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DIAGNOSTICS AND ROBUST ESTIMATION IN MULTIVARIATE DATA TRANSFORMATIONS 

Santiago Velilla, 'Dpta. de e<ltad.l&Lca 4J ecan.ametrt.la, ~~a.rtla.o. IIJ 

de MadJUd, 28903-~etaee (Ma.d.tUd) , !J'paln. 

~: This paper presents a method for detecting multivariate outliers 

which might be distorting the estimation of a transformation to normality. A 

robust estimator of the transformation parameter is also proposed. 

J<~ and ~: Likelihood displacement; Multivariate Box-Cox 

transformation; S estimators. 

1.� Introduction 

Consider a p-variate random vector X=(X, ... ,X)' such that all its 
1 p 

components take positive values. If X is not multivariate normal, Andrews et 

al. 097]) propose the following transformation method to normality. 

Defining for a>O and scalar A the family of transformations 

aA_l 
a (A)= -A-' A'ltO; O.ll

{ loga,� A=O, 

they� consider a vector /\=(A, ... ,A )' of transformation parameters, one for 
I P� ) 

each� dimension, such that when transforming each X in the form X(Aj , the 
j� j 

following model holds, at least approximately, 

X (/\)=(X(i\ ) X(i\ ))' -N ( 'It'')I , ... , p Il,'" ,� 0.2)
I P p 

where 1l=(Il , ... ,Il)' and !:=(O") . Model 0.2) is a multivariate 
I p� lj pxp 

generalization of the univariate transformation model fora random variable 
(A) 2

X of� Box and Cox (964), namely, X -N(m,O" 1, 

. While extensively studied both in the one sample case and in the 

multiple linear regression case (see e.g. Atkinson (985)), the application 

of the Box-Cox transformation to multivariate data has received little 

attention in the literature. Since model 0.2) implies the p marginal models 

X(Aj)_N(1I ,0"), j=l, ... ,p, it is usually recommended, on the basis ofj r-j jj 
numerical simplicity, to estimate /\ by ~ =(~ , ... ,~ )', where ~ is the 

t.1 It.1 pM JM 

maximum likelihood estimator (MLE) of A computed under the jth marginal
J 

model. It is argued that, in general, these marginal estimators will not 
)).

differ from the MLE "t\ of /\ computed from the joint model 0.2) and, as a 

consequense,. ther~ is a .. common·..belief that ·the problems e!'1c,ountered in· 



dealing with multivariate data transformations can be handled by just using 

routine extensions of univariate techniques. On the other hand. it is well 

known that the MLE estimator to normality is very sensitive to outlying 

observations and as. a consequence. there is the need of developping both 

diagnostic techniques and robust estimation procedures for the multivariate 

transformation parameter A. In agreement with the ideas above. both 

univariate diagnostic techniques and robust estimation applied separately to 

each parameter A would provide. in principle. a reasonably satisfactory
j 

joint� methodology for detecting and/or accommodating anomalous observations. 

The� aim of this paper is to propose ~ multivariate diagnostic 

methods and robust estimation procedures which are shown to be. either 

theoretically or by example. superior to simultaneous application of 

existing univariate techniques. Section 2 presents some background and 

motivation. Section 3 is devoted to diagnostics while section 4 is devoted 

to robustness. Section 5 contains some final comments. 

2.� Background and motivation 

Let X=(a: )=(a:, ... ,a:) be a nxp data matrix from a random vector X 
Ij� 1 P 

with� unknown distribution F. If, according to the model 0.2), the rows of 
(A)� (A) (A )

the� transformed data matrix X(A), namely, x =(a: I]. ... ,a:. Ip), i=l. 
I� 11 I p 

... ,n, are i. i. d. N (Il.L), it can be shown that the concentrated 
p 

Jog-likelihood L (A) for A is (up to an additive constant) 
max 

L (A)=- ~ log[ IZ(A)' AZ(A) I],� (2.1l 
max 2 

where Z(A)=(z(l\.j))=(Z(\). . ...Z(\)) is the nxp matrix of norma.lized 
i j p 

(A)� -l/n (I\. )
variables of generic eletnent. Z j =J" (a:)x j, i=l. ... ,n, j=l. . ..• p,

Ij� 1\ j Ij
J 

n� A-I 
and J ... (a: );::( IT a: ) j " .j=l•....•P. are the jacobian terms. The matrix A in 

1\ j 1:=1 IJ 
j 

(2.1l is the nxn projection matrix A=I -I l' In. The MLE ~=(~. .. .• ~ ) 
n nnIp 

minimizes then the determinant 

(2.2) 

However. as mentioned in the introduction. the customary practice is to 

estimate A by the estimator ~ =(~ , ... ,~ )'. It can be shown by induction 
M IM pM� 

(see appendix A) the identity� 

!z(A)' AZ(A) I=[ ~ Z(A/AZ(\)j ~ (I_r2 ),� (2.3) 
k=1 k k k=1 k 

'. 2� 2 2
; where··.r =0 and. for k~2~ ··r =r (A" , .. ,A.) is' the . multiple . .correlat~sm 

'. I� k k I .k 
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coefficient of Z(;\) with (Z(;\), Z(;\). (2.3) decomposes the objective
k 1 k-l 

function for 7\ in the product of the p marginal objective functions plus a 

factor which depends on the sequence <r2
}. In applications. <r2

} is. in 
k k 

general, quite stable for all the values of the transformation parameter /\ 

in a neighborhood of the optimum 7\ and therefore. the relevant information 

in the determinant criterion IZ(A)'AZ(A) I comes from the marginal criterions 

Z(\)'AZ(\). k=l .....p. This explains the observed closeness between 7\ and 
k k 

7\M' This empirical phenomenon is further illustrated in examples 2.1 and 2.2 

below. In experience of the author. the function -L (/\) is typically
max 

convex, a convenient feature for numerical optimization using a canned 

routine. Exact expressions for the partial derivatives in the gradient 

vector 8L (/\)/8/\ and the Hessian matrix 8(8L (/\)/8/\)'/8/\ of L (/\) are 
max max max 

in appendix 8. 

EXAMPLE 2.1. A random sample of size n=50 is generated trough the model 

(logX,logY)'-N [ (g), (.~5 .~~)].
2

By applying a standard Newton-Raphson algorithm in each coordinate, we get 

~ =(-.0441,-.1474)'. Using 7\ as the initial point in the corresponding
M . M 

bivariate optimization, we find 7\=(-.0594.-.1812)'. The function l_r2
(1\ ,1\ )

2 1 2 

varies between .1159 and .1214 in the rectangle [-.I,O.lx[-.2,-.IJ. 

EXAMPLE 2.2. A random sample of size n=50 is generated trough the trivariate 

lognormal model 

.75 .6]
(logX,logY,logZ)' -N

3
1[~] , .Us 1. .5 J. 

.5 1. 

Using the same methodology as above, we finer 7\ =(.0354, -.1354,-.1740)' and 
M 

X=C0443, -.1467, -.154~)·. In the rectangle [0., .Ilx[ -.2,-. I1x[ -.2,-.l), the 

function l_r2
(1\ ,1\) is bounded between .431 and .436 and l_r2

(1\ ,1\ ,1\ )
212 2123 

between .642 and .662. 

3. Diagnostics 

We will be interested in constructing a diagnostic for the effect of 

single case deletion on 7\. The notation 7\(1) will be used for the estimator 

computed after deletion of the ith row of the data matrix. FOI' the 

univariate case, case deletion diagnostics have be~n' propos.ed by' Cook and , . 
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Wang (1983), Hinkley and Wang (1988) and Tsai and Wu (1990). Specifically, 

Cook and Wang (1983) proposed taking the ti.ketiJuu:ui dUipta.c.ernent 

LD =2[L (~)-L (~)], (3.0
1 max max (I) 

as a scalar measure of influence. Cook and Wang (1983) suggested also a 

numerical approximation for the perturbed estimators ~ , i=I, ... ,n, which 
(I) 

is improved by Tsai and Wu (1990). The following example shows how, for p>I, 

an outlier can remain undetected when applying the univariate diagnostic 

techniques separately in each one of the coordinates. 

EXAMPLE 3.1. f,n cutller (a: ,1J / is added to the data set in example 2.1 
5I 5

in such a way that Ooga: ,loglJ )=(2.1,-1.9)'. Plotting the data in logs,
51 51 

figure 3.1, it is easily seen that Ooga: ,loglJ )' alters the structure of 
51 51 

correlation of the cloud defined by the bulk of the remaining 50 data 

points. Now we get ~ =(-.0612.. -.0928)' and ~=(-.1393,.0252)'. Figure 3.2 a)
M 

and figure 3.2 b) show, for j=I,2, the marginal diagnostics 

~I 
JM(j) 

and 

LDJ=2[L J (~)-L (~I )], 
! max JM max JMCi) 

l\!respectively, where t\ is the corresponding marginal one-step approximation
jM 

of Tsai and Wu (1990). Figure 3.2 c) displays the combined marginal 
2

diagnostic LD I+LD . Notice that case 51 remains unnoticed. 
i i 

figure 3.1 

Figure 3.2 a) figure 3.2 b) figure 3.2 c;) 

.", . 

In the example above, marginal diagnostics fail because they don't take 

into account the correlation structure of the transformed data. In 

principle, a suitable multivariate diagnostic measure would be 

LD =2[L (~)-L (~)] (3.2)
1 max max (l) 

By (2.0, the measure (3.2) has a cumbersome expression and is hard to work 

with. By a standard first order Taylor expansion and using that 

8L (/\)18/\ I/\-li.'-'=O' we can approximate 
max , ­

4 
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where H(~)=-~[~L (1\)]' is the pxp observed Fisher information 
8/\ 8/\ max I\=t;. 

matrix. Velilla (993) proposes the ellipsoid 

(1\-t;.)·H(t;.)(I\-~)~i , (3.4) 
p,a 

as an alternative asymptotic (I-a)xlOO7. confidence region for the 

transformation parameter. Therefore, calibration of the influence measure 

[0 on the right hand side of (3.3) can be made with reference to the 
I 

percentage points of the i distribution. 
p 

From the computational point of view, [0 depends on: (i) The MLE ~; 
I 

(il) The matrix H(~); and (UL) The estimators t;. , i=l, ... ,n. The MLE is 
(I) 

obtained by maximizing L (1\) and the elements of the matrix H(~) can be 
mll.x 

computed from the corresponding expressions in theorem B.l of 

appendix B. with the additional simplification obtained from 
'/:0..

8L (/\lI8A I =0. Computation of 1\
(j) 

requires iteration and an 
max r /\=~ 

approximation is developed as follows. By (2.2) the MLE ~ minimizes IM(I\) I' 
where M(/\)= IZ(/\)' AZ(I\) I. and, therefore, ~(I) minimizes, in obvious 

notation, IM (I\) I Let 'iJ (1\) = 81M (1\)1/8/\ and H (/\)=(j) • (l) (I) (i) 

821M (/\)1/8/\81\' be, respectively, the gradient vector and the hessian 
(i) 

matrix of IM(j)(/\) I· In the first-order Taylor expansion around an initial 

guess /\ for ~ • 'iJ (1\)='iJ (/\ )+H (/\ )(/\-/\), we can use the fact that o (j) (j) (j) 0 (I) 0 0 

'iJ (~ )=0 to obtain a one-step approximation for ~ 
(j) (;) (j)' 

~l =/\ -rH (/\) r1v (/\). (3.5)
(j) 0 (I) 0 (I) 0 

Equation (3.S) is a multivariate extension of equation OS) in Tsai and Wu 

(1990). Typically Ao =~ and the computational problem. is finished whenever we 

are able to compute the explicit expressions for the elements in 'iJ (t;.) and 
(I) 

H(i)(~). These can be seen in 'appendix B. 

EXAMPLE 3.1 (cont.). Figure 3.3 a) is an index plot of LO where case 51 is 
I 

clearly pinpointed. Figure 3.3 b) is the corresponding plot for [D.
I 

Deletion of case 51 moves the estimator to the boundary of a 

99.257. confidence ellipsoid. 

Flgul'e 3.3 11.) Figure 3.3 b) 

Finally, it is important to remark that in both (3.3) and (3.4) it is 

crucial to u~e the multivariate estimators ~ and ~ . By replacing, in
lJ) . 1 • 

(3.31•.. t;. and t;. "by "their marginal :counterparts t;.. and ~ t;. ) the " 
(I)' "M MU 
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"marginal" version of (3.3), namely LDM =2[L (~)-L (~M(I»] often takes 
I max M max 

negative values. On the other hand, [DM =(~ -~ »)'H(~)(~ -~ (») does not 
I M MO M M M I 

indicate the outlier because of the lack of consideration of the correlation 

structure. See figures 3.4 a) and b). Moreover, the general claim of 

closeness between ~ and ~ is not true in the presence of outliers. If, for 
M 

a given pxl vector u, Ilull~=U'MU denotes the square of the norm of u with 

respect the inner product pxp matrix M, we have, in the case of example 3.1, 

II~-~ 11 2=2.06 and II~ -~ 11 2=.08.
M H (51) M(SI) H 

figure 3.4 a) figure 3.4 b) 

4. A robust estimator of the transformation parameter 

As a consequence of section 3, a multivariate outiier can remain 

undetected if only univariate diagnostic techniques are used. Therefore, if 

a robust estimator of the transformation parameter 11=(;\, ... ,A)' is to be 
I p 

constructed, it should not be based in robustifying separately in each 

dimension. This section presents a robust estimator ~ of 11 which takes 
R 

into account the correlation structure among the transformed variables. 

Given ... ,x i. i. d. p-variate observations with unknown 
n 

distribution F that can be approximately modelled with the transformation 

model (I.ll, the corresponding log-likelihood is (up to an additive 

constant) 

n (M -1 (M
U!-L,l:,II)=-(nl2)Iog Il: 1-(112 ) L (Xl -fl)'l: (XI -fl)+log[J11(X)], (4.1 ) 

i= 1� 
p� n A -1 

where J A (X)= n J" (a: ), J" (a: )=( IT a: ) J , is the jacobian term. The MLE 
1\ f\J=I J 1\ J J I =1 IJ 

/\ A t:.. J 
estimator (fl,",-,ti) is obtained maximizing in 11 the profile log-likelihood 

'L . (M=UO(M,~(II),M, with ~(M=n-1 1: x~M, f(!\)=n -IX(II)'AX(II), which can 
max 

1=1 

be written in the form 

-(nl2)log[ I~(MI]+log[J11(X)]. (4.2) 

From (4.2), a possible method for robustifying the estimation of 11 is to 

replace the objective function (4.2) by: 

L (1I)=-(n/2)Jog[ If (11) 1]+log[JA(XI]. (4.3)
max,R R" 

where ~ (M is a robust estimator of t computed from the data matrix X(A). 
R 

Our choice for.· ~ lid is. th.e . S-estimator. of disp~~sionas. descr~bed; in·
R. 

. Lopuhaa (989).: For' the univariate case, Carroll· (1980) has proposed a 
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robust estimation approach by replacing, in the normal log-likelihood for 

(j.l,a-,A), d~/2=(x~A)_j.l)2/20"2 by p(d ), For every fixed A, he suggests
l 

estimating j.l and a- for M-estimators j.l (A) and a- (A) and to estimate A by
M M 

2 n (A)
maximizing the function -(n/2)Iog[a-

M
(A)l- L p[(x

l 
-j.lM(A))/a-M(A)l + 

1= 1 
n 

(A-I) L log(x/ For p=I, our proposal maximizes -(n/2)Iog[a-2(A)l
s 

1= 1 
nn (A)�

L p[(x -j.ls(A))/a-s(A)l + (A-I) + L log(x), For the univariate case,�
1 I

1= 1 1= 1 

other work in robustness in transformations can be seen in Carroll and 

Ruppert (1988). 

Next we study the properties and discuss the computation of ~ . We also 
R 

propose a measure of its robustness under contamination by analyzing the 

expression of its influence function, For the most part, the following 

discussion is heuristic and concentrates mainly on the ideas. More technical 

details can be found in appendix C, 

4.1 Existence of solutions, consistency and asymptotic normality 

Appendix C contains a brief description on conditions which 

imply the existence, for all n large enough, of a sequence of solutions {~ }
R 

of (4.3) such that 
l:­f.. ------")/\ , a, e , 

R 0 

being t\ =/\ (F) the un..i.,.q"ue global maximum over /\efK of o 0 

-(1/Z)log[ Ir(/\,F) Il+l\'u, (4.4) 

where fK is a compact set of [RP, u=(E [llogX.!], ... , EJ IlogX I]) and r(/\,F)r. r;:> 

is the corresponding block of the solution 8(/\,F)=(j.l(/\,F),r(/\,F)) of the 

S-estimation problem min Ir lover 8=(j.l,r) (DO) restricted to

fp[{(x(/\)-j.l)'r-1(x(/\)_j.l)}1I2 lF(dX)=k ' In agreement with this notation, 
p 

({'; (/\),~ (/\))=8(/\,F ), We delete sometimes dependence on F a,nd simply write 
r-R Rn' 

8 (/\, F )=8 (/\). 

Next we assume that /\ is an interior point of fK and write 
o 

8 =(j.l ,r )=8(/\ ,F)' By expression (2.7) in Lopuhaa (1989), for each /\ in lK, 
o 0 0 0 

8(1\) solves 

H(/\,~)=J~(X,/\,8)F(dX)=O, (4.5) 

where the function ~=(~' .~')' has components:
1 2 

, ) :. fdl(' . (A) ) " 
~ (x,/\;8 =U x· r -j.l, .r=l, ... ,p;

l,r r r .. . (4.6) 

7 



- (;\ ) (;\ )
l{J (x,A,8)-pu[d](x r -/J Hx • -/J )-vld]cr , r,s=l, (r~s),""p,Z,rs r r. • rs 

where d=d(x,A,8)=I(x(A)-/J)'I:-I(X(A)_/J)]lIZ, u[d]=~ld]ld, and v[d]=t~[d] 

-pld]+k, being ~ the derivative p' of p. By assuming an appropriate form 
p 

for pI.] and suitable conditions on the moments of F, it can be shown that 

H(A,8) has continuous second partial derivatives in a neighborhood of 

(\,8 ) which can be obtained differentiating under the integral sign in 
0 

(4.5), Since H(\,8 )=0, if 8H(A,8)/88 I(A,8)=(A ,8) is nonsingular, by the
0 

o 0 

implicit function theorem (see, e.g. Fleming (1977, p.148», there exists, 

locally around A, a function e(A) with continuous second partialo 
derivatives such that H(A,8(A)=0. We introduce now the set of artificial 

parameters W={{w J, {w }, {w. }, {w }: r,s=l, ,."p, (r:ss),
r,J rs,j r,Jk rs,jk 

j,k=l, ... ,p}, which have the meaning w =8/J la;\ , w =acr la;\,
r,j r j rs,j rs j 

W =a 
2 

f1 laA all. , and w =az(J laA all. . The following equation holds
r,jk r j k rs,Jk rs j k 

J~(X,A,8, W)F(dx)=O, (4.7) 

where l{J is the array al{JlaA. Moreover, A satisfies 
o 

Jr(X,A,8)F(dX)=0, (4.8) 

where r={r} is the pxl gradient vector of the function in (4.4).
j 

Explicit expressions for the components of l{J and r are in appendix D. In 

summary, if Q=(A,8,W), A is the corresponding component of the solution n 
o 0 

of the equation 

J ~(x,mF(dx)=O, (4.9) 

where ~(x,A.8)=(r,I,!J,~), By replacing, in (4.9), F . by the empirical F, we 
n� 

get the estimating equation� 
n .."' . 

n
-I L ~(xl,mF(dx)=O, (4.10) 

.. I = I 

whose solution £2 =(~ ,~ ,~ ) determines ~ . Observe that n and ~ are both of 
n R n n R 

dimension q=(p/2)[2+(p+1Hp+3)]. Equations (4.9) and (4,10) allow for an 

obtention of the asymptotic normality of 7\. in the framework of
R 

M-estimation. By application of the conditions Huber (1967), if the function 

;\ [nJ=E I~(x,m] has a nonsingular q)(q derivative thenD at no'F F 
nl12 (£2 -n )~N [O,D-IM(D-I),], where M=cov [~(x,m], and as a consequence, 

n 0 q F� 

n l12(7\. -A )~N [0 HR]'�
R 0 q" 

. -1 -1 
, \v'bere HR is the proper. .pxp 5ubmatrix of D MCD )', A .~onsistent ~stimate 

'~R of HR: is 'given' by 'the 'associated pxp submatrix' of"D-1M(D-1
)" where 

n n n n 
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4.2 Computation of f\ 
R 

The numerical problem for computing f\ is to minimize in A=(;\
R I' 

... ,A )' the function 
p 

n 

h[A1=(I/2Hog[ I~ (A) 11- L: A p (4.11 ) 
R J n,J

1= 1 
n 

-Iwhere p =n L: log(x). The function used in the determination of the 
n,J 1 =1 IJ 

robust estimator ~ (A) is the function 
R 

(t 6 /6c)-(t8/4c3 )+(t10/lOcS
), It I:sc; 

p[t1= (4.12)
{ S 

c /60 , It I>c, 

for a suitable positive constant c. This function satisfies the regularity 

conditions of appendix C. Its derivative V![t1=(tS/c)[I-(t/c)212, 1t I:sc, (0 

for It i >c) is a multiple of Tukey's biweight function. The first partial 

derivatives of h[A] are 
p 

Bh/BA =(1/2) L: [~rs -0 ~rs]c -p , (4.13)
J rs rs,J n,J 

r ,s=1 

j=l, ... ,p. For every fixed j, the array {C
rs,J

} is determined from the 

equation (4.7) or, more specifically, from the linear system 

A~=~ (4.14)
J j' 

1\
where ~ ={{C J, {w J}}' and the [p(p+3)/21xl vector ~ ={~ ;~ }

j r,J rs, J r,J rs,j 

and [p(p+3)/21x[p(p+3)/2] matrix 

1\ 1\ 

A=[ 
a: 

r,a «,.ab ] (4.15)
1\ 1\ ' 
a: a:

rS,a rs,ab 

have elements 
n n 

~ =-n- I L: 8l/J /8A, ~ =-n- I L: 8l/J /8A,
r,J I,r J rs,J 2,rs J 

1=1 1=1 

n n 

~ =n-1 L:8l/J /8p.,.:~ =n-1 L:8t/J /811' , 
r,a I,r a r,ab t,r ab 

1= 1 1= 1 

n n 
1\ -I 1\-1 
a: =n L: 8t/J. 18p. and a: =n L: 8t/J 1811' ,rS,a 2,rs a rs,ab I,rs ab 

1=1 1=1 .. 

for r,s,a,b=I, ...~p (r:ss, a:sb)." All '-the derivatives are evaluated 'at 
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(A'~R(A», where ~ (A)=(~ (A),t (A». Exact expressions can be found in 
R R R 

appendix D. Recall that the matrix A above is the same for every j. Second 

partial derivatives for h theoretically exist but have untractable 

expressions. An algorithm for computing ~ based on a Newton-Raphson
R 

iteration which uses both the gradient G=8h18A and the Hessian matrix 

H=8(8hI8A)'18A of h is thus not recommended. We suggest instead the 

following algorithm for computing ~ : 
R 

([)� Start with an initial value of A, A say, and compute the robust 
o 

S-estimators ~ (A )=(n (A ),f (A» from the transformed data matrix 1'(Ao).
R 0 R 0 R 0 

If there is some previous diagnostic information, A could be the 
o 

approximation ~l 
(I) 

computed deleting a dubious case i. A suitable algorithm 

for� computing ~R(Ao) is given in Ruppert 0992L 

(U)� Solve the collection of systems A t9 =~ , j=l, ... ,p, obtain the 
o JO JO 

gradient G of h at A=A and choose an initial guess for H, typically
o 0 0 

H =1 . 
o� P 

(Ui) Update (A ,G .H) to (A ,G ,H) as in a Quasi-Newton algorithmo 0 0 1 1 1 

with the BFGS formula (see, e.g. Seber and Wild (1989, pp. 605-609 for 

a� description). 

(us) Iterate ([)-(U)-(Ui) until convergence. 

4.3� Influence function of l\ 
R 

The� influence function of the functional A =A(F) evaluated at a point
o 

xe[RP and at underlying distribution F is defined pointwise as the limit 

A[(I-h)F+hO l-AlFl 
x 

h 

if the limit exists. If the conditions for existence and consistency hold 

and A [Ol';'E [~(x,O)J has a nonsingular qxq derivative D at 0 , then: for' the
F F 0 

"larger" functional. 0 =O(F), the influence function IF(x;O;F) is the qxl
o 

vector -D-l~[X;O(F)l. We have the sampling approximation 

IF(x;O;F)~I~ =-D-l~[x;e]. The influence function IF(x;A;F) is given by the 
n n n 

first p coordinates of IF(x;O;F) with sampling approximation provided by the 

first� p coorpinates of I~ . 
n 

4.4� Examples 

EXAMPLE 4.1· We apply the algorithm described in 4.2 to the data set of 

example 3.1.' We choose th~ constant c=3 in the definition of p in (4.12). By. 
o '"'1 •� . '"' . 0 0• 

starting with· A =f.. =(:0547,-.2024)' and H =1, we get of.. ;::(-.1057,-.2320)"o (511� 0 2· . R 
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after three iterations. To assess the distance between ~ and ~ . we see that 
R� 

l). I). 11 2 • I). •�!i.-!i. =6.3876, that IS!i. lies cu.ItllLd..e the 957. confidence region (3.4). ByIl R M R 

comparison II~ -~ 11 
2
=.2919.

(51) R M 

EXAMPLE 4.2· Let ~R(x) the pxl vector formed by the first p coordinates 

of the sampling approximation IF(x;Q;F)~It =-D-l~[x;e l. A suitable norming
Ann n 

matrix for uR(x) is the pxp matrix HR introduced in 4.1 
n 

IR(x)=[~ (x)'(HR In)-IQ (X)l1l2. 
R n R 

The MLE estimator is also a particular case of M-estimator by choosing 

uldl=vldl=! in (4.7). The influence function of the MLE can be found and, 

accordingly, 

can be computed. For the particular case of the data set in example 3.1, the 

vector x=(x ,x)' has two coordinates, so we can transform to polar
1 2 

coordinates x =rcosS, x =rsinS (r)O, O<S<nI2) and compare the qualitative
1 2 

behavLour of IR(x) and lUx) with the two auxiliary curves AR(r)=sup IR(x) 
Ilxll=r2 2 1l2

AUr)= sup lUx), where 1I xii =[x +x l . These appear in figure 4.1, where 
1 2

lixi!=r 
superiori'ty' of 1\ over 1\ is apparent.

R 

Figure 4.1 

5. Final comments 

This paper presents methods of diagnostic and robustness for the 

t,ansfnrmation parameter A with multivariate data. Techniques presented are 

shown to be bette; than simultaneous application of previously suggested 

univariate methods. Computation~l issues ar.e discussed. The ideas on 

robustness presented could be. in principle, adapted easily to the multiple 

regression case. The results of this paper would be an improvement over 

previous robust methods in reg'ression because they present a procedure to 

compute a sampl ing approximation to the influence curve of the estimator. 

APPENDIX' 

A e~.an. tort the detertmU1..artt (2.3). The result obviously holds for p=2. 

Assuming it true for p, (2.3) follows from the well-known forI~ula of the 

determinant of a' partiti.oned squared ,matrix' and induction hYl?othesis: 

11 
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B ~tta.dLen.t a.nd 1feo.oLan a.e L (A). Theorem B.1. Introduce the notation: (i) 
max 

M(A)=Z(Al' AZ(Al. (il) W(A )=8Z(A )18A' (Ui.) d A )=82Z(A )18A2 
j=l, ... ,p;, JJ JJ j' JJ JJ J' 

and (w) For a nxp matrix H=(h, ... ,h), H (u) is H with its jth column 
1 P J 

replaced by the nxl vector u and H (u, v) is H with its jth and kth column 
Jk 

replaced by, respectively, u and v. We have: 

a) BL (A)lBA =-nIM(A)I-IIZ(A)'IW(Ar)lAZ(A)I, r=l, ... p; 
max r� r r 

b) BZL (AlIBA2= 
max r 

-n 1M(A) 1-21IM(A) I(IZeAl' lU(\) lAz(A) I+ IzeAl' IW(\) lAZ(A)IW(\ )1/ ) 
r r r r r� r 

+� IZ(Al'IW(\)lAz(A)1 2 ], r=l, ... ,p; 
r r 

c) BZL (A)IBA BA = 
max s r 

-n 1M(A) l-zI 1M(A) I(1Z(A)' [W(\), W(\ )lAZ(A) 1+ 1Z(A)' IW(\) lAZ(A)IV/\) 11 ) 
sr s r s s r r 

+� 1Z(A)' IW(\))AZ(A) 11 ZeAl' [W(\))AZ(A) I], 
s s r r 

for r.s=l .....P (r:;ts). 

8.1� follows Velilla (1993). Now define, for i=l. . .. ,n. j=l. ... ,p: U-l 
n 

lIn( U )-l/n(n-I)The array of constants a =a: a: and the functions 
ij i j k i kj 

. (A) (A )
The nxp matrix Z. =(Z. 11 ,� of jth column 

I I 

and (W) The nxn matrix A =A8 A. where 
i i 

8 =1� -fl-O/n)r1e e' and e is the ith canonical vector of [Rn.
in' i i i 

Theorem 8.2. Define, for i=l, ... ,n and j=l, ... ,p, the nxl vectors 

W(A)=BZ(A )/BA and V(A )=B2Z(A )/BA2• Put Z =z(~) and writej
jjJ ij j ijJ ljJ J 1 1 

W=W(~J) and V =u(~/ The derivatives at A=~ of 1M (A) I are: 
iJ ij ij iJ� (I) 

a)BIM (All/BA =2I Z ' (W )A z I;
(i) r ir Ir 1 i 

b)B21 M (A) I/BA 2=2[ Iz' (V )A Z I; Iz' (W )A Z (W ) I);
(j) r Ir lr I I Ir Ir i Ir Ir 

c)BZIM (A)I/BA BA =2[IZ' (W ,W )AZ I+IZ' (W )AZ (W )11 (r:;tsl.
(j) s r Isr Is Ir I I� Ir Ir I Is Is 

B. 2 is based on the following proposition which is stated without proof. 

Proposition B.3. For every i=l, ... ,n, we can write 

~ (II)"=Z(':), A ·Z(Al.. . , 
(I) 1'IJ 
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c ~~ ol- 7\ . If E t IlogX I I<c:o , and e(!I) solves min Ir lover 
R F j 

8=(j.L,r) (DO) restricted to JPI{(x(II)-Il)'r-1(x(!I)-IlH1/2IF(dX)=k ' it can be 
p 

shown that if {G} converges weakly to F, there exists for all k large
k 

enough, a sequence {8(II,G H, equicontinuous on lIelK, which converge
k 

pointwise to 8(11). Convergence is then uniform. Application to the sequence 

of empirical cdf's {F} yields strong consistency of {7\}. Differentiation 
n R 

under the integral sign holds if pl.l is such that the second derivatives of 

the array t/J exist with respect to the parameters and, for every j and k, the 
8b

moment E [X- IlogX 18x-8b IlogX 8 1<c:o, where b is a positive constant such1 
f k k] j 

that -b::!:A.,::!:b, for j=l, ... ,po This condition also suffices for the influence 
J 

function to exist and for the Huber's (967) conditions to hold. 

D '(;arnputatLcJ.n.cl ~. Array t/J has components 
p p 

~ .=ot/J 10A.,+ I: (ot/J 10j.L)w + I: (ot/J 10(J' )w " 
l,r,J I,r J l,r a a,] I,r ab ab,J

a=1 a,b=1 

• p p 

t/J =ct/J laA. + I: (at/J loj.L)w + I: (ot/J 10(J')w , where for
2,rs,j 2,rs] 2,rs a a,j 2,rs ab ab,j�

a=1 a,b=1� 

a::5b 

example, 

ot/J loA..=u' [dJ(ad/aA. )(x(\)-j.L )+uld]o. (ox(\) loA. ), 
1, r J J r r Jr r r 

ot/J 10j.L =U' [d](ad/oj.L )(x(A.) -j.L )-u[d]o • 
l,r a a r r ra 

ct/J loO' =u'[d](ad/O' ) (x(\)-j.L ).
l,r ab ab r r 

P. Jso: ad/OA. .=( l/d)( ox ~ A. j)I OA..) Ie'.r- 1(x (11) -j.L)], adloj.L =0/dHe'r-1(j.L-x(II»), 
{II) J_ 1 J f!l) " a 

ad/8O' =(1/2d)(x -j.L)'(8I: lo(J' )(x· -j.L), for selected canonical vectors 
ab ab 

P 
\' rs rs e and e. On the other hand, r =(/2) L [2(J' -0 0' ]w .-logx .. A 

j a ] rs rs,J J 
r., s=1 . 

symbolic differentiation code is useful when· handling this expressions. 
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CAPTIONS FOR FIGURES 

Figure 3.1 Oata of example 3.1 in logs 

Figure 3.2 a) Marginal 

line) and ~ (dashed
2M{i) 

(cont. line) and L02 

1 

displacement L01+L02 

I I 

Figure 3.3 a) LO' b) [0
if i 

approximations of Tsai and Wu (990) ~ (cont.
IM{l) 

line); b) Marginal likelihood displacements L01 

I 
(dashed line); c) Combined marginal likelihood 

Figure 3.4 a) LOM; b) [OM 
i i 

Figure 4.1 Curves AR(r) (continuous line) and AL(r) (dashed line) 

. ;. ..... 
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