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a b s t r a c t

A constitutive model to simulate the behavior of ceramic materials under impact loading is proposed in
order to achieve a better representation of the damage process due to the material fragmentation. To
integrate the proposed constitutive equations, a semi implicit algorithm (implicit for the stresses and
explicit for the damage variable) has been developed, leading to the generalized expressions of the clas
sical return mapping algorithm. The model was implemented in a commercial finite element code and its
performance was demonstrated by comparing its predictions with experimental results obtained by
other authors.
1. Introduction

Ceramic materials are known to provide high performance in
armor applications against the impact of high speed projectiles.
Used in bi layered configurations (Fig. 1) consisting of a ceramic
front plate (e.g. alumina, silicon carbide, aluminum nitride, tita
nium diboride) and a ductile back plate (e.g. steel, aluminum, fiber
reinforced composite), such armors have attracted considerable
interest since the 1960s because of their high ballistic resistance
compared to monolithic metallic protections [1 7]. The light
weight of these protective materials made them especially useful
for applications such as body, vehicle and aircraft armor, in which
lightness is a primary design requirement.

The hardness of ceramic materials causes fragmentation and
erosion in the projectile. When an armor piercing projectile im
pacts against a ceramic tile, the nose of the projectile is shattered
or blunted, thus reducing its mass and energy. Also, the ceramic
spreads the load over a larger area, the backing plate absorbing
the remaining kinetic energy of the projectile by plastic deforma
tion in the case of a metal alloy , or by elastic deformation and
damage in case of a fiber reinforced composite.

However, as ceramics are inherently brittle, with low fracture
toughness as compared to metal, they show extensive fragmenta
tion after receiving an impact from a solid at high velocity. Immedi
ately upon contact with the projectile, stress waves are generated in
the ceramic tile and a conical cracking front propagates from the
border of the projectile/ceramic contact area. When the compressive
+34 916249430.
wave reaches the adhesive layer at the ceramic/backing plate inter
face, with lower mechanical impedance [8,9], hoop tensile stresses
develop at the rear face of the tile and radial cracks propagate back
to the projectile. The consequence is a general break up of the
ceramic from the coalescence of the cracks. Though continuing
throughout the penetration process, the fragmentation that occurs
in the first microseconds after impact is key in weakening the cera
mic strength. Before the end of this fragmentation stage, the ceramic
material along the path of the projectile deforms essentially in a uni
axial strain condition, and thus the material shows its greatest
strength against being pierced and the tip of the projectile is strongly
eroded.

After fragmentation, the projectile penetrates a conoid of com
minuted ceramic, the mechanical properties of which are lower
than those of the undamaged tile and depend on the degree of frag
mentation at each point. Crack generation as described above
allows the displacement of small fragments, facilitating projectile
penetration. However, the erosion of the projectile tip may con
tinue during this phase. The volume of fragmented ceramic ahead
of the projectile, physically separated from the remaining intact
ceramic tile, has a conoid shape. The conoid is accelerated in the im
pact direction and distributes the load over a large area of the back
ing panel which undergoes extensive deformation, contributing
greatly to increase the ballistic performance of the ceramic faced
armor. Although ceramic materials are brittle, they can have signif
icant strength after failure under confined conditions. The strength
of both the intact and failed materials increase with the confining
pressure. Heard and Cline [10] analyzed the behavior of various
types of confined ceramics and showed that, at high confining pres
sures, the material undergoes a brittle to ductile transition and the
ceramic subsequently deformed in a stable manner.
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Fig. 1. Layout of a ceramic-faced lightweight armor.
Finite element, finite differences, or meshless codes have pro
ven to be valuable tools for analyzing and designing ceramic faced
armor. A number of numerical codes are commercially available,
and these are successful in simulating high speed impact prob
lems. However, their capacity for close approximation to reality
depends heavily on the constitutive equations used for the materi
als. The main problem with these models is the uncertainty with
regard to the input data required for the materials, requiring that
the model be calibrated for each material to be used. Moreover,
not every code provides constitutive equations for the modeling
of ceramics under shock and impact, and thus users often need
to implement specific features in order to model the behavior of
the material.

Several constitutive relations have been proposed in the last
two decades to model the dynamic fragmentation undergone by
a ceramic tile, most of them based on a continuum damage ap
proach. Following a chronological order, we can firstly find the
work due to Curran et al. [11], called BFRACT 3, which considers
a statistical distribution of plane and circular cracks in the ceramic,
growing at a rate given by an exponential law of the stress normal
to the flaw. One of the most widely used constitutive models for
simulating the post yield response of brittle materials to ballistic
impacts are those due to Johnson and Holmquist in the 1990s.
The first version of the model, called the JH 1 [12], was developed
to account for large deformations of brittle materials such as
ceramics, rocks and concrete over a range of strain rates. The sec
ond version, called JH 2 [13], took into consideration progressive
degradation with increasing deformation through a damage evolu
tion rule. Fahrenthold [14] developed a continuum model in which
damage is described by a second order tensor. A stress based dam
age evolution law and a failure criterion based on a critical level of
damage were used. Fahrenthold [14] used the model to calculate
the depth of penetration in a steel plate impacted by a sphere of
alumina. Cortés et al. [15] proposed a model which considers a sca
lar damage variable representing the degree of fragmentation of
the ceramic. Hydrostatic stress is assumed to be the governing var
iable for damage nucleation and growth. Then, the yield stress is
calculated with a direct mixture law, averaging a Drucker Prager
criterion for intact ceramic fraction and a frictional criterion for
the comminuted ceramic fraction, the damage being the weight
factor. Rajendran and Grove [16,17] proposed an internal state var
iable based constitutive model for ceramic materials, which incor
porated micro crack propagation under both compression and
tension, and void collapse due to the plastic flow in the matrix sur
rounding the pores. The micro crack damage is described using a
dimensionless damage density parameter in terms of the maxi
mum micro crack size and the average number of micro cracks
per unit volume. The damage evolution in terms of crack growth
is formulated based on a generalized Griffith criterion. This model
has been implemented in commercial FE codes and also in
meshless methods [18] to describe the response of ceramics sub
jected to various stress/strain loading conditions, including
impacts. Simha et al. [19] proposed a phenomenological approach
to model the constitutive behavior of the ceramic material under
impact. Progressive fragmentation of the material is defined
through a scalar damage variable, which is used to determine the
compressive strength. The yield surface is defined as in conven
tional metal plasticity and the Mie Gruneisen equation of state is
used. Together with and element removal scheme for ceramics,
the model is used to investigate the penetration response of
AD 99.5 alumina in the depth of penetration test. Bar on et al.
[20] presented a model which uses phenomenological evolution
equations, both for fracture mechanics criteria considering pen
ny shaped cracks and for pore compaction and dilation. The consti
tutive equations are determined by satisfying the thermodynamics
principles, after proposing a functional form for the Helmholtz free
energy. The ability of the model to capture the response of ceramic
to dynamic shock loading were demonstrated by the simulation of
a dynamic plate impact experiment on alumina. Zuo et al. [21]
developed the Dominant Crack Model (DCA), a rate dependent,
continuum damage model for the dynamic response of brittle
materials. A damage surface is proposed by applying the general
ized Griffith instability criterion to the dominant crack having
the most unstable orientation. The evolution of damage is based
on the energy release rate for the dominant crack, thus giving a
physical basis for damage growth. Moreover the model incorpo
rates crack opening as a source of volume increase due to shear
(dilatancy). The performance of the model was validated through
numerical results of a silicon carbide under several loading paths
and strain rates. Deshpande and Evans [22] presented a mecha
nism based constitutive model, which comprises micro crack
extension rates based on stress intensity calculations, effect of
the crack density on the stiffness, and plasticity at high confining
pressures. Additionally, it considers the effect of microstructural
parameters by taking into account initial flaws that scale with
the grain size. The model is able to capture the transition from
deformation by micro cracking at low triaxiality to plastic slip at
high triaxialities.

Besides the continuum damage models, other authors were
interested in predicting the discrete nature of cracks in brittle
material. Camacho and Ortiz [23] followed the nucleation and
propagation of discrete cracks along arbitrary paths by recourse
to a cohesive fracture model. In the constitutive model, an equa
tion of state of the Mie Gruneisen type is adopted in conjunction
with power hardening law with linear thermal softening. Follow
ing this seminal work, Zhou and Molinari [24] proposed a linear,
homogeneous and isotropic elastic behavior for the bulk material
and cohesive elements to describe the mechanical behavior of
the micro cracks. The interfaces between two neighboring ele
ments are treated as possible cracks, which may be activated to
form the cohesive elements, and the local cohesive parameters
are considered to follow a stochastic distribution. This model was
used by the same workers [25] to investigate the probabilistic fail
ure of a model ceramic system under dynamic tensile loading.
Later on, Lee et al. [26] modeled the discrete nature for damage
of brittle materials implementing a cohesive law fracture model
with a node separation algorithm for the tensile failure and
Mohr Coulomb model for the compressive loading. Using tetrahe
dral instead of hexahedral finite elements they provided more
potential fracture surfaces for crack propagation. The model was
verified by simulating oblique impact into the composite metal/
ceramic systems.

Parallel to these works, several models were developed for the
simulation of concrete under impact loading, sharing many fea
tures with those specifically proposed for ceramic materials. For
instance, Malvar et al. [27] proposed the widely used K&C model
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which uses a mixture law to determine the yield surface of the
damage material, as considered by some authors for ceramic mate
rials [13,15,19]. Also Zhou and Hao [28] used a mixture law driven
by a scalar damage parameter to determine the yield stress of the
damaged mortar in a mesoscale model for concrete submitted to
impact loading; the yield stress of both undamaged and residual
strength materials were defined through a piecewise pressure
dependent law. Similarly, Hentz et al. [29] considered a Mohr
Coulomb criterion to reproduce the pressure dependent behavior
of concrete, reducing the slope and neglecting cohesion after fail
ure. The Johnson Holmquist model [13], commonly used for cera
mic materials, was enhanced by Riedel and co workers [30,31],
leading to the RHT model. Several new features like strain harden
ing, third invariant dependent yield surface, and an independent
fracture strength surface, were incorporated to allow a more
appropriate modelling of concrete softening. Tu and Lu [32] com
pared and examined in detail both RHT and K&C models through
a series of numerical tests, and presented a valuable review of dif
ferent concrete material models used in hydrocodes.

The present work proposes a constitutive model for ceramics
used in armor applications, with its corresponding integration
algorithm and methodology to determine material parameters.
Although, as it has been pointed out in the previous review, there
are more complex constitutive relations to model the dynamic
fragmentation undergone by the ceramic tile some of them
require a large number of material parameters or large computa
tional times, some were not validated with real impact tests on
lightweight ceramic armors our model makes a simpler descrip
tion of the fragmentation process and provides precise results in
terms of the resistance of the ceramic material to be penetrated.
The model, based on the one developed by Cortés et al. [15], was
validated with experimental results that indicated a high predic
tive capability. The algorithm may be easily implemented in
numerical codes and inherits the robustness and stability of return
mapping methods. The parameters of a given ceramic material
may be determined with the experimental results of the depth of
penetration (DOP) test, well established in the field of high speed
impact protection.

2. Constitutive relations

The motion of a deformable body can be described through the
deformation gradient tensor F. This tensor transforms an infinites
imal material vector dX into the corresponding spatial vector dx, i.e.

dx FdX: ð1Þ

From this tensor, the following rate tensors can be defined as
follows:

� the velocity gradient tensor, l _FF 1,
� the rate of deformation tensor, d 1

2 ðlþ lTÞ,
� and the spin tensor, w 1

2 ðl lTÞ.

To separate the recoverable and non recoverable contributions
of the deformation gradient, the Kröner Lee multiplicative split
of F is assumed [33,34].

F FeFp; ð2Þ

where Fe and Fp represent the reversible elastic deformation and
inelastic deformation of the material, respectively. This decomposi
tion implies the so called plastic intermediate configuration defined
by Fe 1

, which is valid only locally. We may equally write the spatial
velocity gradient as

l _FF 1 le þ FelpFe 1
; ð3Þ
le and lp being the elastic and plastic spatial velocity gradients de
fined as

le _FeFe 1
; lp _FpFp 1

: ð4Þ

For ballistic applications, elastic strains (and rates) are commonly
very small compared to unity or to plastic strains (and rates). With
this restriction, we get the following approximations:

Fe Ue Ve 1þ OðeeÞ; ð5Þ

where Ue and Ve are the right and left elastic stretch tensors, and 1 is
the unit second order tensor. This also implies to consider negligible
rigid body rotation in Fe. Taking advantage of this, Eq. (3) leads to

l le þ lp: ð6Þ

Its symmetric part leads to the additive decomposition of the rate of
deformation tensor d, generally assumed for hypoelastic plastic
materials [35,36]

d de þ dp
: ð7Þ

Ceramic materials used in armor, when submitted to impact, show
small elastic strains and strain rates as compared to inelastic ones.
With this assumption, the elastic strain rate is provided by the fol
lowing expression of Hooke’s law

rr C : de C : ðd dpÞ; ð8Þ

where rr is an objective rate of the Cauchy stress tensor and C is
the Hooke stress strain tensor given by

C 2GIdev þ K1� 1; ð9Þ

where G and K are the elastic constants

G
E

2ð1þ mÞ ; ð10Þ

K
E

3ð1 2mÞ : ð11Þ

Idev being the deviatoric projector

Idev I
1
3

1� 1 ð12Þ

with I the unit fourth order tensor exhibiting only minor symmetry

ðIÞijkl dikdjl ð13Þ

and 1 being the unit second order tensor

ð1Þij dij: ð14Þ

To describe the inelastic behavior of ceramic, the model takes into
account the progressive fragmentation of a monolithic intact cera
mic material by means of a scalar damage variable D, varying in
the range [0,1] (intact pulverized material). As proposed by Cortés
et al. [15] the model considers a Drucker Prager law to define yield
ing for the intact material (D = 0)

fðD 0Þ r 3apþ r0y
� �

; ð15Þ

where �r is the equivalent stress defined as

r 3
2

s : s

r
; ð16Þ

s being the deviatoric stress tensor, and p the hydrostatic pressure
defined as

p
r : 1

3
; ð17Þ

where 3a is a parameter related to the internal friction angle of the
material and r0y is the material cohesion. For the pulverized mate
rial (D = 1) a pure frictional law is proposed
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fðD 1Þ r lp; ð18Þ

with l being the friction coefficient. Intermediate damage states are
defined as an average of the two situations, with a direct mixture
law applied to the yield function, D being the mixture parameter

f r ð1 DÞð3apþ r0yÞ lpD: ð19Þ

We proposed a damage growth law driven by the maximum princi
pal stress r1

_D
_Do r1 r0h i; if 0 < D < 1;
0; if D P 1:

(
ð20Þ

_D0 being a material parameter related to the growth rate of the
cracks, r0 being a stress threshold from which the fracture starts
to develop, and h i the MacCauley brackets. Other models for
ceramics under dynamic loading also propose r1 as the variable
driving fragmentation [37,38]. The maximum principal stress r1

can be determined by the closed form expression

r1 pþ 2
3
r � cosh; ð21Þ

where the Lode angle h is defined by

cos 3h
3 3
p

2
J3

J3
2

q ; ð22Þ

where J2 and J3 are the second and third invariants of the deviatoric
stress tensor s, respectively.

To describe the behavior for pressure sensitive materials, asso
ciative plasticity laws are often inappropriate since they overesti
mate the volumetric part of the plastic strain [39]. Therefore we
have chosen a non associative plastic flow rule

dp _k
@W
@r

_kWr; ð23Þ

where the plastic potential W is formally analogous to the yield
function (Eq. (19)) but has a lower slope with the pressure

W r ð1 DÞð3aWpþ!Þ lWpD; ð24Þ

� being a dummy parameter, aW = ka and lW = kl for 0 6 k < 1. The
derivative of the potential may be expressed as

Wr
3
2

s
r
þ ð1 DÞaW þ

lWD
3

� �
1: ð25Þ

This avoids the overestimation of the dilatant effect of the frag
mented ceramic material due to the inelastic deformations [37].
The decrease in the slope of the yield cone in the Haigh Westerg
aard stress space due to the increased damage also includes the de
crease in the dilatant behavior as the ceramic material is being
fragmented.

The solution of the above equations must be subjected to the
Kuhn Tucker complementary conditions

_k P 0; f 6 0; _kf 0 ð26Þ

and the consistency condition

_k _f 0: ð27Þ
3. Integration of the constitutive equations

For the integration of the above rate equations, incremental
objectivity was achieved by rewriting them in a neutralized config
uration [40 43]. To formalize this approach, - being a spatial
skew symmetric tensor, we may generate a group of rotations R

such that
_R -R; Rðt 0Þ 1 ð28Þ

with

- -T ð29Þ

and

R 1 RT : ð30Þ

Typical choices of - include the spin tensor w and the tensor X de
fined as

X _RRT ; ð31Þ

where R is the rotation tensor given by the polar decomposition
theorem of F. The Cauchy stress tensor and the rate of deformation
tensor are rotated as

rR RTrR; dR RT dR: ð32Þ

We find that time differentiation of the rotated Cauchy stress leads
to

_rR RT _rþ r- -rð ÞR RTrrR; ð33Þ

where rr coincides with the Green Naghdi McInnis stress rate if
- = X and then R R, or with the Jaumann stress rate if - = w
(see [41] for a description of the algorithm to integrate Eq. (28) in
this case). Thus, a complex objective stress rate can be computed
as a simple time derivative. Moreover, taking advantage of the
orthogonality of R, the symmetry of the Cauchy stress and rate of
deformation tensors and the isotropy of the elastic tensor
ðCR CÞ, we find that the rate equations defined above are form
identical in the rotated configuration

_rR C : de
R C : dR dp

R

� �
; ð34Þ

rR sR p1; ð35Þ

r 3
2

sR : sR

r
; ð36Þ

dp
R

_k
@W
@rR

ð37Þ

and scalar Eqs. (19) and (20) remain unchanged.

3.1. Time discretization and solving algorithm

To integrate the constitutive equations of the ceramic material
we have proposed a semi implicit return mapping algorithm (ex
plicit for the incremental treatment of the damage evolution (Eq.
(20))). If a Newton Raphson scheme is used to solve the set of
non linear equations, a complete implicit formulation would in
volve the inversion of a 7 � 7 matrix in each subiteration, with
the consequent increase of the computational cost. This is the re
sults of including the maximum principal stress r1 in the equation
of the damage evolution (Eq. (20)). Thus, the discretized form of
this equation is written as

Dnþ1 Dn þ _Dohr1n roiDt ð38Þ

with Dt being the time increment. Once Dn+1 has been calculated,
the yield function is determined by

fnþ1 f rRnþ1 ;Dnþ1
� �

0: ð39Þ

Another advantage of this semi implicit scheme is the simplicity of
the return to the yield surface, achieved with no iterations, in accor
dance with a Drucker Prager plasticity criterion without hardening.

Following the scheme predictor corrector, the actualized ro
tated stress is given by

rRnþ1 rtrial
Rnþ1
þ Drret

R ; ð40Þ
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where the trial stress is determined by

rtrial
Rnþ1

rRn þ C : ðDeRÞ ð41Þ

where rRn is the rotated stress in time n

rRn RT
nrnRn ð42Þ

and DeR is the increment of total deformation in the co rotational
frame, which could be determined by an objective approximation
of the rate of deformation tensor dn+1/2 calculated by the midpoint
rule (see [41,42])

DeR DtdRnþ1=2 DtRT
nþ1=2dnþ1=2Rnþ1=2; ð43Þ

thus, the correction Drret
R to the trial stress is determined by

Drret
R C : ðDk WrRnþ1 Þ

3GDk
sRnþ1

rnþ1
3KDk 1 Dnþ1ð ÞaW þ lW

Dnþ1

3

� �
1: ð44Þ

Since Dn+1 is initially known, only Eqs. (39) and (44) must be solved
simultaneously. Both equations are written the form of residuals R1

and R2 suitable for Newton Raphson iteration

R1 C 1 : Drret
R þ DkWrRnþ1 0; ð45Þ

R2 f rRnþ1 ;Dnþ1
� �

0: ð46Þ

Linearization of these equations (considering that drret
R drR if we

begin the iteration from the trial state) gives

Rðkþ1Þ
1 � RðkÞ1 þ C 1 : drðkÞR þ DkðkÞ

@WrR

@rR

� �ðkÞ
: drðkÞR

þ dkðkÞWðkÞrRnþ1
0; ð47Þ

Rðkþ1Þ
2 � RðkÞ2 þ

@f
@rR

� �ðkÞ
: drðkÞR 0; ð48Þ

k being the subiteration index. These equations give drðkÞR and dk(k).
Solving for the plastic multiplier increment

dkðkÞ
RðkÞ2

@f
@rR

	 
ðkÞ
: TðkÞ : RðkÞ1

@f
@rR

	 
ðkÞ
: TðkÞ : WðkÞrRnþ1

; ð49Þ

with T 1 being the fourth order tensor

T 1 C 1 þ Dk
@WrR

@rR

: ð50Þ

From Eq. (25) we see that the return direction remains constant
during the iteration, so that Eq. (45) is lineal and RðkÞ1 0. Thus,
expression (49) is written as

dkðkÞ
f ðkÞnþ1

@f
@rR

	 
ðkÞ
: TðkÞ : WðkÞrRnþ1

ð51Þ

and drðkÞR

drðkÞR dkðkÞTðkÞ : WðkÞrRnþ1
: ð52Þ

Tensor T can be easily computed considering that the gradient of
the derivative of the plastic potential (Eq. (25)) fits with the Hessian
of the yield function in J2 plasticity

@WrR

@rR

1
r

3
2

Idev rR � rR

� �
; ð53Þ

where rR is the direction of the inelastic flow in J2 plasticity given by
the deviatoric tensor
rR

3
2

s
r
: ð54Þ

Thus, applying the Sherman Morrison formula

T C
6G2Dk

3GDkþ r
Idev

2
3

rR � rR

� �
: ð55Þ

Taking into account that the gradient of f is

@f
@rR

3
2

s
r
þ ð1 DÞaþ lD

3

� �
1: ð56Þ

Eq. (51) is written as

dkðkÞ
f ðkÞnþ1

3GþKD
ð57Þ

with

KD 3K ð1 Dnþ1Þaþ lDnþ1

3

� �
3ð1 Dnþ1ÞaW þ Dnþ1lW

� �
: ð58Þ

This expression recovers the classical plastic multiplier for Drucker
Prager associated plasticity (k = 1) when damage is not considered
(D = 0)

dkðkÞ
f ðkÞnþ1

3Gþ 9Ka2 : ð59Þ

Since the yield surface remains constant during the return, the
first subiteration enables us to determine Dk and the stress is up
dated by Eq. (44) considering the proportionality between sRnþ1

and strial
Rnþ1

sRnþ1

rnþ1

strial
Rnþ1

rtrial
nþ1

: ð60Þ

Finally the updated rotated stress is pushed to the spatial configu
ration by Rnþ1

rnþ1 DRnþ1
n rRn DRnþ1T

n

þ C : DRnþ1
nþ1=2Dtdnþ1=2DRnþ1T

nþ1=2

	 
 3GDk

rtrial
nþ1

Rnþ1strial
Rnþ1

RT
nþ1

3KDk ð1 Dnþ1ÞaW þ lW

Dnþ1

3

� �
1; ð61Þ

where the incremental rotation tensors are given by

DRnþ1
n Rnþ1R

T
n; ð62Þ

DRnþ1
nþ1=2 Rnþ1R

T
nþ1=2: ð63Þ
3.2. Direct return to the apex

The singularity of the yield surface (the apex of the cone) re
quires a specific treatment that permits to return to it, taking into
account that, at this point, trial stress states in a certain region of
the stress space will return directly to it. This region is delimited
in the Haigh Westergaard space by a cone, coaxial and coincident
in the apex with the yield cone, and with generatrixes following
the return direction of the return mapping algorithm. The slope
of the generatrixes can be determined in the bidimensional space
fp; �rg (which is not isomorphous to the stress space) enabling dis
crimination between trial states that return with the algorithm
described above, and those that return directly to the cone apex.

From the expression of the plastic return Drret
R given by Eq. (44),

we can easily determine its spherical and deviatoric components
by projecting onto the axes fp; �rg
5



Dpret Drret
R : 1
3

3KDk 1 Dnþ1ð ÞaW þ lW

Dnþ1

3

� �
; ð64Þ

Drret 3
2

9G2Dk2

ðrtrial
nþ1Þ

2 strial
Rnþ1

: strial
Rnþ1

 !1=2

3GDk ð65Þ

and the slope of the return direction in the bidimensional space
fp; �rg is

jret Drret

Dpret

G

K ð1 Dnþ1ÞaW þ lW
Dnþ1

3

h i : ð66Þ

Then the trial states inside the region

rtrial
nþ1 6 jret ptrial

nþ1 papex

� �
ð67Þ

with

papex
royð1 Dnþ1Þ

3aðDnþ1 1Þ lDnþ1
; ð68Þ

must return directly to the apex (Fig. 2), which corresponds to the
hydrostatic stress state

rnþ1 papex1: ð69Þ
4. Parameter calibration

The model requires eight parameters, two defining the elastic
behavior (E and m), three for the yield function (3a,r0y and l),
two for the damage growth ( _Do and r0), and one for the dilatant
effect of the inelastic flow (k). The Young modulus E and Poisson
ratio m may be easily found in the literature for ceramic materials
used in armor applications [44]. Cohesion r0y may be related to
the tensile yield stress rt, a material parameter that may also be
easily found in the literature [44], by the expression

r0y rtð1þ aÞ: ð70Þ

The parameters 3a and l, defining pressure hardening for undam
aged and fully fragmented ceramics respectively, may be deter
mined, for instance, by fitting curves drawn from confined
compression tests [45,46]. In our case, these parameters are deter
mined by fitting (least squares) the pressure strength curves of the
ceramic constitutive model JH2 [13] proposed experimentally by
Cronin et al. [47] for different ceramic materials.

Brittle materials fracture when the tensile yield stress ry is
reached in a uniaxial tensile test. Thus, the threshold value of the
principal stress for the damage growth r1 = r0 was set equal to
rt, which also agrees well with the numerical results achieved in
the validation of the model. Finally, we have determined the
parameters _D0 and k by a simple inverse analysis, using FEM sim
ulation and the experimental results provided by Hohler et al. [44].
In this work, the authors analyze the ballistic efficiency of different
Fig. 2. Direct return to apex for trial stress states subjected to the condition given
by Eq. (67).
ceramic materials confined by a mild steel box, by means of the
depth of penetration (DOP) test, measuring the penetration of a
tungsten projectile impacting at 1700 m/s against a set of ceramic
tiles backed by a block of Rolled Homogeneous Armor (RHA) steel
(Fig. 3a). This measure enables us to determine these last two
parameters.

4.1. Numerical simulation

The finite element code Abaqus Explicit v6.44 [48] was used to
simulate the DOP test. Due to the high speed of the process
(v = 1700 m/s) it was considered adiabatic. A structured mesh
(Fig. 3b) was developed, using 8 node trilinear displacement and
temperature, reduced integration with hourglass control elements.
In the impact direction, the characteristic length of the elements of
the projectile, the ceramic tiles, and the RHA steel block was
Lc = 1.5 mm. The elements of the confinement were larger due to
the low level of deformation undergone by this part. As boundary
conditions, the back side of the RHA steel block was pinned in the
impact direction, the mild steel confinement was tied to the block,
and an unilateral contact condition was defined between ceramic
tiles and confinement. The interactions between the ceramic tiles
and RHA steel block, and between the projectile and tiles, were
modeled with the general contact kinematic contact algorithm
implemented in Abaqus Explicit [48]. Since penetration was
expected to occur between the projectile and both the tiles and
block, a pure master slave weighting was used in the interaction
between these solids. The master surface was all the upper faces
of the elements forming the tiles and the steel block, and the slave
surface being the projectile nodes. In this way, although certain
elements of the head of the projectile and of the target were
deleted, the contact between the two parts is maintained through
out the penetration process. For the interaction between ceramic
tiles, as no penetration was expected, a balanced weighting was
used.

For metallic materials used in ballistic applications, elastic
strains (and rates) are commonly very small compared to inelastic
strains (and rates). Therefore, hypoelastic plastic material models
were also employed in this work for the metallic materials, allow
ing us to assume the additive decomposition of the rate of defor
mation tensor [35]. For these alloys, J2 plasticity, with an
isotropic hardening constitutive law was adopted. To take into
account the rate dependent behavior and the thermal softening
by adiabatic heating that metals undergo in this kind of process,
the hardening/softening Johnson Cook law [49] was employed.
This is probably the most widely used among those accounting
for plastic strain, plastic strain rate, and temperature effects. Since
numerous efforts have been made in the past to determine their
properties for a large number of metallic materials, it has been
implemented in many FE explicit codes. The relation is stated
through the following multiplicative equation

rY

Aþ B epð Þn
� �

1þ CLog _ep

_e0

	 
	 

ð1 HmÞ; for _ep P _e0;

Aþ B epð Þn
� �

ð1 HmÞ; for _ep < _e0;

8<
: ð71Þ

where H is the homologous temperature

H
h h0

hm h0
ð72Þ

with h, h0 and hm being the temperature, the reference temperature,
and the melting temperature respectively.

Table 1 shows the values of the material parameters for the metal
alloys and their corresponding references. To model the erosion
undergone by the projectile, the ceramic tile, and the metal back
plate, a simple failure model based on a critical values of the equiv
alent plastic strain �ep was used, so that when it reached a critical
6



(a) (b)

Fig. 3. (a) DOP test used by Hohler et al. [44]: set-up and geometry of the ceramic tiles, mild steel confinement and RHA steel block. Length units in mm. (b) Numerical
simulation: mesh of the DOP model.

Table 1
Properties of metal alloys used in the simulations.

Parameter Tungsten alloy
[50]

RHA steel
[51]

Mild steel
[52]

E (GPa) 345 207 200
m 0.33 0.3 0.3
Density (kg/m3) 17,600 7800 7870
A (MPa) 1093 1240 532
B (MPa) 1270 509 229
n 0.42 0.26 0.3
C 0.0188 0.014 0.027

e0 ðs 1Þ 1 1 1

m 0.78 1.03 1
h0 (�C) 25 25 25
hm (�C) 1580 1430 1520
Specific heat (J kg 1 K 1) 134 500 481
Conductivity (W m 1 K 1) 45 44.5 44.5
Thermal exp. coef.

(�C 1) � 10 5
4.3 1.3 1.3

Quinney-Taylor coef. 0.7 0.9 0.85

Table 2
Properties of high-purity alumina for the pro-
posed model.

Parameter Value

E (GPa) 378
m 0.22
3a 0.65
l 0.21
r0y (MPa) 292
r0 (MPa) 240

D0 ðPa sÞ 1 8 � 10 3

k 0.7

Table 3
Thicknesses of alumina-aluminium lightweight protections and impact velocities for
each protection.

Alumina thickness (mm) Aluminium thickness (mm) V1 (m/s) V2 (m/s)

8.1 4 786 829
8.1 6 815 916
8.1 8 995 1091

Table 4
Properties of metal alloys employed in the validation simulations.

Parameter Aluminium 6061-T6
[53]

AISI 4340 steel
[54]

E (GPa) 73 208
m 0.33 0.3
Density (kg/m3) 2705 7850
A (MPa) 335 1150
B (MPa) 85 739
n 0.11 0.26
C 0.012 0.014

e0 ðs 1Þ 1 1

m 1 1.03
h0 (�C) 25 25
hm (�C) 600 1520
Specific heat (J kg 1 K 1) 963 500
Conductivity (W m 1 K 1) 170 44.5
Thermal exp. coef.

(�C 1) � 10 5
2.2 1.3

Quinney-Taylor coef. 0.7 0.8
value efailure, the element was deleted from the model. For the cera
mic �ep was defined as

ep
Z t

0

_epdt
Z t

0

2
3

dp
R : dp

R

r
dt

Z t

0

_k 1þ 2 ð1 DÞaW þ lW

D
3

� �2
s

dt: ð73Þ

Certainly the element deletion technique causes an artificial loss of
mass and momentum in the system. However, the model accurately
reproduces classical experimental results in the field of impact
mechanics, as will be shown in the validation of the model.
Sixteen simulations were carried out, varying both _D0 and k un
til the expected value for residual penetration was reached. Table 2
summarizes the final values of the parameters for high purity
alumina.
5. Model validation

The model was validated with the experimental results of Den
Reijer [5] for impacts on alumina aluminum armor. This author
developed a flash radiography system to measure the position of
the projectile and the armor during the penetration process. The
tests were performed for three different configurations of the
armor, and two impact velocities for each configuration: V1 corre
sponding to projectile arrest, and V2 corresponding to armor perfo
ration. The main characteristics of the tests are summarized in
Table 3.
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(a) (b)
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Fig. 4. Numerical and experimental [5] position vs. time curves of the projectile rear-end and of the armor back side. hc = alumina thickness, hb = aluminum thickness.
The aspects of the numerical simulation were discussed in
Section 4.1. Free boundary conditions were established due to
the short duration of the process (60 ls) and an initial condition
of velocity in the impact direction was imposed on the nodes of
the projectile. The values of the material parameters for the
6061 T6 aluminium (backing plate) and AISI 4340 steel (projec
tile), and their corresponding references are shown in Table 4.
For the high density alumina, the parameters shown in Table 2
were used.

Fig. 4 shows the position of the projectile rear end and the dis
placement of the armor back side for experimental and numerical
results. The model predicts these variables with accuracy for both
complete perforation and projectile arrest.

6. Conclusions

A simple constitutive model to reproduce the behavior of cera
mic materials used in armor applications was presented. The mod
el considers fragmentation of the ceramic tile through a damage
parameter for which growth is driven by the maximum principal
stress. The yield stress is assumed to depend on pressure and dam
age, and inelastic flow is governed by a non associated law to
reduce the dilatant effect. The parameters of the model can be eas
ily determined for different ceramics used in armor protection.
Also, a semi implicit time integration algorithm been developed
to integrate the proposed constitutive model. The algorithm is
easily implemented and inherits the robustness and stability of
return mapping schemes. The performance of the model and the
algorithm is evaluated by comparing its results with those of
classical experiments; such comparisons show that the numerical
results agree quantitatively with the experimental ones.
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Appendix A. Overall implementation scheme for the co-
rotational configuration

(1) Elastic predictor
rtrial
Rnþ1

rRn þ C : ðDeRÞ
(2) Check the yield condition
If f rtrial
Rnþ1

;Dnþ1

	 

< 0 )

rRnþ1 rtrial
Rnþ1

Dnþ1 Dn

�p
Rnþ1

�p
Rn

end
Else ) go to 3
8



(3) Choice of plastic return
If rtrial
nþ1 6 jret � ptrial

nþ1 papex

� �
) go to 4

Else ) go to 5
(4) Direct return to apex
rRnþ1 papex1

Dnþ1 Dn þ _Dohr1n roiDt

�p
Rnþ1

�p
Rn
þ D�p

R �p
Rn

C 1 : rRnþ1 rRn

� �
end
(5) Return mapping algorithm
Dk
fnþ1

3Gþ3K ð1 Dnþ1ÞaþlDnþ1
3

	 

3ð1 Dnþ1ÞaWþDnþ1lW

� �
rRnþ1 rtrial

Rnþ1
Dk 3G

sRnþ1

rnþ1
þ3K ð1 Dnþ1ÞaWþlW

Dnþ1

3

� �
1

� �
Dnþ1 Dnþ _Dohr1n roiDt

�p
Rnþ1

�p
Rn

C 1 : rRnþ1 rRn

� �
end:
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