurable quantities that one can 
think of because we are dealing with a system of infinitely 
many degrees of freedom. Among these quantities, we 
chose to monitor, of course, the mean kink shape and the 
mean energy density, and, aside from them, the collec­
tive coordinates of the kink (While they remain as proper 
quantities to describe the kink motion, i.e., if the kink 
is not severely destorted or even distroyed). In addition, 
since we always checked the verification of the PMR for­
mula, we also followed in detail the energy evolution. To 
quantify (at least approximately) the agreement between 
the perturbative approach and the numerical results, we 
fitted power-law behaviors to our computed O';(t), of the 
form O';(t) ~ 0'0 to [remember that the adiabatic predic­
tion for the behavior of z(t) is that it must be uniform 
motion in the absence of dissipation and this is checked 
directly]. With respect to the energy, we found that the 

. most accurate functional form to describe it was exponen­
tial, E(t) = Eo exp(tjte). This behavior cannot be pre­
dicted from the PMR formula, which only ensures that 
the energy will increase. The results of these fittings are 
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summarized for both regimes of noise in Table I, and we 
comment on them in full detail below. 

A. Weak-noise regime 

In this regime we have mainly studied two values of 
noise, 2D =:: 0.001 and 2D = 0.01. For the former value, 
the effects of noise were too small to cause visible effects 
on the soliton, and the soliton was indeed able to prop­
agate through the perturbed zone, showing no essential 
differences with respect to a usual <jJ4 kink in its shape 
or its energy. However, the center dispersion shows the 
signature of the noise effect, as can be seen from the ex­
ponents in Table I, but, as the prefactor 0'0 is much less 
than unity, this variance behavior has very little physical 
relevance; Le., everything happens almost as ifnoise were 
absent. The cent er motion has a mean evolution identical 
to that of an unperturbed kink, and the energy remains 
practically constant, its very small amount of increasing 
being exponential with a tiny exponent (see Table I). 

be seen that the kink is not altered too much by noise. 
Its shape remains practically the same (which implies 
the absence of radiation and verification of the adiabatic 
hypothesis); its energy density does not spread out; the 
cent er follows a line with quasiconstant velocity, as is 
predicted byEq~. (15); and the dispersion grows more or 
less-with t, also in good agreement with the perturbative 
Eq. (16). Finally, with respect to energy, we see that 
the PMR formula is again verified, and that the energy 
evolution in time is, as we mentioned above, exponential. 
Hence, the conclusion one can draw from simulations is 
that in this regime the adiabatic formalism20 is a good 
description for kink dynamics. However, the threshold 
between weak and strong perturbation is not so sharp 
and it depends on the kink initial speed, as will become 
clear in Sec. IV B. 

B. Strong-noise regime 

All these features are present in a more appreciable 
fashion in the simulations for 2D == 0.01, the noise value 
for which we show a detailed set of plots in Fig. 3. It can 

As we have just seen, noises around 2D = 0.01 or less 
can be considered weak. Let us now discuss what hap­
pens when noise is increased up to 2D == 0.1. We have 
studied this value in great detail because it exhibits the 

TABLE 1. Parameters characterizingthe-kii{k behavioras~btai~ed from the simulations for 
nondissipative kinks in the infinite stochastic mO~(ll. i\llthe~~mtl;ieSll,redefined in the beginning 
of Sec. IV. The noise scaled exponen~tis defined as the energy exponent t;:l divided by the noise 
strength, a quantity that is around 0.2 except for relativistic kinks. 

Noise Initial Ener~y fit Noise scaled Dispersion fit 
strength speed e == t;:1 Eo exponent 5 fro 

1.0 X 10-3 0.00 1.678 X 10-4 0.9432 0.1678 .. .. 
0.05. 1.885 x 10-4 0.9438 0.1885 1.212 3.718 x 10-7 

0.10 2.299 x 10-4 0.9475 0.2299 1.023 2.396 x 10-6 

0.20 1.953 x 10-4 0.9621 0.1953 1.165 6.564 x 10-6 

5.0 X 10-3 0.20 1.059 x 10-3 0.9615 0.2118 1.161 3.770 x 10-5 

1.0 X 10-2 0.00 1.741 X 10-3 0.9468 0.1741 .. a. 

0.05 2.547 x 10-3 0.9418 0.2547 1.534 2.746 x lO-6 

0.10 2.143 x 10-3 0.9458 0.2143 1.107 2.410 x lO-5 

0.20 1.932 x 10-3 0.9611 0.1932 1.144 7.389 x 10-5 

2.5 X lO-2 0.20 4.606 x 10-3 0.9663 0.1842 1.483 1.169 x 10-4 

5.0 X lO-2 0.20 1.042 X 10-2 0.9599 0.2084 1.880 2.179 x 10-4 

1.0 X 10-1 0.00 1.936 X lO-2 0.9596 0.1936 a. a. 

0.025 1.462 x 10-2 0.9601 0.1462 1.757 1.144 x lO-5 

0.05 1.718 x 10-2 0.9387 0.1718 2.380 1.815 x 10-5 

0.10 2.436 x 10-2 0.9278 0.2436 2.087 1.080 x lO-4 

0.20 1.883 x 10-2 0.9656 0.1883 b b 

0.50 1.845 x 10-2 1.0711 0.1845 1.975 1.527 x lO-3 

0.80 7.704 x 10-3 1.5651 0.0770 1.446 1.364 x lO-3 

0.99 3.790 x 10'-4 6.6438 0.0038 1.161 7.845 x lO-6 

2.5 X lO-1 0.20 8.327 x 10-2 0.8617 0.3331 2.213 1.368 x IQ_3 

a.The center of the kink remained at rest within an error of IQ-11, and therefore the dispersion 
results were meaningless. 
bNo available data. 
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most interesting characteristics. First, we will deal with 
slow speeds, as that of Fig. 4. The perturbative predic~ 
tion ceases to be valid, and the reason becomes evident 
from Figs. 4(a) andl4(b). The kink, forced by the noise, 
emits radiation (phonons in condensed-matter terminol­
.ogy, sometimes also called mesons in field-theoretical jar-
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gon) mainly backwards. In addition, Fig. 4(a) shows also 
an imporl;ant contribution of the localized mode that dis­
torts the kink structure (see the description in terms of 
modes in Ref. 20). What is happening can be explained 
in the following way: notice that, at the beginning, when 
the noise is switched on, ~he only part of the kink that 
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FIG. 3. A typical outcome of a simulation for weak noise. Initial speed is Vo = 0.1 rightwards, initial center position 
is zo= -1, and noise strength is 2D = 0.01. c¥ = O. (a) Mean kink shape at three different time instants, t = 1,10,20. 
(b) Mean energy density at the same time instants. (c) Mean center position. The line is numerical; the dashed line is 
the adiabatic approach prediction of uniform motion. (d) Mean center dispersion. The solid line is numerical; the small­
dashed line is the adiabatic approach prediction O'~(t) = 2.475 x 10-5 t, and the large--dashed line is a power-law fit, given 
by O';(t) = 2.30 x 10-5 t 1

.
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• (e) Mean kink speed. The adiabatic prediction is vet) = Vo = 0.1. (f) Mean total energy. 
The solid line is numerical, small-dashed line is the PMR formula, and the large-dashed line is an exponential fit, given by 
E(t) = 0.9458 exp(0.00214 t). 
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it affects is its structure or kernel, that is, the part in 
which the chain particles are sensitively away from the 
minima of the potential [q!l(x, t) = ±l]j particles in the 
wings (also called tails) are not influenced at all [see Eq. 
(1)]. Hence, particles in the chain begin to suffer the 
noise action when the kink structure passes over them. 
After that moment they go on experiencing the pertur­
bation effects and continue to emit small-amplitude lin­
ear waves, a motion that is maintained by noise action 

(see Ref. 20 for a description of the early stages of this 
phenomenon, when it still can be described by a linear 
approximation), this constituting the radiation visible in 
Fig. 4. Moreov~r, the center is slowed down and it does 
not reach the position that it should according to theadi­
abatic approach [Fig. 4(c)]j and the dispersion, after an 
initial transient in which it more or less follows the per­
turbative Brownian-like law (up to a time around t = 5 
for this 2D = 0.1 noise), crosses over to a more rapid 

FIG. 4. Asin Fig. 3, but for stronger noise. The initial speed is Vo = 0.1 rightwards, the initial center position is Zo = -1, 
a.~d the noise strength is 2D = 0;1. IX = O. In (d) the adiabatic prediction is now O"~(t) =2.475 X 10-4 .t, and the fitting is 
0" .. (t) = 1.03 x 10-4 e·087

• In (f), the fitting is E(t) = 0.92781 exp(0.0244 t). 
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growth [see Fig. 4( d)].The energy exponential behavior 
is characterized by an exponent of an order of magnitude 
higher than in the previous case of weak noise. Its spatial 
distribution is also severely changed, and we were able to 
detect in the simulations that more than the amount of 
energy injected in the chain by the noise flows outwards 
from the structure in radiation form. This energy re­
distribution could be responsible for the 'global slowing 
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down of the soliton. We must add that kinks at rest 
present the same characteristics as slow kinks, except for 
the fact that the stochastic field fjJ remains symmetric 
around the kink center and radiation goes in bothdirec­
tions at the same ratio (this is rather reasonable because 
there is nothing in our system that breaks the symmetry 
under translations for a stopped kink). 

Nevertheless, it has also turned out that the imp or-
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In (f) the fitting is E(t) = 1.5651 exp(O.0077 t). ' 
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tance of these effects and the separation from the adia~ 
batic formulas become less and less. important if we in­
crease the speed of the propagating kink. An example is 
shown in Fig. 5. Loosely speaking, we can say that the 
results of these experiments are clearly closer to those of 
weak noise (Fig. 3) than the ones of the Vo = 0.2 kink 
(Fig. 4). Kinks with an even higher initial speed show 
more clearly this fact (see entries for Vo == 0.99 in Tabl~ 
I). We are forced to conclude that the suitability of the 
collective-coordinate treatment to describe the kink mo­
tion depends not only on the noise strength but also on 
the initial kink speed. This must not be confused with 
the dependance of o-;(t) on Vo, which we already com­
mented on; rather, it is related to the radiation emission 
power that is also a function of the speed.20 As relativis­
tic ki~ks radiate much less than slow kinks, the adiabatic 
approach remains valid for higher noises. 

If we further increase the noise up to values around 
2D == 1, we get a non-numerical, intrinsic blowup be­
havior before the end of the integration time t == 20 is 
reached. The kink structure resists for a while, but fi­
nally some particles get too close to each other and they 
are subsequently repelled due to their harmonic coupling; 
this and similar catastrophic processes lead to a final de­
struction of the soliton and of the very structure of the 
system. It is actually remarkable that the energy grows in 
a moderately rapid fashion, but when it is two or three 
times its initial value the increasing becomes suddenly 
faster (see Fig. 6), the PMR formula still being con­
sistent, up to a final blowup. This crossover might be 
related to the presence in the chain of enough energy to 
create a new kink-antikink pair that could accelerate the 
chain destabilization. 

Another interesting outcome of the simulations con­
cerns kink stability under these potential fluctuations. 
We have found that, if noise is switched off before a de­
struction, nonreturn point is reached (like the one de­
scribed in the preceding paragraph), the kink rearranges 
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FIG. 6. Mean energy of a kink with Vo == 0.2, Cl' == 0 and 
noise 2D == 0.5. The crossover to a faster growth regime takes 
place at E ~ 3Eo•· A blowup happens before the end of the 
run. The dashed line is obtained from the PMR formula. 

itself by emitting more radiation and recovers its struc­
ture, suffering a global phase shift (see Fig. 7) and speed 
diminution. This happens even when the kink is severely 
def<;>rmed due to the internal mode and to phonons. The 
stabilization process seems to occur via dissipation of the 
energy contained in the internal mode into phonons and 
subsequent propagation of these and the noise-generated 
ones far away from the kernel. Moreover, the parameters 
of the (so to speak) "new" kink are those of the old at 
the time when the noise is switched off. This means that 
the propagation of the rearranged kink starts at the cen­
ter position the perturbed kink had when the noise was 
turned off, and it takes place from that moment at the 
velocity it had, which is less than the initial one. This 
evidence is what allows us to state that kinks are sta­
ble against this perturbation if it does not continue for 
too much time, the exact time depending on the noise 
strength. Roughly we can say that the destabilization 
time tins verifies 2Dtins ::::! 10. 

The main results in this section are summarized in Ta­
ble I and Figs. 8 and 9. Let us consider first Fig. 8; 
there, the deviation from the adiabatic prediction is seen 
to be directly proportional to the noise strength, and it 
ranges from a relative deviation of 1% when 2D = 0.001 
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FIG. 7. (a) Mean kink shape and (b) mean energy density 
of the kink simulation shown in Fig. 4, when at t = 20 noise 
is switched off and the kink is allowed to evolve freely (Cl' = 0). 
t == 20,30,40 are shown in both plots. 
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Noise strength 20. 

FIG. 8. Mean percent of relative center deviation from the 
adiabatic prediction in nondissipative simulations. We plot 
Ilx == 100[(xa.dia.b(t = 20)} - (Xnum(t =:: 20)}]/(Xadiab(t = 20» 
vs noise strength 2D, except for 2D = 1, where this was 
computed when energy was twice its initial value (a small 
interval later the kink suffered a blowup). The line is a power­
law fitting, given by 6.x = 88.97 2Do.78

• Error bars show 
the sample standard deviation when we have several values 
(coming from different speeds) for the same noise strength. 

to a relative deviation of 100% when 2D ::: 1. Second, 
the dispersion law exponent, as is shown in Table I, grows 
more or less linearly with noise strength, going from laws 
of the form t to laws of the form t2 • This "anomalous 
diffusion" might be understood as an extended structure 
effect. Finally, energy grows exponentially in time with 
an exponent that scales well with noise strength (Fig. 9); 
as we have already reported, this behavior takes place 
up to a crossover instability time that is proportional to 
(2D)-1. This must be related to some stochastic res­
onance process that we have discussed in Ref. 20; the 
problem there is that we were not able to get this esti­
mation for destabilization times, because our description 

I w ...., 

20 

FIG. 9. Dependence of the energy exponent t;l on the 
noise strength in nondissipative simulations. The dashed line 
is a linear fit of all points, of slope R:l 0.8. The solid line fits 
all but the two empty ones (upper, Vo ::::: 0.8; lower, Vo ::::: 0.99) 
and its slope is R:l 1.022. Points at the same noise strength 
were obtained for several initial speeds. 

is only valid when radiation is beginning to be generated. 
As a general remark, all these features are speed depen­
dent and decrease for relativistic kinks, the perturbative 
results being then valid for stronger (even an order of 
magnitude) noises. 

V. DISSIPATIVE KINKS 
IN THE INFINITE CHAIN 

If our model must have something to do, even as a sim­
ple phenomenological model, with some real problems, 
we must consider an aspect that is always present in any 
physical system, namely, friction or dissipation coming 

. from a number of different causes that can stop or disturb 
the otherwise eternal (in the pure model) propagation of 
solitons. Therefore, we must include a dissipative term to 
account for energy losses due to several different reasons, . 
such as -Cl.<Pt, in the rhs of our Eq. (1) and study the new 
effects arising from it. This is what we aim for in this 
section, by repeating the above-described simulations for 
the same system under the action of a such a friction. 
After some trial runs, in which we decided on a proper 
value for this viscous coefficient CI., such that neither was 
the kink pinned too fast (preventing us from getting a 
clear idea of transient behaviors) nor was it sensitively 
affected, we chose the standard value Cl. ::: 0.1. Then we 
repeated simulations on every range of speed and noise. 
What we found, in a few words, was that in this case 
perturbative predictions remain valid for stronger noises 
than in the nondissipative problem. Under a noise of 
strength 2D == 0.1 kinks behave essentially as predicted 
by formulas (19) and (20), with very small deviation, 
as is shown in Fig. 10, where a remarkable analytical­
numerical agreement is evident. This agreement com­
prises all computed aspects, from the absence of radia­
tion (the adiabatic hypothesis once more) to the speed 
decreasing. One thing that changes is that the energy 
behavior is not exponential anymore as a consequence of 
the balance between energy injection of noise and energy 
dissipation through friction, and it seems likely that it 
finally tends to a const.ant stationary value; if this is so, 
it does in a time later than the one that we reached in 
our computations. This can be mathematically treated 
if noise is small enough,2° and it can be shown that a 
threshold' appears for the parametrical excitation of the 
linear modes to happen in this stochastic, dissipative sys­
tem. Our simulations show that this is the case even if 
noise is not so smaU, leading to a decrease in the radiation 
generation power that allows for an adiabatic descrip-. 
tion. Let us insist upon the result that, apart from this 
consideration concerning energy and from the dissipative 
slowing down, everything happens as in the nondissipa­
tive model for weak noise, and the same discussion ap­
plies here. It is not unreasonable to suppose that the 
kink finally is completely stopped and then it undergoes 
the same kind of process as.that ofa nondissipative one, 
except that now the radiation growth is limited by the 
nonzero Q;'. All our simulations fjup)?ort the idea that dis-
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sipation is a factor that softens the noise effect in such 
a way that the chain tends to an equilibrium state, with 
kinks pinned and a steady flow of radiation coming out 
of them (the emission power is perturbatively predicted 
to be constant20 ). 

It seems certain that the reason why perturbation 
treatment works well in this case is that we remain, for 
stronger noise, in a situation in which our main assump-
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tion holds: that all the effect of noise is concentrated in 
changing the kink center and speed, and its shape is not 
altered. The physical explanation seems very direct to 
us: when noise is beginning to create radiation, dissipa­
tion begins to act, equilibrating this process and induc­
ing a progressive diminution of the amplitude of these 
phonons. Then the energy cannot easily flow outwards 
from the kink structure and all noise effects become con-
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FIG. 10. As in Fig. 3, but with dissipation (Cl' = 0.1). The initial speed is Vo = 0.2 rightwards, the initial center position is 
Zo = -2, and the noise strength is 2D = 0.1. In (c) we show the adiabatic prediction by a dashed line, obtained from Eq.(19). 
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fined there, hidden by the more visible ones produced by 
friction. If we were to introduce even stronger noises, 
then the kink would be finally destroyed unless we si­
multaneously increased dissipation, but if done so, the 
kink would rapidly stop ,and we would be back in the 
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nondissipative situation, with energy growing rapidly in 
the structure and inducing its blowup. Note that in the 
case of sufficiently strong dissipation, we actually deal 
with a damped 1jJ4 system, analogous to the damped sine­
Gordon one. For the analytical description of this prob-
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FIG. 11. Incidence of a kink from the left on a noise zone, in x E [0,10]. The initial speed is Vo = 0.1 rightwards, the initial 
center position is Zo .= -1, the noise strength is 2D == 0.1, and no dissipation is present, 0:' = O. Adiabatic predictions are not 
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density at the same times. (c) Mean center position. (d) Mean center dispersion. (e) Mea,n center speed. (£) Mean total energy. 
The solid. line is numerical; the dashed line is the modified PMR formula, Eq. (27). 



1100 ANGEL SANCHEZ, LUIS V AzQUBZ, AND VLADIMIR V. KONOTOP 

lem, one would have to make use of a singular pertur­
bation theory developed by Kaup and Osman33 for the 
sine-Gordon problem (see also Ref. 13). 

VI. BOUNDARY EFFECTS 
ON NONDISSIPATIVE KINKS 

We next move to the remaining problem, namely, the 
scattering of the kink by a boundary between an unper­
turbed and a stochastic zone. In our previous calcula­
tions, both analytical and numerical, we have supposed 
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that the kink is propagating in a fluctuating medium that 
is infinitely extended. This would correspond to a situ­
ation in which the soliton is in a medium initially un­
perturbed and suddenly the perturbation (some random 
external field, say) is switched on, affecting the whole sys­
tem. It seems sensible to think also that this can affect 
not the entire chain but only a piece of it (this is much 
more so if we think that this perturbation can be due to 
localized external sources), and hence we must analyze 
the problem of whether the kink is able to propagate 
across such a boundary. The simulations are carried out 
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FIG. 12. As in Fig. 11 but for higher speed. The initial speed is Vo = 0.5, the initial center position is Zo = -5, and the 
noise strength is 2D = 0.1. 
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as· the preceding ones, but now noise acts only on the 
200 particles at positions [0,10]. The kink is situated 
initially outside just before its structure enters the zone 
(remember that wings are not affected at all), and the 
rest of the simulation para:meters remain the same. The 
PMR formula remains s'till exactly valid in the following 
modified form: 

d{E} = -0: (X> dx {ltfotI2} 
dt Loo 

+2D I: da: X[a,bj(a:) ( -tfo + tfo3)2) , (27) 

where [a, b] stands for the interval where the noise acts 
and X[a,b) (a:) is the characteristic function of that interval 
(that equals 1 inside it and vanishes outside of it). With 
this generalization, at least our consistency test remains 
useful, and of course we have checked its verification. 
It is another consistency result for our scheme that the 
discretization of Eq.(27) is quite well verified, as can be 
seen in Figs. l1(f) and 12(f). In this last one, the initial 
plateau is due to the fact that the kink kernel had not 
entered the noise zone up to time t = 7, more or less, 
and in this situation the kink is not influenced by effects 
of noise. 

Concerning simulations, we have found that there are 
two possible behaviors depending on the ratio of noise 
strength to initial speed. These two cases are shown in 
Figs. 11 and 12, and, in a few words, we can classify them 
by saying that the soliton gets pinned at the boundary 
if its speed is not too high, and otherwise it easily over­
comes the boundary and the situation is then equal to 
that of evolution in an infinite noisy zone. This is also 
indicated in Fig.13 where the evolution of the energy at 
the left and at the right of the boundary is shown, while 
if the kink is a slow one a great part of its energy is 
not ab~e to cross the boundary and recoils [Fig. 13(a)], 
the fast soliton crosses, losing practically no energy [Fig. 
13(b)], and closely resembles the behavior of kinks in the 
infinite stochastic chain after that point. The "critical" 
speed (or range of speeds, it does not have to be a sharp 
value necessarily) depends on how strong the noise is; the 
exact determination of a kind of "phase diagram" for this 
problem would require a lot of computer time, which is 
beyond the scope of this work. 

The novel feature of this aspect of our simulations takes 
place only when we consider slow kinks because, other­
wise, after a short transient (the time the soliton takes 
to cross the boundary) and a little distortion then orig­
inates, the situation is the same as in the propagation 
along an infinite noisy layer (see Fig. 12): When the 
kink slowly reaches the edge of the perturbed zone, it is 
rapidly pinned to it. A great part of the energy is not al­
lowed to enter the noisy slab, and thereafter the kink has 
no means of propagating undistortedly along it. Sub­
sequently, this energy begins to reflect backwards, not 
as phonons but as a strain of the whole chain [see Fig. 
l1(a)], due to the action of the harmonic coupling that 
still. con.n.ects the parts of the kink inside and outside the 

noise, leading to a rather unstable situation. The final 
result of the process is not clear in our computations, 
and much longer ones would be necessary in order to 
arrive at a definite conclusion. This problem is also diffi­
cult analytically: the adiabatic equations are very com­
plicated and one can only get a few results20 for weak 
noise, namely, that kinks get pinned if their speed is not 
much greater than zero. Nothing is known about the ra­
diation generation power of this process; the only hint 
of this ~s that our simulations strongly suggest that the 
leading role is being played by the internal mode. Further 
work is needed to clarify completely the boundary prob­
lem. Let us close the discussion of boundary effects with 
a comment on the combined action of boundaries and 
dissipation. When both are present, simulations show 
the result that one can expect from all the preceding de­
scriptions, i.e., the threshold velocity below which kinks 
are pinned is increased, due to the fact that dissipation 
contributes to slowing them enough as to allow for their 
capture by the boundary. Except for this variation, any­
thing new happens seemingly because phonon modes, the 
ones that are most affected by dissipation, do not appear 
to be responsible for this pinning phenomenon. ' 
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FIG. 13. Energy contained in the zone to the left and 
to the right of the noise boundary. (a) The initial speed is 
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VII. CONCLUSION 
We have studied the problem of nonlinear excitations 

propagating along a rjJ4 chain in which the on-site poten­
tial randomly fluctuates in time to a large spatial extent. 
First, we have settled the basis of our numerical proce­
dure, proving that the number of realizations over which 
we average is not crucially important, and showing that 
a discrete analog of the PMR (Ref. 32) formula, which 
is exact in the continuum limit, is verified by our sim­
ulations in all cases. This is important because, to our 
knowledge, such a property has not been found previ­
ously in numerical simulation of stochastic differential 
equations; besides, as the scheme can be generalized to 
a variety of problems, this provides a procedure to treat 
them beyond the weak-perturbation regime. Thus en­
sured of the reliability of our computations, we have seen 
that kinks are stable if perturbed for a time not exceed­
ing a critical value that depends on the strength of the 
stochastic term; if the perturbation time is greater, the 
model reaches an unstable situation that crosses over to 
a rapid evolution regime leading to a blowup end. We 
have shown also that this stability is real by tracking the 
evolution of kinks after the noise is switched off, in or­
der to see whether the distortions of their shape, which 
are induced by the perturbation, are permanent or not. 
Our simulations demonstrate that they are able to re­
cover their usual appearance, the only permanent effects 
being the diminution of the speed and a phase shift of 
the center position. 

With respect to noise regimes, we have established that 
when 2D is less than or equal to 0.01, the noise can be 
thought of as weak, and the adiabatic approximate treat­
ment is able to account for the main features of soli ton 
propagation. For these perturbation values, the collective 
coordinates are enough to describe soliton motion, and 
the growing of the dispersion of the center happens as ex­
pected. Hence in this regime it is possible to account even 
for the radiation generation and the internal mode evolu­
tion through a secular perturbative expansion.2o This is 
not so anymore when noise is around 2D ~ 0.1; the ap­
pearance of phonons propagating along the chain limits 
the validity of our perturbative predictions. The speed 
begins to behave dearly as a stochastic process and does 
not remain constant, but shows a trend of decreasing. 
The kink center consequently slows down and its disper­
sion grows faster than linearly with time, as fast as time 
squared. A more accurate analytical approach, which 
takes the radiation properly into account, i.e., nonlin­
early, is then needed. Notice that the linear treatment 
of Ref. 20 is clearly not valid when radiation amplitude 
is not small; however, the stochastic parametrical reso­
nance phenomena there described could be at the root of 
the crossover between normal and anomalous diffusion. 

One thing that was revealed by the simulation and that 
was not suspected in principle is the dependence of the 
results on the speed of the soliton. In all situations we 
have found that fast kinks are quite a bit more resistent 
to noise action than slow ones, and that the range in 

which the collective coordinate treatment holds extends 
to stronger values of noise as the soli ton speed approaches 
1. It seems as though the perturbative prediction that 
radiation is small for relativistic kinks20 extended its va­
lidity to the strong noise regime, and, besides, the dif­
ference in radiation emission power can be as dramatic 
as to allow relativistic kinks to propagate when noise is 
an order of magnitUde over the value that causes severe 
distortions to slow solitons. Simulations have allowed us 
to fix numerical values for all these phenomena in the 
entire range of noises. 

Nevertheless, the most novel and unexpected property 
of these systems is perhaps the behavior of the energy in 
the chain. Aside from the PMR prediction, which makes 
no explicit predictions on what is the precise function 
governing the energy evolution, we have found that it 
is always exponential when there is no dissipation, with 
an exponent that depends roughly linearly on the noise 
strength. This is the reason why kinks are stable only for 
a certain period: the monotonic increasing of the energy 
content of the chain with time always must lead to un­
stable configurations and blowups. The existence of such 
an empirical law is very interesting: let us recall that 
the blowup regime is seen to start when energy is around 
twice the initial val,ue. Then, it is enough to compute 
how much time is needed to reach this point by means 
of our a priori knowledge of the energy increasing ratio 
to get a semiquantitative prediction on the stability time 
for each noise strength. As far as we know, there are no 
previous results with similar predictive power concerning 
soli ton stability for this kind of system. 

We have also tried to introduce more physical con­
tent in our model, studying the influence of dissipation 
and boundaries. Our simulations show that due to the 
damping of phonons by dissipation, the collective coordi­
nates are valid for a description of soli ton evolution under 
noises an order of magnitude above those of nondissi­
pative systems. Soli tons present an· essentially dissipa­
tive character that hides the stochastic behavior, which 
is only appreciated in the dispersion of the center and 
an initial growing of energy up to some saturation value. 
The reason for this behavior must be the inhibition of 
radiation emission due to friction that concentrates the 
noise effects on the kink collective coordinates. On the 
other hand, when boundaries between pure and per­
turbed parts of the chain exist, there is a critical velocity 
for each value of noise under which soli tons cannot prop­
agate into the perturbed zone, and a distinctly nonzero 
part of the energy remains in the first part,of the chain. 
Over this velocity, the kink rapidly enters the zone and 
after that it evolves as in an infinite noisy layer. This 
topic would require a larger amount of computation in 
order to d~filleLnot only the value of this critical speed, 
but also if it is a sharp value or not. This could be 
also the starting point for also introducing a dependence 
of the noise 9n the spatial coordinate or, at least, more 
than one of these inhomogeneities. The study and com­
prehension ?f systems disordered both in time and space 
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and the joint effect of this disorder and nonlinearity are 
still poorly understood, and much more theoretical and 
numerical effort must be devoted to them. We hope that 
this work can serve as a basis for a deeper insight into 
wave propagation in these nonlinear disordered media. 

ACKNOWLEDGMENTS 

We want to acknowledge the Centro de Investiga­
ciones Energeticas, Medio Ambientales y Tecnol6gicas 

lE. Fermi, J. R. Pasta, and S. M. Ulam, Los Alamos 
National Laboratory Report No. LA-1940, 1955 (unpub­
lished); also Collected Works of Enrico Fermi (University 
of Chicago, Chicago, 1965), Vol. Il, p. 978. ' 

2N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 
(1965). 

3B. J. West, An Essay on the Importance of Being Non­
linear, Lecture Notes in Biomathematics (Springer, Berlin, 
1985). 

4For an overview of applications of solitons, see the Proceed­
ings of the latest workshops, Singular Behavior and Non­
linear Dynamics, edited by St. Pnevmatikos, T. Bountis, 
and Sp. Pnevmatikos (World Scientific, Singapore, 1989); 
Disorder and Nonlinearity, edited by A. R. Bishop, D. 
K. Campbell, and St. Pnevmatikos, Springer Proceedings 
in Physics (Springer, Berlin, 1989); Nonlinear Coherent 
Structures, edited by M. Barthes and J. Leon, Lecture 
Notes in Physics (Springer, Berlin, 1990); Nonlinearity with 
Disorder, edited by F. Kh. Abdullaev, A. R. Bishop, and St. 
Pnevmatikos, Springer Proceedings in Physics (Springer, 
Berlin, in press). 

sS. Aubry, J. Chem. Phys. 62,3217 (1975); 64, 3392 (1976). 
6J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11, 
3535 (1975). 

7 A. S. D"avydov, Solitons in Molecular Systems (Reidel, Dor­
drecht, 1985). 

sN. J. Zabusky, J. Comp. Phys. 43, 195 (1981). 
9T. Schneider and E. Stoll, Phys. Rev. B 17, 1302 (1978), 
and references therein. 

laD. K. Campbell, J. F. Schonfeld, and C. A. Wingate, Phys­
ica 9D, 1 (1983), and references therein. 

llSt. Pnevmatikos, N. Flytzanis, and A. R. Bishop, J. Phys. 
C 20, 2829 (1987). 

12T. Fraggis, St. Pnevmatikos, and E. N. Economou, Phys. 
Lett. 142A, 361 (1989). 

13F. G. Bass, Yu. S. Kivshar, V. V. Konotop, and Yu. A. 
Sinitsyn, Phys. Rep. 157, 63 (1988). 

HW. Horsthemke and R. Lefever, Noise-induced Transitions, 

(CIEMAT, Spain) for the use of their IBM 3090 computer 
where we carried out the numerical work. It. is a pleasure 
to thank Yuri S. Kivshar for conversations on this work. 
We are thankful for partial financial support from the 
Direccion General de Investigacion Cientifica y Tecnica 
(DGICyT) through Project No. TIC 73/89. A.S. was 
supported by the program ((Formacion de Personal In­
vestigador" of the Ministerio de Educaci6n y Ciencia of 
Spain. V.V.K. wishes to thank the Universidad Com­
plutense for hospitality during his stay in Madrid, where 
this work was finished. 

Springer Series in Synergetics (Springer, Berlin, 1984). 
15V. R. Chechetkin and V. S. Lutovinov, Fortschr. Phys. 35, 

831 (1987). 
16yU. S. Kivshar, S. A. Gredeskul, A. Sanchez and L. 

Vazquez, Phys. Rev. Lett. 64, 1693 (1990). 
17F. G. Bass, V. V. Konotop, and Yu. A. Sinitsyn, Izv. Vyssh. 

Uchebn. Zaved. Radiofiz. 29, 921 (1986) [Sov. Radiophys. 
29, 708 (1987)]. 

lSM. J. Rodriguez-Plaza and L. Vazquez, Phys. Rev. B 41, 
11437 (1990). 

19 A. Sanchez and L. Vazquez, Phys. Lett. 152A, 184 (1991). 
20V. V. Konotop, A. Sanchez, and L. Vazquez, Phys. Rev. B 

(to be published). 
21R. Rajaraman, Phys. Rep. 21, 229 (1975); V. G. 

Makhankov, Phys. Rep. 35, 1 (1978). 
22M. J. Rice, Phys. Lett. 7lA, 153 (1979); M. J. Rice and J. 

Timonen, ibid. 73A, 3698 (1979). 
23F. Guinea, Phys. Rev. B 30, 1884 (1984). 
24yU. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 

763 (1989). 
25D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18,1652 

(1978). . 
26W. Strauss and L. Vazquez, J. Comp. Phys. 28, 271 (1978). 
z7N. G. van Kampen, Stochastic Processes in Physics arid 

Chemistry (North-Holland, Amsterdam, 1981); C. W. Gar­
diner, Handbook of Stochastic Methods, Springer Series in 
Synergetics (Springer, Berlin, 1985). 

zap. J. Pascualand L. Vazquez, Phys. Rev. B 32, 8305 
(1985). 

29Guo-Ben-Yu and L. Va,zquez, J. Appl. Sci. (China) 1, 25 
(1983). 

30 J. A. Combs and S. Yip, Phys. Rev. B 28, 6873 (1983); 29, 
438 (1984). 

3lp. Biller and F. Petruccione, Phys. Rev. B 41,2139 (1990); 
F. Petruccione and P. Biller, ibid. 41, 2145 (1990). 

32 J. M. R. Parrondo, M. Manas, and F. J. de la Rubia, J. 
Phys. A 23, 2363 (1990). 

33D. J. Kaup and E. Osman, Phys. Rev. B 33, 1762 (1986). 


